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Abstract −−−− The simultaneous localization and mapping 

(SLAM) with detection and tracking of moving objects 

(DATMO) problem is not only to solve the SLAM problem 

in dynamic environments but also to detect and track these 

dynamic objects. In this paper, we derive the Bayesian 

formula of the SLAM with DATMO problem, which 

provides a solid basis for understanding and solving this 

problem. In addition, we provide a practical algorithm for 

performing DATMO from a moving platform equipped with 

range sensors. The probabilistic approach to solve the whole 

problem has been implemented with the Navlab11 vehicle. 

More than 100 miles of experiments in crowded urban areas 

indicated that SLAM with DATMO is indeed feasible.  

 

I. INTRODUCTION 

     

     The simultaneous localization and mapping (SLAM) 

problem has attracted immense attention in the mobile 

robotics literature [17], and SLAM techniques are at the 

core of many successful robot systems. Most researchers 

on SLAM assume that the unknown environment is static, 

containing only rigid, non-moving objects. In [20], we 

presented a method to solve the SLAM problem and the 

detection and tracking of moving objects (DATMO) 

problem concurrently and showed that the initial results of 

SLAM with DATMO are dramatically better than SLAM 

without DATMO in crowded urban environments. But at 

that moment we did not present a theoretic framework for 

solving the SLAM with DATMO problem; the tracking of 

moving objects also had not been fully developed. In this 

paper, we extend the Bayesian formula of the SLAM 

problem to the SLAM with DATMO problem. In order to 

supplement our previous paper, we also present the 

approach for solving the DATMO problem in detail.  

      The new focus of the Navlab group at Carnegie 

Mellon University is on short-range sensing, to look all 

around the vehicle for improving driving safety and 

preventing traffic injuries caused by human factors such 

as speeding, or distraction. We believe that being able to 

detect and track every stationary object and every moving 

object, to reason about the dynamic traffic scene, to detect 

and predict every critical situation, and to warn and assist 

drivers in advance, is essential to prevent these kinds of 

accidents.  

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1: NAVLAB 11 testbed 

 

     In order to perform DATMO by using sensors 

mounted on a moving ground vehicle at high speeds, a 

precise localization system is essential. It is known that 

GPS and DGPS often fail in the urban areas because of 

urban canyon effects; and a good IMU system is very 

expensive. Our solution of the SLAM with DATMO 

problem satisfies both the safety and navigation demands 

by using laser scanners and odometry. SLAM with 

DATMO can provide a better estimation of the vehicle’s 

location and provide information of the dynamic 

environments, which are critical to driving assistance and 

autonomous driving.       

      If we can have a stationary object map in advance, the 

SLAM problem reduces to a localization problem with a 

known map, which is easier solved than the full SLAM 

problem. Unfortunately, it is difficult to build a usable 

stationary object map because of temporary stationary 

objects such as parked cars. Even though we can filter 

moving objects out, the stationary object maps of the 

same scene built from different times could still be 

different, which means that we still have to do online map 

building for updating the current stationary object map. 

For driving assistance applications, basically a globally 

consistent metric stationary object map is not necessary. 

As a result, we include a digital map in our system and 

accomplish global localization in a topological way.  



     The DATMO problem has been extensively studied for 

several decades [1, 2]. It is not easy to solve the DATMO 

problem in crowded urban environments from a moving 

ground vehicle at high speeds. There are many kinds of 

moving objects, such as pedestrians, animals, wheelchairs, 

bicycles, motorcycles, cars, buses, trucks, trailers, etc., 

which means that targets have a wide range of sizes and 

velocities. The range of the velocities is from under 5mph 

(such as the pedestrian’s movement) to 50mph. When 

using laser scanners, the features of moving objects can 

change significantly from scan to scan. The observation 

of a single object such as a trailer may be shown as 

several objects; multiple objects such as pedestrians may 

also be shown as a single object and moving objects may 

disappear and reappear. Besides, the vehicle may have 

extreme roll and pitch motions. To solve these difficulties, 

we presented a motion-based detector to detect different 

kinds of moving objects in [20]. A hypothesis tree is 

managed for data association and moving object 

merging/removal. The results show that our DATMO 

algorithm can be run in the crowded urban areas robustly 

and efficiently. 

     Both SLAM and DATMO have been studied in 

isolation. However, when driving in crowded urban 

environments composed of stationary and moving entities, 

neither of them is sufficient. The contribution of this 

paper is to establish a mathematical framework that 

integrates both, SLAM and DATMO. The paper provides 

ample experimental results that show that performing 

both at the same time is superior to doing just one or the 

other.   

     The rest of this paper is arranged as follows: In Section 

II, the Bayesian formula for the SLAM with DATMO 

problem is introduced; Section III reviews our approach 

of SLAM in outdoor environments briefly; Section IV 

introduces the algorithms to solve the DATMO problem 

in detail. The experimental results are in Section V, and 

the conclusion and future work are in Section VI. 

 
II. SLAM WITH DATMO PROBLEM DEFINITION 

 

     In this section the Bayesian formulation of the SLAM 

with DATMO problem is introduced.  

 

A. Notation 

 

     We denote the discrete time index by the variable k, 

the vector describing an odometry measurement from 

time 1−k  to time k  by the variable 
ku , a laser scanner 

measurement from the vehicle at time k  by the variable 

kz , the state vector describing the true location of the 

vehicle at time k  by the variable 
kx , and the stochastic 

map which contains l  features by the variable 

{ }lmmM ,,1
m= . In addition, we define the following set 

to refer data leading up to time k. 

 

{ } { }kkkk uUuuuU ,,...,, 110 −==                (1) 

{ } { }kkkk zZzzzZ ,,...,, 110 −==                           (2) 

{ } { }kkkk xXxxxX ,,...,, 110 −==                (3) 

where the initial location of the vehicle
0x is assumed 

known. 

 

B. Bayesian Formulation of the SLAM Problem 

 

     Before formulating the SLAM with DATMO problem, 

we briefly introduce the formula of the SLAM problem. 

The SLAM problem is to determine the robot location 

kX and the stationary object map M  from laser scanner 

measurements 
kZ  and odometry measurements 

kU . The 

general probabilistic formula for SLAM is expressed as: 

 

),|,( kkk UZMXp       (4) 

 

Although the batch methods can provide an optimal 

estimation, the recursive methods are considered and used 

because of the online requirement and the computational 

power limitation in most of applications. According to the 

Bayes’ theorem and the assumptions that the vehicle 

motion model is Markov and the objects in the 

environment are stationary, the general recursive 

Bayesian formula for SLAM can be derived and 

expressed as: (See [19, 10] for more details.) 

 

=),|,( kkk UZMxp                  (5) 

   ∫ −−−−−⋅ 11111 ),|,(),|(),|( kkkkkkkkk dxUZMxpuxxpMxzpη  

 

where ),|,( 111 −−− kkk UZMxp  is the posterior probability at 

time 1−k , ),|,( kkk UZMxp is the posterior probability at 

time k , ),|( 1 kkk uxxp −
is the motion model, ),|( Mxzp kk

is 

the update stage which can be inferred as the sensor 

(measurement, perceptual) model, and η  is a normalizing 

constant. The motion model is calculated according to the 

vehicle kinematics/dynamics. The sensor model can be 

represented and calculated by different ways, such as 

feature/landmark based and occupancy-grid-map based 

approaches. 

  

C. Bayesian Formulation of SLAM with DATMO 

 

     The SLAM with DATMO problem is not only to 

accomplish SLAM in dynamic environments but also to 

detect and track these dynamic events. Since the unknown 



SLAM 

environment is dynamic and contains moving objects, the 

general recursive probabilistic formula for SLAM with 

DATMO can be expressed as:     

 
),|,,( kkkk UZMYxp         (6) 

 

Here { }n

kkk yyY �,1
= are the locations of moving objects, 

of which there are n  moving objects that appeared inside 

the sensor’s range at time k.  

 

C.1 Assumptions 

      

     Before introducing the derivation, the assumptions we 

made are addressed.  

 

Assumption 1: Measurements can be decomposed into 

measurements of stationary and moving objects: 

 

       m

k

s

kk zzz +=    and hence   m

k

s

kk ZZZ +=    (7) 

 

Here the sensor measurement belonging to stationary 

objects is denoted by the variable s

kz  and the sensor 

measurement belonging to moving objects is denoted by 

the variable m

kz . In particular this implies the following 

conditional independence 

  

),,|(),,|(),,|( kk

m

kkk

s

kkkk xMYzpxMYzpxMYzp =  

                       ),|(),|( kk

m

kk

s

k xYzpxMzp=            (8) 

 

Assumption 2: When estimating the posterior over the 

map and the vehicle pose, the measurements of moving 

objects carry no information, neither do their location 
kY :  

 

),|,(),,|,( k

s

kkkkkk UZxMpUZYxMp =       (9) 

 

This is correct if we have no information whatsoever 

about the speed at which objects move. Here it is an 

approximation, but one that reduces the complexity of 

SLAM with moving objects enormously.  

 

C.2 Derivation 

 

   We begin by factoring out the most recent measurement: 

 
 ),,,,|(),|,,( 1 kkkkkkkkk UZxMYzpUZxMYp −∝        

      ),|,,( 1 kkkk UZxMYp −
        (10) 

 

Observing the standard Markov assumption, we note that 

),,,,|( 1 kkkkk UZxMYzp −
 does not depend on 

1−kZ  and 

kU . Furthermore, we can now partition the measurement 

into stationary and moving, and obtain by exploiting 

Assumption 1 and (8): 

 
∝),|,,( kkkk UZxMYp  

   ),|,,(),|(),|( 1 kkkkkk

m

kk

s

k UZxMYpxYzpxMzp −
   (11) 

 

The rightmost term ),|,,( 1 kkkk UZxMYp −
 can now be 

further developed, exploiting Assumption 2: 

 

),|,,( 1 kkkk UZxMYp −

 ),,|,(),|( 11 kkkkkkk UZYxMpUZYp −−=  

),|,(),|( 11 k

s

kkkkk UZxMpUZYp −−=           (12) 

 

Hence we get our desired posterior 

 
∝),|,,( kkkk UZxMYp   

),|,(),|( 1 k

s

kkk

s

k UZxMpxMzp −
 

                           ),|(),|( 1 kkkkk

m

k UZYpxYzp −
        (13) 

 

The term ),|( 1 kkk UZYp −
resolves to the following 

predictions 

 

),|( 1 kkk UZYp −
 

11111 ),|(),,|( −−−−−∫= kkkkkkkk dYUZYpYUZYp  

11111 ),|()|( −−−−−∫= kkkkkk dYUZYpYYp          (14) 

 

Finally, the term ),|,( 1 k

s

kk UZxMp −
in (13) is obtained by 

the following step: 

 
),|,( 1 k

s

kk UZxMp − ),|(),,|( 11 k

s

kk

s

kk UZMpMUZxp −−=  

∫ −−−−= ),,|(),,,|( 1111 MUZxpxMUZxp k

s

kkkk

s

kk
         

                                      
11 ),|( −− kk

s

k dxUZMp  

11111 ),|,(),|( −−−−−∫= kk

s

kkkkk dxUZMxpxuxp             (15) 

 

which is the familiar SLAM prediction step. Putting 

everything back into (13) we now obtain the final filter 

equation: 

 

∝),|,,( kkkk UZxMYp  

),|( kk

m

k xYzp
11111 ),|()|( −−−−−∫ kkkkkk dYUZYpYYp       

 
),|( k

s

k xMzp
11111 ),|,(),|( −−−−−∫ kk

s

kkkkk dxUZMxpxuxp  

 

                                                                                     (16) 

 

DATMO

Prediction  
Update  

Prediction  
Update  



D. Solving the SLAM with DATMO problem 

 

     From (16), input to the SLAM with DATMO filter are 

two separate posteriors, one of the conventional SLAM 

form, ),|,( 111 −−− k

s

kk UZMxp , and a separate one for 

DATMO, ),|( 111 −−− kkk UZYp . 

     The remaining question is now how to recover those 

posterior at time k. For the SLAM part, the recovery is 

simple. 

 

∝= ∫ kkkkkk

s

kk dYUZxMYpUZMxp ),|,,(),|,(       (17) 

),|( k

s

k xMzp
11111 ),|,(),|( −−−−−∫ kk

s

kkkkk dxUZMxpxuxp  

 

For DATMO, we get 

 

),|( kkk UZYp ∫∫= kkkkk dMdxUZxMYp ),|,,(  

]),|()|(),|([ 11111 −−−−−∫ ∫∝ kkkkkkkk

m

k dYUZYpYYpxYzp  

kk

s

kk dxUZxp ),|(            (18) 

 

where the posterior over the pose ),|( k

s

kk UZxp is simply 

the marginal of the joint posterior calculated in (17): 

 

∫= dMUZMxpUZxp k

s

kkk

s

kk ),|,(),|(       (19) 

 
Equation (18) shows that DATMO should take account of 

the uncertainty in the pose estimate of the robot because 

the laser scanner measurements are directly from the 

robot. 

     There are a number of possible methods for solving the 

SLAM problem such as the Particle Filter, the Extended 

Kalman Filter (EKF), the Unscented Kalman Filter, and 

the Sum-of-Gaussian method [10]. The SLAM with 

DATMO problem can be solved by these methods as well. 

The main differences of these methods are the 

representations of the joint posterior density. Given 

enough particles (sample points), the Particle filter can 

provide a complete representation of the joint posterior 

density, which is the key to deal with non-linearity and 

non-Gaussianity.  

     Currently, because the computational power of our 

system is not enough to run particle filter-based 

algorithms, the whole SLAM and DATMO problem is 

solved through the use of the EKF. We assume that the 

sensor model and motion model are Gaussian so that all 

these integrals of the formula are easily carried out in 

closed form. Since SLAM can get a better result if the 

moving objects are filtered out in advance, the whole 

procedure can be operated iteratively in order to get a 

more accurate result. 

     It should be noted that SLAM with DATMO could be 

handled by calculating a joint posterior over all features 

(map, robot pose, moving objects). Such an approach 

would be similar to existing SLAM algorithms, but with 

additional structure to allow for motion of the moving 

objects. Our choice to decompose the estimation problem 

into two separate estimators is motivated by two 

observations: First, moving features are highly 

unpredictable and including them in the vehicle 

localization (as would be the case for the single-filter 

solution) would have a negative effect on the vehicle's 

localization. Second, by maintaining separate posteriors 

for the static map variables and the moving features, the 

resulting estimation problems are much lower 

dimensional than the joint estimation problem. This 

makes it possible to update both filters in real-time. 

                                                                                   

III. SLAM IMPLEMENTATION IN URBAN AND 

SUBURBAN AREAS 

 

     Extracting features robustly and correctly in outdoor 

environments is difficult. Whenever a feature is extracted, 

an error from feature extraction will occur. The error 

analysis of feature extraction is not yet rigorously studied. 

Instead of feature-based approaches, our system applies a 

scan matching technique, the Iterative Closest Point (ICP) 

algorithm [22], and uses a grid-map to represent the 

environments. The map updating in our system is similar 

to the approach presented in [18]. Unlike other mapping 

methods, the map in our system contains information not 

only from stationary objects but also from moving objects. 

Checking the consistency of both the moving object map 

and the stationary object map provides important 

information of the SLAM with DATMO algorithm 

performance. The main problem of the scan-matching-

based approaches is that there is no efficient and good 

way to estimate the uncertainty of the location estimation. 

This does decrease the likelihood of the successful large 

loop closing and DATMO. The study for solving this 

problem is ongoing. 

     In order to globally localize the vehicle online, a 

digital map is included into our system and the global 

localization is accomplished in a topological way. Online 

global topological SLAM using a digital map without 

GPS will be presented in another paper.  

 

IV. DATMO IMPLEMENTATION 

 

     Basically, an algorithm for solving DATMO problems 

has to address the following issues: 

  

• Detection and initiation of new moving objects; 

• Moving object motion modeling; 

• Data association; 



• Merging moving objects when two or more moving 

objects coalesce; 

• Removal of moving objects that have moved outside 

the sensor's range; 

• Occlusion; 

• Adaptation of the false measurements; 

• Algorithm can be shown to work robustly over long 

sequences of data. 

 

     Our DATMO algorithm solves above problems in the 

following manner.  The motion-based detector is used to 

detect different kinds of moving objects in crowded urban 

environments. Then the Multiple Hypothesis Tracking 

(MHT) method [3, 15] is applied to accomplish data 

association. Given the data associated with a moving 

object, the motion of this moving object is modeled and 

this model is used to predict the future motion. In this 

section, the motion-based detector presented in [20] is 

briefly introduced. The approaches of data association and 

motion modeling are addressed. In the end of this section, 

we will show that our DATMO algorithm has the ability 

to adapt the false measurements. 

   

A. Motion-based Detection  

 

    In indoor environments, the most important targets of 

the DATMO problem are people [6, 8, 9, 11, 16]. If 

cameras are used to detect people, the appearance-based 

approaches are widely used and people can be detected no 

matter if they are moving or not. If laser scanners are used, 

the feature-based approaches are usually the preferred 

solutions. Both appearance-based and feature-based 

methods rely on the prior knowledge of the targets. In our 

application, because of the variety of our targets, it is very 

difficult to define features or appearances by using laser 

scanners. Also, the task is to detect moving objects, not 

temporary stationary objects such as parked cars, which 

are still useful information for the online SLAM. 

     Other than appearance-based and feature-based 

approaches, we presented a motion-based detection 

approach in [20] for both indoor and outdoor 

environments. As long as an object is moving, our 

approach can detect it. Although this method cannot 

detect stationary cars and pedestrians, these temporary 

stationary objects actually do not have to be dealt with, 

because their stationary state will not cause any critical 

threat that the driver has to be aware of, therefore this 

drawback is tolerable. Fig. 2 shows the results of SLAM 

with moving vehicle detection by our motion-based 

approach. 

     The detection of moving people at very low speeds is 

difficult but it is possible by fusing information from the 

moving object map. From Fig. 3, we found that the data 

associated with a pedestrian is very small, e.g. 2-4 points. 

Also, the motion of a pedestrian can be too slow to be 

detected by the motion-based detector. Since the map also 

contains information from previous moving objects, we 

can say if this blob is in an area that was previously 

occupied by moving objects, this object can be recognized 

as a moving object. In the bottom of Fig. 3, even if an 

object has no motion, this object is defined as a moving 

object according to the information from the map. 

 

B. Moving Object Initiation and Data Association 

 

    Once a new moving object is detected, our algorithm 

initializes a new track for this object, such as assigning an 

initial state and a motion model to this new moving object. 

By using laser scanners, we can only get the position but 

not the velocity and orientation, therefore our algorithm 

uses the data from different times and then accomplishes 

data association in order to initialize a new track. 

     Data association and tracking problems have been 

extensively studied and a number of statistical data 

association techniques have been developed, such as the 

Joint Probabilistic Data Association Filter (JPDAF) [1] 

and the Multiple Hypothesis Tracking (MHT). Our 

system applies the MHT method, which maintains a 

hypothesis tree and can revise its decisions while getting 

new information. This delayed decision approach is more 

robust than other approaches. The main disadvantage of 

the MHT method is its exponential complexity. If the 

hypothesis tree is too big, it will not be feasible to search 

the whole hypotheses to get the most likely set of 

matching. Fortunately, the number of moving objects in 

our application is usually less than twenty and most of the 

moving objects only appear for a short period of time. 

Also, useful information about moving objects from laser 

scanners, such as location, size, shape, and velocity, is 

used for updating the confidence for pruning and merging 

hypotheses. In practice, the hypothesis tree is always 

managed in a reasonable size. 

 

C. Motion Modeling and Tracking 

 

     Given the data associated with a moving object, the 

goal of motion modeling is to find the motion model of 

this moving object. Without any prior knowledge, the 

procedure of getting a motion model is complicated and it 

needs enough data and time in order to get the correct 

model. The Interacting Multiple Model (IMM) estimator 

is a sub-optimal hybrid filter that has been successful 

implemented in various target-tracking applications. For 

instance, in [21] an extended Interacting Multiple Model 

(IMM) algorithm was demonstrated on the Navlab5 

vehicle for tracking of moving cars on highways. 

     In order to analyze the interactions between the vehicle 

and other moving objects, precise motion models of 



moving objects and a long period of observation are 

necessary. Intuitively and experimentally, it is a good 

approximation that moving cars have three behavior 

modes: the constant-velocity mode, the constant-

acceleration mode, and the turning mode. Regarding other 

moving objects such as moving people, selecting good 

and efficient motion models is challenging. But if the task 

is to predict the future motions of moving objects, we 

found that the results are satisfying by assuming that 

moving objects have only one behavior mode, which is 

the constant-velocity mode. 

     Tracking algorithms estimate the state of moving 

objects according to motion models, sensor models, and 

measurements. Since the whole SLAM and DATMO 

problem is solved through the use of the EKF in this 

paper, motion models of moving objects are described in 

terms of a constant velocity model subject to zero mean 

Gaussian errors. 

   

 

 

 

 

 

 

 

 

 

 

 

Fig. 2: The result of SLAM with Detection using a laser scanner 

mounting on the front of the vehicle. The solid blue rectangle represents 

the vehicle itself, whose width is 2m and length is 5m; the faint chain of 

magenta circles trailing from the vehicle is the list of positions from 

which the vehicle made its observations; the light red dots and light gray 

dots respectively belong to stationary parts and moving parts of the map; 

yellow, green, and blue circles represent the current scan; yellow small 

circles mean stationary; blue small circles are unidentified since we 

don’t have enough information to tell if they are moving or stationary; 

small green circles are belonged to moving objects; green boxes are the 

moving objects recognized by our motion-based detector. 

 

 
Fig. 3: Moving People Detection 

   

D. Adaptation of the False Measurements 

 

     False measurements are often observed in our 

experiments. One is due to roll and pitch motions of the 

vehicle, which are unavoidable because of making turns 

at high speeds or sudden stops or starts. These motions 

may cause false measurements such as wrong scan data 

from the ground instead of other objects. Another cause of 

false measurements due to the fact that outdoors, the 

ground is not always flat; hence the flat world assumption 

in SLAM is only approximately valid; therefore uphill 

environments may cause false measurements because the 

scan may hit the ground as well. The DATMO algorithm 

adapts these false measurements implicitly without other 

pitch and roll measurement. First, the false measurements 

are detected and initialized as new moving objects by our 

motion-based detector. After data association and tracking 

are applied to these measurements, the shape and motion 

inconsistency is detected by our algorithm, which shows 

that these are false measurements. Also these false 

measurements will disappear immediately once the 

motion of the vehicle is back to normal.  

 

V. EXPERIMENTAL RESULTS 

 

     Currently the Navlab11 vehicle (See Fig. 1) is 

equipped with motion sensors (IMU, GPS, differential 

odometry, compass, inclinometer, angular gyro), video 

sensors (five video cameras, an omni-directional camera), 

three SICK single-axis scanning rangefinders, a light-

stripe rangefinder, and five 500-MHz Pentium computers. 

The results in this paper use data only from SICK laser 

scanners and the odometry. The images from the omni-

directional camera are for visualization. 

     One SICK LMS221 and two SICK LMS291 laser 

scanners were mounted in various positions on Navlab11, 

doing horizontal or vertical profiling.  Navlab11 was 

driven through the Carnegie Mellon University campus 

and around nearby streets. The range data were collected 

at 37.5 Hz with 0.5 degree resolution. The maximum 

measurement range of the scanners is 80 m. Fig. 4 and Fig. 

5 shows the results of SLAM with DATMO. The white 

dashed boxes present the predicted locations of the 

tracked moving objects from our tracking algorithm. The 

magenta points are previous data associated with the 

moving objects. In Fig. 4, two cars are detected and 

tracked. The speeds of these two cars are similar to the 

vehicle. Several false detections occurred at the top-right 

corner of the figure because online SLAM is performed 

and the confidence of that area is still low. But because 

the tracking algorithm indicted that the speeds of these 

objects are slow, the false detections will be removed and 

the map will be modified. In Fig. 5, two moving 

pedestrians are detected. The blur region in the unwarped 

Current Scan: 
Yellow�Stationary 

Blue�Unidentified 

Green�Moving 

Map:
Red�Stationary

Gray�Moving



image shows the motion and location of these two moving 

pedestrians. Also on the right side of the vehicle, there is 

an intersection, which is uphill. A lot of magenta points 

are associated with this false detection. Fig. 6 also shows 

the effects of violent roll and pitch motions. The results 

show that our algorithm can survive under these critical 

situations. Fig. 7 shows the quality of our SLAM with 

DATMO algorithm. Another scanner was mounted on the 

top of the vehicle and performs the vertical profiling. A 

high quality 3D model is produced in a minute. More 

results and videos are available at http://www.cs.cmu.edu/ 

~bobwang. 

 

VI. CONCLUSION AND FUTURE WROK 

     We derived a Bayesian formula of the SLAM with 

DATMO problem. The formula provides a rigorous 

foundation to understand and solve the SLAM with 

DATMO problem. A probabilistic approach to this 

problem was implemented through the use of the Extend 

Kalman Filter. In the course of this research, our approach 

was exposed to data acquired over a total distance of 100 

miles. Even the assumption that the ground is flat is not 

valid and the vehicle has extreme roll and pitch motions, 

our system still survives and provides satisfying results. 

 
(a) The result of SLAM with DATMO 

 
 

(b) The unwarped image from the omni-camera  

Fig. 4: Detection and tracking of moving cars. The SLAM result shows 

that the vehicle was moving at 22.8 mph. 

     

 

 
 

 

Fig. 5: Pedestrian Detection. The SLAM result shows that the test 

vehicle was moving at 21.0 mph. 

 

 

 
Fig. 6: The effects of roll and pitch on SLAM with DATMO. The 

SLAM result shows that the vehicle was moving at 12.3 mph. 
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Fig. 7: 3D City Mapping 

     This paper raises several interesting topics. Maps of 

SLAM not only can be used for detecting moving objects 

but also can be constraints to improve the tracking 

performance. According to our experiment data, using 

cameras to detect moving objects is harder than using 

laser scanners. On the other hand, cameras provide very 

rich information about the global localization, which 

could benefit SLAM greatly. More experiments will be 

conducted using multiple laser scanners in different 

weather conditions for testing our algorithm.    
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