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Abstract: The least absolute shrinkage and selection operator (LASSO) algorithm is a promising
method for sparse source location in time–division multiplexing (TDM) multiple–input, multiple–
output (MIMO) radar systems, with notable performance gains in regard to resolution enhance-
ment and side lobe suppression. However, the current batch LASSO algorithm suffers from high–
computational complexity when dealing with massive TDM–MIMO observations, due to high–
dimensional matrix operations and the large number of iterations. In this paper, an online LASSO
method is proposed for efficient direction–of–arrival (DOA) estimation of the TDM–MIMO radar
based on the receiving features of the sub–aperture data blocks. This method recursively refines the
location parameters for each receive (RX) block observation that becomes available sequentially in
time. Compared with the conventional batch LASSO method, the proposed online DOA method
makes full use of the TDM–MIMO reception time to improve the real–time performance. Addition-
ally, it allows for much less iterations, avoiding high–dimensional matrix operations, allowing the
computational complexity to be reduced from O

(
K3) to O

(
K2). Simulated and real–data results

demonstrate the superiority and effectiveness of the proposed method.

Keywords: LASSO; TDM–MIMO; DOA; online

1. Introduction

In recent years, colocated multiple–input, multiple–output (MIMO) technology has
received increasing amounts of attention and has been extensively used for assisted driv-
ing, remote sensing [1], geological exploration [2], and free space optics communication
(FSOC) [3]. In radar remote sensing applications, the MIMO technology improves the angu-
lar resolution while reducing the physical channel count and antenna aperture, compared
with conventional array antennas [4–6]. In FSOC applications, MIMO technology is also
utilized to overcome attenuation and turbulence effects in atmospheric channels, thereby
obtaining channel gain and improving the reliability of FSOC systems [7,8]. In terms of
hardware complexity, the frequency–modulated continuous wave (FMCW) sequence of
time division multiplexing (TDM) is the simplest option for colocated MIMO. Therefore,
more practical applications and mechanistic studies are achieved in this way [9–11].

Targeted direction–of–arrival (DOA) estimation is an important research hotspot in
MIMO radar signal processing [12]. The most fundamental method is the classical delay–
and–sum (DAS) approach, which recovers a target source by weighting and delaying the
echoes. However, the DAS approach suffers from a low angular resolution and a high side
lobe. Moreover, the resolution of the DAS approach can only be improved by increasing
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the number of channels, which is very uneconomical. Many methods have been proposed
to effectively improve the DOA resolution of MIMO radar [13–20]. Based on the rotational
invariance property of spatially correlated matrix signal subspaces, the estimation of signal
parameters via the invariance technique (ESPRIT) algorithm was proposed to improve the
DOA estimation accuracy of MIMO radar [13,14]. The parallel factor analysis (PARAFAC)
algorithm was proposed to improve the multitarget resolution [15]. A dimensionality–
reducing Capon method has been proposed for the DOA estimation of monostatic MIMO
radars [17], and this method reduces the dimensions of the MIMO radar sub–aperture
through a dimensionality–reducing transformation, thereby accelerating the Capon algo-
rithm. In [1,21], the iterative adaptive approach (IAA) was introduced for MIMO radar
imaging, and it was shown that the IAA can work with few or even a single snapshot, and
can provide a higher azimuthal signal source localization accuracy. However, this method
suffers from a high computational complexity due to its high dimensional matrix inverse
computation per iteration. The sparse representation (SR) has been used in an estimation
method that contains DOA estimation for colocated TDM–MIMO radars [19]. The least
absolute shrinkage and selection operator (LASSO) method [22] is an efficient tool in the
fields of application of sparse linear regression [23,24]. This method consists of a linear
least square optimization regularized by an additional penalty term of the L1–norm as a
measure of sparseness. The LASSO method is demonstrated to improve the DOA estima-
tion performance of the array signal, with higher resolution and a lower side lobe [25]. Due
to its superiority, many studies have been carried out on LASSO, including computational
efficiency and theoretical analysis, etc. [26–28].

In spite of the performance gain, the current batch LASSO algorithm can only han-
dle the complete aperture data already acquired by the MIMO radar. Since the LASSO
algorithm requires operations, such as matrix inversion and matrix multiplication and
a large number of iterations; the computational complexity of batch implementation is
notably high, especially for massive TDM–MIMO data sets. There are several advances in
algorithmic acceleration that might be combined with the LASSO algorithm to mitigate
the computational burden. Some fast matrix inversion methods, such as the Newman
series [29] and Jacobi method [30,31], were proposed to handle the problem of high compu-
tational complexity. In [32–34], the Neumann series (NS) is considered to perform matrix
inversion approximation (MIA). The main contribution of the Neumann method is to
convert the matrix inverse calculation into matrix multiplication, which is more suitable
for hardware platforms, but the complexity is equal to or higher than that of the exact
calculation method, such as the QR–based method [33]. The Jacobi method reduces the
complexity from O

(
K3) to O

(
LK2), where L is the number of iterations. However, the

Jacobi method converges slowly and, thus, implies higher latency [35]. Although the above
fast matrix inversion methods can reduce the computational complexity of the matrix
inversion, the approximation error is introduced, which should be carefully controlled.
Furthermore, they only reduce the complexity of the matrix inversion, whereas the burden
caused by high–dimensional matrix multiplication and a large number of iterations in the
batch LASSO algorithm cannot be well handled.

To solve the high–complexity problem of the LASSO method, this paper presents a sub–
aperture recursive LASSO method to allow for online DOA estimation. Online processing
refers to the way of processing comparing with the traditional batch processing [28,36,37].
In the way of batch processing, the processor must wait for collecting the measurement
completely, and process the measurement taking additional time cost. In contrast, online
processing processes the stream of MIMO sub–aperture measurements accordingly; that
is, updating the result when a new sub–aperture measurement is available. The benefit
of online processing is that it can save the time cost of measurement collection. Mean-
while, online processing also allows for much less iterations, avoiding high–dimensional
matrix inversion and multiplication. From the following analysis, it can be seen that the
computational complexity can be reduced from O

(
K3) to O

(
K2).
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This paper is structured as follows. In Section 2, the MIMO radar signal model is
reviewed and the TDM–MIMO sub–aperture data reception scheme is derived. Then,
the proposed online TDM–MIMO radar DOA estimation method is derived in detail. In
Section 3, simulated and real–data results demonstrate the effectiveness of the proposed
method. In Section 4, the quantitative comparison and future work are discussed. Section 5
presents the conclusions.

2. Materials and Methods

A colocated MIMO radar that contains isotropic uniform linear receiving and transmit-
ting arrays (ULA) is considered. The receiving array element spacing is dr = λ/2, where λ
denotes the carrier wavelength. The location distributions of Mr receiving antennas and
Mt transmitting antennas are shown in Figure 1 (with four transmitters and four receivers
as an example). The transmitting array element spacing is dt = Mt · dr. According to the
MIMO theory, the equivalent virtual array of this MIMO can be considered a single–input,
multiple–output (SIMO) antenna with 16 elements.

4 TX antennastM 

4 RX antennasrM 

4 rd

rd

rd

TX1 TX2 TX3 TX4

16 virtual receiver
antennas      

Figure 1. Array element distribution of MIMO radar (Mt = 4, Mr = 4).

2.1. Signal Model

Suppose that there are K impinging signals with angular parameter, θk, k = 1, . . . , K.
According to Figure 1, the steering expression of the m-th virtual array element is written as

a(θk) = exp(j(m − 1)dr sin θk)

= exp(j(mt − 1)dt sin θk) · exp(j(mr − 1)dr sin θk)
(1)

where mt = 1, 2, . . . , Mt and mr = 1, 2, . . . , Mr represent the sequence number of trans-
mitting and receiving array elements, respectively. In addition, m, mt and mr satisfy the
relationship m = (mt − 1)Mr + mr. For all virtual elements, the steering vector can be
denoted as

a(θk) = [a1(θk), a2(θk), . . . , aM(θk)]
T (2)

where M = Mt ·Mr. We assume that there are L TDM periods and each period contains N
pulses. Hence, the `-th complex baseband receiver signal y(`) ∈ CM can be denoted as [19]

y(`) = exp(−j · γωd)� a(θk)
1√
N

s(`) + e(`) (3)

where � represents the Hadamard product, s(`) the unknown and deterministic target
signals, e(`) the additive zero mean Gaussian noise, and σ2 the variance. ωd denotes
the Doppler frequency of the target. γ = t⊗ 1Mr represents the TDM–induced Doppler
frequency shift (DFS), where t = [t1, t2, t3, t4] represents the time–division scheme of the
signal transmission, and 1Mr denotes the full one–column vector with a length of Mr.

To simplify the model, it is assumed that ωd = 0, and N = 1. For the `-th snapshot of
a given TDM period, model (3) can be simplified to

y(`) = As(`) + e(`) (4)
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where the steering matrix is given by

A = [a(θ1), a(θ2), . . . , a(θK)] =


b∗1
b∗2
...

b∗M

 ∈ CM×K (5)

The receiver signals y of the M channels are arranged as 1, 2, · · · , Mt according to the
sub–aperture order.

The TDM–MIMO radar system transmits the signals in a time–division manner per the
transmitting scheme, as shown by Figure 2a. Only one transmitting antenna is available for
each time slot. In the case of the four receivers, the received signals are shown in Figure 2b.
The blocks with order 1–4 denote the sub–aperture data received in the first period, and so
on. Any set of sub–apertures is equivalent to a SIMO subarray with Mr receivers. In the
traditional batch processing method, all sub–aperture data must be received completely to
formulate the full–aperture data before processing. When dealing with a massive TDM–
MIMO data set, the dimension of aperture data will become quite high. As a result, the
high dimensionality of the full–channel data increases the temporal and spatial complexity.
Moreover, the period of reception will introduce additional delay. Both of these reasons lead
to poor real–time performance of batch processing. To solve this problem, we propose an
online processing method that processes sub–aperture data along receiving. The proposed
method allows beamforming to begin directly after the first sub–aperture data are received.
Doing so introduces two benefits, one is that it can save the time cost of measurement
collection, the other is that online processing allows for much less iterations, avoiding
high–dimensional matrix inversion and multiplication, resulting in lower temporal and
spatial complexity.
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Figure 2. (a) Time–division scheme of the TDM transmit signal, (b) sub–aperture receiver data.
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2.2. Proposed Method

Based on model (4), the LASSO method attempts to recover s by solving the following
convex optimization problem [22]

arg min
s∈CK

‖y−As‖2
2 + λ‖s‖1 (6)

where λ is a parameter that weighs the sparsity of s. Equation (6) can be solved directly by
convex optimization, such as the CVX tool box in MATLAB. However, the source code is
not open, which cannot be ported to a hardware platform. In recent years, many iterative
methods, such as split Bregman [38], IRLS [39], etc., have been proposed. For example, the
split Bregman solution can be written as [38]

ŝq+1 =(µA∗A + λI)−1(µA∗y + λ(dq − bq))

dq+1 =shrink
(

ŝq+1 + bq, 1/λ
)

bq+1 =bq + ŝq+1 − dq+1 (7)

where d and b denote the introduced temporary vectors, µ an additional regularization
parameter, q the iteration number, I the identity matrix. The function shrink(x, η) =
sign(x)max(|x| − η, 0), and sign(·) denotes the sign function.

It is seen that matrix inversion, matrix multiplication, and a considerable number of
iterations are required, so the computational complexity is quite high, which is not suitable
for engineering applications. To solve this problem, starting from the cyclic minimiza-
tion [28,40,41], we propose a subaperture recursive online processing method.

2.2.1. Cyclic Minimization

By the minimization of Equation (6), only one component si in s is considered at a
time. Let ỹi , y−∑k 6=i aksk. Then, the cost function can be written as [28]

J(si) = ‖ỹi − aisi‖2
2 + λ|si| (8)

To solve the scalar minimization problem, the i-th variable to be solved is transformed
into the polar form si = riejθi , where ri > 0 and θi ∈ [−π, π). Then, the quadratic term in
Equation (6) can be rewritten as

‖ỹi − aisi‖2
2 =

∥∥∥ỹi − airiejθi
∥∥∥2

2

= ‖ỹi‖2
2 +

∥∥∥airiejθi
∥∥∥2

2
− 2 Re

{
ria∗i ỹie−jθi

}
= ‖ỹi‖2

2 + ‖ai‖2
2r2

i − 2ri|a∗i ỹi| cos(arg(a∗i ỹi)− θi)

(9)

By substituting (9) into (8), a cost function with ri and θi denoting independent
variables is obtained

J(ri, θi) = ‖ỹi‖2
2 + ‖ai‖2

2r2
i − 2ri|a∗i ỹi| cos(arg(a∗i ỹi)− θi) + λri (10)

According to (10), the minimized θ̂i can be expressed as

θ̂i = arg(a∗i ỹi) (11)

Then, let
αi , ‖ỹi‖2 (12a)

βi , ‖ai‖2 (12b)

γi , |a∗i ỹi| (12c)
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where ∗ denotes the conjugate transpose of a matrix. Hence, Equation (10) can be rewrit-
ten as

J
(
ri, θ̂i

)
= αi + βir2

i − 2γiri + λri (13)

The first–order and second–order derivatives of Equation (13) are

dJ
dr

= 2βr− 2γ + λ (14)

d2 J
dr2 = 2β = 2‖ai‖2 > 0 (15)

Therefore, (13) is convex, and the minimization of r should be achieved at dJ/dr = 0
and denoted as

r̂i = max
(

2γi − λ

2βi
, 0
)

(16)

Ultimately, the element–level minimization can be expressed as [28]

ŝi =

{
r̂iejθ̂i , if γi > λ/2
0, else

(17)

According to Equations (16) and (11), when updating each element ŝi, the convex
optimization cost function (8) decreases monotonically. Therefore, the result ŝ of the target
source distribution can be achieved by traversing i = 1, 2, · · · , K for Equation (17).

2.2.2. Proposed Online Strategy

For TDM–MIMO radars, the sub–aperture data arrive sequentially over time. The p-th
sub–aperture data and the corresponding steering matrix can be expressed as

yp ,

 y(pMr −Mr + 1)
...

y(pMr)

 , Ap ,

 b(pMr −Mr + 1)
...

b(pMr)

 (18)

Vector yp ∈ CMr contains data for the p-th sub–aperture, and the length is Mr, i.e.,
data blocks 1–4 in Figure 2b (if p = 1). Similarly, the steering matrix Ap ∈ CMr×K contains
the steering vectors of the corresponding subarray elements. The optimization problem (6)
can then be rewritten as

arg min
s∈RK

∥∥yp −Aps
∥∥2

2 + λ‖s‖1 (19)

Let ^s ∈ RK denote the estimated result from the p− 1-th sub–aperture data. Based

on the cyclic minimization, we first introduce an intermediate variable zp = yp − Ap
^s

that can be eliminated in subsequent derivations. Then, ỹp,i = zp + ap,i
^s i ∈ CMr , which is

substituted into Equation (12)

αi =
∥∥ỹp,i

∥∥2

=
∥∥∥zp + ap,i

^s i

∥∥∥2

=
∥∥zp

∥∥2
+
∥∥ap,i

∥∥2
∣∣∣^s i

∣∣∣2 + 2 Re
{

^s iap,izp

} (20a)

βi =
∥∥ap,i

∥∥2 (20b)

γi =
∣∣∣a∗p,iỹi

∣∣∣
=
∣∣∣a∗p,i

(
zp + ap,i

^s i

)∣∣∣ (20c)
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where ^s i denotes the current estimate of the i-th direction, and ap,i ∈ CMr the steering
vector of the i-th direction for the p-th sub–aperture, namely, the i-th column of Ap.

The intermediate variable
ζp = A∗pzp ∈ CK (21)

and recursive calculation variables are introduced:

Γp , A∗pAp = Γp−1 + bpb∗p ∈ CK×K (22)

ρp , A∗pyp = ρp−1 + bpyp ∈ CK (23)

In minimizing ri, only the calculation of βi and γi is needed. Considering Equation (22),
the expression (20) can be simplified to

βi = Γp
ii (24a)

γi =
∣∣∣ζi + Γp

ii
^s i

∣∣∣ (24b)

where ζi denotes the i-th element of ζp, and Γp
ii the i-th diagonal element of matrix Γp.

Similarly, Equation (11) can also be represented by recursive variables as

θ̂i = arg
(

ζi + Γp
ii
^s i

)
(25)

Hence, the i-th element of the DOA is obtained:

ŝi = r̂iejθ̂i (26)

By traversing i = 1, 2, · · · , K for Equations (24)–(26), the target source distribution
result ŝ obtained by solving the p-th sub–aperture data are obtained. Variables zp can be

updated through zp
′ = zp + ap,i

(
^s i − ŝi

)
. Then, according to (21), the update of ζp can be

written as

ζp
′ = A∗pzp

= ζp + Γ
p
i

(
^s i − ŝi

) (27)

where Γ
p
i denotes the i-th column of Γp.

For each new sub–aperture data block, ζp is initialized to ζp = ρp − Γp^s . For the

first sub–aperture (p = 1), the estimate is initialized as ^s = 0. Furthermore, the cyclic
calculation (24)–(27) requires Q iterations. According to experience, good results are usually
obtained after 8 to 10 iterations.

With the arrival of the subsequent MIMO sub–aperture data, the DOA result ŝ can
be obtained by reiterating (21)–(27) using Equation (21) (which is achieved through the

previous result ^s by the previous p− 1 sub–aperture data) and the new sub–aperture data
yp. The online processing flowchart for the sub–aperture update is shown in Figure 3.
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Calculate XX by (22) 
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 ̂s

Figure 3. Flowchart of the online sub–aperture update.

2.2.3. Computational Complexity Analysis

The computational complexity of the DAS method, the IAA method [1,21,42], the
traditional LASSO method, and the proposed method are compared, as shown in Table 1.

Table 1. Computational complexity.

Method Calculation Times of
Multiplication and Division Computational Complexity

DAS Klog2K O(Klog2K)
IAA [1] (per iteration) (per iteration) O

(
(Mr Mt)

3
)

LASSO [43] K3 + Mr MtK2 O
(
K3)

Proposed method
(per recursion) (Q + 1)K2 +

(
9Q + Mr

2 + Mr

)
K O

(
(Q + 1)K2)

From Table 1, it is seen that the proposed methods reduce the computational complex-
ity by an order of magnitude compared with the IAA and LASSO method. In addition, the
complexity of the proposed method can reach the order of magnitude of the RLS method
(O
(
K2)). Table 2 shows the computational complexity for the methods with K = 4Mr Mt

and varying Mr ×Mt. Typically, when Mr ×Mt = 1000, the proposed method reduces the
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required computational time by 194 times and 37 times, compared with the LASSO and
IAA, respectively.

Table 2. Processing time comparison.

Mr × Mt

Method DAS
(second)

IAA
(second)

LASSO
(second)

Proposed Method
(second)

Speedup Ratio
(vs. LASSO)

10 2.0760× 10−4 0.0200 0.0292 0.0147 1.9863

100 6.0470× 10−4 0.3034 2.4910 0.1501 16.5956

200 9.8360× 10−4 1.0196 14.8635 0.3952 37.6100

500 0.0010 12.0597 168.3409 1.7596 95.6699

1000 0.0042 195.6235 1.0274× 103 5.2865 194.3440

3000 0.0220 5.7825× 103 9.7910× 103 40.2179 243.4488

3. Results

In the simulation and experimental verification, both the target and the platform are
considered stationary. All of our simulations and experiments were conducted using a
64–bit MATLAB R2018a on a PC workstation with an Intel Core i5–9500 CPU, 3.0 GHz
and 16 GB RAM. The proposed method is compared with the conventional DAS, IAA, and
LASSO methods in terms of computational time and DOA accuracy. Because this study
only concerns the angular estimation performance, the targets were set at the same distance.
The root mean square error (RMSE) of the angular estimates is used for evaluating the
performance of simulation results and is defined as

RMSE = 10log10

√√√√ 1
P

P

∑
p=1

∣∣θ̂p − θp
∣∣2 (28)

where θp denotes the true target value of the p-th target grid, and θ̂p represents the estimate
of the p-th target grid. The signal–to–noise ratio (SNR) is defined as

SNR = 10log10

(
Ps

δ2

)
(29)

where Ps stands for the signal power, and σ2 is the variance in the additive Gaussian
white noise.

3.1. Simulation Results

The azimuth of two unrelated sources with equal power is assumed to be [−5◦, 0◦].
The scan range is between −90◦ and 90◦, and the number of points is K=512. The SNR of
the signal is SNR = 10 dB. A MIMO radar system with two transmitters and four receivers
(carrier frequency fc = 77 GHz; receiving array element spacing: dr = λ/2 = 1.9 mm;
transmitting array element spacing: dt = Mt · dr = 7.6 mm) is investigated.

Figure 4a illustrates the results of 10 Monte Carlo experiments with the traditional DAS
method. Although the average processing time is only 0.0002 s, effectively distinguishing
between the two adjacent targets is impossible. Figure 4b shows the results of the 10 Monte
Carlo experiments with the IAA method. The average processing time is 0.0879 s. The
results of the 10 IAA experiments show lower side lobes, and the adjacent targets are
basically distinguished and located, which is better than that shown in Figure 4a.

However, the IAA method also has drawbacks, such as an unsatisfactory resolution, a
high side lobe, and high computational complexity. Figure 4c shows the results of the 10
LASSO experiments. It is seen that they can well distinguish the adjacent target directions,
and the angular estimation error is highly non–significant. Nonetheless, the LASSO method
has a high algorithmic complexity and requires the support of complete aperture data, thus
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exhibiting poor real–time performance. Furthermore, its average processing time is 0.2403 s.
As shown in Figure 4d, the 10 results of the proposed method are nearly consistent with
the LASSO results. Compared with the results of the traditional DAS and IAA methods,
the results of the proposed method provide better resolving of adjacent targets and side
lobe suppression.

(a) (b)

(c) (d)

Figure 4. Simulated DOA results and analysis. (a) The DAS method, (b) the IAA method, (c) the
LASSO method, (d) the proposed method.

The average processing time for each sub–aperture data update takes only 0.0215 s.
Furthermore, Figure 5 illustrates the DOA result at the arrival of each sub–aperture data
block under simulation conditions by the proposed method. The real–time DOA results
are progressively improved as the MIMO sub–aperture data are received, and the best
performance is achieved at the receipt of the last data block (the DOA performance of
the LASSO method). Figure 6 shows the RMSE and CRB of angle estimation by the four
methods for SNRs ranging from −5 to 30 dB [44].

Moreover, we can reduce the estimation error of DOA by compensation in two ways.
One is the compensation for mutual coupling of array elements [45,46]. The other is
the motion compensation: the Doppler phase needs to be considered for the moving
platform [47,48]. Good research has been carried out on the above two compensation ways.
Because this article mainly focuses on real–time signal processing algorithms, it will not be
further discussed here.
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Figure 5. DOA result of the proposed method at the arrival of each block of sub–aperture data.

Figure 6. RMSE and CRB of each method.

3.2. Measurement Results
3.2.1. One–Dimensional Point Target Experiment

In this section, two adjacent corner reflectors and a MIMO radar with two transmitters
and four receivers are used to verify the DOA performance of the proposed method. The
layout of the radar system and corner reflectors is shown in Figure 7a; the corner reflectors
are illustrated in Figure 7b. The radar and corner reflectors are at the same height, and the
carrier frequency of the former is 77 GHz.

 Reflectors

MIMO radar

(a) (b)

Figure 7. Measurement scenarios. (a) Locations of MIMO radar and corner reflectors, (b) corner reflector.
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Figure 8a shows the DOA result of the DAS method for which the processing time
is 0.0024 s. Due to the short distance between the two corner reflectors, their azimuths
are indistinguishable. Figure 8b shows the DOA result of the IAA method for which the
processing time is 0.1304 s. Figure 8a,b are consistent with the corresponding simulation
results. This method effectively improves the DOA in resolution. The corner reflector is
clearly separable, but the side lobes are still not well suppressed.

Figure 8c shows the DOA result of the LASSO method for which the processing
time is 0.2139 s. By taking advantage of the sparseness of the target sources, the LASSO
method distinguishes the targets very well, and the side lobe is also quite well suppressed.
Compared with traditional methods, the resolution is greatly improved. However, the
LASSO method is not applicable to the real–time processing of TDM–MIMO systems.
Figure 8d shows the DOA result of the proposed method. This method maintains the
same angular resolution as the LASSO method and can update the DOA results of the
targets in real time as the MIMO sub–aperture data are received in real time. In addition,
the proposed method offers excellent online processing and a super–resolution capability.
The average processing time for each sub–aperture data update is 0.0318 s. According to
the peaks, the angular estimation errors of the LASSO method and the proposed method
are 0.15◦ and 0.17◦, respectively, after comparing with the calibrated average angle of
the targets.

(a) (b)

(c) (d)

Figure 8. Processing DOA results. (a) the DAS method, (b) the IAA method, (c) the LASSO method,
(d) the proposed method.

3.2.2. Two–Dimensional Surface Target Experiment

In this section, MIMO radar data are used to verify the performance of the proposed
method. The original optical scene photographed by the drone is shown in Figure 9. The
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experimental parameters are listed in Table 3. The carrier frequency, the number of array
elements, and the beam width have a determined relationship, which mainly affects the
azimuth resolution. The pulse width and pulse repetition interval affect the signal to noise
ratio, and bandwidth affects the range resolution.

Table 3. Parameter conditions of the measured data.

Parameter Value

Carrier frequency 77 GHz
Bandwidth 3.75 GHz
Beam width 1.4◦

Pulse width 1 ms
Pulse repetition interval (PRI) 512 µs

Number of transmitters 12
Number of receivers 16

Range samples 261

Figure 9. Optical scene.

Figure 10a shows the 2D results of the DAS method for which the processing time
is 0.0973 s. It is seen that a row of vehicles in the parking lot is vaguely distinguished.
However, due to the low resolution and poor side lobe suppression ability of the DAS
method, the imaging results with regard to the vehicle in the center of the scene suffer
from high side lobes, and the vehicles on the right side of the scene are blurred. Figure 10b
shows the 2D results of the IAA method [1] for which the processing time is 124.8980 s. It
is seen that the resolution of this image is effectively improved. The side lobes of the strong
scattering point are well suppressed. Figure 10c shows the 2D result of the LASSO method
for which the processing time is 294.1526 s. It is seen that the resolution of this image
is further improved. The side lobes of the car in the center of the scene are significantly
suppressed, and the car contour becomes much clearer. The number and position of
vehicles on the right side of the image can be easily determined. Unfortunately, both
the IAA and the LASSO methods have enormous computational complexity, and cannot
implement the online processing of the MIMO data. Figure 10d shows the 2D results of
the proposed method for which the processing time is 4.8980 s. It is seen that this image is
much better than that shown in Figure 10a,b. The proposed method maintains the same
angular resolution as the LASSO method and can update the imaging results as the MIMO
sub–aperture data are received in real time.
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(a)

(b)

(c)

(d)

Figure 10. Two–dimensional processing results. (a) Two–dimensional result of the DAS method,
(b) 2D result of the IAA method [1], (c) 2D result of the LASSO method, and (d) 2D result of the
proposed method.
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The image entropy (IE) [49] is employed to quantitatively evaluate the performance
of the 2D surface target experiment, where low values of IE commonly indicate that the
image is well recovered. The image entropy of the above processed results is shown in
Table 4. It can be seen that the entropy of LASSO and the proposed method are smaller
than that of the DAS and IAA methods. This proves that the results of LASSO and the
proposed method are clearer than those of other methods. More importantly, compared
with Figure 8c,d, it can be seen that the proposed method has almost no performance loss
compared with the traditional LASSO.

Table 4. Image entropy of 2D measured data.

Methods IE

DAS 4.0273
IAA 3.7029

LASSO 1.1087
Proposed method 1.1122

4. Discussion
4.1. Results Analysis

In this paper, a LASSO–based sparse DOA estimation method for online processing of
TDM–MIMO radar sub–aperture data is proposed. In this paper, a detailed comparison
of the computational complexity, simulation results, measured data of point targets, and
measured data of surface targets by various methods was carried out.

The results obtained in this paper show that the proposed online DOA method works
well under both simulated and experimental conditions. It should be noted that the compu-
tational complexity of the IAA method in Table 1 does not consider the number of iterations,
and its total computational complexity should be expressed as O

(
Q(Mr Mt)

3
)

, where Q
represents the number of iterations of IAA. Referring to the article [21], the iteration number
of the IAA method is set to 15 in all simulations and measurements in this paper.

Since the proposed method can output DOA results from sub–aperture data in real
time, we only give the complexity of each sub–aperture recursion in Table 1. The total calcula-
tion times of multiplication and division is expressed as (Q + 1)MtK2 +

(
9Q + Mr

2 + Mr

)
MtK,

and the computational complexity is O
(
(Q + 1)MtK2), where Q represents the number

of iterations of the proposed method. Mt represents the number of transmitting array
elements, namely, the number of recursions required for full aperture. Mr represents the
number of receiving array elements, namely, the sub–aperture length. In addition, accord-
ing to the configuration of the transmitting and receiving array elements, Mt and Mr can
also interchange roles.

Comparing (c) and (d) of Figures 4, 8 and 10, it is obvious that the proposed method can
maintain the recovery performance of the traditional LASSO method while performing low–
complexity online DOA estimation. It should be mentioned that the selection of parameter
λ in Equation (7) refers to the article [28]. In the proposed method, λ =

√
mt Mrlog2K,

where mt = 1, 2, . . . , Mt is the current recursive sub–aperture ordinal.
In the follow–up research, on the one hand, under the conditions of the moving

platform and moving target, Doppler phase and model error compensation need to be
considered to further improve the DOA accuracy of the proposed method. On the other
hand, after the motion compensation, the relevant hardware platform should be built
to implement the TDM–MIMO data’s real–time processing on FPGA or DSP using the
proposed method.

4.2. Extension to Optical Communication

In free–space optical communication, high–speed transfer of effective information
can be achieved by quantum cascade laser (QCL) [50,51]. The article [52], discusses the
possibility of realizing high–power broadband QCL. The article [53], demonstrates that
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optical radiation with a wavelength of about 10 µm in limited visibility is characterized
by better transmission properties than near–infrared waves. The article [54] analyzes
the performance of optical communication channels in the marine environment. The
article [55] analyzes the performance of free space optics communication under atmospheric
turbulence. This paper mainly discusses the TDM–MIMO radar in the microwave band.
Moreover, in the field of FSOC, MIMO technology can be used to solve the problem in
attenuation and atmospheric turbulence, which contributes to the atmospheric channel gain
and the reliability of the FSOC system. In the article [8,56], a maximum likelihood parameter
estimation method is used to improve the bit error rate (BER) performance of the MIMO
FSOC system. Due to the large number of massive FSOC–MIMO antennas and the complex
atmospheric turbulent propagation environment [3,57], the computational complexity of
matrix inversion in the channel estimation is quite high. Therefore, traditional channel
estimation methods cannot be directly applied in massive MIMO. A low–complexity
massive MIMO channel estimation method must be employed. The proposed online sub–
aperture recursive LASSO estimation method may also be employed to lower the estimation
error and improve the running speed. This paper mainly discusses radar applications and
the above articles belong to the field of communications. We should note that although
the mathematical principle is the same, when this method is applied to MIMO optical
communication, minor changes are required, and we will not go into much detail here.

5. Conclusions

In this paper, an sub–aperture recursive LASSO method is proposed for the online
DOA estimation of TDM–MIMO radar using sub–aperture data blocks. The proposed
method has two advantages. First, it makes full use of the TDM–MIMO reception time to
improve the real–time performance of the DOA algorithm (i.e., online DOA estimation), and
the complexity and memory usage per update are remarkably reduced when compared
with traditional methods. Second, the proposed method is superior to the traditional
DAS and IAA methods with respect to the DOA resolution because it can reach the DOA
estimation accuracy of traditional LASSO methods. Simulations and experimental data
verify the effectiveness of the proposed method. The online DOA estimation of actual
TDM–MIMO radar will be realized through hardware programming in the future.
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TDM time–division multiplexing
MIMO multiple–input multiple–output
DOA direction–of–arrival
LASSO least absolute shrinkage and selection operator
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IAA iterative adaptive approach
FMCW frequency–modulated continuous wave
DAS delay and sum
CRB Cramer–Rao bound
SVD singular value decomposition
ULA uniform linear array
SIMO single–input multiple–output
RMSE root mean square error
SNR signal–to–noise ratio
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