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Abstract—This paper presents an online feature selection mechanism for evaluating multiple features while tracking and adjusting the

set of features used to improve tracking performance. Our hypothesis is that the features that best discriminate between object and

background are also best for tracking the object. Given a set of seed features, we compute log likelihood ratios of class conditional

sample densities from object and background to form a new set of candidate features tailored to the local object/background

discrimination task. The two-class variance ratio is used to rank these new features according to how well they separate sample

distributions of object and background pixels. This feature evaluation mechanism is embedded in a mean-shift tracking system that

adaptively selects the top-ranked discriminative features for tracking. Examples are presented that demonstrate how this method

adapts to changing appearances of both tracked object and scene background. We note susceptibility of the variance ratio feature

selection method to distraction by spatially correlated background clutter and develop an additional approach that seeks to minimize

the likelihood of distraction.

Index Terms—Computer vision, tracking, time-varying imagery, feature creation, feature evaluation and selection.
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1 INTRODUCTION

TWOdecades of vision research have yielded an arsenal of
powerful algorithms for object tracking. Multiple mov-

ing objects can be effectively tracked in real-time from
stationary cameras using frame differencing or adaptive
background subtraction combined with simple data asso-
ciation techniques [1], [6], [26]. These detect-then-track
approaches can be generalized to situations where apparent
camera motion is easily stabilized, including purely rotating
and zooming cameras and aerial views where scene
structure is approximately planar [14]. Modern appear-
ance-based methods use gradient descent to incrementally
follow a reference object model through video without prior
knowledge of scene structure or camera motion. This
includes the use of flexible template models [8], [21] and
kernel-based methods that track nonrigid objects using
viewpoint-insensitive histograms [7], [10]. Kalman filter
extensions achieve more robust tracking of maneuvering
objects by introducing statistical models of object and
camera motion [3], [16]. Tracking through occlusion and
clutter is achieved by reasoning over a state-space of
multiple hypotheses [15], [23], [24].

Our experience with a variety of tracking methods can be
summarized simply: Tracking success or failure depends
primarily on how distinguishable an object is from its

surroundings. If the object is very distinctive, we can use a
simple tracker to follow it. If the object has low-contrast or is
camouflaged, we will obtain robust tracking only by
imposing prior knowledge about scene structure or
expected motion, thus buying tracking success at the price
of reduced generality.

The degree to which a tracker can discriminate object
and background is directly related to the image features
used. Surprisingly, most tracking applications are con-
ducted using a fixed set of features, determined a priori.
Sometimes, preliminary experiments are run to determine
which fixed features to use—a good example is work on
head tracking using skin color, where many papers evaluate
different color spaces to find one in which pixel values for
skin cluster most tightly, e.g., [30]. However, these
approaches ignore the fact that it is the ability to distinguish
between object and background that is most important and
the background cannot always be specified in advance.
Furthermore, both foreground and background appearance
will change as the target object moves from place to place,
so tracking features also need to adapt. Fig. 1 illustrates this
observation with low contrast imagery of a car traveling
through patches of sunlight and shadow. The best feature
for tracking the car through sunlight performs poorly in
shadow and vice versa.

A key issue addressed in this work is online, adaptive
selection of appropriate features for tracking. Target
tracking is cast as a local discrimination problem with
two classes: foreground and background. Our insight is that
the features that best distinguish between object and
background are the best features for tracking. This point
of view opens up a wide range of pattern recognition
feature selection techniques that can be adapted for use in
tracking. An interesting characteristic of target tracking is
that foreground and background appearances are con-
stantly changing, albeit gradually. Naturally, when class
appearance varies, the most discriminating set of features
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also varies [19]. The issue of online feature selection has
rarely been addressed in the literature, especially under the
hard constraint of speed required for target tracking. The
nearest relevant work is [27], which dynamically switches
between five predetermined color spaces to improve face
tracking performance.

Section 2 presents a brief look at offline discriminative
feature selection in the field of pattern classification.
Section 3 adapts these ideas to the task of target tracking.
Since the goal is to perform online feature selection while
tracking, efficiency must be favored over optimality. We
develop an online feature selection mechanism using the
two-class variance ratio to find features whose distributions
best discriminate between the tracked object and the
surrounding scene background. Examples are presented
in Section 4 to illustrate how combining this feature
selection mechanism with tracking facilitates adaptation to
changing object and background appearance. In Section 5,
we note that feature selection via the variance ratio may
perform poorly in the presence of spatially-correlated
background clutter, and we develop an alternate feature
evaluation method that makes better use of spatial informa-
tion to minimize distraction due to clutter. The new
evaluation function favors features that minimize the
influence of the maximum distractor, thus maximizing the
likelihood of tracking the correct object in the next frame.
Section 6 concludes with a discussion of issues raised by the
approach presented in this paper.

2 FEATURE SELECTION

Feature selection is a technique for dimensionality reduc-
tion whereby a set of m features is chosen from a pool of n
candidates, where usually m << n [2]. This technique can
improve classification performance by discarding irrelevant
or redundant features.

The two main components in feature selection are the
selection criterion function, which is a quantitative measure
used to compare one feature subset against another, and the
search strategy, which is a systematic procedure to
enumerate candidate feature subsets and to decide when
to stop. Criterion functions can be categorized by whether

the evaluation process is data intrinsic (filters) or classifier-
dependent (wrappers) [2]. For discrimination problems, the
criterion involves evaluation of the discriminating power of
the selected feature subset. There are many ways to
evaluate the discriminative power of a feature. For example,
augmented variance ratio (AVR) has been used for feature
ranking as a preprocessing step for feature subset selection
[18], [19], [20]. AVR is the ratio of the between-class
variance of the feature to the within-class variance of the
feature. Other measures of discriminative power include
information gain and mutual information.

The goal in feature subset selection is to find m features
that best complement each other for the classification task at
hand. Since we usually do not know what the best subset
size m should be, the search space for feature subsets is 2n,
where n is the total number of features. Existing heuristic
search methods for feature selection provide a set of
compromises between speed and optimality. For example,
Sequential Forward Selection [2] has linear computational
complexity in n, but it is a greedy strategy that can result in
suboptimal feature sets. In biomedical imaging, a combina-
tion of feature ranking and feature subset selection has been
shown to be effective for offline selection of discriminative
subsets from thousands of feature candidates [20], [31].
However, to achieve online selection, we are forced to
consider simplified selection criteria, nonexhaustive search
spaces, and heuristic search strategies. In this work, we find
the best m features individually, fully realizing that the best
m individual features may not form the best feature subset
of size m [28].

3 Feature Selection for Tracking

Our goal in this section is to develop an efficient method
that continually evaluates and updates the set of features
used for tracking. It is important to note that features used
for tracking need only be locally discriminative, in that the
object only needs to be clearly separable from its immediate
surroundings. This is a much less restrictive assumption
than is necessary for a tracker that uses a fixed set of
features, since that set must, by necessity, be discriminative
across a wide-range of imaging conditions. A tracker that
swaps features in and out on the fly can instead use features
that are finely tuned to provide good foreground/back-
ground discrimination, even if they are only locally, and
temporarily, valid.

The following steps are taken in our approach. First, a set
of candidate “seed” features are defined and the distribu-
tions of feature values for object and background classes are
computed using samples taken from the most recently
tracked frame. Second, the class conditional distributions
for each feature are combined using a log likelihood ratio to
produce a function that maps feature values associated with
the object to positive values and feature values associated
with the background to negative values. This important
step can be interpreted as a nonlinear transformation of
each seed feature into a new “tuned” feature that is tailored
to the task of discriminating object from background in the
current frame. Third, these tuned candidate features are
evaluated using the two-class variance ratio to measure
separability of the distributions they induce on object and
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Fig. 1. Features used for tracking an object must be adapted as the
appearance of the object and background changes. The source imagery
(left column) is low contrast aerial video of a car on a road. The car
travels between sunny patches (top row) and shadow (bottom row). The
best feature for tracking the car in sunlight (R-G) performs poorly in
shadow. Similarly, the best feature for tracking through shadow (2G-B)
does not perform as well in sunlight.



background classes. Fourth, the most discriminative fea-
tures are used to assign weight values to pixels in a new
video frame, producing a weight image where object pixels
have high values and background pixels have low values.
Finally, the mean-shift algorithm is applied to this weight
image surface to estimate the 2D location of the object in the
current frame. Each of these steps is described in more
detail in the sections below.

3.1 Seed Features

In principle, a wide range of features could be used for
tracking, including color, texture, shape, and motion. Each
potential feature set typically has dozens of tunable
parameters and, therefore, the full number of potential
features that could be used for tracking is enormous. In this
work, we represent target appearance using histograms of
color filter bank responses applied to R, G, B pixel values
within local image windows. This representation is chosen
since it is relatively insensitive to variations in target
appearance due to viewpoint, occlusion, and nonrigidity.
Although only color features are considered in this paper,
the proposed approach can be extended easily to other cues
represented as histograms of feature values.

The set of seed candidate features is composed of linear
combinations of camera R, G, B pixel values. Specifically,
for our experiments, we have chosen the following set of
feature candidates:

F 1 � w1Rþ w2Gþ w3B j w� 2 ½�2;�1; 0; 1; 2�f g; ð1Þ

that is, linear combinations composed of integer coeffi-
cients between �2 and 2. The total number of such
candidates would be 53, but, by pruning redundant
coefficients where ðw0

1; w
0
2; w

0
3Þ ¼ kðw1; w2; w3Þ and by dis-

allowing ðw1; w2; w3Þ ¼ ð0; 0; 0Þ, we are left with a pool of
49 features. This set of seed features is chosen because:
1) the features are efficient to compute (only integer
arithmetic is involved), 2) the features approximately
uniformly sample the set of 1D subspaces of 3D RGB
space, and 3) many common features from the literature
are included in the candidate space, such as raw R, G, and
B values, intensity R+G+B, approximate chrominance
features such as R-B, and so-called excess color features
such as 2G-R-B.

All features are normalized into the range 0 to 255 and
further discretized into histograms of length 2b, where b is
the number of bits of resolution. We typically discretize to 5
or 6 bits, yielding feature histograms with 32 or 64 buckets.
This discretization is performed for efficiency and for
defeating the “curse of dimensionality” that occurs when
trying to estimate feature distributions from small numbers
of samples [2].

3.2 Creating Tuned Features

If both object and background were unicolored, then a
plausible argument could bemade that variation in apparent
color of pixels would lead to Gaussian distributions in color
space. In this case, Linear Discriminant Analysys (LDA)
could be used to find the subspace projection yielding the
least overlap (i.e., maximum separability) between object
and background. However, we must be able to handle
targets and backgrounds that have multimodal distributions

of colors. These violate LDA’s Gaussian assumption,
invalidating its analytic solution.

Our approach, illustrated in Fig. 2, transforms each seed
feature based on the class-conditional distributions of its
values. The transformation is computed as a log likelihood
ratio of the feature value distributions for object versus
background. This nonlinear transformation achieves two im-
portant goals. First, it creates a new feature that is “tuned” to
discriminate between object and background pixels. Thresh-
olding the value of this feature at zero is equivalent to using a
maximum likelihood rule to classify object pixels from
background. Second, for features with good discriminative
power, this method collapses potentially multimodal object
and background distributions into unimodal distributions.
Simple methods for measuring separability of two Gaussian
distributionsare thenapplicable, including thevariance ratio.

We use a “center-surround” approach to sampling pixels
from object and background. A rectangular set of pixels
covering the object is chosen to represent the object pixels,
while a larger surrounding ring of pixels is chosen to
represent the background. For an inner rectangle of
dimensions h� w pixels, an outer margin of width :75 �
maxðh;wÞ pixels forms the background sample. This is a
conservative strategy that leads to discriminative features
that separate object from background regardless of which
direction the object maneuvers in the image. Background
appearance also could be sampled by biasing selection of
pixels towards the area of the image where the object is
predicted to be in the future, given its recent trajectory.

Given a feature f , let HobjðiÞ be a histogram of feature
values for pixels on the object and HbgðiÞ be a histogram for
pixels in the background sample, where i ranges from 1 to
2b, the number of histogram buckets. We form an empirical
discrete probability distribution pðiÞ for the object, and qðiÞ
for the background, by normalizing each histogram by the
number of elements in it.

For each seed feature, we create a new “tuned” feature
tailored to better discriminate between object and back-
ground. This tuned feature is formed as the log likelihood
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Fig. 2. Empirical tuning and evaluation of a candidate seed feature,
demonstrated on an IR image of a truck. Sample histograms of (possibly
multimodal) feature values for object and background are used to
compute a log likelihood ratio function that maps object pixels to
(unimodally) positive values and background pixels to negative values.
When backprojected into image space, these function values form a
2D weight image that can be used to track the object. The variance ratio
is used to evaluate how well the tuned feature induces separability
between the two classes since separability correlates well with suitability
of the weight image for tracking.



ratio of the class conditional seed feature distributions. The
log likelihood ratio of a feature value i is given by

LðiÞ ¼ log
max pðiÞ; �f g

max qðiÞ; �f g
; ð2Þ

where � is a small value (we set it to 0.001) that prevents
dividing by zero or taking the log of zero. The nonlinear log
likelihood ratio maps object/background distributions into
positive values for colors distinctive to the object and
negative for colors associated with the background. Colors
that are shared by both object and background tend
towards zero. Backprojecting these log likelihood ratio
values into the image produces a weight image suitable for
tracking (Fig. 2).

3.3 Evaluating Feature Discriminability

To summarize the development so far, for each seed
feature, we estimate the distributions pðiÞ and qðiÞ of object
and background pixels, respectively, and then create a
tuned feature LðiÞ as the log likelihood ratio of these
two distributions. Now, we want to measure the separ-
ability that tuned feature LðiÞ induces between object and
background classes using the two-class variance ratio. We
could proceed by reaccumulating new class conditional
distributions for the tuned feature, as shown in Fig. 2, but
for efficiency we can reuse the distributions pðiÞ and qðiÞ
already computed for the seed feature. Using the equality
varðxÞ ¼ Ex2 � ðExÞ2, we compute the variance of LðiÞ with
respect to object class distribution pðiÞ as

varðL; pÞ ¼ E½L2ðiÞ� � ðE½LðiÞ�Þ2 ð3Þ

¼
X

i

pðiÞL2ðiÞ �

�

X

i

pðiÞLðiÞ

�2

ð4Þ

and similarly for background class distribution qðiÞ. The
variance ratio of the log likelihood function can now be
defined as

VRðL; p; qÞ �
varðL; ðpþ qÞ=2Þ

½varðL; pÞ þ varðL; qÞ�
; ð5Þ

which is the total variance of L over both object and
background class distributions, divided by the sum of the
within class variances of L for object and background
treated separately. As in (2), the implementation of this
equation avoids division by zero by taking the maximum of
the denominator and a small epsilon value.

The intuition behind the variance ratio is that we would
like log likelihood values of pixels on both the object and
background to be tightly clustered (low within class
variance), while the two clusters should ideally be spread
apart as much as possible (high total variance). The
denominator enforces that the within class variances should
be small for both object and background classes, while the
numerator rewards cases where values associated with
object and background are widely separated. Note the
similarity to the Fisher discriminant used in the computation
of LDA, where the squared difference between the mean
values of the two classes is used as an alternative measure of
total variance. To reemphasize an earlier point, while LDA
and the variance ratio are not appropriate for measuring

separability of the multimodal class distributions induced
by seed features, after mapping through the log likelihood
ratio to produce tuned features, class distributions should be
more unimodal and, thus, use of variance ratio for
measuring discriminative power of tuned features is
appropriate.

3.4 Ranked Weight Images

If a feature’s two-class log likelihood function from the
previous step is used to label pixels in a new video frame,
the result is a weight image where, ideally, object pixels
contain positive values and background pixels contain
negative values. For a perfect discriminating feature, this
weight image would be an indicator function, with value 1

at pixels corresponding to the object and �1 everywhere
else. In this ideal case, tracking could be achieved simply by
thresholding at zero and computing the object center and
rough shape using the method of moments (see also [4]). In
practice, object and background color distributions will
overlap and perfect separation is not achievable. Instead,
we settle for ranking the features by separability and
choosing the top N.

Fig. 3 shows a sample object and the set of weight images
produced by all 49 candidate features, after rank-ordering
the features based on the two-class variance ratio measure.
The weight image for the most discriminative feature is at
the upper left and the image for least discriminative feature
is at the lower right. We observe a very high correlation
between variance-ratio ranking and suitability of the weight
image for localizing the object in the next frame.

Fig. 4 shows other sample images with labeled object and
background pixels, along with the weight images associated
with the tuned features having highest, median, and lowest
variance ratio values, corresponding to the best, median,
and worst features, respectively, in terms of object/back-
ground separability. Again, we see good agreement
between these rankings and our intuitive preference
regarding which weight images to use for tracking.

3.5 Tracking

The above feature ranking mechanism is embedded in a
tracking system as shown in Fig. 5. Object and background
pixels are sampled from the previous frame, given the
previous location of the tracked object. Potential tracking
features are ranked using the variance ratio to determine
how well each feature distinguishes object from back-
ground. The top N most discriminative individual features
are used to compute weight images for the current frame.
Due to the continuous nature of video, the distribution of
object and background features in the current frame should
remain similar to the previous frame and the most
discriminative features should still be valid.

A local mean-shift process is initialized in each of the N
newweight images. These processes perform gradient ascent
to find the nearest local mode in their respective weight
images. These mean-shift processes converge to N estimates
of the 2D location of the object in the current frame,which are
combined to yield a final estimate of object location. In our
implementation, we use a naive median estimator with x̂x ¼
medianðx1; . . . ; xnÞ and ŷy ¼ medianðy1; . . . ; ynÞ. Themedian is
chosen rather than the mean in an attempt to add robustness
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against any singlemean-shift process yielding a bad estimate
of object location that corrupts the pooled estimate.

The algorithm iterates through each subsequent frame of
the video, extracting new samples of object and background
pixels and choosing new sets of discriminative features. In
this way, both the features used for tracking and the
appearance models of object and background classes evolve

together over time. Adaptively updating appearance mod-
els in this manner raises the specter of model drift, a classic
problem in adaptive tracking. Model drift builds up
gradually over time as misclassified background pixels
start to “pollute” the foreground model, leading to further
misclassification and eventual tracking failure. To avoid this
problem, we compute the empirical object feature distribu-
tion at each frame by pooling pixel samples from the
previously tracked image together with the labeled object
pixels from the original training sample in the first frame,
which is assumed to be uncontaminated. The estimated
feature distribution is therefore a straightforward average
of the initial and current feature distributions. Forming a
pooled estimate allows the object appearance model to
adapt to current conditions while keeping the overall
distribution anchored to the original training appearance
of the object. This heuristic approach assumes that the
initial color histogram remains representative of object
appearance throughout the entire tracking sequence.

4 EXPERIMENTS

This section presents three challenging tracking examples

that illustrate the benefits of combining online feature

selection with object tracking. Specifically, these benefits are

enhanced ability to track low contrast objects, ability to adapt

to changing background and illumination conditions, and

ability to avoid distraction by automatically emphasizing

appearance characteristics that are distinctive to the object.

The first tracking example uses low-contrast aerial

footage of a car driving through patches of sunlight and

shadow (Fig. 6). Watching the video frame-by-frame, it is

challenging even for a human observer to delineate the

position of the car when it passes through shadow regions.

Despite the difficulties, the tracker presented here smoothly

tracks the car through the changing illumination conditions

and through partial occlusion caused by trees lining the
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Fig. 4. Sample video frames with ranked weight images. Left column:
Frame with labeled object (green box) and background pixels (red box).
Second through fourth columns: weight images corresponding to the
tuned features with highest, median, and lowest variance ratio scores,
respectively. Rank ordering features by the two-class variance ratio
correlates well with intuition regarding which features would be best to
use for tracking the object.

Fig. 3. (a) A sample image with concentric boxes delineating object and background samples. (b) Weight images produced by all 49 tuned candidate

features, rank-ordered by the two-class variance ratio measure. The weight image for the most discriminative feature (hypothesized as best for

tracking) is at the upper left. The image for least discriminative feature (worst for tracking) is at the lower right.



road. Fig. 6 presents a trace showing which five features out

of 49 were chosen as most discriminative for each frame of

the tracked sequence. We see that many of the same

features are selected through most of the video (horizontal

bars in the picture represent the same features being chosen

again and again) and many features were never selected

(empty rows). At a coarse level of description, the feature

history can be broken into five blocks of frames, where

roughly the same set of features were chosen consistently

within each block and the discontinuity between blocks is

marked by a switch to a different set of features. Fig. 6 also

shows representative frames from within each of these

five coarsely segmented time blocks. For the first, middle,

and last block, the car is predominantly driving through

sunny road or dappled patches of shadow. The second

block delineates a subsequence where the car plunges into

an area of deep, extended shadow. The fourth block denotes

a subsequence where the car travels over a small bridge that

has color properties similar to the car.
Further analysis shows that the five features chosen most

often when the car is in sunlight are R-G, 2G-R, 2G-B-R,

2G+B-2R, and 2R-G-B. The five features chosenmost often in

shadow are 2G-B, 2G-R, G, 2G+B-R, and 2G+B. The most

chosen features under each condition, R-G in sunlight and

2G-B in shadow, were compared in Fig. 1 on sample sunlight

and shadow images. It is not easy to intuitively explain why

these particular features were chosen most often. In fact, that

is the point of this paper: Features should be chosen based

on an objective function that measures their discriminability,
rather than on subjective human intuition.

Fig. 7a illustrates failure of a standard mean-shift tracker

[7] on one section of the video. When the car passes over a

small bridge, the color of the top of the bridge rail is nearly

identical to the color of the specular highlight on top of the

car. The mean-shift tracker gets sidetracked by this similar

color, leading to tracking failure. Fig. 7b shows results from

our adaptive tracker. Since the tracker maintains a model of

both object AND background color distributions, it detects

that a color in the background is similar to a color in the

model and automatically down-weights those pixels. The

tracker is therefore not attracted to the bridge railing and

tracking proceeds.

This ability to adaptively emphasize different object

characteristics to avoid distraction is illustrated more

clearly by a video tracking example shown in Fig. 8. Here,

a red car with a white roof is tracked on a busy highway.

Fig. 8 shows three representative frames from the sequence,

along with the weight image produced by the top-ranked

(most discriminative) feature. Against the dark tarmac, the

white roof of the vehicle provides an excellent, high contrast

target for tracking. However, when the car passes near

other white vehicles, there is danger of distraction. In this

case, the feature selection process automatically shifts to a

feature that emphasizes the red color, thus causing the

distracting white vehicles to disappear from the weight

image (Fig. 8b). After the distractors have been passed, the

feature selection process again shifts back to emphasize the
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Fig. 5. Overview of tracking system with online, adaptive feature selection. Samples of object and background pixels in the previous frame guide
evaluation of candidate features, leading to a rank ordering of features based on discriminative ability. The top N best features are applied to the

current frame to compute N weight images. A mean-shift process is applied to each weight image to compute a 2D location estimate. These

N estimates are combined to determine the best location of the object in the current frame and the procedure iterates.

Fig. 6. Trace of features selected to track a car through a hazy aerial sequence. The car is tracked successfully through shadows and partial

occlusion by trees lining the road. See text for details.



high contrast white roof. We stress that this fortunate

shifting of color emphasis to avoid distraction happens

automatically, as a byproduct of selecting features that

maximize separability between object and background. This

example also illustrates the importance of sampling object

pixels from both the previous frame AND the original set of

labeled pixels (both red and white) in the first frame. If only

pixels from the previous tracked location were sampled to

determine object appearance in this example, the method

would drift to a model containing either only red or only

white pixels, losing the ability to adapt to future distractors.
A third video example is depicted in Fig. 9. The object

being tracked is a flag, blowing nonrigidly in the wind. The
camera viewpoint continually changes, causing the scene
background to vary. The flag is sometimes seen as a bright
object against dark trees and sometimes seen as a darker
object backlit by the bright sky. Nonetheless, the tracker
successfully follows the flag through the entire minute-long
sequence. Fig. 9 presents a trace showing which five features
out of 49 were chosen as most discriminative for each frame
of the tracked sequence. Again, we see that many of the
same features are selected through most of the video.
However, we also note that these are different features than
the ones chosen in the earlier car tracking example. There is
a lot of variation in background clutter and illumination
conditions throughout this sequence, and coarsely segment-
ing the feature selection trace into time blocks, as was done
in the earlier example, is difficult. Instead, we show a few
sample frames from the tracked sequence, with an indica-
tion of where they occur.

5 DISTRACTOR-RESISTANT FEATURE SELECTION

5.1 Drawback of the Variance Ratio

The intuition behind using the variance ratio as a feature
selection method is that we would like feature values of
pixels on both the object and background to be tightly
clustered (low within class variance), while the two clusters
should ideally be spread apart as much as possible (high
total variance). Variance ratio is computationally efficient
and does a good job at selecting features that maximize the
overall contrast between the foreground object and the
surrounding background. However, it is best suited to
backgrounds that are relatively homogeneous and is not
necessarily the best method to use when there are nearby
distractors in the neighborhood of the tracked object. This is
so because it maximizes the average contrast between the
log likelihood of foreground pixels and the entire set of
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Fig. 7. (a) The traditional mean-shift tracker is attracted to background pixels that have the same color as part of the tracked car, leading to tracking

failure. (b) By modeling both object AND background color distributions, our tracking approach automatically down-weights shared colors, thus

avoiding distraction.

Fig. 8. Example of feature adaptation to avoid distractors. Left column:
video frame with object/background windows overlaid. Right column:
weight image from top-ranked tracking feature. (a) A red and white car is
being tracked. (b) When the car passes a large white truck, the top-
ranked tracking feature adapts to emphasize the red color, causing the
white truck to “disappear” (compare weight image (b) with the other two
weight images). (c) When the car is alone against the dark road, the top-
ranked tracking feature empasizes the high-contrast white roof.



background pixels without taking into account spatial
clustering of high likelihood values in the background
associated with a potential distractor.

This problem is illustrated in Fig. 10. The feature chosen

by the variance ratio (Fig. 10b) yields a weight image with

high contrast between object and the “average” back-

ground. However, there is also an equally likely (high

contrast) distractor nearby that could easily attract the

mean-shift window and cause tracking failure. In this case,

the weight image in Fig. 10c is a better image to use for

tracking—even though the object has lower contrast with

respect to the background using this feature, there are no

nearby distractors that could cause the tracker to fail.

Unfortunately, the average contrast between foreground

and background is less in this image, and it receives a lower

variance ratio ranking than the weight image in Fig. 10b.
Although an example in the last section showed the

algorithm successfully downweighting potential distrac-

tors, that example worked due to the two-color nature of the

object being tracked, allowing the algorithm to discretely

switch from one color to the other. This section considers a

more general solution to the problem of avoiding spatially

correlated background distractions.

5.2 Quantifying Distraction

The key to distractor-resistant feature selection is spatial

reasoning about peaks in the weight image. To form an

accurate picture of distractors in the neighborhood of a

tracked object, we examine nearby image regions of similar

size to the object. Each such region is a potential distractor,

with strength characterized by the sum of weights within its

image area. To minimize the likelihood of distraction, we

seek features that minimize the maximum sum of weights

within any potential distractor region. This strategy is

related to the concept of maximizing the “margin” in

pattern classification—in our case, we are trying to

maximize tracking success by minimizing the probability

of misclassifying the distractor as the object. A more formal

procedure description follows.
Recall that, given a candidate feature f with values i

ranging from 0 to 2b, we use samples of pixels from the

object and background classes to form empirical discrete

probability distribution HobjðiÞ=nobj for object and HbgðiÞ=nbg

for background, with nobj and nbg being the number of

object and background sample pixels, respectively. To

facilitate reasoning about the spatial layout of feature

values, we define two likelihood images indexed by pixel

location x

P ðxjobjÞ ¼ pðxÞ ¼ HobjðfðxÞÞ=nobj; ð6Þ

P ðxjbgÞ ¼ qðxÞ ¼ HbgðfðxÞÞ=nbg; ð7Þ

where fðxÞ denotes the value of feature f at pixel x. The
weight image LðxÞ is then formed from the log likelihood
ratio values as

LðxÞ ¼ log
pðxÞ

qðxÞ
; ð8Þ

where, for simplicity, we have left out the modifications in
(2) that prevent dividing by zero or taking the log of zero.

Consider a target of known size, whose appearancemodel
scores most highly for two regions (sets) of pixelsX0 andX1
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Fig. 9. Trace of selected features over a one-minute long tracking sequence. The object tracked is a flag waving nonrigidly in the breeze. The camera

motion leads to a wide range of changing background and illumination conditions, all of which are handled successfully by the tracker.

Fig. 10. (a) Car passing another car of a similar color. (b) Weight image chosen by the variance ratio. (c) Weight image chosen by the method

developed in this section. The variance ratio favors features that produce weight images where the object has high contrast with respect to the
average background, even though there may be an equally high contrast distractor nearby. We prefer the weight image at the far right for

tracking—despite the poor contrast between object and background, there are no nearby distractors to tempt the tracker.



in the current frame. Let c0 be the class label of the pixels inX0

and c1 be the class label of the pixels inX1. Since the target is

at only one of the two locations, we consider two events,

A � c0 ¼ obj; c1 ¼ bgf g andB � c0 ¼ bg; c1 ¼ objf g. Because

we have previously tracked the object into the current frame,

we know that regionX0 actually contains the object and that

region X1 is therefore a distractor. We now want to find a

feature that maximizes the probability that we will deduce

the correct state of affairs, A, rather than the alternative, B,

given the observed regions X0 and X1. Assuming indepen-

dence of the observed regions given their class labels,we thus

want to find a feature that maximizes

P ðAjX0; X1Þ

P ðBjX0; X1Þ
¼

P ðc0 ¼ obj; c1 ¼ bgjX0; X1Þ

P ðc0 ¼ bg; c1 ¼ objjX0; X1Þ
ð9Þ

# apply Bayes rule; with priors denoted by � ð10Þ

¼
P ðX0; X1jc0 ¼ obj; c1 ¼ bgÞ

P ðX0; X1jc0 ¼ bg; c1 ¼ objÞ

�ðc0 ¼ obj; c1 ¼ bgÞ

�ðc0 ¼ bg; c1 ¼ objÞ
ð11Þ

# class conditional independence;

replace constant prior by C
ð12Þ

¼ C
P ðX0jc0 ¼ objÞP ðX1jc1 ¼ bgÞ

P ðX0jc0 ¼ bgÞP ðX1jc1 ¼ objÞ
ð13Þ

# independence over pixels in region ð14Þ

¼ C
Y

X0

P ðxjobjÞ

P ðxjbgÞ

Y

X1

P ðxjbgÞ

P ðxjobjÞ
ð15Þ

# substitute empirical distributions from ð7Þ ð16Þ

¼ C
Y

X0

pðxÞ

qðxÞ

Y

X1

qðxÞ

pðxÞ
: ð17Þ

Dropping the constant prior term C, we maximize the log of
(17):

log
Y

X0

pðxÞ

qðxÞ

Y

X1

qðxÞ

pðxÞ

 !

¼ log
Y

X0

pðxÞ

qðxÞ
=
Y

X1

pðxÞ

qðxÞ

 !

ð18Þ

¼
X

X0

log
pðxÞ

qðxÞ
�
X

X1

log
pðxÞ

qðxÞ
ð19Þ

¼
X

X0

LðxÞ �
X

X1

LðxÞ: ð20Þ

To summarize, given a specific object region X0 and
potential distractor region X1 discovered in the previous
frame, we can minimize the likelihood of misclassifying
distractor X1 as object by choosing the feature that
minimizes the difference between the sum of weight image
pixels over regions X0 and X1. Features that minimize this
difference should also be good features for minimizing that
distraction in the weight image computed for the current
frame.

5.3 Minimizing the Maximum Distraction

The derived formula for measuring the feature-specific
severity of a distractor relies on knowing the region X1 that
contains the distractor. Although in theory we want to
minimize over all distractions, in practice we minimize with
respect to just the single, worst distractor. This still requires
a search for the maximal distractor region X1, over all
potential distractor regions X�. Finding the maximum
distractor region is performed efficiently as follows (see
Fig. 11):

Step 1. Smooth the candidate feature weight image with

an isotropic, separable Gaussian kernel related to the

current size of the object region X0. The value at each pixel

in the convolved image is a weighted sum of pixels in a

circular region surrounding it, normalized by the total

weight pixels in that region. Convolution with a Gaussian is

thus a fast, approximate method for computing the region

sum of (20) over circular regions centered at every pixel.

Note also the theoretical connection between convolution
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Fig. 11. Deriving the peak-difference score for a given weight image. Top row: The weight image is smoothed and the primary peak location and

value is identified. Bottom row: A prior shape estimated is used to mask out the object pixels in the weight image. This masked weight image is then

smoothed and the secondary peak location and value is identified. This secondary peak represents the estimated maximum (worst) distractor. The

difference between primary and secondary peak values yields the peak difference score.



with a Gaussian and using the mean-shift algorithm with a

Gaussian kernel [5]. As a result, the smoothed weight image

represents the actual surface that the mean-shift algorithm

performs hill-climbing on and spatial reasoning about

peaks in this image is relevant to determining whether

mean-shift will converge to the correct mode.
Step 2. Extract the central object peak from the smoothed

image. We want to maximize the difference between the

height of this peak and the largest distractor.

Step 3. Find the next highest peak after removing the

central object peak. This peak represents the most likely

distractor object. The mean-shift tracker may be attracted to

this incorrect position. Whether it will be attracted to this

position and, therefore, potentially lose the tracked object,

depends on where in the weight image the mean-shift

tracker is initialized and whether the gradient at that

position points toward the true (central) peak or this

incorrect distractor peak. To find the second highest peak,

we mask out the object pixels in the current weight image

using a coarse estimate of object shape. The current shape

estimate can be as simple as the rectanglular region used to

sample object pixels. More sophisticated elliptical shape

estimates can be computed via the EM algorithm from the

previous weight image (see also [33]).

Step 4. Evaluate feature quality as the difference between

these two peak heights. By choosing the feature that makes

the true object peak most prominent as compared against

the most likely distractor, we seek to minimize the

maximum distractor and, thus, minimize the possibility of

distraction in the next frame.

The example illustrated in Fig. 12 demonstrates that this

new approach to distractor-resistent feature selection can

outperform the original method based on variance ratio

when distractors are present. To make it easier to find cases

of distractors, we use just 3 bits of resolution in all color

histograms (eight buckets), greatly reducing the ability of

the color features to separate object from background. The

example shows a tracked car passing another of similar

color. Before the passing begins (Fig. 12a), both the variance

ratio and the peak difference method select similar features.

However, while the tracked car is close to the other vehicle

(Figs. 12b, 12c, 12d, and 12e), the weight images selected by

the variance ratio are poor candidates to use for tracking

since the passed car remains as a highly-visible distractor,

and there is danger that the mean-shift tracker may

incorrectly jump to follow it instead. In contrast, the top-

ranked features produced by the peak difference method

produce weight images where the target car can be safely

tracked since the other vehicle presents only a minimal

distraction in these images.
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Fig. 12. Comparison of variance ratio and peak difference feature selection for an example sequence where a tracked car passes another with a

similar color. Top: Five frames from the sequence with object/background windows overlaid. Bottom: Top three features chosen within the region of

interest, using variance ratio score (left) and peak difference score (right). Peak difference chooses features that minimize the distractor object.



6 DISCUSSION

6.1 Summary

Although object tracking based on color histogram appear-
ance models can achieve efficient tracking through partial
occlusion and pose variation, tracking success or failure
depends primarily on how distinguishable the object is
from its surroundings. Surprisingly, most tracking applica-
tions use a fixed set of features, determined a priori (a
notable exception is [27]). These approaches ignore the fact
that it is the ability to distinguish between object and
background that is most important and that appearance of
both object and background will change as the target object
moves.

This paper presents an effective method for continuously
evaluating multiple features while tracking and for select-
ing a set of features that improve tracking performance. We
develop an online feature ranking mechanism based on
applying the two-class variance ratio to log likelihood
distributions computed for a given feature from samples of
object and background pixels. This feature ranking mechan-
ism is embedded in a tracking system that adaptively
selects top-ranked features for tracking. The result is a
system in which the features used for tracking and the
appearance models of object and background coevolve over
time. The experimental results demonstrate successful
tracking performance even on challenging video sequences.

Although the variance ratio is a computationally efficient
mechanism for selecting tracking features, it does not take
into account the spatial distribution of background values
in the weight image and, thus, does not appropriately
penalize features that produce spatially-correlated back-
ground clutter or strong distractors. We have presented an
additional feature selection method that performs spatial
reasoning over potential distractor regions, seeking features
that maximize the difference between the sum of weights
within the object versus the maximum sum of weights over
any distractor region. This method chooses features that
minimize the potential for distraction in the next frame.

6.2 Issues and Future Work

6.2.1 How Many Features to Select

This paper presents methods for ranking and selecting the
N best features for tracking an object. However, we have
left open how to choose the value N , i.e., how many
features to use in the tracking system described in
Section 3.5. In our experiments, we typically choose N to
be either 1, 3, or 5. There is little difference in tracking
results when using either three or five features. There is a
cost to choosing a higher number of features because more
computation time must be spent during tracking (N runs of
mean-shift must be performed per frame). When using the
variance ratio for selection, choosing only a single feature is
dangerous because, as we have discussed, the variance ratio
sometimes gives high rank to a feature that does not
discriminate well between the object and background
clutter. However, the peak difference selection method is
powerful enough that the single best feature found by that
algorithm is often sufficient for successful tracking.

More principled methods for choosing the number of
tracking features N could be devised by referring back to

our original insight that selecting features for tracking is
related to the problem of selecting discriminative features
for classifying foreground from background pixels. The
pattern recognition literature describes both exhaustive and
heuristic methods for searching over both size and
composition of the best subset of features [2]. Searching
the space of feature subsets is far too expensive to run
during online tracking. However, given a training set
containing samples of the types of objects one wants to
track and the types of environment one will be tracking
them through, we can imagine an offline process for
determining how many features should be used on average
to maintain a specified level of performance, and even a
coarse prior ranking of which features might be best for
which object in which environment.

A more principled method for choosing sets of features
would also take into account the degree of independence
between features. Weight images produced by two high-
ranking features are often highly correlated and, therefore,
not much new information is introduced by adding the
second feature. Discovering such correlations between
features is not addressed in our current work. Finally, one
could explore more sophisticated ways to combine the
information from multiple features [20]. Here, we have
treated each feature as an independent information source
used to run an entire mean-shift process with pooling of
information happening at the end by combining the end-
result location estimates. One can imagine combining the
information from multiple features at the weight-image
level to produce a single, more refined weight image where
the foreground object is more clearly distinguished from the
background than in any individual feature weight image.
See [12] for an exploration of this approach.

6.2.2 What Type of Features to Use

This paper uses 49 linear combinations of RGB color space
as a simple yet concrete example of a set of candidate seed
features. Features derived from other color spaces, such as
HSV or YUV, could be used instead of or in addition to this
set of features. For example, the work of Stern and Efros
adaptively selects between five color spaces RG, rg, HS, YQ,
and CbCr for face tracking [27]. The approach presented
here can be easily extended to include histograms formed
from other types of features. These include texture features
computed by, e.g., Gabor filters [17], edge orientation
histograms [11], motion features computed via optical flow
or background subtraction [9], and joint spatial-feature
models such as color correlograms [13]. Each of these spaces
has tunable parameters such as scale, orientation, or
discretization resolution of the histogram. Therefore, the
space of potential features that can be used is enormous if
one considers also selecting among differently parameter-
ized and quantized versions of the same base features. Of
course, adding more features means that computation time
for feature selection also rises, particularly if all features are
evaluated each time a selection is made. This may be
prohibitively expensive for real-time tracking. As discussed
above, one possible remedy is to use training data of
expected object and background appearances in an offline
search for a smaller set of online candidate features that
typically do well in those conditions. Online feature
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selection during tracking then needs to consider only the
smaller set of feature candidates that have shown prior
promise of utility.

6.2.3 Combining Feature Selection Mechanisms

Since we have described two feature selection evaluation
functions in this paper, variance ratio and peak difference, it
is natural to consider whether and how they could be
combined. For example, perhaps we could use the variance
ratio until a distractor is noticed and then switch to using
peak-difference until the distractor has safely disappeared.
There would be some benefit to doing this from a
computational standpoint (variance ratio is less expensive
to compute than peak difference). However, in our
experience, the peak difference method works well when
variance ratio does not and, additionally, works better in
clutter situations, so from a tracking performance stand-
point, one would do well to just use peak difference and
dispense with the variance ratio method altogether, rather
than try to combine them. It is our opinion that effort is
better spent creating improved feature selection evaluation
functions, and better features to apply them to, rather than
designing methods to combine multiple feature selection
techniques.

6.2.4 Feature Selection as Needed

In this paper, it has been assumed that all features are
evaluated and the best N selected at every frame. This
ideally provides maximal responsiveness to rapidly chan-
ging background and illumination conditions. There is a
heavy computational cost to considering all features at
every frame, as well as the potential cost of inconsistent
localization caused by switching between features that
emphasize different portions of the tracked object. How-
ever, the best features to use are a function of both object
appearance and background appearance, and if both these
appearances are slowly varying, then the features used for
tracking do not need to be updated frequently.

One strategy is to invoke feature selection only periodi-
cally during tracking. For example, we have implemented
C versions of the variance ratio and peak difference
algorithms in this paper that select from the 49 candidate
seed features only at every 10th frame. Running time is
17 frames per second for the variance ratio method and
15 frames per second for peak difference. These runtimes
were measured on an Intel Pentium4, 2.5 GHz machine
with 1GB RAM. The run times include image file reading as
well as graphical display of the 720� 480 color images
overlaid with the current object bounding box. In future
work, we will explore methods that efficiently monitor
tracking quality using the current set of features and invoke
the full feature selection process only when that quality
degrades too far. For example, the strength of the maximum
distractor using a current set of features could be monitored
to determine whether it is time to initiate the full feature
selection computation.

6.2.5 Tracking Initialization

Although tracking initialization is beyond the scope of this
paper, it is essential to address it in a real system. The
experiments in this paper were initialized by hand by

drawing a bounding box around the object to track. In a

practical system, object tracking could be initialized by

automatically detecting moving objects. For a stationary

camera, this is easily achieved via background subtraction

[6]. When the camera is in motion, moving objects can still

be detected based on motion stabilization and frame

differencing [32] or motion segmentation [25].
A more subtle issue is how to ensure that the initial color

distribution selected in the first frame is representative of the

appearance of the object in subsequent frames. Recall that, to

avoidmodel drift, we “anchor” the current color distribution

bypooling itwitha referencedistribution fromthe first frame.

Anchoring to a reference frame is also used in [22] to avoid

drift when updating intensity templates. However, if the first

frame were to contain an unusual specular reflection, for

example, itwould corrupt all subsequentdistributions.When

we outline objects by hand, this can largely be avoided,

however, a system that automatically initializes bounding

boxes for trackingmight not be so fortunate. For prototypical

objects like heads, color models have been bootstrapped

using prior knowledge of object shape andmovement [29]. In

our case, we could track an object initially using motion

detection methods while accumulating an initial histogram

appearance model over several frames (see also [12]). This

would avoid forming a corrupt reference color distribution

froma singularly poor initial frame.Ultimately, the approach

ofmaintaining a reference distribution needs to be discarded,

as it limits the amount of variation that can be tolerated as the

object appearance evolves. More work is needed to solve the

twin problems of robust model initialization and drift-free

model update.
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