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Abstract. We study the following one-dimensional range reporting prob-
lem: On an array A of n elements, support queries that given two indices
i ≤ j and an integer k report the k smallest elements in the subarray
A[i..j] in sorted order. We present a data structure in the RAM model
supporting such queries in optimal O(k) time. The structure uses O(n)
words of space and can be constructed in O(n log n) time. The data
structure can be extended to solve the online version of the problem,
where the elements in A[i..j] are reported one-by-one in sorted order, in
O(1) worst-case time per element. The problem is motivated by (and is
a generalization of) a problem with applications in search engines: On a
tree where leaves have associated rank values, report the highest ranked
leaves in a given subtree. Finally, the problem studied generalizes the
classic range minimum query (RMQ) problem on arrays.

1 Introduction

In information retrieval, the basic query types are exact word matches, and
combinations such as intersections of these. Besides exact word matches, search
engines may also support more advanced query types like prefix matches on
words, general pattern matching on words, and phrase matches. Many efficient
solutions for these involve string tree structures such as tries and suffix trees,
with query algorithms returning nodes of the tree. The leaves in the subtree of
the returned node then represent the answer to the query, e.g. as pointers to
documents.

An important part of any search engine is the ranking of the returned doc-
uments. Often, a significant element of this ranking is a query-independent pre-
calculated rank of each document, with PageRank [1] being the canonical exam-
ple. In the further processing of the answer to a tree search, where it is merged
with results of other searches, it is beneficial to return the answer set ordered by
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the pre-calculated rank, and even better if it is possible to generate an increas-
ing prefix of this ordered set on demand. In short, we would like a functionality
similar to storing at each node in the tree a list of the leaves in its subtree sorted
by their pre-calculated rank, but without the prohibitive space cost incurred by
this solution.

Motivated by the above example, we consider the following set of problems,
listed in order of increasing generality. For each problem, an array A[0..n − 1]
of n numbers is given, and the task is to preprocess A into a space-efficient
data structure that efficiently supports the query stated. A query consists of two
indices i ≤ j, and if applicable also an integer k.

Sorted range reporting:
Report the elements in A[i..j] in sorted order.

Sorted range selection:
Report the k smallest elements in A[i..j] in sorted order.

Online sorted range reporting:
Report the elements in A[i..j] one-by-one in sorted order.

Note that if the leaves of a tree are numbered during a depth-first traversal,
the leaves of any subtree form a consecutive segment of the numbering. By
placing leaf number i at entry A[i], and annotating each node of the tree by the
maximal and minimal leaf number in its subtree, we see that the three problems
above generalize our motivating problems on trees. The aim of this paper is
to present linear space data structures with optimal query bounds for each of
these three problems. We remark that the two last problems above also form
a generalization of the well-studied range minimum query (RMQ) problem [2].
The RMQ problem is to preprocess an array A such that given two indices i ≤ j,
the minimum element in A[i..j] can be returned efficiently.
Contributions: We present data structures to support sorted range reporting
queries in O(j − i + 1) time, sorted range selection queries in O(k) time, and
online sorted range reporting queries in worst case O(1) time per element re-
ported. For all problems the solutions take O(n) words of space and can be
constructed in O(n log n) time. We assume a unit-cost RAM whose operations
include addition, subtraction, bitwise AND, OR, XOR, and left and right shift-
ing and multiplication. Multiplication is not crucial to our constructions and can
be avoided by the use of table lookup. By w we denote the word length in bits,
and assume that w ≥ log n.
Outline: In the remainder of this section, we give definitions and simple con-
structions used extensively in the solution of all three problems. In Section 2, we
give a simple solution to the sorted range reporting problem which illustrates
some of the ideas used in our more involved solution of the sorted range selec-
tion problem. In Section 3, we present the main result of the paper which is
our solution to the sorted range selection problem. Building on the solution to
the previous problem, we give a solution to the online sorted range reporting
problem in Section 4.

We now give some definitions and simple results used by our constructions.



Essential for our constructions to achieve overall linear space, is the standard
trick of packing multiple equally sized items into words.

Lemma 1. Let X be a two-dimensional array of size s × t where each entry
X[i][j] consists of b ≤ w bits for 0 ≤ i < s and 0 ≤ j < t. We can store this
using O(stb + w) bits, and access entries of X in O(1) time.

We often need an array of s secondary arrays, where the secondary arrays
have variable lengths. For this, we simply pad these to have the length of the
longest secondary array. For our applications we also need to be able to determine
the length of a secondary array. Since a secondary array has length at most t,
we need ⌊log t⌋ + 1 bits to represent the length. By packing the length of each
secondary array as in Lemma 1, we get a total space usage of O(stb+s log t+w) =
O(stb + w) bits of space, and lookups can still be performed in O(1) time. We
summarize this in a lemma.

Lemma 2. Let X be an array of s secondary arrays, where each secondary
array X[i] contains up to t elements, and each entry X[i][j] in a secondary
array X[i] takes up b ≤ w bits. We can store this using O(stb + w) bits of space
and access an entry or length of a secondary array in O(1) time.

Complete binary trees: Throughout this paper T will denote a complete binary
tree with n leaves where n is a power of two. We number the nodes as in binary
heaps: the root has index 1, and an internal node with index x has left child 2x,
right child 2x + 1 and parent ⌊x/2⌋. Below, we identify a node by its number.

We let Tu denote the subtree of T rooted at node u, and h(Tu) the height of
the subtree Tu, with heights of leaves defined to be 0. The height of a node h(u)
is defined to be h(Tu), and level ℓ of T is defined to be the set of nodes with
height ℓ. The height h(u) of a node u can be found in O(1) time as h(T )− d(u),
where d(u) is the depth of node u. The depth d(u) of a node u can be found by
computing the index of the most significant bit set in u (the root has depth 0).
This can be done in O(1) time and space using multiplications [3], or in O(1)
time and O(n) space without multiplications, by using a lookup table mapping
every integer from 0 . . . 2n − 1 to the index of its most significant bit set.

To navigate efficiently in T , we explain a few additional operations that can
be performed in O(1) time. First we define anc(u, ℓ) as the ℓ’th ancestor of the
node u, where anc(u, 0) = u and anc(u, ℓ) = parent(anc(u, ℓ − 1)). Note that
anc(u, ℓ) can be computed in O(1) time by right shifting u ℓ times. Finally, we
note that we can find the leftmost leaf in a subtree Tu in O(1) time by left
shifting u h(u) times. Similarly we can find the rightmost leaf in a subtree Tu in
O(1) time by left shifting u h(u) times, and setting the bits shifted to 1 using
bitwise OR.
LCA queries in complete binary trees: An important component in our con-
struction is finding the lowest common ancestor (LCA) of two nodes at the same
depth in a complete binary tree in O(1) time. This is just anc(u, ℓ) where ℓ is
the index of the most significant bit set in the word u XOR v.
Selection in sorted arrays: The following theorem due to Frederickson and John-
son [4] is essential to our construction in Section 3.4.



Theorem 1. Given m sorted arrays, we can find the overall k smallest elements
in time O(m + k).

Proof. By Theorem 1 in [4] with p = min(m, k) we can find the k’th smallest
element in time O(m + p log(k/p)) = O(m + k) time. When we have the k’th
smallest element x, we can go through each of the m sorted arrays and select
elements that are ≤ x until we have collected k elements or exhausted all lists.
This takes time O(m + k). ⊓⊔

2 Sorted range reporting

In this section, we give a simple solution to the sorted range reporting problem
with query time O(j − i + 1). The solution introduces the concept of local rank
labellings of elements, and shows how to combine this with radix sorting to
answer sorted range reporting queries. These two basic techniques will be used
in a similar way in the solution of the more general sorted range selection problem
in Section 3.

We construct local rank labellings for each r in 0 . . . ⌈log log n⌉ as follows
(the rank of an element x in a set X is defined as |{y ∈ X | y < x}|). For each
r, the input array is divided into ⌈n/22r

⌉ consecutive subarrays each of size 22r

(except possibly the last subarray), and for each element A[x] the r’th local rank
labelling is defined as its rank in the subarray A[⌊x/22r

⌋22r

..(⌊x/22r

⌋+1)22r

−1].
Thus, the r’th local rank for an element A[x] consists of 2r bits. Using Lemma 1
we can store all local rank labels of length 2r using space O(n2r +w) bits. For all
⌈log log n⌉ local rank labellings, the total number of bits used is O(w log log n +
n log n) = O(nw) bits. All local rank labellings can be built in O(n log n) time
while performing mergesort on A. The r’th structure is built by writing out the
sorted lists, when we reach level 2r. Given a query for k = j − i+1 elements, we
find the r for which 22r−1

< k ≤ 22r

. Since each subarray in the r’th local rank
labelling contains 22r

elements, we know that i and j are either in the same or in
two consecutive subarrays. If i and j are in consecutive subarrays, we compute
the start index of the subarray where the index j belongs, i.e. x = ⌊j/22r

⌋22r

.
We then radix sort the elements in A[i..x−1] using the local rank labels of length
2r. This can be done in O(k) time using two passes by dividing the 2r bits into

two parts of 2r−1 bits each, since 22r−1

< k. Similarly we radix sort the elements
from A[x..j] using the labels of length 2r in O(k) time. Finally, we merge these
two sorted sequences in O(k) time, and return the k smallest elements. If i and
j are in the same subarray, we just radix sort A[i..j].

3 Sorted range selection

Before presenting our solution to the sorted range selection problem we note
that if we do not require the output of a query to be sorted, it is possible to get
a conceptually simple solution with O(k) query time using O(n) preprocessing
time and space. First build a data structure to support range minimum queries



in O(1) time using O(n) preprocessing time and space [2]. Given a query on
A[i..j] with parameter k, we lazily build the Cartesian tree [5] for the subarray
A[i..j] using range minimum queries. The Cartesian tree is defined recursively by
choosing the root to be the minimum element in A[i..j], say A[x], and recursively
constructing its left subtree using A[i..x−1] and its right subtree using A[x+1..j].
By observing that the Cartesian tree is a heap-ordered binary tree storing the
elements of A[i..j], we can use the heap selection algorithm of Frederickson [6]
to select the k smallest elements in O(k) time. Thus, we can find the k smallest
elements in A[i..j] in unsorted order in O(k) time.

In the remainder of this section, we present our data structure for the sorted
range selection problem. The data structure supports queries in O(k) time,
uses O(n) words of space and can be constructed in O(n log n) time. When
answering a query we choose to have our algorithm return the indices of the
elements of the output, and not the actual elements. Our solution consists of
two separate data structures for the cases where k ≤

⌊
log n/(2 log log n)2

⌋
and

k >
⌊
log n/(2 log log n)2

⌋
. The data structures are described in Sections 3.3 and

3.4 respectively. In Sections 3.1 and 3.2, we present simple techniques used by
both data structures. In Section 3.1, we show how to decompose sorted range
selection queries into a constant number of smaller ranges, and in Section 3.2 we
show how to answer a subset of the queries from the decomposition by precom-
puting the answers. In Section 3.5, we describe how to build our data structures.

3.1 Decomposition of queries

For both data structures described in Sections 3.3 and 3.4, we consider a complete
binary tree T with the leaves storing the input array A. We assume without loss
of generality that the size n of A is a power of two. Given an index i for 0 ≤ i < n
into A we denote the corresponding leaf in T as leaf[i] = n + i. For a node x
in T , we define the canonical subset Cx as the leaves in Tx. For a query range
A[i..j], we let u = leaf[i], v = leaf[j], and w = LCA(u, v). On the two paths from
the two leaves to their LCA w we get at most 2 log n disjoint canonical subsets,
whose union represents all elements in A[i..j], see Figure 1(a).

For a node x we define the sets R(x, ℓ) (and L(x, ℓ)) as the union of the
canonical subsets of nodes rooted at the right (left for L) children of the nodes on
the path from x to the ancestor of x at level ℓ, but excluding the canonical subsets
of nodes that are on this path, see Figure 1(a). Using the definition of the sets
R and L, we see that the set of leaves strictly between leaves u and v is equal to
R(u, h(w)−1)∪L(v, h(w)−1). In particular, we will decompose queries as shown
in Figure 1(b). Assume L is a fixed level in T , and that the LCA w is at a level
> L. Define the ancestors u′ = anc(u,L) and v′ = anc(v, L) of u and v at level L.
We observe that the query range, i.e. the set of leaves strictly between leaves u
and v can be represented as R(u,L)∪R(u′, h(w)−1)∪L(v′, h(w)−1)∪L(v, L).
In the case that the LCA w is below or at level L, the set of leaves strictly
between u and v is equal to R(u, h(w) − 1) ∪ L(v, h(w) − 1).

Hence to answer a sorted range selection query on k elements, we need only
find the k smallest elements in sorted order of each of these at most four sets,
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(a) The shaded parts and the leaves
u and v cover the query range.
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(b) Decomposition of a query range into four
smaller ranges by cutting the tree at level L.

Fig. 1. Query decomposition.

and then select the k overall smallest elements in sorted order (including the
leaves u and v). Assuming we have a sorted list over the k smallest elements for
each set, this can be done in O(k) time by merging the sorted lists (including
u and v), and extracting the k smallest of the merged list. Thus, assuming we
have a procedure for finding the k smallest elements in each set in O(k) time,
we obtain a general procedure for sorted range queries in O(k) time.

The above decomposition motivates the definition of bottom and top queries
relative to a fixed level L. A bottom query on k elements is the computation
of the k smallest elements in sorted order in R(x, ℓ) (or L(x, ℓ)) where x is a
leaf and ℓ ≤ L. A top query on k elements is the computation of the k smallest
elements in sorted order in R(x, ℓ) (or L(x, ℓ)) where x is a node at level L.
From now on we only state the level L where we cut T , and then discuss how
to answer bottom and top queries in O(k) time, i.e. implicitly assuming that we
use the procedure described in this section to decompose the original query, and
obtain the final result from the answers to the smaller queries.

3.2 Precomputing answers to queries

We now describe a simple solution that can be used to answer a subset of possible
queries, where a query is the computation of the k smallest elements in sorted
order of R(x, ℓ) or L(x, ℓ) for some node x and a level ℓ, where ℓ ≥ h(x). The
solution works by precomputing answers to queries. We apply this solution later
on to solve some of the cases that we split a sorted range selection query into.

Let x be a fixed node, and let y and K be fixed integer thresholds. We now
describe how to support queries for the k smallest elements in sorted order of
R(x, ℓ) (or L(x, ℓ)) where h(x) ≤ ℓ ≤ y and k ≤ K. We precompute the answer
to all queries that satisfy the constraints set forth by K and y by storing two
arrays Rx and Lx for the node x. In Rx[ℓ], we store the indices of the K smallest
leaves in sorted order of R(x, ℓ). The array Lx is defined symmetrically. We
summarize this solution in a lemma, where we also discuss the space usage and
how to represent indices of leaves.



Lemma 3. For a fixed node x and fixed parameters y and K, where y ≥ h(x), we
can store Rx and Lx using O(Ky2 + w) bits of space. Queries for the k smallest
elements in sorted order in R(x, ℓ) (or L(x, ℓ)) can be supported in time O(k)
provided k ≤ K and h(x) ≤ ℓ ≤ y.

Proof. By storing indices relative to the index of the rightmost leaf in Tx, we
only need to store y bits per element in Rx and Lx. We can store the two arrays
Rx and Lx with a space usage of O(Ky2+w) bits using Lemma 2. When reading
an entry, we can add the index of the rightmost leaf in Tx in O(1) time. The k
smallest elements in R(x, ℓ) can be reported by returning the k first entries in
Rx[ℓ] (and similarly for Lx[ℓ]). ⊓⊔

3.3 Solution for k ≤
⌊
log n/(2 log log n)2

⌋

In this section, we show how to answer queries for k ≤
⌊
log n/(2 log log n)2

⌋
.

Having discussed how to decompose a query into bottom and top queries in
Section 3.1, and how to answer queries by storing precomputed answers in Sec-
tion 3.2, this case is now simple to explain.

Theorem 2. For k ≤
⌊
log n/(2 log log n)2

⌋
, we can answer sorted range selec-

tion queries in O(k) time using O(n) words of space.

Proof. We cut T at level 2⌊log log n⌋. A bottom query is solved using the con-
struction in Lemma 3 with K =

⌊
log n/(2 log log n)2

⌋
and y = 2⌊log log n⌋. The

choice of parameters is justified by the fact that we cut T at level 2⌊log log n⌋,
and by assumption k ≤

⌊
log n/(2 log log n)2

⌋
. As a bottom query can be on

any of the n leaves, we must store arrays Lx and Rx for each leaf as de-
scribed in Lemma 3. All Rx structures are stored in one single array which
is indexed by a leaf x. Using Lemma 3 the space usage for all Rx becomes
O(n(w +

⌊
log n/(2 log log n)2

⌋
(2⌊log log n⌋)2) = O(n(w + log n)) = O(nw) bits

(and similarly for Lx). For the top query, we for all nodes x at level 2⌊log log n⌋
use the same construction with K =

⌊
log n/(2 log log n)2

⌋
and y = log n. As we

only have n/22⌊log log n⌋ = Θ(n/(log n)2) nodes at level 2⌊log log n⌋, the space us-
age becomes O( n

(log n)2 (w +
⌊
log n/(2 log log n)2

⌋
(log n)2)) = O(n(w + log n)) =

O(nw) bits (as before we store all the Rx structures in one single array, which is
indexed by a node x, and similarly for Lx). For both query types the O(k) time
bound follows from Lemma 3. ⊓⊔

3.4 Solution for k >
⌊
log n/(2 log log n)2

⌋

In this case, we build O(log log n) different structures each handling some range
of the query parameter k. The r’th structure is used to answer queries for
22r

< k ≤ 22r+1

. Note that no structure is required for r satisfying 22r+1

≤
⌊
log n/(2 log log n)2

⌋
since this is handled by the case k ≤

⌊
log n/(2 log log n)2

⌋
.

The r’th structure uses O(w + n(2r + w/2r)) bits of space, and supports

sorted range selection queries in O(22r

+ k) time for k ≤ 22r+1

. The total space



usage of the O(log log n) structures becomes O(w log log n + n log n + nw) bits,
i.e. O(n) words, since r ≤ ⌈log log n⌉. Given a sorted range selection query, we
find the right structure. This can be done in done in o(k) time. Finally, we query
the r’th structure in O(22r

+ k) = O(k) time, since 22r

≤ k.
In the r’th structure, we cut T at level 2r and again at level 7 · 2r. By

generalizing the idea of decomposing queries as explained in Section 3.1, we
split the original sorted range selection query into three types of queries, namely
bottom, middle and top queries. We define u′ as the ancestor of u at level 2r

and u′′ as the ancestor of u at level 7 · 2r. We define v′ and v′′ in the same way
for v. When the level of w = LCA(u, v) is at a level > 7 · 2r, we see that the
query range (i.e. all the leaves strictly between the leaves u and v) is equal to
R(u, 2r)∪R(u′, 7 ·2r)∪R(u′′, h(w)−1)∪L(v′′, h(w)−1)∪L(v′, 7 ·2r)∪L(v, 2r).
In the case that w is below or at level 7 · 2r, we can use the decomposition as in
Section 3.1. In the following we focus on describing how to support each type of
query in O(22r

+ k) time.
Bottom query: A bottom query is a query on a leaf u for R(u, ℓ) (or L(u, ℓ))
where ℓ ≤ 2r. For all nodes x at level 2r, we store an array Sx containing the
canonical subset Cx in sorted order. Using Lemma 1 we can store the Sx arrays
for all x using O(n2r + w) bits as each leaf can be indexed with 2r bits (relative
to the leftmost leaf in Tx). Now, to answer a bottom query we make a linear pass
through the array Sanc(u,2r) discarding elements that are not within the query
range. We stop once we have k elements, or we have no more elements left in
the array. This takes O(22r

+ k) time.
Top query: A top query is a query on a node x at level 7 · 2r for R(x, ℓ) (or
L(x, ℓ)) where 7 · 2r < ℓ ≤ log n. We use the construction in Lemma 3 with

K = 22r+1

and y = log n. We have n/(27·2r

) nodes at level 7 · 2r, so to store all
structures at this level the total number of bits of space used is

O
( n

27·2r
(w + 22r+1

(log n)2)
)

= O
(

n
w

2r
+

n

25·2r
(log n)2

)

= O

(

n
w

2r
+

n
⌊
log n/(2 log log n)2

⌋5/2
(log n)2

)

= O
(

n
w

2r

)

,

where we used that
⌊
log n/(2 log log n)2

⌋
< k ≤ 22r+1

. By Lemma 3 a top query
takes O(k) time.
Middle query: A middle query is a query on a node z at level 2r for R(z, ℓ) (or
L(z, ℓ)) with 2r < ℓ ≤ 7 · 2r. For all nodes x at level 2r, let minx = min Cx. The
idea in answering middle queries is as follows. Suppose we could find the nodes
at level 2r corresponding to the up to k smallest minx values within the query
range. To answer a middle query, we would only need to extract the k overall
smallest elements from the up to k corresponding sorted Sx arrays of the nodes,
we just found. The insight is that both subproblems mentioned can be solved
using Theorem 1 as the key part. Once we have the k smallest elements in the
middle query range, all that remains is to sort them.

We describe a solution in line with the above idea. For each node x at levels
2r to 7 · 2r, we have a sorted array Mr

x of all nodes x′ at level 2r in Tx sorted



with respect to the minx′ values. To store the Mr
x arrays for all x, the space

required is O( n
22r · 6 · 2r) = O( n

2r ) words (i.e. O(n w
2r bits), since we have n

22r

nodes at level 2r, and each such node will appear 7 · 2r − 2r = 6 · 2r times in an
Mr

x array (and to store the index of a node we use a word).
To answer a middle query for the k smallest elements in R(z, ℓ), we walk

ℓ − 2r levels up from z while collecting the Mr
x arrays for the nodes x whose

canonical subset is a part of the query range (at most 6·2r arrays since we collect
at most one per level). Using Theorem 1 we select the k smallest elements from
the O(2r) sorted arrays in O(2r + k) = O(k) time (note that there may not
be k elements to select, so in reality we select up to k elements). This gives
us the k smallest minx′ values of the nodes x′

1, x
′
2, . . . , x

′
k at level 2r that are

within the query range. Finally, we select the k overall smallest elements of the
sorted arrays Sx′

1
, Sx′

2
, . . . , Sx′

k
in O(k) time using Theorem 1. This gives us the

k smallest elements of R(z, ℓ), but not in sorted order. We now show how to sort
these elements in O(k) time. For every leaf u, we store its local rank relative
to Cu′′ , where u′′ is the the ancestor of u at level 7 · 2r. Since each subtree Tu′′

contains 27·2r

leaves, we need 7 · 2r bits to index a leaf (relative to the leftmost
leaf in Tu′′). We store all local rank labels of length 7 · 2r in a single array, and
using Lemma 1 the space usage becomes O(n2r + w) bits. Given O(k) leaves
from Cx for a node x at level 7 · 2r, we can use the local rank labellings of the
leaves of length 7 · 2r bits to radix sort them in O(k) time (for the analysis we
use that 22r

< k). This completes how to support queries.

3.5 Construction

In this section, we show how to build the data structures in Sections 3.3 and 3.4
in O(n log n) time using O(n) extra words of space. The structures to be created
for node x are a subset of the possible structures Sx, Mr

x, Rx[ℓ], Lx[ℓ] (where
ℓ is a level above x), and the local rank labellings. In total, the structures to
be created store O(n log n

log log n ) elements which is dominated by the number of
elements stored in the Rx and Lx structures for all leaves in Section 3.3. The
general idea in the construction is to perform mergesort bottom up on T (level-
by-level) starting at the leaves. The time spent on mergesort is O(n log n), and
we use O(n) words of space for the mergesort as we only store the sorted lists
for the current and previous level. Note that when visiting a node x during
mergesort the set Cx has been sorted, i.e. we have computed the array Sx. The
structures Sx and Mr

x will be constructed while visiting x during the traversal
of T , while Rx[ℓ] and Lx[ℓ] will be constructed at the ancestor of x at level ℓ. As
soon as a set has been computed, we store it in the data structure, possibly in a
packed manner. For the structures in Section 3.3, when visiting a node x at level
ℓ ≤ 2⌊log log n⌋ we compute for each leaf z in the right subtree of x the structure
Rz[ℓ] = Rz[ℓ − 1] (where Rz[0] = ∅), and the structure Lz[ℓ] containing the (up
to)
⌊
log n/(2 log log n)2

⌋
smallest elements in sorted order of Lz[ℓ−1]∪S2x. Both

structures can be computed in time O(
⌊
log n/(2 log log n)2

⌋
). Symmetrically, we

compute the same structures for all leaves z in the left subtree of x. In the case
that x is at level ℓ > 2⌊log log n⌋, we compute for each node z at level 2⌊log log n⌋



in the right subtree of x the structure Rz[ℓ] = Rz[ℓ−1] (where Rz[2⌊log log n⌋] =
∅), and the structure Lz[ℓ] containing the

⌊
log n/(2 log log n)2

⌋
smallest elements

in sorted order of Lz[ℓ − 1] ∪ S2x. Both structures can be computed in time
O(
⌊
log n/(2 log log n)2

⌋
). Symmetrically, we compute the same structures for

all nodes z at level 2⌊log log n⌋ in the left subtree of x. For the structures in
Section 3.4, when visiting a node x we first decide in O(log log n) time if we need
to compute any structures at x for any r. In the case that x is a node at level
2r, we store Sx = Cx and Mr

x = min Cx. For x at level 2r < ℓ ≤ 7 · 2r we store
Mr

x = Mr
2x ∪Mr

2x+1. This can be computed in time linear in the size of Mr
x.

In the case that x is a node at level 7 · 2r, we store the local rank labelling for
each leaf in Tx using the sorted Cx list. For x at level ℓ > 7 · 2r, we compute
for each z at level 7 · 2r in the right subtree of x the structure Rz[ℓ] = Rz[ℓ− 1]

(where Rz[7 · 2r] = ∅), and the structure Lz[ℓ] containing the 22r+1

smallest
elements in sorted order of Lz[ℓ− 1] ∪ S2x. Both structures can be computed in

time O(22r+1

). Symmetrically, we compute the same structures for all nodes z at
level 7 · 2r in the left subtree of x. Since all structures can be computed in time
linear in the size and that we have O(n log n

log log n ) elements in total, the overall

construction time becomes O(n log n).

4 Online sorted range reporting

We now describe how to extend the solution for the sorted range selection prob-
lem from Section 3 to a solution for the online sorted range reporting problem.
We solve the problem by performing a sequence of sorted range selection queries
Qy with indices i and j and k = 2y for y = 0, 1, 2, . . .. The initial query to the
range A[i..j] is Q0. Each time we report an element from the current query Qy,
we spend O(1) time building part of the next query Qy+1 so that when we have
exhausted Qy, we will have finished building Qy+1. Since we report the 2y−1

largest elements in Qy (the 2y−1 smallest are reported for Q0, Q1, . . . , Qy−1), we
can distribute the O(2y+1) computation time of Qy+1 over the 2y−1 reportings
from Qy. Hence the query time becomes O(1) worst-case per element reported.
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