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ABSTRACT 14 

Single-cell RNA-seq and ATAC-seq analyses have been widely applied to decipher 15 

cell-type and regulation complexities. However, experimental conditions often confound 16 

biological variations when comparing data from different samples. For integrative 17 

single-cell data analysis, we have developed SCALEX, a deep generative framework that 18 

maps cells into a generalized, batch-invariant cell-embedding space. We demonstrate 19 

that SCALEX accurately and efficiently integrates heterogenous single-cell data using 20 

multiple benchmarks. It outperforms competing methods, especially for datasets with 21 

partial overlaps, accurately aligning similar cell populations while retaining true 22 

biological differences. We demonstrate the advantages of SCALEX by constructing 23 

continuously expandable single-cell atlases for human, mouse, and COVID-19, which 24 

were assembled from multiple data sources and can keep growing through the inclusion 25 

of new incoming data. Analyses based on these atlases revealed the complex cellular 26 
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landscapes of human and mouse tissues and identified multiple peripheral immune 27 

subtypes associated with COVID-19 disease severity. 28 

 29 

INTRODUCTION 30 

Single-cell RNA sequencing (scRNA-seq) and assay for transposase-accessible 31 

chromatin using sequencing (scATAC-seq) technologies enable decomposition of 32 

diverse cell-types and states to elucidate their function and regulation in tissues and 33 

heterogeneous systems
1-4

. Efforts like the Human Cell Atlas project
5
 and Tabula Muris 34 

Consortium
6
 are constructing a single-cell reference landscape for a new era of highly 35 

resolved cell research. With the explosive accumulation of single-cell studies, 36 

integrative analysis of data from experiments of different contexts is essential for 37 

characterizing heterogenous cell populations
7
. However, potentially informative 38 

biological insights are often confounded by batch effects that reflect different donors, 39 

conditions, and/or analytical platforms
8,9

.  40 

 Integration methods have been developed to remove batch effects in single-cell 41 

datasets
10-16

. One common strategy is to identify similar cells or cell populations across 42 

batches. This includes the mutual nearest neighborhood (MNN) method
10

 which 43 

identifies correspondent pairs of cells between two batches by searching for mutual 44 

nearest neighbors in gene expression. Scanorama
11

 generalizes the process of neighbor 45 

searching from within two batches to a multiple-batch manner. Seurat v2
13

 applies 46 

canonical correlation analysis (CCA) to identify common cell populations in 47 

low-dimensional embeddings across data batches, while Seurat v3
14

 introduces “cell 48 

anchors” to mitigate the problem of mixing non-overlapping populations, an issue 49 

experienced in Seurat v2. Harmony
16

 also applies population matching across batches, 50 

specifically through a fuzzy clustering algorithm. 51 
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It is notable that all of these cell similarity-based methods are local-based, 52 

wherein cell-correspondence across batches are identified through the similarity of 53 

individual cells or cell anchors/clusters. Accordingly, these methods all suffer from 54 

two common limitations. First, they are prone to mixing cell populations that only exist 55 

in some batches. This becomes a severe problem for the integration of datasets that 56 

contain non-overlapping cell populations in each batch (i.e., partially-overlapping data). 57 

Second, these methods can only remove batch effects from the current batches being 58 

assessed but cannot manage batch effects from additional, subsequently obtained 59 

batches. So each time a new batch is added, it requires an entirely new integration 60 

process that again examines the previous batches. This severely limits the capacity to 61 

integrate new single-cell sequencing datasets. 62 

As an alternative to the cell similarity-based local methods, scVI
17

 applies a 63 

conditional variational autoencoder (VAE)
18

 framework to model the inherent 64 

distribution/structure of the input single-cell data. VAE is a deep generative method 65 

that comprises an encoder and a decoder, wherein the encoder projects all 66 

high-dimensional input data into a low-dimensional embedding, and the decoder 67 

recovers them back to the original data space. The VAE framework can maintain the 68 

same global internal data structure between the high- and low-dimensional spaces
19

. 69 

However, scVI includes a set of batch-conditioned parameters into its encoder that 70 

restrains the encoder from learning a batch-invariant embedding space, limiting its 71 

generalizability with new batches.  72 

We previously applied VAE and designed SCALE (Single-Cell ATAC-seq 73 

Analysis via Latent feature Extraction) to model and analyze single-cell ATAC-seq 74 

data
20

. We found that the VAE framework in SCALE can disentangle cell-type-related 75 

and batch-related features in a low-dimensional embedding space. Here, having 76 

redesigned the VAE framework, we introduce SCALEX as a method for integration of 77 

heterogeneous single-cell data. We demonstrate that SCALEX integration is accurate, 78 
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scalable, and computationally efficient for multiple benchmark datasets from 79 

scRNA-seq and scATAC-seq studies. As a specific advantage, SCALEX accomplishes 80 

data integration through projecting all single-cell data into a generalized 81 

cell-embedding space using a batch-free encoder and a batch-specific decoder. Since 82 

the encoder is trained to only preserve batch-invariant biological variations, the 83 

resulting cell-embedding space is a generalized one, i.e., common to all projected data. 84 

SCALEX is therefore able to accurately integrate partially-overlapping datasets 85 

without mixing of non-overlapping cell populations. By design, SCALEX runs very 86 

efficiently on huge datasets. These two advantages make SCALEX especially useful 87 

for the construction and research utilization of large-scale single-cell atlas studies, 88 

based on integrating data from heterogeneous sources. New data can be projected to 89 

augment an existing atlas, enabling continuous expansion and improvement of an atlas. 90 

We demonstrated these functionalities of SCALEX in the construction and analyses of 91 

atlases for human, mouse, and COVID-19 PBMCs. 92 

 93 

RESULTS 94 

Projecting single-cell data into a generalized cell-embedding space 95 

The central goal of single-cell data integration is to identify and align similar cells 96 

across different batches, while retaining true biological variations within and across 97 

cell-types. The fundamental concept underlying SCALEX is disentangling 98 

batch-related components away from batch-invariant components of single-cell data 99 

and projecting the batch-invariant components into a generalized, batch-invariant 100 

cell-embedding space. To accomplish this, SCALEX implements a batch-free encoder 101 

and a batch-specific decoder in an asymmetric VAE framework
18

 (Fig. 1a. Methods). 102 

While the batch-free encoder extracts only biological-related latent features (z) from 103 

input single-cell data ( ), the batch-specific decoder is responsible for reconstructing 104 
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the original data from z by incorporating batch information back during data 105 

reconstruction. 106 

Supplying batch information to the decoder in data reconstruction allows the 107 

encoder to learn a batch-invariant data representation for each individual cell during 108 

model training, which, as a whole, defines a generalized low-dimensional 109 

cell-embedding space. This learning is also facilitated by random slicing of all input 110 

single cells from different batches into mini-batches. Each mini-batch is forced into 111 

alignment with the same data distribution under the restriction of KL-divergence in the 112 

same cell-embedding space
21

. SCALEX also implements Domain-Specific Batch 113 

Normalization (DSBN)
22

 (Methods), a multi-branch Batch Normalization
23

, in its 114 

decoder to support incorporation of batch-specific variations to reconstruct single-cell 115 

data. 116 

The design underlying SCALEX renders the encoder to function as a data projector 117 

that projects single cells of different batches into a generalized, batch-invariant 118 

cell-embedding space. SCALEX thus removes batch-related variations present in 119 

single-cell data while preserving batch-invariant biological signals in cell-embedding, 120 

making it an enabling tool for integration analyses of diverse single cell datasets, 121 

without relying on searching for cell similarities. 122 

SCALEX integration is accurate, scalable, and accommodates diverse data types 123 

We first evaluated the data integration performance of SCALEX on multiple 124 

well-curated scRNA-seq datasets, including human pancreas (eight batches of five 125 

studies)
24-28

, heart (two batches of one study)
29

 and liver (two studies)
30,31

; as well as 126 

human non-small-cell lung cancer (NSCLC, four studies)
32-35

 and peripheral blood 127 

mononuclear cell (PBMC; two batches assayed by two different protocols)
13

. For 128 

comparison, we included several other methods in the analyses, including Seurat v3, 129 

Harmony, Conos, BBKNN, MNN, Scanorama, and scVI (Methods).  130 
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We used Uniform Manifold Approximation and Projection (UMAP)
36

 embeddings 131 

to visualize the integration performance of all methods (Methods). Note that all of the 132 

raw datasets displayed strong batch effects: cell-types that were common in different 133 

batches were separately distributed. Overall, SCALEX, Seurat v3, and Harmony 134 

achieved the best integration performance for most of the datasets by merging common 135 

cell-types across batches while keeping disparate cell-types apart (Fig. S1). MNN and 136 

Conos integrated many datasets but left some common cell populations not well 137 

aligned. BBKNN, Scanorama, and scVI often had unmerged common cell-types, and 138 

sometimes incorrectly mixed distinct cell-types together. For example, in the PMBC 139 

dataset (Fig. 1b), considering the T cell populations between the two batches, while 140 

SCALEX, Seurat v3, Harmony, and MMN integrations were effective, Scanorama 141 

showed both a larger misalignment and mixed all cell-types together without 142 

maintaining clear boundaries.  143 

We quantified single-cell data integration performance using a silhouette score
37

 144 

and a batch entropy mixing score
10

 (Methods). Briefly, the silhouette score assesses the 145 

separation of biological distinctions, and the batch entropy mixing score evaluates the 146 

extent of mixing of cells across batches. Overall, SCALEX outperformed all of the 147 

other methods as assessed by the silhouette score, and tied with Seurat and Harmony as 148 

the best-performing methods based on the batch entropy mixing score (Fig. 1c). We 149 

note that SCALEX obtained a slightly lower batch entropy mixing score, compared to 150 

Seurat v3 and Harmony on the liver dataset, which contains batch-specific cell-types 151 

and thus is a partially-overlapping dataset. However, Seurat v3 and Harmony may 152 

have obtained a high batch entropy mixing score because of misaligning different 153 

cell-types together. Indeed, by only considering the degree of batch mixing but 154 

ignoring cell-type differences, the batch entropy mixing score is not ideally suited for 155 

assessing batch mixing for partially-overlapping datasets.  156 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted April 8, 2021. ; https://doi.org/10.1101/2021.04.06.438536doi: bioRxiv preprint 

https://doi.org/10.1101/2021.04.06.438536


 7

We also tested the scalability and computation efficiency of SCALEX on 157 

large-scale datasets by applying it to 1,369,619 cells from the human fetal atlas dataset 158 

(two data batches, Methods)
38,39

. SCALEX accurately integrated these two batches, 159 

showing good alignment of the same cell-types (Fig. S2, Fig. 1d). We then compared 160 

the computational efficiency of different methods using down-sampled datasets (of 10 161 

K, 50 K, 250 K, 1 M) from the human fetal atlas dataset. SCALEX consumed almost 162 

constant runtime and memory that increased only linearly with data size, whereas MNN, 163 

Seurat v3, and Conos consumed runtime and memory that increased exponentially, thus 164 

did not scale well beyond 250 K cells. Harmony consumed over 400 gigabytes (GB) of 165 

memory in analyzing the 1 M dataset, rendering it unsuitable for integration of datasets 166 

at this scale (Fig. 1e). Notably, the deep learning framework of SCALEX enables it to 167 

run very efficiently on GPU devices, requiring much reduced runtime (took about 10 168 

minutes and 16 GB of memory on the 1 M dataset). 169 

Finally, SCALEX can be used to integrate scATAC-seq data as well as 170 

cross-modality data (e.g. scRNA-seq and scATAC-seq) (Methods). For example, 171 

SCALEX integrated the mouse brain scATAC-seq dataset (two batches assayed by 172 

snATAC and 10X)
40

 very well, aligning common cell subpopulations and separate 173 

distinct ones (Fig. 1f). We also integrated the cross-modality PBMC data between 174 

scRNA-seq and scATAC-seq
41,42

, and found that SCALEX could correctly integrate 175 

the two types of data, and could distinguish rare cells that are specific to scRNA-seq 176 

data, including pDC and platelet cells (Fig. 1g). Thus, SCALEX has broad integration 177 

capacity across various types of single-cell data. 178 

SCALEX integrates partially-overlapping datasets 179 

Partially-overlapping datasets present a major challenge for single-cell data integration 180 

for local cell similarity-based methods
13,14

, often leading to over-correction (i.e., 181 

mixing of distinct cell-types). As a global integration method that project cells into a 182 
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generalized cell-embedding space, SCALEX is expected to be immune to this problem. 183 

For example, the liver dataset is a partially-overlapping dataset where the hepatocyte 184 

population contains multiple subtypes specific to different batches: three subtypes are 185 

specific to LIVER_GSE124395, and two other subtypes only appear in 186 

LIVER_GSE115469 (Fig. S3). We noticed that SCALEX maintained the five 187 

hepatocyte subtypes apart, whereas Seurat v3 mixed all five and Harmony mixed the 188 

hepatocyte-SCD and hepatocyte-TAT-AS1 cells (Fig. 2a).  189 

To characterize the performance of SCALEX on partially-overlapping datasets, we 190 

constructed test datasets with a range of common cell-types, down-sampled from the 191 

six major cell-types in the pancreas dataset (Methods). SCALEX integration was 192 

accurate for all cases, aligning the same cell-types without over-correction, whereas 193 

both Seurat v3 and Harmony frequently mixed the cell-types, particularly for the 194 

low-overlapping cases (Fig. 2b, Fig. S4). When there was none common cell-type, both 195 

Seurat v3 and Harmony collapsed the six cell-types to three, mixing alpha with gamma 196 

cells, beta with delta cells, and acinar with ductal cells in various extent. We repeated 197 

the cell-type down-sampling analysis from the 12 cell-types in the PBMC dataset as a 198 

more complex partial-overlapping example and observed similar results (Fig. S5), 199 

demonstrating that SCALEX is robust in retaining informative biological variations for 200 

partially-overlapping datasets.  201 

Projection of unseen data into an existing cell-embedding space  202 

The accurate, scalable, and efficient integration performance of SCALEX depends on 203 

its encoder’s capacity to project cells from various sources into a generalized, 204 

batch-invariant cell-embedding space. We speculate that once a cell-embedding space 205 

has been constructed after integration of existing data, SCALEX should be able to use 206 

the same encoder to project additional (i.e., previously unseen) data onto the same 207 

embedding space. To test this hypothesis, we used the pancreas dataset. SCALEX 208 
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integration removed the strong batch effect in the raw data and aligned the same 209 

cell-types together and kept different cell-types were clearly distinguished (Fig. 3a, Fig. 210 

S6a). Cell-types were validated by the expression of their canonical markers, including 211 

rare cells such as Schwann cells, epsilon cells (Fig. S6b). 212 

We projected three new batches
43-45

 for pancreas tissues (Fig. 3b) into this 213 

“pancreas cell space” using the same encoder trained on the pancreas dataset. After 214 

projection, most of the cells in the new batches were accurately aligned to the correct 215 

cell-types in the pancreas cell space, enabling their accurate annotation by cell-type 216 

label transfer (Fig. 3c, Method). We benchmarked annotation accuracy by calculating 217 

the adjusted Rand Index (ARI)
46

, the Normalized Mutual Information (NMI)
47

, and the 218 

F1 score using the cell-type information in the original studies as a gold standard 219 

(Methods). The SCALEX annotations achieved the highest accuracy in comparisons 220 

with annotations using three other methods (Seurat v3, Conos, and scmap).  221 

Expanding an existing cell space by including new data 222 

The ability to project new single-cell data into a generalized cell-embedding space 223 

allows SCALEX to readily extend this cell space. To verify this, we projected two 224 

additional melanoma data batches (SKCM_GSE72056, SKCM_GSE123139)
48,49

 onto 225 

the previously constructed PBMC space. The common cell-types were correctly 226 

projected onto the same locations in the PBMC cell space (Fig. 3d). For the tumor and 227 

plasma cells only present in the melanoma data batches, SCALEX did not project these 228 

cells onto any existing cell populations in the PBMC space; rather, it projected them 229 

onto new locations close to similar cells, with the plasma cells projected to a location 230 

near B cells, and the tumor cells projected to a location near HSC cells (Fig. 3e).  231 

SCALEX projection enables post hoc annotation of unknown cell-types in the 232 

existing cell space using new data. We noted a group of cells previously 233 

uncharacterized in the pancreas dataset (Fig. 3a). We found that these cells displayed 234 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted April 8, 2021. ; https://doi.org/10.1101/2021.04.06.438536doi: bioRxiv preprint 

https://doi.org/10.1101/2021.04.06.438536


 10

high expression levels for known epithelial genes (Methods). We therefore assembled a 235 

collection of epithelial cells from the bronchial epithelium dataset
50

. We then projected 236 

these epithelial cells onto the pancreas cell space and found that a group of 237 

antigen-presenting airway epithelial (SLC16A7+ epithelial) cells were projected onto 238 

the same location of the uncharacterized cells (Fig. 3f). This, together with the 239 

observation that both cell populations showed similar marker gene expression (Fig. 3g), 240 

indicates that these uncharacterized cells are also SLC16A7+ epithelial cells. SCALEX 241 

thus enables discovery science in cell biology by supporting exploratory analysis with 242 

large numbers of diverse datasets. 243 

SCALEX supports construction of expandable single-cell atlases 244 

The ability to combine partially-overlapping data onto a generalized cell-embedding 245 

space makes SCALEX a powerful tool to construct a single-cell atlas from a collection 246 

of diverse and large datasets. We applied SCALEX integration to two large and 247 

complex datasets—the mouse atlas dataset (comprising multiple organs from two 248 

studies assayed by 10X, Smart-seq2, and Microwell-seq
6,51

) (Fig. 4a) and the human 249 

atlas dataset (comprising multiple organs from two studies assayed by 10X and 250 

Microwell-seq
39,52

).  251 

Despite the strong batch effects in the raw data, SCALEX integrated the three 252 

batches of the mouse atlas dataset into a unified cell-embedding space (Fig. 4b,c, Fig. 253 

S7a). Common cell-types (including both B, T, and endothelial cells in all tissues and 254 

proximal tubule, urothelial, and hepatocytic cells in certain tissues) were well-aligned 255 

together at the same position in the cell space. Non-overlapping cell-types (such as 256 

sperm, Leydig, and small intestine cells from the Microwell-seq data, keratinocyte stem 257 

cells and large intestine cells in the Smart-seq2 data, and oligodendrocytes in the 258 

Smart-seq2 and Microwell-seq data) were located separately in the space, indicating 259 

that biological variations were preserved well (Fig S7b).  260 
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Importantly, atlases generated with SCALEX can be used and further expanded by 261 

projecting new single-cell data to support comparative studies of cells both in the 262 

original atlas and in the new data. Illustrating this, we projected two additional data 263 

batches of aged mouse tissues from Tabula Muris Senis (Smart-seq2 and 10X) 
53

 and 264 

two single tissue datasets (lung and kidney)
54

 onto the SCALEX mouse atlas space. We 265 

found that the same cell-types in the new data batches were correctly projected onto the 266 

same locations on the cell-embedding space of the initial mouse atlas (Fig. 4d), which 267 

was also confirmed by the accurate cell-type annotations for the new data by label 268 

transfer from the corresponding cell-types in the initial atlas (Fig. 4e. Methods). On one 269 

way, this mouse atlas then can be used to accurately identify/characterize the cells in 270 

the new data based on their projected locations in the cell space; and on the other way, 271 

projection of new data enables ongoing (and informative) expansion of an existing 272 

atlas.  273 

Following the same strategy, we also constructed a human atlas by SCALEX 274 

integration of multiple tissues from two studies (GSE134255, GSE159929) (Fig. S8a,b). 275 

SCALEX, effectively eliminated the batch effects in the original data and integrated the 276 

two datasets in a unified cell-embedding space (Fig. S8c,d). Again, we were able to 277 

correctly project two additional human skin datasets (GSE130973, GSE147424)
55,56

 278 

onto the human atlas cell-embedding space (Fig. S8e), and again accurately annotated 279 

these projected skin cells (Fig. S8f. Methods). These results illustrate that: i) SCALEX 280 

enables researchers to evaluate their project-specific single cell datasets by leveraging 281 

existing information in large-scale (and ostensibly well annotated) cell atlases; and ii) it 282 

also enables atlas creators to informatively integrate new datasets and attendant 283 

biological insights from many research programs. 284 

An integrative SCALEX COVID-19 PBMC atlas 285 
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Many single-cell studies have been conducted to analyze COVID-19 patient immune 286 

responses
57-64

. However, these studies often suffer from small sample size and/or 287 

limited sampling of various disease states
58,64

. For a comprehensive study, we collected 288 

data from multiple COVID-19 PBMC studies, involving 860,746 single cells, and 10 289 

batches from 9 studies
57-63

 (Fig. 5a, Fig. S9a), and used SCALEX to generate a 290 

COVID-19 PBMC atlas, identifying 22 cell-types, each of which were supported by 291 

canonical marker gene expression (Fig. 5b,c, Fig. S9b,c. Methods). Cells across 292 

different studies were integrated accurately with the same cell-types aligned together, 293 

confirming integration performance of SCALEX (Fig. 5c, Fig. S9d).  294 

We observed that some cell subpopulations were differentially associated with 295 

patient status (Fig 5d). A subpopulation of CD14 monocytes (CD14-ISG15-Mono), 296 

specifically associated with COIVD-19 patients, was characterized by its high 297 

expression of Type I interferon-stimulated genes (ISGs) and genes associated with 298 

immune-response-related GO terms (Fig 5e,f). The frequency of CD14-ISG15-Mono 299 

cells increased significantly from healthy donors to mild/moderate and severe patients 300 

(Fig. 6g, Fig. S9e. Methods). Within the COVID-19 patients, we observed a significant 301 

decrease in ISG gene expression in CD14-ISG15-Mono cells between the 302 

mild/moderate and severe cases, indicating apparently dysfunctional anti-viral immune 303 

response in severe COVID-19 patients (Fig. 5e). Specifically enriched in severe verse 304 

mild/moderate patients, a neutrophil subpopulation (NCF1-Immature_Neutrophil) 305 

lacked expression of the genes responsible for neutrophil activation but showed 306 

elevated expression of genes associated with viral-process-related GO terms (Fig. 307 

S10a,b). Also enriched in severe patients, a plasma cell subpopulation (MZB1-Plasma) 308 

cells displayed decreased expression for antibody production and were enriched for GO 309 

terms of immune and inflammatory responses (Fig. S10c,d). Thus, the SCALEX 310 

COVID-19 PBMC atlas, generated by integrating a highly diverse collection of 311 

single-cell data from individual studies, identified multiple immune cells-types 312 

showing dysregulations during COVID-19 disease progression. Note that these trends 313 
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could not have been detected in the small-scale, individual studies that served as the 314 

basis for our SCALEX COVID-19 PBMC atlas. 315 

Comparative analysis of the SCALEX COVID-19 PBMC atlas and the SC4 316 

consortium study 317 

Recently, a large-scale effort of the Single Cell Consortium for COVID-19 in China 318 

(SC4) has generated a single-cell atlas that contains over 1 million cells (including 319 

PBMCs and other tissues) from 171 COVID-19 patients and 25 healthy controls
65

 (Fig. 320 

S11a). We projected the consortium dataset into the cell-embedding space of the 321 

SCALEX COVID-19 PBMC atlas, and found that the cell-types of two atlases were 322 

well-aligned in the embedding space (Fig. 5h,i, Fig. S11b,c). 323 

Our analysis, based on the SCALEX COVID-19 PBMC atlas, yielded findings 324 

consistent with two conclusions from the SC4 study
65

. First, in both analyses diverse 325 

immune subpopulations displayed differential associations with COVID-19 severity. 326 

The proportions of CD14 monocytes, megakaryocytes, plasma cells, and pro T cells 327 

were elevated with increasing disease severity, while the proportion of pDC and mDC 328 

cells decreased (Fig. 5g). Second, we confirmed that the megakaryocytes and monocyte 329 

populations are associated with cytokine storms triggered by SARS-Cov2 infection and 330 

are further elevated in severe patients
66

, based on calculating the same cytokine score 331 

and inflammatory score (defined in the SC4 study) for the cells of our SCALEX 332 

COVID-19 PBMC atlas (Fig. 5j. Methods). 333 

Integration of the SC4 data further substantially improved both the scope and 334 

resolution of the SCALEX COVID-19 PBMC atlas. First, this data added macrophages 335 

and epithelial cells to the cell space, enabling investigation of their potential 336 

involvement in COVID-19. The integration also supported more precise 337 

characterization of specific cell subpopulations. For example, the megakaryocyte 338 

population, not distinguished in either single atlas, could be divided into two 339 
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subpopulations in the combined atlas (Fig. 5h). An exploratory functional analysis of 340 

the differentially expressed genes in these two newly delineated megakaryocyte 341 

subpopulations (TUBA8-Mega and IGKC-Mega, Fig. S11d,e) revealed enrichment for 342 

the GO terms “humoral immune response” for IGKC-Mega cells yet enrichment for 343 

“negative regulation of platelet activation” for TUBA8-Mega cells (Fig. 5k). These 344 

results illustrate how the continuously expandable single-cell atlases generated using 345 

SCALEX capitalize on existing large-scale data resources and also facilitate discovery 346 

of biological and biomedical insights. 347 

DISCUSSION 348 

SCALEX provides a VAE framework for integration of heterogeneous single-cell data 349 

by disentangling batch-invariant components from batch-related variations and 350 

projecting the batch-invariant components into a generalized, low-dimensional 351 

cell-embedding space. By design, SCALEX models the inherent batch-invariant 352 

patterns of single-cell data, distinguishing it from previously reported integration 353 

methods based on cell similarities. SCALEX does not rely on the identification of 354 

common cell-types across batches, and therefore avoids the problem of cell-type 355 

over-correction, a severe problem for partially-overlapping datasets. SCALEX thus 356 

also overcomes issues of computational complexity in cell similarity-based methods; 357 

that is, the computational time required to identify similar cells may increase 358 

exponentially as the cell number increases.  359 

These two features make SCALEX particularly useful for construction and 360 

integrative analysis of large-scale single-cell atlases based on very heterogenous data 361 

(i.e., datasets acquired by different labs and using different single-cell analysis 362 

platforms). Our construction of human, mouse, and COVID-19 patient single-cell 363 

atlases—which aligned well with previously reported atlases generated from 364 

coordinated large-scale consortium efforts—demonstrates the particular ability of 365 
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SCALEX to producing large-scale atlases from extant small-scale datasets. SCALEX 366 

achieves data integration by projecting all single cells into a generalized 367 

cell-embedding space using a universal data projector (i.e., the encoder). This data 368 

projector only needs to be trained once, and then can be used without retraining to 369 

continuously integrate new incoming data into an existing single-cell atlas. This 370 

continuous growth ability makes a SCALEX atlas an elastic resource, allowing the 371 

integration of many single-cell studies to support ongoing, very large-scale research 372 

programs throughout the life sciences and biomedicine.  373 

While the number of single-cell studies is increasing enormously each year, best 374 

practices for experimental design and sample processing are not established, and there 375 

is no obviously dominant data-acquisition platform. SCALEX’s ability to 376 

informatively combine data from heterogenous studies and platforms makes it 377 

particularly suitable for the current era of single-cell biological research. Finally, the 378 

ability to conduct exploratory analysis within a generalized cell space supports that 379 

SCALEX should be particularly useful for large-scale integrative (e.g., pan-cancer) 380 

studies. We speculate that use of SCALEX to project single-cell datasets (including 381 

for example scATAC-seq and scRNA-seq) from highly diverse cancer types to 382 

construct a pan-cancer single-cell atlas may lead to the discovery of previously 383 

unknown cell types that are common to divergent carcinomas and that function in 384 

pathogenesis, malignant progression, and/or metastasis. 385 

 386 
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Figures 843 

Fig. 1 | The design and performance of SCALEX for single-cell data integration. 844 

a, SCALEX models the global structure of single-cell data using a variational 845 

autoencoder (VAE) framework. b, UMAP embeddings of the PBMC dataset before 846 

and after integration using SCALEX, Seurat v3, Harmony, Conos, or Scanorama 847 

integration, colored by batch and cell-type. c, Scatter plot showing a quantitative 848 

comparison of the silhouette score (y-axis) and the batch entropy mixing score (x-axis) 849 

on the benchmark datasets. d, UMAP embeddings of the SCALEX integration of the 850 

human fetal atlas dataset, colored by batch and cell-type. e, Comparison of 851 

computation efficiency on datasets of different sizes sampled from the whole human 852 

fetal atlas dataset) including runtime (left) and memory usage (right). f, UMAP 853 

embeddings of the mouse brain scATAC-seq dataset before (left) and after integration 854 

(middle, right); colored by data batch or Leiden clustering. g, UMAP embeddings of 855 

the PBMC cross-modality dataset before (left) and after integration (middle, right); 856 

colored by batch or cell-type.  857 

Fig. 2 | Comparison of integration performance over partially-overlapping 858 

datasets by different methods. a, Comparison over the liver dataset. b, Comparison 859 

over simulated datasets with different numbers of common cell-types (obtained by 860 

down-sampling the pancreas dataset). Misalignments are highlighted with red circles. 861 

Fig. 3 | Projecting heterogenous data into a generalized cell-embedding space. a, 862 

UMAP embeddings of the pancreas dataset after integration by SCALEX, colored by 863 

cell-type. b, UMAP embeddings of three projected pancreas data batches projected 864 

onto the pancreas space, colored by cell-types; the light gray shadows represent the 865 

original pancreas dataset. c, Confusion matrix between ground truth cell-types and 866 

those annotated by different methods. ARI, NMI and F1 scores (top) measure the 867 

annotation accuracy. d, UMAP embeddings of the PBMC dataset after integration and 868 
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the two projected melanoma data batches onto the PBMC space, colored by cell-types 869 

with light gray shadows represent the original PBMC dataset. e, The PBMC space that 870 

includes the original PBMC dataset and the two projected melanoma data batches. f, 871 

Annotating an uncharacterized small cell population in the pancreas dataset by 872 

projection of the bronchial epithelium data batches into the pancreas cell space. Only 873 

the uncharacterized cells in the pancreas dataset (left) and the SLC16A7+ epithelial 874 

cells in the bronchial epithelium data batches (right) are colored. g, Heatmap showing 875 

the normalized expression of the top-10 ranking specific genes for the uncharacterized 876 

cell population in different cell-types.  877 

Fig. 4 | Construction of an expandable mouse single-cell atlas. a, Datasets acquired 878 

using different technologies (Smart-seq2, 10X, and Microwell-seq) covering various 879 

tissues used for construction of the mouse atlas. b, UMAP embeddings of the mouse 880 

atlas dataset colored by batch and tissue. c, UMAP embeddings of the mouse atlas 881 

after SCLAEX integration, labeld with and colored by cell-type. d, Two Tabula Muris 882 

Senis data batches and two mouse tissues (lung and kidney) data are projected onto 883 

the cell space of the mouse atlas, with the same cell-type color as in c. e, Confusion 884 

matrix of the cell-type annotations by SCALEX and those in the original studies. 885 

Color bar represents the percentage of cells in confusion matrix Cij known to be 886 

cell-type i and predicted to be cell-type j. 887 

Fig. 5 | Construction and expansion of a COVID-19 single-cell atlas. a, COVID-19 888 

dataset composition, including healthy controls and influenza patients, as well as 889 

mild/moderate, severe, and convalescent COVID-19 patients. b,c UMAP embeddings 890 

of COVID-19 PBMC atlas after SCLAEX integration colored by batch (b), and by 891 

cell-types (c). d, UMAP embeddings of the COVID-19 PBMC atlas separated by 892 

disease state. e, Stacked violinplot of differentially-expressed ISGs among CD14 893 

monocytes across disease states. f, GO terms enriched in the differentially-expressed 894 

genes for CD14-IL1B-Mono and CD14-ISG15-Mono cells. g, Cell-type frequency 895 
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across healthy and influenza controls, and among mild/moderate, severe, and 896 

convalescent COVID-19 patients. Dirichlet-multinomial regression was used for 897 

pairwise comparisons, ***p<0.001, **p<0.01, *p<0.05. h, United UMAP 898 

embeddings of the SCALEX COVID-19 PBMC atlas and the SS4 atlas (from the 899 

Single Cell Consortium for COVID-19 in China, projected onto the cell space of the 900 

SCALEX COVID-19 PBMC atlas). Left: the SCALEX COVID-19 PBMC atlas, 901 

middle: SC4 colored by cell clusters in the original study, right: Expanded atlas 902 

combining the SCALEX COVID-19 PBMC atlas and the SC4 atlas. i, Similarity 903 

matrix of meta-cell representations for cell-types between the SCALEX COVID-19 904 

PBMC atlas and SC4 in the generalized cell-embedding space after SCALEX 905 

integration. Color bar represents the Pearson correlation coefficient between the 906 

average meta-cell representation of two cell-types from a respective data batch. j, 907 

UMAP embeddings of the SCALEX COVID-19 PBMC atlas colored by the cytokine 908 

score and the inflammatory score. k, GO terms enriched in the 909 

differentially-expressed genes for TUBA8-Mega and IGKC-Mega cells. 910 

Supplementary figures 911 

Fig. S1 | Comparison of integration performance on benchmark datasets. UMAP 912 

embeddings for benchmark datasets grouped by batches and cell-types, before and 913 

after integration by different methods. Misalignments are highlighted with red circles. 914 

Fig. S2 | The human fetal atlas. a, UMAP embeddings of the human fetal atlas 915 

dataset colored by batch before integration. b, Similarity matrix of meta-cell 916 

representations for different cell-types in the two data batches in the generalized 917 

cell-embedding space. Color bar represents the Pearson correlation coefficient 918 

between the average meta-cell representation of two cell-types from a respective data 919 

batch. c, Comparison of computation efficiency on datasets of different sizes 920 
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(sampled from the whole human fetal atlas dataset), including runtime (left) and 921 

memory usage (right), in log scale. 922 

Fig. S3 | Canonical marker genes of different cell-types and UMAP embeddings 923 

of the liver dataset. a, Dotplot of canonical marker genes for each cell-type. Dot 924 

color represents average expression level, while dot size represents the proportion of 925 

cells in the group expressing the marker. b, UMAP embeddings of the liver dataset, 926 

colored by batch (left) and cell-type (right) after SCALEX integration. c, Normalized 927 

marker gene expression on the UMAP embeddings of the five hepatocyte subtypes. 928 

Color bar represents the expression level. 929 

Fig. S4 | Integration over partially-overlapping datasets down-sampled from the 930 

pancreas dataset. Partially-overlapping datasets were generated by down-sampling 931 

the pancreas dataset, consisted of common cell-types with a decreased overlapping 932 

number (ranging from 0 to 6). Integration results for SCALEX, Seurat, and Harmony 933 

are shown in the UMAP embeddings colored by batches (left) and cell-types (right) 934 

respectively (overlapping number decreases from 6 to 0). Misalignments are 935 

highlighted with red circles. 936 

Fig. S5 | Integration over partially-overlapping datasets down-sampled from the 937 

PBMC dataset. Partially-overlapping datasets were generated by down-sampling the 938 

PBMC dataset, consisted of common cell-types with a decreased overlapping number 939 

(ranging from 0 to 6). Integration results for SCALEX, Seurat and Harmony are 940 

shown in the UMAP embeddings colored by batches (left) and cell-types (right) 941 

respectively (overlapping number decreases from 6 to 0). Misalignments are 942 

highlighted with red circles. 943 

Fig. S6 | The pancreas dataset and the additional data batches. a, UMAP 944 

embeddings of the pancreas dataset, the three additional pancreas data batches and 945 

the bronchial epithelium data batches (data from three donors), grouped by batch. b, 946 
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Dot plot of canonical markers of cell-types of reference pancreas dataset; dot color 947 

represents average expression level, while dot size represents the proportion of cells 948 

in the group expressing the marker.  949 

Fig. S7 | The SCALEX mouse atlas. a, UMAP embeddings of the mouse atlas data 950 

before integration, colored by batch. b, UMAP embeddings of three mouse atlas data 951 

batches (Smart-seq2, 10X, and Microwell-seq) after integration, colored by cell-type; 952 

the light gray shadows represent the original mouse atlas dataset. c, Dotplot of the top 953 

5 cell-type-specific genes for each cell-type in the mouse atlas dataset. Dot color 954 

represents average expression level, while dot size represents the proportion of cells 955 

in the group expressing the marker.  956 

Fig. S8 | The SCALEX human atlas. a, The human atlas dataset acquired using 957 

different technologies (Smart-seq2, 10X, and Microwell-seq) covering various tissues 958 

used for construction of the human atlas. b-c, UMAP embeddings of the human atlas 959 

dataset colored by batch and cell-type, before (b) and after integration (c). d, 960 

Similarity matrix of meta-cell representations for cell-types in the two data batches in 961 

the generalized cell-embedding space after SCALEX integration between two batches. 962 

Color bar represents the Pearson correlation coefficient between the average meta-cell 963 

representation of two cell-types from a respective data batch. e, UMAP embeddings 964 

of the human atlas and two additional projected data batches colored by cell-type. f, 965 

Confusion matrix of the cell-type annotations by SCALEX and those in the original 966 

study. Color bar represents the percentage of cells in confusion matrix Cij known to be 967 

in cell-type i and predicted to be in cell-type j. 968 

Fig. S9 | COVID-19 immune landscape. a, UMAP embeddings of the raw 969 

COVID-19 PBMC dataset before integration. b, UMAP embeddings of the 970 

COVID-19 PBMC atlas colored by condition and Leiden clustering after SCALEX 971 

integration. c, Dotplot of canonical marker genes for each cell-type. Dot color 972 
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represents average expression level, while dot size represents the proportion of cells 973 

in the group expressing the marker. d, UMAP embeddings of the COVID-19 PBMC 974 

atlas in individual batches after SCALEX integration, colored by cell-type; the light 975 

gray shadows represent the other batches of COVID-19 PBMC atlas. e, Frequency of 976 

cell distributions across healthy people and influenza patient controls, and among 977 

mild/moderate, severe, and convalescent COVID-19 patients. Dirichlet-multinomial 978 

regression was used for pairwise comparisons, ***p<0.001, **p<0.01, *p<0.05. 979 

Fig. S10 | COVID-19 heterogeneous dysfunctional immune response. a, Stacked 980 

violin plot of differentially-expressed genes between PNPLA2-Immature_Neutrophil 981 

and NCF1-Immature_Neutrophil cells. b, GO terms enriched in the 982 

differentially-expressed genes for PNPLA2-Immature_Neutrophil and 983 

NCF1-Immature_Neutrophil cells. c, Stacked violinplot of differentially-expressed 984 

genes between PRDM1-Plasma and MZB1-Plasma. d, GO terms enriched in the 985 

differentially-expressed genes for PRDM1-Plasma and MZB1-Plasma cells. 986 

Fig S11 | Projection of the SC4 dataset onto the SCLAEX COVID-19 PBMC 987 

atlas. a-b, UMAP embeddings of the SC4 dataset before integration (a) and after 988 

projection onto the SCLAEX COVID-19 PBMC space (b). c, Separate UMAP 989 

embeddings of each SC4 data batch, after being projected onto the SCALEX 990 

COVID-19 PBMC space, colored by cell-type. d, UMAP embeddings of the 991 

TUBA8-Mega and IGKC-Mega cells. e, UMAP embeddings of the 992 

differentially-expressed genes of TUBA8-Mega and IGKC-Mega cells.  993 

 994 
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Supplementary Fig 9
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Supplementary Fig 10
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Supplementary Fig 11
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