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Abstract—This paper proposes an adaptive hybrid battery 
model-based high-fidelity state of charge (SOC) and state of 
health (SOH) estimation method for rechargeable multicell 
batteries. The hybrid battery model consists of an enhanced 
Coulomb counting algorithm for SOC estimation and an 
electrical circuit battery model. A variable-length sliding 
window least squares (VSWLS)-based online parameter 
identification algorithm is designed to estimate the electrical 
parameters of the electrical battery model, which are then used 
as the parameters of an adaptive discrete-time sliding-mode 
observer (ADSMO) for terminal and open-circuit voltage 
estimation of a battery cell. The error of the SOC estimated 
from the enhanced Coulomb counting algorithm is then 
corrected by using the SOC obtained from the ADSMO-
estimated open-circuit voltage. This leads to an accurate, 
robust real-time SOC estimation. In addition, the maximum 
capacity of the cell is estimated to determine the SOH of the 
cell. The proposed method is validated by simulation and 
experimental results for a four-cell cylindrical lithium-ion 
battery pack. 

I. INTRODUCTION  
Multicell lithium-ion batteries have been pervasively 

used in various electrical systems, such as renewable power 
systems, electric vehicles (EVs), plug-in hybrid electric 
vehicles (PHEVs), etc. In order to ensure optimal 
performance, availability, and reliability of a battery system, 
it is crucial to precisely estimate the cell-level state of 
charge (SOC) and state of health (SOH) of the multicell 
batteries. Therefore, SOC and SOH are the main parameters 
of a battery management system (BMS) during battery 
operation [1]. 

A variety of battery SOC estimation methods have been 
developed, which, in general, can be classified into four 
categories: Coulomb counting-based methods, 
computational intelligence-based methods, model-based 
methods, and mixed methods. The Coulomb counting-based 

methods are simple and easy to implement in real-time 
systems [2]. However, they have unrecoverable problems 
that might be caused by factors such as a wrong initial SOC 
value, a wrong maximum capacity, the accumulation of 
estimation errors, and neglecting the self-discharge effect. 
Moreover, the Coulomb counting-based methods cannot 
keep track of battery nonlinear capacity variation effects, 
such as the rate capacity effect and recovery effect [3].  

The computational intelligence-based methods describe 
the nonlinear relationship between the SOC and the factors 
influencing the SOC, such as battery voltage, current and 
temperature [4]-[6]. Artificial neural network (ANN)-based 
methods [4], fuzzy logic methods [5], and support vector 
regression methods [6] have been used to estimate the SOC 
of a battery. Although a precise estimation of the SOC can 
be obtained by the computational intelligence-based 
methods, the learning process required by these methods has 
a quite high computational burden, and is difficult to 
implement in real-time SOC tracking. 

Model-based SOC estimation methods basically utilize 
state-space electrochemical-based mathematical models or 
electrical circuit battery models to design an observer for 
real-time SOC estimation. For example, Kalman filter [7], 
extended Kalman filter (EKF) [8], and sigma-point Kalman 
filter (SPKF) [9] have been used to estimate the SOC of a 
battery for PHEV and EV applications. In general, the EKF 
and SPKF methods provide an accurate solution for long-
term SOC estimation. However, these methods require an 
accurate battery model, whose parameters, e.g., resistances 
and capacitances, typically vary with the SOC, temperature, 
current, aging, etc., of the battery cell. Therefore, additional 
online parameter estimation is usually needed to provide an 
accurate battery model [9]. Furthermore, even with an 
accurate battery model, the estimation error can be large 
when unexpected noise is present [10]. Moreover, the 
model-based SOC estimation methods have a higher 
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computational complexity than the nonmodel-based 
Coulomb counting methods. To overcome model parameter 
uncertainties and computational burden, a sliding-mode 
observer (SMO) was designed for battery SOC estimation 
[11]. However, the accuracy of the SMO-based method will 
degrade due to the chattering problem when model 
uncertainties are significant [12]. The mixed SOC 
estimation methods combine the advantages of the 
aforementioned three methods [13].  

The SOH is an indicator of battery aging, which results 
in capacity and power degradation. In general, capacity, 
internal resistance, and SOC are the commonly used battery 
parameters to quantify SOH [14]-[16]. Therefore, an 
accurate SOC estimation will facilitate the estimation of the 
SOH. Similar or the same techniques used for SOC 
estimation mentioned above can be applied to SOH 
estimation. For example, an ANN-based method [14], EKF 
[15], and SMO [16] have been applied to estimate the SOH 
of a battery. A main difference between SOC and SOH 
estimation is that the calculation time of SOH is much larger 
than that of SOC because the dynamics associated with 
SOH are much slower than SOC [16].   

This paper proposes an adaptive hybrid battery model-
based real-time SOC and SOH estimation method for 
multicell lithium-ion batteries used in EVs and PHEVs. The 
hybrid battery model consists of an enhanced Coulomb 
counting algorithm and an electrical circuit battery model 
[3]. The former is used to estimate the SOC of each battery 
cell, while the latter is used as a system model for designing 
an adaptive discrete-time (ADSMO), which is executed in 
real time to estimate the terminal voltages and open-circuit 
voltages of the cells in a battery pack sequentially. The 
errors of the Coulomb counting-based SOC estimation is 
corrected by an SOC compensator for the cells in the battery 
pack sequentially. The SOC compensator estimates the SOC 

of each cell from the ADSMO. The internal impedances of 
the battery cell required to implement the ADSMO are 
updated by a variable-length sliding window least squares 
(VSWLS)-based online parameter identification algorithm 
[18]. Therefore, the proposed method is capable of 
capturing nonlinear capacity effects of a battery and 
ensuring the robustness of the SOC estimation to unknown 
initial SOC, wrong maximum capacity, and error 
accumulation. In addition, the SOH is determined by 
comparing the rated capacity and the estimated maximum 
capacity of a cell. Furthermore, the estimated electrical 
parameters such as a series resistance [9] and [11], a 
diffusion resistance [19] and a diffusion capacitance [20] 
can be used for an additional indicator for SOH estimation. 
The proposed method is validated by using simulation and 
experimental results for a four-cell cylindrical lithium-ion 
battery pack. 

II. THE PROPOSED METHOD 
The proposed SOC and SOH estimation method consists 

of four parts as shown in Fig. 1: (1) a hybrid battery model 
including an enhanced Coulomb counting algorithm and an 
electrical circuit battery model; (2) a VSWLS-based 
parameter identification algorithm; (3) an SOC compensator 
consisting of an ADSMO SOC estimator and a closed-loop 
weighting SOC compensation algorithm (i.e., the WF) for 
correcting the error of the enhanced Coulomb counting-
based SOC estimation; and (4) an SOH estimator. The 
proposed SOC compensator method is executed sequentially 
for each cell of a series-connected m-cell battery pack. 

A. The Hybrid Battery Model 
The enhanced Coulomb counting algorithm is designed 

to estimate the SOC of a battery cell based on a Kinetic 
Battery Model (KiBaM) [3]. It can capture the nonlinear 
capacity effects, such as the recovery effect and rate 

 

 
 

Fig. 1. The proposed SOC and SOH estimation method for a series-connected m-cell battery pack. 
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capacity effect, of the battery cell with a low computational 
cost, thereby is feasible for real-time applications [3]. A 
voltage-controlled voltage source, Vi,oc(SOC), is used to 
bridge the SOC to the cell open-circuit voltage, where i = 1, 
···. m, and m is the total number of cells in the pack. The 
resistor-capacitor circuit (i.e., the electrical circuit battery 
model) models the I-V characteristics and transient response 
of the battery cell, where the series resistance, Ri,series, is 
used to characterize the charge/discharge energy losses of 
Cell i; other resistance and capacitance are used to 
characterize the transient responses of Cell i; and Vi,cell and 

celliV ,
ˆ represent the actual terminal voltage and electrical 

circuit terminal voltage of Cell i, respectively. Assuming 
that Vi,oc(SOC) is b1·SOC+b0 [17], a discrete-time version of 
the hybrid battery model can be expressed as follows: 
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              (3)  

where T is the sampling period; τi = Ri,transient·Ci,transient, is the 
time constant of Cell i; iB(k) is the instantaneous current of 
the battery pack at the time index k; k’ and c are the 
parameters of the KiBaM; Ci,max, Ci,unavailable, and ΔCi,unavailable 
are the maximum and unavailable capacities and the 
derivative of the unavailable capacity of Cell i during T, 
respectively. The initial SOC of Cell i, i.e., SOCi(0), is the 
estimated SOC at the end of the last operating period (i.e., k 
= 0). 

B. Parameter Identification by VSWLS 
The VSWLS method is employed to identify the internal 

parameters of the electrical circuit model of each battery cell, 
which include the electrical impedances Ri,series, Ri,transient, and 
Ci,transient, of Cell i. Assuming that T is short (e.g., T ≤ 1 
second) such that ΔCi,unavailable is negligible, the z-transfer 
function of (2) is given in (4) and the corresponding 
difference equation is given in (5). 
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Because (1+xi,1+xi,2) is zero, (5) can be reformulated into the 
regression form of the input/output relationship. 

, ,1 , ,2 , ,3
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where the regressor is φi
T(k) = [-Vi,cell(k-1), -Vi,cell(k-2), iB(k), 

iB(k-1), iB(k-2)] and the vector of the parameters to be 
estimated is θi = [xi,1, xi,2, xi,3, xi,4, xi,5]T. Then, the VSWLS 
algorism is designed to estimate the vector θi. The VSWLS 
is an advanced least squares estimation algorithm with a 
forgetting factor [18]. It uses the block data captured by a 
variable sliding window to keep track of the nonlinear time-
variant parameters. The internal parameters of the electrical 
circuit battery cell model can then be calculated by (6) after 
θi is identified. This leads to an adaptive battery model.  

The length of the sliding window can be variable 
depending on the estimation error of the terminal voltage 
[18]. Due to the nonlinear time-variant parameters of battery 
cells, a long sliding window will include more information 
on the nonlinearity, but may degrade the accuracy of 
parameter estimation, resulting in a large estimation error of 
the terminal voltage. Furthermore, the excitation level of the 
input signal is also an important factor in choosing the 
length of the sliding window [21]. For example, if long 
discharge pulses are applied to the battery, the sliding 
window should have at least one of the pulse edges. On the 
other hand, the length of the window can be set to be short 
(e.g., the allowed minimum value), if the input signals are 
fully exited within a short window. The abnormal values of 
the estimated internal parameters due to low perturbation or 

 

 
Fig. 2. The block diagram of the ADSMO-based SOC estimator. 
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quality of the input signals will be discarded.  

C. SOC Estimation by ADSMO 
The ADSMO is proposed to estimate Vi,oc of Cell i (i = 1, 

···, m). Fig. 2 shows the block diagram of the ADSMO. 
Using the first-order forward Euler method and the actual 
terminal voltage Vi,cell, (2) can be written as follows [16]: 
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where l is the SMO gain of the switching control vector Z; 
Ts is the sampling period of the ADSMO. In (9), the internal 
parameters Ri,series, Ri,transient and Ci,transient are used, which are 
obtained from the parameter identification process. Define 
the voltage estimation error ε(k) = Vi,cell(k) − 

celliV ,
ˆ (k), (10) 

can be obtained by subtracting (9) from (8):   

           ,
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The sliding surface is designed as s(k) = ε(k) = 0. The 
dynamic of the ADSMO can be written as: 
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A variable switching function is defined as follows for the 
ADSMO. 
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where Z0 is the width of the boundary layer. Due to the 
switching function, S is bounded. According to (11), the 

Lyapunov stability condition (i.e., 0<⋅
⋅

SS ) will be satisfied 
if l > Vi,oc.max/Z0, where Vi,oc.max is the maximum open-circuit 
voltage of Cell i. Finally, the state trajectory will approach 
the sliding surface defined by 0==

⋅
SS . When the tracking 

error is zero, the output of the designed switching function, 
lZ, will be equal to Vi,oc. If there is an abrupt change in the 
cell current (such as pulse charge or discharge current), the 
ADSMO will not be able to catch up with the change of the 
terminal voltage quickly when Ts is large (e.g., Ts = one 
second). As a result, the output of the switching function 
will oscillate until ε becomes small. The moving average (or 
low-pass filter) and selector module in Fig. 2 will smooth lZ 
and discard the highly oscillated values, respectively. 

The estimated open-circuit voltage Vi,oc is then used to 
calculate the SOC (SOCi,V) of Cell i according to the a 
SOC–Voc look-up table. Assuming that the hysteresis effect 
is negligible in the lithium-ion battery cells, the relationship 
between SOC and Voc is dependent on temperature and 
aging, but their influence will be negligible if the SOC is 
expressed using the relative capacity [17]. In practice, the 
SOC–Voc relationship can be obtained from laboratory 
experiments. 

D. SOC Estimation 
The enhanced Coulomb counting method based on (1) 

and (3) is an open-loop SOC estimation method. It may be 
subject to problems of a wrong initial SOC, wrong Cmax, and 
accumulating estimation errors, leading to a wrong SOC 
estimation. To solve these problems, this paper uses a 
closed-loop weighting SOC estimation method [22] and [23] 
with the ADSMO-based SOC estimator together to form an 
SOC compensator to correct the error of the SOC (i.e., 
SOCi,EC) obtained from the enhanced Coulomb counting 
algorithm for the cells sequentially, as shown in Fig. 3. The 
equations are given by the following: 

)()1()()( ,,, kSOCWkSOCWkSOC ViECinewi ⋅−+⋅=     (13) 

 
 

Fig. 4. The experimental setup. 
 
 

 

 

Fig. 3.  The proposed closed-loop weighting SOC estimation algorithm. 
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where W is a variable weighting factor (0<W<1); Ci,max is 
estimated maximum capacity of Cell i and will be updated 
by the capacity estimation in the SOH estimator; SOCi,V is 
the SOC estimated from the ADSMO-based SOC estimator 
shown in Fig. 2. The SOC compensator uses SOCi,V  to 
correct the SOCi,EC. In this paper, Ci,max is updated by 
estimating the cell capacity, which will be discussed in (15) 
in the next subsection E; and the SOC–Voc look-up table is 
obtained under the ambient temperature. The SOCi,V and 
SOCi,EC are multiplied by their weighting factors and then 
added together to generate a compensated SOC (i.e., SOCnew). 
The SOCnew is then used as the initial SOC (SOCi) of the 
enhanced Coulomb counting algorithm to estimate the SOC 
in the next time step.   

The SOC compensator is executed periodically with a 
certain interval during operation or during a long relaxation 
period of the battery cell. The performance of the SOC 
compensator highly depends on the accuracy of the internal 
electrical parameters of the battery cell and the weighting 
factor W. The default value of W is one when only the 
enhanced Coulomb counting is used for SOC estimation. 
The value of W will be changed when the SOC compensator 
is used. In this paper, W is set to be 0.5 once the SOC 
compensator is activated. In practice, W will be set to be a 
value larger than 0.5 for a smooth transition of the SOC 
values. Moreover, when the battery cell is operated in a 
long-time relaxation mode, the SOCi,V will be close to the 
real SOC. In this case, the weighting factor W will be set to 
be zero. When W is zero and the battery cell is operated in 
the charge/discharge mode again, the execution of the SOC 
compensator will be over, and W will be reset to be one. 

E. SOH Estimation 
Due to cell state variations, the maximum capacities of 

the battery cells in a pack will be unequal to the nominal 
capacity that the manufacturer offers. Such variations 
depend on manufacturing environment and temperature 
conditions. Moreover, the maximum capacity of a cell will 
reduce due to aging.  Therefore, the value of Ci,max is a good 
indicator of the SOH of a battery cell Ci, and can be updated  
from (1) using the compensated SOCi as follows: 
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where k1 and k2 are the beginning time and end time of the 
SOH estimation period, respectively.                                 

The SOH represents the capacity and power capability 
of a battery cell to deliver the specified performance 
compared with a new battery. The SOH can be indicated by 
a single measurement of the conductance or impedance of 

the cell, which is easy but imprecise. Other battery 
parameters, such as the maximum capacity, internal 
resistance, self-discharge rate, charge acceptance, discharge 
capability can be used to estimate the SOH. In this paper, 
the SOH is estimated as the ratio of the maximum capacity 
of a battery cell (i.e., Ci,max) to that of the cell when it is new 
(i.e., Ci,max_new). Such an SOH represents the capacity 
degradation of the cell.  
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i
i C

kC
kSOH

max_,

max, )(
)( =                             (16) 

In addition, the impedance estimated by using the 
VSWLS can be utilized for SOH estimation from the 
perspective of power degradation. 

III. RESULTS 
The proposed SOC and SOH estimation method is 

validated by simulation and experimental data for a four-cell 
cylindrical lithium-ion battery pack (see Appendix). The 
experimental data of the cell voltage and current are 
collected from a CADEX battery tester C8000 (shown in 
Fig. 4) under the ambient temperature. The proposed 
method shown in Fig. 1 is implemented in 
MATLAB/Simulink. 

The cell voltage and current measured from the battery 
tester are used by the proposed method for real-time SOC 
and SOH estimation of each battery cell. The values of 
Voc(SOC) and Cmax are first extracted offline for each battery 
cell [3] . They are then used as the true values for 
comparison with the values obtained from the proposed 
method in real time. In order to set initial SOCs for the test 
battery cells, they are first fully charged and rest for one 
hour. Then the cells are discharged using a small current to 
the desired initial SOC values. Finally, the cells rest (or may 
need further charge or discharge using very small currents) 
until their open-circuit voltages equal to the true values 
corresponding to the initial SOCs. 

 First, the identification of Voc and Cmax is investigated. 
Fig. 5(a)-(c) compare the true and estimated Vcell, Voc, and 
Cmax for a dynamic current cycle shown in Fig. 5(d). The 
parameter identification algorithm is executed by using the 
data sampled with a 1 Hz rate and a 20-second moving 
window. Then, the ADSMO is executed with a sampling 
rate of 100 Hz to estimate the Voc. The results show that the 
values of Vcell, Voc and Cmax are estimated accurately in real 
time. Then, the SOH of the cell can be estimated using the 
estimated Cmax. However, it takes a relatively long time to 
get Cmax close to its true value.  

Next, the SOC estimation algorithm for multicell 
batteries is investigated using the measured data of the four-
cell battery pack. All cells are initially set with a wrong 
initial SOC of 50%; while the real initial SOCs of Cells 1, 2, 
3 and 4 are 100, 90, 80 and 70%, respectively. The battery 
pack is operated with a dynamic current cycle as shown in 
Fig. 5(d). The SOC compensator is executed sequentially 
with an interval of 100 seconds for each cell to compensate   
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its SOC. Fig. 6 compares the SOCs estimated by the 
proposed method with those measured from the battery 
tester. The estimated SOC of each cell matches the 
measured value although the initial SOC is set wrong in the 
proposed method. This result clearly shows that the 
proposed algorithm is robust to the error of the initial SOC, 
which however is important to the accuracy of the 
traditional Coulomb counting methods.   

IV. CONCULUSIONS AND FUTURE WORK 
This paper has proposed a novel adaptive hybrid model-

based real-time SOC and SOH estimation method for 
multicell lithium-ion batteries. The proposed method has 
been implemented in MATLAB/Simulink and validated by 
simulation and experimental results for a four-cell cylindrical 
lithium-ion battery pack. The proposed method can be used 
for power management, condition monitoring and diagnostics 
of batteries in various applications, such as EVs and PHEVs. 
In the future work, the analysis of the parameter changes in 
the enhanced battery model due to temperature and aging and 
hardware-in-the-loop tests for the proposed method will be 
conducted to validate it for real-time applications.   

APPENDIX 
Battery cell: Samsung ICR18650-28A; nominal voltage: 

3.75 V; nominal capacity: 2800 mAh; discharge cutoff 
voltage (Vcutoff): 3 V; charge cutoff voltage (Vover): 4.3 V; 
maximum discharge current: 2C (5.6 A). 
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