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ABSTRACT Mulch film is usually mixed in with cotton during machine-harvesting and processing, which

reduces the cotton quality. This paper presents a novel sorting algorithm for the online detection of film on

cotton using hyperspectral imaging with a spectral region of 1000 - 2500 nm. The sorting algorithm consists

of a group of stacked autoencoders, two optimization modules and an extreme learning machine (ELM)

classifier. The variable-weighted stacked autoencoders (VW-SAE) are constructed to extract the features

from hyperspectral images, and an artificial neural network (ANN), which is one optimization module,

is applied to optimize the parameters of the VW-SAE. Then, the extracted features are input in the ELM

to classify four types of objects: background, film on background, cotton and film on cotton. The ELM is

optimized by a new optimizer (grey wolf optimizer), which can adjust the hidden nodes and parameters

of the ELM simultaneously. A group of experiments was carried out to evaluate the performance of the

proposed sorting algorithm using cotton that was provided by a Xinjiang municipality cotton ginning

company. The experimental results show that the VW-SAE can improve the classification accuracies by

approximately 15 %. The overall recognition rate of the proposed algorithm is over 95 %, and its recognition

time is comparable to some state-of-the-art methods.

INDEX TERMS Cotton, sorting system, plastic film, deep learning, hyperspectral imaging, grey wolf

optimizer, variable-wise weighted stacked autoencoder.

I. INTRODUCTION

Cotton is one of the most important crops in the world.

As the main cotton-producing province in China, Xinjiang

has widely applied mulch film covering technology to retain

the soil moisture, to maintain the soil structure and to prevent

pests [1]. However, mulch film is oftenmixedwith cotton dur-

ing the machine-harvesting and machine-processing steps,

which results in reduced cotton quality. Some techniques

have been developed for detecting foreign matter in cotton,

such as electrostatic separation, ultrasonic detection and com-

puter vision detection [2], [3]. Electrostatic separation is a

rudimentary method that utilizes the charge characteristics

to distinguish the film from cotton. However, it is affected

by many uncertainties, such as voltage, and it results in

The associate editor coordinating the review of this manuscript and

approving it for publication was Mu-Yen Chen .

poor stability and sensitivity, which limit its applications.

Ultrasonic sensors identify plastic film according to different

densities between plastic film and cotton. However, the rela-

tively low speed for ultrasonic transmission has resulted in

a slow identification process [4]. With the development of

computer technologies, computer vision techniques with the

advantages of low costs, fast speed and consistency have been

widely used in foreign matter detection [5]–[11]. Existing

computer vision techniques depend on the color differences to

distinguish foreign matter and cotton. However, it is difficult

to detect foreign matters such as plastic film, which has good

photopermeability.

Hyperspectral imaging is an emerging technology that inte-

grates spectroscopy and imaging to obtain both the spectral

and spatial information from objects simultaneously [12].

It can detect the chemical compositions and structural fea-

tures in the spatial domain simultaneously. Hyperspectral
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imaging has been applied in agricultural and food inspection

since 1990s, but few studies have reported on cotton quality

assessments using hyperspectral imaging. Guo [13], [14]

reported that hyperspectral imaging in reflectance mode

over the spectral range of 400-1000 nm was capable of

detecting white and transparent polypropylene fiber, black

human hair, and black and transparent PE mulching film

from cotton with overall recognition accuracies of 73.2 %

and 75.3 % for the training and testing sets, respectively.

Moreover, most of other studies employed a hyperspectral

imaging system covering a wavelength range longer than

1,000 nm. The Fortier Channel [15] applied Fourier trans-

form near-infrared (FT-NIR) spectroscopy with a wavelength

range of 1,100 – 2,400 nm to distinguish the individual types

of cotton trash with a 97 % overall prediction accuracy for

trash components. However, it is an offline algorithm that

focuses on cotton trash samples (hulls, leaves, seed coats,

and stems). On the other hand, this method indicates that

extending the detection wavelengths beyond 1,000 nm is

necessary in order to obtain more useful sample information

that is difficult to distinguish from similar color matters.

Currently, multivariate statistical methods and machine

learning methods, such as the partial least squares regres-

sion (PLSR) [16], the multiple linear regression (MLR) [17],

the support vector machine (SVM) [18] and the artificial

neural network (ANN) [19], are frequently used to improve

hyperspectral signal classification results. While the PLSR

and MLR conduct linear analysis between spectra and sam-

ples, they are not suitable for parsing complicated mapping

relationships, such as the nonlinearity between spectra and

samples. Although the SVM could establish nonlinear rela-

tionship for samples and spectra, its results depend on kernel

functions. The ANN was developed to extract the nonlinear

and complex features of samples. However, this method is

generally considered a shallow learning approach with a

model structure with one hidden layer [19]. Deep learning has

been developed to improve the conventional ANN [20]–[22].

It can more greatly learn the hierarchical feature represen-

tations and extract the input information layer by layer to

represent different levels of nonlinearities [23]–[25].

In this research, a hyperspectral imaging technique cou-

pled with deep learning was used to classify the film from

seed cotton. The proposed algorithm integrates an improved

weighted stacked autoencoder, the grey wolf optimizer and an

extreme learning machine (ELM) to build the classification

models for recognizing the seed cotton and film. Different

from the classic autoencoder architecture, in the weighted

stacked autoencoder, the self-encoded features wereweighted

based on their corresponding correlation with the network

output [20]. Next, the advanced features from the weighted

stacked autoencoder are used as the input for the ELM.

ELM is a single-hidden layer feedforward ANN. Instead of

using gradient descent algorithm, ELM utilizes the concept

of random mapping and Moore–Penrose generalized inverse

to optimize the network weight values. The establishedmodel

can ensure not only the smallest training error but also better

generalization ability compared to the conventional gradient

descent optimization algorithm. The corresponding training

time of ELM is dramatically decreased [26]. However, as an

ANN network, the number of hidden neurons of ELM and its

first layer parameters from randommapping indeed affect the

regression performance of the ELMmodel [27]. To select the

best combination of these parameters, the greywolf algorithm

is applied into our application which shows better ANN

optimization results compared to other classic metaheuristics

in previous studies [28], [29].

Specifically, the integrated model is used as the final clas-

sifier to identify the film and cotton. Therefore, the specific

objectives of current research include the following:

•Develop a sortingmachine for the online detection of film

from seed cotton based on hyperspectral imaging system and

deep learning;

• Develop a fuzzy factor to adjust the weights based on

the correlation coefficient of the inputs (original signal) and

the outputs of the stacked autoencoder to extract the more

representative features; and

•Use the grey wolf optimizer for the first time to determine

the neurons and weights of the extreme learning machine to

achieve higher classification accuracy.

FIGURE 1. Schematic of hyperspectral imaging and sorting system.

II. MATERIALS AND METHODS

A. MATERIALS AND DATA COLLECTION

A Xinjiang municipality cotton ginning company provided

approximately 10 kg of seed cotton that was mechanically

harvested from the south of the Xinjiang municipality, China.

Trained workers from the company picked out the film from

the unginned cotton. At last, 49 pieces of various sized films

were singled out. The mixture of films and seed cottons was

fed into our sorting machine/system, and they were used to

construct the experimental and testing datasets in this paper.

The schematic of our machine is shown in Figure 1. The

seed cotton is loaded from the top inlet of the feeding room.

To improve the efficiency and accuracy of plastic film sorting,

there are two kinds of rollers that are designed for seed cotton.

The main function of the top rollers is load bearing and cotton

feeding, and the shaft diameter is larger in order to achieve

higher strength and stiffness. During feeding, the rotation

speed is approximately 3-6 r/min with a slow but stable

conveyance. The aim of the bottom rollers is to disperse the
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FIGURE 2. Structural chart of sorting algorithm for detecting plastic film from cotton.

clusters of entangled cotton, and their rotation speed is set

as 200 r/min to achieve a better cleaning effect. Because

the teeth of the adjacent winding rollers interact with the

same ones of the top feeding rollers, the cotton is conveyed

layer by layer. The teeth on the winding rollers can pull seed

cotton from the top feeding rollers once the fiber is hooked

during high-speed rotation. Because of the centrifugal force,

the winding rollers will project cotton onto the black-rubber

conveyor belt. In the same way, some mixed films and cotton

are scattered by the impact of the teeth. Then, the seed cotton

is separated and transported on the black-rubber conveyor

belt. The width of the belt is approximately 2 m, and the

material of the belt is black rubber to minimize the back-

ground reflected light. A servo-motor drives the conveyor belt

at 2 m/s, and the encoder produces the speed pulse.

The hyperspectral imaging system is placed on the belt.

The high-speed hyperspectral camera (Spectral Camera

SWIR, SPECIM Spectral Imaging Ltd., Finland) was used

to acquire the hyperspectral images. The spatial pixels of

the camera number 384, and the spectral range is 1000 to

2500 nm with 288 spectral bands. A 15-mm lens that was

designed for optimized performance from 900 to 2500 nm

was utilized to achieve about a 5.2-nm pixel resolution,

and the camera’s field-of-view was approximately 2 m. The

external illumination was equipped with two lines of dome

halogen lamps to light the scene, and the dome halogen

lamps can realize omnidirectional lighting to overcome the

darker areas that may result in occlusion. Before practical

use, a white reference plate was put on the belt to adjust the

white balance and to fix the brightness value. The acquisition

board on the computer was connected to the camera using

a Camera Link cable. The board receives the encoder pulses

and sends a trigger signal to synchronize the frame rate of the

camera with the speed of the belt. Normally, the frame rate is

approximately 390 fps with 2 m/s as the belt speed.

The sorting system is located in the front of the belt. The

high-speed valves with nozzles are arranged in a line, which

are exactly aligned with the belt. There are 48 nozzles, and

the width of each nozzle is approximately 41.6 mm. Under

normal conditions, the seed cotton can fly through the inlet

of the trash removal box into the storage box due to the effect

of inertia. In contrast, the separated films will be absorbed

into the trash removal box due to the combined action of big

air friction and small inertia. Once the computer recognizes

the films on the belt, it will count the number of pulses

of the encoder for synchronization. When the films are under

the valves, the computer will give a trigger signal to the

corresponding valves to eject the films, and the films will

be sucked in the trash removal box for vacuum aspiration.

The online recognition algorithm is performed on an Nvidia

GTX1060 GPU with 6 GB of DRAM.

B. SORTING ALGORITHM FOR FILM AND COTTON

The process of the proposed sorting algorithm is shown

in Figure 2, and it includes threemain parts: 1) the features are

extracted by the variable-wise weighted stacked autoencoder,

2) detection by the extreme learning machine with the grey

wolf optimizer, and 3) postprocessing.

1) VARIABLE-WISE WEIGHTED AUTOENCODER

The basic structure of an autoencoder is an unsupervised

neural network with one hidden layer, and it consists of an

input layer, a hidden layer and an output layer. The goal of

the autoencoder is to reconstruct the original input (xi) as
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accurately as possible in the output layer (x̃i). Here, we stack

a group of antoencoders to construct a deep network [30]

to reconstitute the inputs in order to extract the appropriate

spectral features (Y) from hyperspectral images. However,

in the spectrum analysis domain, it is well known that not

all wavelength variables have the same importance for the

output in the NIR spectra [31]. Some wavelength variables

even have a negative influence on the regression result [32].

Wavelength selection can, to some degree, eliminate the nega-

tive influence from these wavelengths, but there still are some

disadvantages. First, wavelength ranges with comparatively

high noise might carry useful relevant information for predic-

tion, and simply removing such wavelengths would spoil the

multichannel advantage of the model to some extent. Second,

some wavelength combinations might represent some data

information, and the selection of an individual wavelength

might cause the loss of useful information. Therefore, some

research developed variable-wise weighted methods to assign

continuous nonnegative values to wavelengths rather than

directly eliminating unimportant wavelengths [33]. Thus,

the method promises to preserve the useful information that is

hidden among the noise, to retain the multichannel advantage

and to reduce the influence of the negative features with small

positive or zero weights.

In this paper, a variable-wise weighted stacked autoen-

coder [20] is adopted to extract the high-level features and

to reduce the dimensions of the data. To extract the more

representative features, a fuzzy factor, which is different from

that in [20], is used to adjust the weights based on the cor-

relation coefficient of the inputs (original signal, xi(j)) and

outputs (reconstructed signal, x̃i(j)) of the weighted stacked

autoencoder, which is named the VW-AE. Therefore, the

target (loss function, Jλ) of the VW-AE can be expressed as

follows:

Jλ(A, Ã, b, b̃) =
1

2N

∑N

i=1

∑d

j=1
λj(xi(j)−x̃i(j))

2 (1)

where Ã is a d × dh weight matrix, b̃ is the bias vector for the

output layer, and λ(j) is the weight of the j-th variable. λ(j) is

set as follows:

λ(j) =
f (

∣

∣CC(j)

∣

∣) ×
∣

∣CC(j)

∣

∣

|CC|max
(2)

where f (
∣

∣CC(j)

∣

∣) is a unipolar sigmoid function of
∣

∣CC(j)

∣

∣,

which is assigned a fuzzy weight to adjust the scale of
∣

∣CC(j)

∣

∣.
∣

∣CC(j)

∣

∣ is the correlation coefficient of the j-th vari-

able, and it is calculated as follows:

|CC(j)| =

N
∑

i=1

(xi(j) − x̄j)(yi − ȳ)

/

√

√

√

√

N
∑

i=1

(xi(j) − x̄j)2
n

∑

i=1

(yi − ȳ)2

|CC|min = Min{|CC(j)|} j = 1, 2, . . . , d

|CC|max = Max{|CC(j)|} j = 1, 2, . . . , d (3)

where x̄j and ȳ are the means of the j-th variable and the

output, respectively, and Y= [y1, y2, · · ·yN ]
′ is the output that

is connected with the input X.

In equation (2), the variables that are highly related to the

output are given large weights, and the fuzzy weight assigns

the large
∣

∣CC(j)

∣

∣ a corresponding larger weight and the small
∣

∣CC(j)

∣

∣ a much smaller weight, which is different from the

normalization in [20]. By training the VW-AE, the recon-

struction should be more accurate for the output-relevant

variables, and the hidden features are more relevant to the

output.

2) EXTREME LEARNING MACHINE OPTIMIZED

BY THE GREY WOLF OPTIMIZER

Compared with traditional classification algorithms, an ELM

has the advantages of a strong generalization ability and fast

learning speed [34]. Some scholars have applied ELMs to

hyperspectral image classification and achieved better per-

formance than other classification algorithms [35]. An ELM

usually uses a single-layer feedforward network. Its basic

structure includes an input layer, a hidden layer and an output

layer, as shown in Figure 3.

FIGURE 3. Structure of an ELM.

A single hidden layer neural network can be expressed as

follows:
∑L

i=1
βig

(

Wi · Xj + bi
)

= oj, j = 1, 2, . . . ,N (4)

where Xi = [xi1, xi2, . . . , xin]
T is the input for ELM, which

is the extracted features from VW-SAE in our experiments, L

is the number of hidden nodes, N is the number of training

samples, Wi = [wi1,wi2, . . . ,win]
T is the weights of the

inputs, βi is the weight of the outputs, bi is the bias of the

i-th hidden node, g(x) is an activation function, and oi is the

output of the ELM. In the experiment, the range ofWi is [−1,

1], and the range of bi is [0, 1]. The learning process achieves

the lowest errors between the true values (or targets) ti and

outputs oi, which is expressed as follows:

∑N

j=1
||oj − tj|| = 0 (5)

In other words, it finds the parameters, including βi,

Wi and bi, that make equation (5) tenable.

∑L

i=1
βig

(

Wi · Xj + bi
)

= tj, j = 1, 2, . . . ,N (6)
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Assuming H is the output of the hidden nodes, and β is the

weight of the outputs, equation (6) can also be expressed as

follows:

Hβ = T (7)

where T is the expected output.

H (W1, . . . ,WL , b1, . . . , bL ,X1, . . . ,XN )

=







g(W1.X1 + b1) · · · g(WL .X1 + bL)
...

. . .
...

g(W1.XN + b1) · · · g(WL .XN + bL)







N×L

(8)

β

=







βT1
...

βTL







L×m

(9)

T

=







T T1
...

T TN







N×m

(10)

Once the input weights Wi and bias bi of the ELM are deter-

mined, the output matrix of the hidden nodes H is definite.

In this way, the ELM model with one hidden layer can be

transformed into a linear system Hβ = T , and the weights of

outputs β can be calculated as follows:

β̂ = H+T (11)

whereH+ is the generalized inverse of matrixH , and T is the

expected output.

FIGURE 4. Flow chart of GWO optimization process.

Since both the number of hidden nodes and weights impact

the entire performance of an ELM with one hidden layer,

the grey wolf optimizer (GWO) is used to simultaneously

optimize the number of hidden nodes and weights of the ELM

in order to achieve higher classification accuracy. The overall

workflow of GWO optimization process is shown in Figure 4.

There are two main steps of the GWO: 1) encircling prey

and 2) hunting by imitating the grey wolf in nature. When

encircling prey, the first three attacking wolves (GWα , GWβ

and GWδ) can move to any place in order to guarantee they

are around the target, which means that the three attaching

wolves are those transversal vectors in P which make the

corresponding ELMs achieve the first three best performance.

Then, the rest of the other wolves update their positions

according the best three. In other words, the other transver-

sal vectors (rows) in P are updated and closer to the three

selected wolves. The details of the GWO are introduced

in reference [36]. Note that the neuron existence flag vec-

tor in [36] has been simplified into a numerical variable L

in the array (P), because that the performance of ELM is

only related to the number of hidden neurons, instead of

its existence flag ordering in the binary coding. The best

three wolves are selected based on the objective function

introduced the next paragraph.

The biggest advantage of the GWO is that the maintained

strategy of handling the exploration and exploitation in the

search process ensures that the most appropriate parameters

and number of hidden nodes of the ELM can be found at the

same time with the objective function (F) as:

F = (1 − acc) + γ
L − LD

LU − LD
(12)

where acc is the whole accuracy of classification, L is the

number of the hidden nodes, LU is the upper limit of the

number of the hidden nodes, LD is the lower limit of the num-

ber of the hidden nodes, and γ is the parameter for adjust-

ing accuracy and model complexity. γ , LU and LD are set

as 0.76, 5, and 200 in our experiments. More specifically,

the objective function consists of two parts: 1) the first

term is the classification accuracy and 2) the second term

means the complexity of the ELM. The fewer hidden nodes

mean the simpler ELM. Therefore, the final target is to

achieve the least F , which meets the higher accuracy and the

fewer number of hidden nodes at the same time. The ELM

that is optimized by the GWO is named the GWO-ELM in

this paper.

3) POSTPROCESSING

The output of the GWO-ELM can generate four probability

matrixes, which represent the classification probability for

‘Film on Background’, ‘Cotton’, ‘Film on Cotton’ and ‘Back-

ground’. Considering illumination variations, imaging noise,

and dirt on the cotton, some pixels will be misclassified.

In this postprocessing step, we will simply combine the spa-

tial information to achieve better classification performance

than the pixelwise method. The detailed steps are as follows.

For the probability map of each class, a 5× 5 uniform kernel

will be used to convolute with the map. It based on the

classification probability of each pixel being highly related

to its neighboring probability information. Considering that

no prior knowledge of cotton/film shapes was available in

practice, in the application, a simple and fixed filter kernel
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was used. The four updated probability maps will be normal-

ized to ensure that the sum of the classification probability of

each pixel equals one. The pixel label will be determined as

the class with the maximized normalized probability.

III. RESULTS AND DISCUSSION

A. DETERMINATION OF MODEL PARAMETERS

AND STRUCTURE

To construct and test the proposed sorting model, 107 hyper-

spectral images with the size of 538 × 384 × 288 (height ×

width×wavelength) were collected. 21 hyperspectral images

were randomly selected to construct the training set and the

remaining images were used as the testing set. All the pixels

in each image were labeled as one of four categories: back-

ground, film on background, seed cotton and film on seed

cotton. Each pixel in any hyperspectral image corresponds

to 288-dimensional data of spectral information, which was

set as a sample. Finally, 223872 samples were labeled, which

meant that there were 55968 samples for each type in the

training set, which were used to determine the parameters and

structure of the proposed sorting model.

TABLE 1. Classification results of the GWO-ELM with different feature
extraction methods.

First, the weights and biases of the VW-SAE were ran-

domly generated. The weights and biases of the VW-SAE

in each layer were updated using layer-by-layer pretraining

technology and the gradient descent algorithm based on the

root mean square error loss function, and their parameters

were determined by the 10-fold cross-validation method.

After each layer of the VW-SAE’s training was completed,

a two-layer neural network was used as an optimizer to

fine-tune the VW-SAE as a whole. Through the experiments,

we found that the proposed VW-SAE was composed of

three VW-AEs with 144, 72 and 36 neurons, respectively.

The sigmoid was used as the activation function in order to

acquire the ideal spectral features for classification. Finally,

36 high-level features are extracted by theVW-SAE and set as

inputs of the ELM. Table 1 lists the results of the GWO-ELM

with the feature inputs extracted from hyperspectral image

based on the VW-SAE and the traditional minimum redun-

dancy maximum relevance algorithm (mRMR) [37]. For the

mRMR, the highest classification accuracy is acquired when

10 features are extracted from 288wavelengths, whose results

are listed in the table. Detailed mRMR experiment results

are listed in the supplementary material. In comparison,

VW-SAV can extract more appropriate information than the

mRMR, especially for distinguishing film on background and

cotton.

Here, the ELM adopted a single hidden layer neural net-

work, and the activation function was the sigmoid in order

to conduct nonlinear classification. The weights, biases and

number of hidden nodes of the ELM were simultaneously

optimized by the GWO algorithm. Recent studies show bet-

ter optimization performance of GWO for training percep-

trons [28]. In the experiment, the number of hidden layer

neurons of the ELMwas set to 14. A comparative experiment

was carried out to further valid the optimization results, and

Table 2 lists the results with different number of hidden nodes

of the ELM. It is clear that the ELMwith 14 hidden nodes can

achieve the best classification results, especially the type of

film on background.

TABLE 2. Classification results of the different number of hidden nodes
of the ELM.

To further prove effectiveness of GWO method to our

specific dataset, we compared its results with two classical

optimization algorithms, genetic algorithm (GA) and particle

swarm optimization (PSO) algorithm. The final comparison

results are shown in Table 3, and GWO performs the best

among the three optimization algorithms.

TABLE 3. Comparison results for different optimization algorithms.

B. SPECTRAL ANALYSIS AND PROCESSING

Figure 5 shows the relative reflectance for the four types

of objects (film on cotton, background, cotton and film on

background), where the dotted line represent the actual spec-

tral range of every type, and solid line represents its mean,

respectively. The patterns for the relative mean reflectance for

film on cotton and cotton and for the background and film

on background were similar throughout the entire spectral

region because of theweak reflectance of the transparent film.

There is a noticeable difference between the relative mean

reflectance for the cotton and background, which suggests

that it may be easy to recognize cotton on the black belt.
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FIGURE 5. The relative reflectances for the four types of sample, where
dotted lines represent the actual spectral ranges for four types, and solid
lines represent their means, respectively.

However, it is clear that the spectral scale of film on cotton

covers the whole spectral scale of cotton, and that there is

overlap between the spectral scales of film on background

and background in Figure 5. Therefore, it is hard to sort the

film only with specific reflectance.

Since the spectra of the film on cotton and film on back-

ground hugely differ, the samples are first classified into four

types in our work: film on cotton, film on background, cotton

and background. Table 4 lists the classification results of the

different models for the four types and the three types (film,

cotton and background). Obviously, the results of the four

types from the different models are better than those of the

three types.

TABLE 4. Classification results of the different models for four types or
three types.

C. ANALYSIS OF MODEL PERFORMANCE

Table 5 summarize the classification results for background,

film on background, cotton and film on cotton using five com-

binations of mathematical models and a traditional machine

learning model (ANN). Overall, both the grey wolf optimiza-

tion extreme learning machine (GWO-ELM) and the artifi-

cial neural network (ANN) coupled with the combination of

variable weighting and the stacked autoencoder (VW-SAE)

can recognize the objects very well except for film on

background that had a recognition rate of 0.8628 for the

VW-SAE+GWO-ELM and 0.8506 for the VW-SAE+ANN.

When the variable weighting was not used, for either the

GWO-ELMor theANNmodels coupledwith stacked autoen-

coders, each corresponding object obtained lower recognition

rates excluding the background. Notably, the classification

results for film on background achieved an almost 6 % reduc-

tion using the SAV+GWO-ELM model and the recognition

rate achieved about 18 % reduction using the SAV+ANN

model, which suggest that the variable weighting algorithms

have significant effects for different models, but they have no

influence on the background classification results. In addi-

tion, the identification of film on background achieved a

classification accuracy of 0.4178 for the GWO-ELM model

and the identification achieved a classification accuracy

of 0.5794 for the ANN model. In other words, when the

variable weighting coupled with a stacked autoencoder algo-

rithm was used, the classification results for each of the

objects could be improved over those of the GWO-ELM

model and ANN model. Meanwhile, comparing to the ANN

model, the variable-weighted stacked autoencoder algorithm

has more effect on improving the classification accuracy

of film on background for GWO-ELM model. In addition,

Table 5 also shows that the single ANN model achieved the

optimal recognition rate for film on background compared to

other models. Overall, for all combinations of discrimination

models, the recognition rate for background and film on cot-

ton could reach approximately 0.99, while for the recognition

of film on background, the variable-weighted stacked autoen-

coder algorithm could improve the classification results over

those of the single GWO-ELM and ANN models.

To intuitively observe the recognition results, the estab-

lished models in Table 5 are used to classify each pixel for

a hyperspectral image with the size of 538 × 384 × 288

(height×width×wavelength). Figure 6(a) showed that three

pieces of film in the raw picture can be observed. Each model

can recognize the background very well, which may be due

to the large spectral differences. As shown in Figure 6(h) and

6(g), the ANN and GWO-ELM cannot well recognize the

film on the background, and the GWO-ELMmodel also can-

not ideally identify the film on cotton. After using the stacked

autoencoder algorithm, the recognition rates for film on back-

ground and film on cotton both significantly improve, shown

as Figure 6(e) and 6(f). Meanwhile, combining the VW-SAE

with the GWO-ELM and ANN models can enhance the

recognition performances for film on background, as shown

in Figure 6(c) and 6(d). It can be observed that the generated

pseudocolor maps have the same conclusion with Table 5,

which indicates that the established models are reliable for

online detection.

Table 6 presents the recognition accumulative time and

overall classification accuracy for each model. The stacked

autoencoder algorithm can improve the overall classification

accuracy by 4.3 % for the ANN and by 11.2 % for the

GWO-ELM, while the combination of variable weighting

and the stacked autoencoder can further improve the clas-

sification results by 4.25% and 2.48 % for the SAE+ANN
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TABLE 5. Classification results of different models for the four types: background, film on background, cotton and film on cotton.

and SAE+GWO-ELM, respectively. These results demon-

strate that the algorithm that combines variable weighting

and the stacked autoencoder provides a significant and posi-

tive improvement over both the ANN and GWO-ELM mod-

els. Although the classification accuracy improved using

the combination of variable weighting and the stacked

autoencoder, the process time increased by 45.5 % for the

GWO-ELM with an accumulative recognition time of 1.44 s

for an image with the size of 538 × 384 × 288. However,

compared with the ANN, the accumulative recognition time

could decrease by 35.4 % for the combination of the vari-

able weighting and the stacked autoencoder coupled with the

GWO-ELM, which can be used for online detection.

Finally, the classification results of the VW-SAE+GWO-

ELM are combined as film and nonfilm, as shown

in Figure 7(c). These results will trigger the valve to separate

the film from cotton.

The study demonstrates that the variable-weighted stacked

autoencoder algorithm coupled with the GWO-ELM can

achieve better classification results with limited computa-

tional time increases, which could meet the online detection

requirement. As shown in Figure 5, the spectra that were

obtained from hyperspectral imaging had similar absorption

peaks to other studies [38]. Nevertheless, it is slightly tough

to visually identify cotton and film on cotton, as well as

background and film on background, since the patterns of

their spectra were similar, which encouraged us to develop

a new algorithm to recognize these four objects. The stacked

autoencoder algorithm can enhance the classification results

for the four types of objects based on a single GWO-ELM
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FIGURE 6. Classification results for each model based on pseudocolor
maps.

TABLE 6. Accumulative recognition time and averaged recognition rates
for each of the models with a 538 × 384 × 288 image.

FIGURE 7. Final outputs of the proposed sorting algorithm.

or ANN model. However, the variable-weighted stacked

autoencoder algorithm could obviously improve the over-

all recognition results. The recognition rates for film on

background for all of models were relatively low, which

could be due to the influence of the strong absorption of the

black background. Although the variable-weighted stacked

autoencoder coupled with the GWO-ELM provided sim-

ilar results to the variable-weighted stacked autoencoder

FIGURE 8. Sorting system and process for cotton.

coupled with the ANN, the recognition time for each pixel

was faster, which could assess cotton more efficiently

and save costs. Moreover, the average recognition rate for

the variable-weighted stacked autoencoder coupled with

the GWO-ELM model was also comparable to Mengyun

Zhang’s [32] and Ruoyu Zhang’s [38] laboratory studies.

These studies applied hyperspectral imaging in the trans-

mittance and reflectance modes over the spectral range

of 900 - 1700 nm to inspect foreign matter on the surface of

cotton. However, the thin films in our studies are much hard

to detect compared to the foreign matters, such as plant bract

and leaves.

D. APPLICATION OF PROPOSED SORTING SYSTEM

The proposed method has been integrated into the sort-

ing system with a Nvidia GTX1060 GPU and tested by

two companies from Shandong Province, China and put

into production in Xinjiang municipality, China. The algo-

rithm is implemented by deep learning library Keras sup-

ported with Nvidia parallel computing platform CUDA,
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and the GPU-accelerated library cuDNN. The mixture of

films and seed cottons was fed into our proposed sorting

machine/system (Figure 8(a)), and as shown in Figure 8,

the machine can separate the films and seed cottons in real

time. It should be noted that 384 pixels in a hyperspectral

image is about 2m of the conveyor belt in Figure 8(b). In

practice, considering the hyperspectral camera is the line scan

camera, the position of its illumination light is removeable

as shown in Figure 8(b). We can easily reduce the distance

between the lights and the nozzles and then adjust accord-

ingly the height of hyperspectral images to achieve better

sorting result. After several field experimentations, the dis-

tance between the camera and the sorting nozzle is set as

about 1m as shown in Figure 8(b). Figure 8(c) and (d) show

the clear cotton and plastic film separated by the sorting sys-

tem. In-field running results show that the proposed machine

can process 3 tons of mixtures per hour, and sorting accuracy

can achieve up to 95%.

IV. CONCLUSION

The study has developed a new sorting algorithm for the

online detection of film on cotton using hyperspectral imag-

ing over the spectral range of 1000 - 2500 nm. The results

showed that the single ANN and GWO-ELM cannot rec-

ognize film on background, and using variable-weighted

stacked autoencoder algorithms to extract features can pro-

vide positive effects for both the GWO-ELM and ANN by

recognizing film on background at up to 86 % accuracy. The

recognition rates for film on background are relatively low

for all of the models, which may be due to the influence

of the absorption of the dark background. The combination

of variable weighting and the stacked autoencoder coupled

with the GWO-ELM is determined to be the optimal model

with an overall classification accuracy of 95.58 % for online

detection due to the lower recognition time of 1.44 s per

image. The proposed method has great potential to achieve

online detection for the recognition of film on cotton.

On the other hand, the facility costs of this proposed sorting

system is a little expensive, due to the integrated GPU for

computation acceleration. With the future hardware develop-

ments, the equipment cost is expected to be further reduced.

The proposed algorithm has a good application prospect and

the similar idea can be applied into other fields, such as wheat

and stalk separations.
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