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Abstract—Since current signatures are generally not verified
carefully, frauds by forging others signature always happen.
This paper tried to authenticate user automatically with elec-
tronic signatures on mobile device. We collected coordinates,
pressure, contact area and other biometric data when users sign
their name on touch screen smart phone. Then we used four
different classification algorithms, Support Vector Machine,
Logistic Regression, AdaBoost and Random Forest to build
a specific signature verification model for each user, and
compared the verification accuracy of these algorithms. The
experimental result on 42 persons’ dataset shows that these four
algorithms have satisfactory performance on Chinese signature
verification, and Adaboost has the best performance with error
rate of 2.375%.

Keywords-Electronic Signature; Signature Verification; Ad-
aboost; Random Forest;

I. INTRODUCTION

With the continuous advance of the paperless office,

electronic signatures are gradually replacing handwritten

signatures in various fields. The most beneficial reason for

electronic signatures taking place of handwritten signatures

is resource saving. To get electronic signatures, users are

required to sign his/her name on the touch screen of a

digital panel, a tablet or a smart phone rather than on

paper. For those companies that have a large requirement

for receipts or contracts, electronic signatures can help

them reduce considerable expenditure. Nowadays, many

communications, retailing, hotels and many other service-

oriented industries are beginning to use electronic signature

to authenticate user or produce non-repudiation evidence.

Especially in financial industries such as banks and insur-

ance which are in greater demand for signatures, electronic

signatures are widely adopted in China. So if the reliability

of electronic signatures can be guaranteed, more companies

and industries are willing to use electronic signatures instead

of handwritten ones.

In terms of security, electronic signatures have better reli-

ability than handwritten signatures. Generally handwritten

signatures are highly vulnerable to imitate. People have

to authenticate handwritten signatures by hand, and it is

neither reliable nor efficient because of judges background

knowledge and limited experience. Even if we can turn
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the handwritten signature to an image and authenticate it

automatically, it is unreliable. Because offline-handwritten

signatures contain no information of writing process, we can

only authenticate it by computing the similarity of shape and

structure. As for electronic signatures, we could collect more

information with touchscreen besides shape and structure of

characters, such as writing speed, pressure, size of contact

area and other biometric features. These biometric features

can be used to reproduce the writing process and often reflect

users writing habits. Since each person has unique writing

habit and it is hard to imitate, signature verification based

on biometric features is feasible.

This paper explored the feasibility of automatic signature

identification on a smart device to tell whether the signer is

the real user. The rest of this paper is organized as follows.

We first briefly describe the related work in Section 2. The

design details for our signature verification experiment are

presented in Section 3. We then compared performance of

4 different classification methods in signatures verification

using our experimental data in Section 4. This paper is

concluded with speculation on how the current prototype

can be further improved in Section 5.

II. BACKGROUND AND RELATED WORK

In general, signature verification methods are mainly

divided into 2 categories: offline verification and online

verification. Offline signature verification mainly uses static

graphic information to authenticate signer. While online

signature verification can make use of more dynamic infor-

mation, such as velocity, acceleration and pressure of writing

a signature, which is more difficult to imitate. Hence online

signature verification generally has higher accuracy rate than

offline verification[1].

In online verification, the first thing is to extraction

features from signature data, which consist of global features

and local ones[2]. Global features describe characteristics of

the entire signature, such as total time of writing, number

of strokes, and size of signature and so on. Local features

show the signature trait at a time point or during a short

period, such as the local velocity and angle of a stroke.

Besides direct feature extraction, hidden Markov model[3-

5] and wavelet analysis[6-8] are also widely used.
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After feature extraction, researchers tried several different

methods to verify electronic signatures. One is matching

algorithm[9,10]. It compared the similarity between a test

signature and the template. Classification is also widely used

to verify signatures. For example, SVM (Support Vector

Machine)[4,8,11,12], which is considered as one of the

best classification algorithm, performs well in small samples

and get a low error rate of about 3%. Artificial neural

networks[6,13,14], decision tree[15] and other methods are

also be adopted in signature verification.

Because there is no common signature database for test,

different researchers collected their experimental data indi-

vidually to test their verification schemes, and it is hard

to compare their results. The First International Signature

Verification Competition (SVC2004) [16] was held in 2004,

and 13 teams participated in. In the competition, the cham-

pion came up with a scheme with error rate close to 2.8%.

Kumiko Yasuda [17] recorded video through the webcams

and tracked the pen tip moves to extract signature data, and

that provided a new way for online signature verification. S.

Rashidi[18] adopted DCT (Discrete Cosine Transform) as

feature extraction method, and reduced EER of two tasks to

3.61% and 2.04% respectively on the signature dataset of

SVC2004. Yasmine Guerbai [19] used one-class classifier

for offline signature verification, and used soft threshold to

improve the classification accuracy, but the final result is

not really satisfactory because of the limitation of one-class

classifier.

III. EXPERIMENTAL DESIGN AND SETTINGS

We invited 42 participants to our experiment to collect

signature characteristic data. Each participant is required

to sign his or her own name 50 times firstly. To imitate

imposters, we got a negative sample set of 20 for each

participant. Since there might be more than one imposter in

reality, we assigned forgery task of one person to 4 different

participants and asked them to imitate the signature 5 times

each. Thats to say, all 50 positive samples were generated

by the names real owner, and 20 negative samples were

generated by other 4 participants. We developed an App to

collect data such as signatures coordinate, pressure, contact

area, and etc. After extracting features from data, we built

a classifier based on SVM, Logistic Regression, Adaboost

and Random Forest. Then we compared the results and got

conclusion.

The experiment consists of three parts. The first part is

collecting the signature data, the second part is extracting

features, and the third part is building a verification model.

The framework of our experiment is sketched in Figure 1.

A. Data collection

Experimental data was collected using a smartphone LG-

G2 based on Android 4.4, we collected a total of 42

participants data. Firstly the experimenter needed to enter

his or her name, and then used a finger to sign his name 50

times on the touch screen. After that, the experimenter was

asked to imitate 20 signatures as negative samples. Our APP

will assign 4 other participants names to him/her randomly,

and each name should be written for 5 times.

When an experimenter wrote his/her signature, our App

will record the user’s name, current number of writing times,

current time, coordinates x, y of current position, pressure,

contact area of the screen and the status of current position.

When the app detected finger movement, it will create a

point, thus each signature can be regarded as a series of

points and it is usually between 80 and 300 points depending

on the importer. Each point will be a set consists of the above

8 data items. A sample signature is shown in Figure 2.

Signature data sample is shown in Figure 3.

Features listed in Figure 3 are explained in detail as

follows:

Users name (name) is entered by the participant before

he or she writes name;

Current writing number (number of signature) is marked

to distinguish different signatures, and its value is between

1-50 in our experiment;

Current time (time) was collected by Android systems

touchEvent API MotionEvent.getEventTime();

Current Location coordinate x, y (coordinate X, coor-

dinate Y) were gotten by Android systems API Motion-

Event.getX() and MotionEvent.getY(). These API regards

the left bottom of the screen as zero point; Pressure (pres-

sure) was attained by API MotionEvent.getPressure();

The contact area of the screen (size) was collected by API

MotionEvent.getSize();

The current state (status) was gotten by calling API

MotionEvent.getAction().This API returns DOWN, UP and

MOVE three states to denote the start, midway and the end

of a stroke.

B. Feature extraction

Because each participant differs greatly in length of name

and writing style, number of points of signatures varies. But

classification algorithms we adopted requires equal feature

numbers, so we have to extract features from raw data to

get feature vector.

We use Python as programming language and extract the

following 57 features listed in Figure 4 to compose feature

vector.

In these features, the velocity was extracted according to

the distance change per unit time between two consecutive

points, and the acceleration was extracted according to the

velocity change per unit time between two consecutive

points. Velocity and acceleration both contain three direc-

tions, x-axis, y-axis, and in the plane.

As for features in Average Type, we extracted average

velocity of the signature (x-axis, y-axis and overall), average

acceleration, average pressure and average contact area.
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Figure 1. Flow Diagram of Experiment

Figure 2. One of the signatures

For features in Maximum Type, we extracted maximum

speed, maximum acceleration, maximum pressure and max-

imum contact area of the signature. Besides, we extracted

the moment when these maximum values appear in the

signature.

Features in Minimum Type are extracted with the same

way as Maximum Type.

In Other Type features, Total Time represents the total

time of writing a signature, Break Times means the amount

of strokes in one signature, Total Points represents the total

number of points of a signature, Maximum Coordinate,

Minimum Coordinate and Average Coordinate represent

the largest, minimum and the center of x, y coordinates

respectively. Maximum Coordinate Position, and Minimum

Coordinate Position represent the moment of the maximum

and minimum coordinate appears in the signature. Size of

signature is on behalf of the total area of the signature using

size of the minimum rectangle to contain the signature, Total

Distance of Move is on behalf of the total moving distance

on the screen.

After feature extraction, the raw data was converted to a

57-dimensional feature vector. So far, we have 50 positive

samples feature vectors and 20 negative samples feature

vectors for each of 42 participants.

C. Verification model

We mainly used four classification algorithm to build

the verification model, including SVM, Logistic Regression,

AdaBoost and Random Forest.

SVM (Support Vector Machine) is a binary-class clas-

sification model. Its basic model is a maximum interval

linear classifier in the feature space. For linear separable

data set, SVM learns to be a linear classifier through interval

maximization. For non-linear separable data set, SVM makes

the data set linearly separable in the high-dimensional space

by using kernel trick. Assuming that a given training data

set in the feature space is:

T = {(x1, y1) , (x2, y2) , · · · , (xN , yN )}

There is a hyperplane f (x) = ωT · x + b, the objective func-

tion of maximum interval classifier can be defined as

max
1

‖ω‖
s.t. yi

(

ωT · xi + b
)

≥ 1, i = 1, · · · , n

Logistic Regression is a log-linear model. Binomial logistic

regression model is a classification model, which is repre-

sents by conditional probability distribution P (Y|X), in the

form of parameterized logistic distribution. The conditional

probability distribution is shown below:

P (Y = 1|x) =
exp (ω · x+ b)

1 + exp (ω · x+ b)

P (Y = 1|x) =
1

1 + exp (ω · x+ b)

AdaBoost is one of the most representative boosting method.

For a classification problem, building a weak classifier

with rough rule is easier than building a strong classifier.

Boosting method obtains a strong classifier by combining

several weak classifiers after learning repeatedly. AdaBoost

improves the weight of which is misclassified in the previous
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Figure 3. Data Sample

Figure 4. Feature List

round and reduces the weight of which is correctly classified. The final classifier of AdaBoost is:

G (x) = sign (f (x)) = sign

(

M
∑

m=1

αmGm (x)

)
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Where G(x) is the final classifier, m is the number of

weak classifiers, Gm (x) is the weak classifier for each step,

and αm is the weight of each classifier. Random Forest

is a kind of classifier applying several trees in the sample

training and predicting, and constituted by several decision

tree. CART (Classification and Regression Tree) is the most

frequently used. For each tree, the training set is sampled

with replacement from total training samples, which means

that some of the samples will appear multiple times in the

training set. The features are selected without replacement

from all features. Assuming that the total number of features

is M, generally we select sqrt(M), 1/2sqrt(M) or 2sqrt(M)

features. The advantages of Random Forest are that it can

handle high-dimensional data and has a fast training speed

without feature selection. Besides, Random Forest is able

to detect mutual influence between features during training,

and after training it can give a list about which features are

more important.

We used a famous python machine learning package

named scikit-learn when operating experiment with the

application of the module SVC, Logistic Classifier and

Random Forest Classifier. The methods to assess parameters

are FAR and FRR. FRR (False Rejection Rate) represents the

rate of regarding the negative samples as positive samples.

FAR (False Acceptance Rate) represents the rate of treating

the positive samples as the negative.

For each experimenter, we randomly selected a part of

data from his positive samples and negative samples as the

training dataset, and the remaining portion as a test dataset.

In model SVM and Logistic Regression, we adjusted

parameters C (error term) to train, and use test set to find the

best parameters C which has the lowest error rate. In model

Adaboost, we adjusted the number of weak classifiers to

find the best parameters n estimators which has the lowest

error rate. In model Random Forest, by immobilizing the

number of trees in a forest and changing the number of

features for each tree, find the best parameters max features

which has the lowest error rate. Then, calculating the rate

of misclassification of each model.

Finally, we analyzed and compared these four classifica-

tion algorithms and estimated the reliability of our models.

In addition, we compared the pros and cons of four classi-

fication algorithms.

IV. RESULT AND ANALYSIS

From 50 positive samples of each participant, we ran-

domly selected 30 as training data, and the remaining 20

as test data. From 20 negative samples, 10 were randomly

selected as training data, while the other 10 as test sample.

Each experiment is repeated 50 times, and we chose the

average value as the final result. Finally, we used FAR and

FRR values to evaluate the results of the algorithms.

Figure 5. Result of SVM in polynomial kernel

Figure 6. Result of SVM in linear kernel

A. SVM

Model SVM used ”poly” and linear kernel, expression as

follows:

Parameter C (error term) selected from the following val-

ues, c svm = [0.0001, 0.0005, 0.001, 0.005, 0.01, 0.05, 0.1,

0.5, 1.0, 5.0, 10.0, 50.0, 100.0], the remaining parameters

use the default settings. Training the feature vectors of 42

experimenters. The results are shown in Figure 5 and Figure

6.

Finally, the average FRR of 42 experimenters using poly

kernel is 5.05%, the average FAR is 11.5% and the total

error rate is 16.55%.

The average FRR of 42 experimenters using linear kernel

is 4.43% the average FAR is 10.68% and the total error rate

is 15.01%.

B. Logistic Regression

For Model Logistic Regression, parameter C (error term)

selected from the following values, c log = [0.0001, 0.0005,

0.001, 0.005, 0.01, 0.05, 0.1, 0.5, 1.0, 5.0, 10.0, 50.0, 100.0],

and the remaining parameters use the default settings. Train-

ing the feature vectors of 42 experimenters using Logistic

Regression Classifier. The results are shown in Figure 7.

Finally, the average FRR of 42 experimenters is 1.625%,

the average FAR is 6.17% and the total error rate is 7.795%.
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Figure 7. Result of Logistic Regression

Figure 8. Result of Adaboost

C. Adaboost

For Model Adaboost, we changed the number of weak

classifiers to train the model and find the best number of

classifiers. The number will be chosen between 40 and 59.

The results are shown in Figure 8.

Finally, the average FRR of 42 experimenters is 0.185%,

the average FAR is 2.19% and the total error rate is 2.375%.

D. Random Forest

We selected CART to constitute Random forest, used the

’gini’ coefficient as the evaluation parameter of CART, and

elected 20 as the total amount of trees in forest. Since the

total number of features is 57, the parameter ”feature amount

per tree” (max features) was chosen between 4 and 19. The

results are shown in Figure 9.

Finally, the average FRR of 42 experimenters is 0.34%,

the average FAR is 2.44% and the total error rate is 2.78%.

Additionally, Random Forest will give a list about the

importance of each feature. We put all experimenters

importance list into one list and calculated the importance

of all features. The top 10 important features are shown in

Table I.

In summary, Random Forest Classifier and Adaboost

both get satisfying results, their classification accuracy were

Figure 9. Result of Adaboost

Table I
TOP 10 MOST IMPORTANT FEATURES

1 Whole Distance y

2 Average Size

3 Total Time

4 Whole Distance

5 Whole Distance x

6 Average Pressure

7 Size of Signature

8 Max y

9 Average Speed y

10 Average Speed x

significantly higher than SVM and Logistic Regression.

Random Forest classification can make error rate as low

as 2.78% and the best classifier, Adaboost, can make error

rate be as low as 2.375%. For all four classifiers, FRR

values are quite low. That indicates these four classifiers

have high recognition rates in positive samples, and they

are not likely to be misclassified as negative samples. But

FAR values are higher than FRR values, and there are big

fluctuations in SVM and Logistic Regression models. We

figure out that these two belong to binary-class classification

algorithms, and they have a poor performance when our

negative samples from 4 imposters may not be merged into

one class roughly. For Adaboost, by iterative empowerment,

samples that are misclassified will be highly corrected in the

next step. For Random Forest, each tree in forest marks a

partition of sample space. Because Adaboost and Random

Forest cut the sample space step by step, so they have better

description of positive samples and better adaptability to

negative samples, therefore perform better in our classifi-

cation experiment. It is worthy to note that due to using

multiple weak classifiers, the training speed of Adaboost is

the slowest in four models. It might be severe when the

model comes up with a large data set.
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V. CONCLUSION AND FUTURE WORK

Since electronic signature data is generally collected on

smart device, we can get richer data via capacitive touch

screen and hence improve the result of signature verification.

After collecting 2,940 electronic signatures of 42 partici-

pants on smartphone, we extracted 57 representative features

to construct feature vector. SVM, Logistic Regression, Ad-

aboost and Random Forest are adopted to train and test the

model respectively. Experimental results show that in our

experiment settings, the classic binary algorithm SVM and

Logistic Regression have, worse performance, but Adaboost

and Random Forest have satisfactory results in verification,

and the best one is Adaboost Classifier.

But there are still some drawbacks in this paper. First of

all, the features we extracted from raw data are empirically

derived, rather than select by importance of features. Among

these four models, only Random Forest algorithm compared

the importance of each feature. In our future study, we will

try some feature extraction algorithms, such as PCA (Prin-

cipal Component Analysis), to obtain some typical features.

And we expect a higher classification efficiency since data

and algorithms may be more reliable than human experience.

Secondly, we mainly used the biometric information of

the electronic signature for verification, and discarded the

graphical signature features (offline signature verification),

which may increase the accuracy of signature verification.

We will try to make better use of all kinds of signature

data and extract effective features to improve the verification

accuracy as our future work.
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