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Abstract. Visual tracking is a challenging problem, because the target frequently

change its appearance, randomly move its location and get occluded by other ob-

jects in unconstrained environments. The state changes of the target are tempo-

rally and spatially continuous, in this paper therefore, a robust Spatio-Temporal

structural context based Tracker (STT) is presented to complete the tracking task

in unconstrained environments. The temporal context capture the historical ap-

pearance information of the target to prevent the tracker from drifting to the back-

ground in a long term tracking. The spatial context model integrates contributors,

which are the key-points automatically discovered around the target, to build a

supporting field. The supporting field provides much more information than ap-

pearance of the target itself so that the location of the target will be predicted

more precisely. Extensive experiments on various challenging databases demon-

strate the superiority of our proposed tracker over other state-of-the-art trackers.

Keywords: Spatio-temporal, context constraint, subspaces learning, multiple in-

stance boosting, unconstrained environments.

1 Introduction

Visual tracking attracts lots of attentions due to its core status in applications, e.g.

human-computer interaction, video surveillance, virtual reality, etc. For most of these

applications, trackers are demanded to work for a long time in unconstrained envi-

ronments, which greatly challenges the robustness of the trackers. To overcome this

difficulty, numerous complex models are designed, but most of them still focus on the

appearance of target itself (e.g. color, edge responses, texture and shape cues) [1,2] or

the difference between the target and background [3,4,5,6,7].

In real-world, the temporal and spatial information is important and necessary in

tracking task. In continuous frames, the target appearance changes gradually, and all of

the historical appearance variations in pose, scale and illumination have more or less

influences and constraints on the next appearance state. For example, no matter what

appearance changes happen to a panda, it is still a panda and the tracker should not

recognize it as another animal. Meanwhile, the target moves gradually from one loca-

tion to another location, rather than abruptly and discretely jumps. In another words,
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the spatial context presents strong or weak spatial correlation between the target and

the background. For example, if two similar pandas walk together, it is easy to jump

from one panda to another for the trackers which only focus on appearance features.

However, if the spatial context constraints are considered, the skip problem will be

circumvented because the surroundings around the two pandas are different. Unfortu-

nately, the spatio-temporal context information has not been paid enough attention in

the previous tracking strategies. In this paper, we propose a novel tracking framework

based on the spatio-temporal structural context to precisely predict the location of the

target, which is expected to be more robust than the previous methods.

1.1 Related Works

In recent decades, numerous tracking strategies have been proposed in literatures, which

perform well in some specific conditions. To better represent the target features, some

methods [1,2,8,9,10] model the appearance of the target in a generative way. Fragment-

based tracker [2] represents the target with histograms of local patches, which takes

structural information of the target itself and handles partial occlusion very well. How-

ever, its template is not updated over time and the correlation of target and surroundings

is not constructed. In [1], an Incremental Visual Tracker (IVT) adaptively updates its

appearance model with the historical and sequential appearance variations. While IVT

performs well in deformable motion and illumination variation, the lack of spatial in-

formation results in drift problem because the accumulated errors decrease the accuracy

of appearance model.

Some discriminative model [11,5,12] formulate the tracking task as a classification

problem which focuses on the difference between the target and the background. How-

ever, these trackers discard the historical separating function during updating which

leads the insufficient temporal information to predict next state. Yu et al. [4] combined

the generative model and discriminative model to describe different views of the target.

Experimentally, the combined tracker achieves more stable performances than single

generative or discriminative tracker as the result of mutual supervision. Nevertheless,

the tracker in [4] just incorporated the background information as negative samples

for training the classifier, and no semantic context is considered. Recently, tracking-

by-detection methods [3,7,6] are very popular and reliable in long term surveillance

sequences, because the appearance model will be corrected by detector over time and

the target will be re-located even if it has been out of view. However, these detection

based trackers are easily distracted by other objects that have similar appearance with

the target, which is the result of lacking strong spatio-temporal constraints.

For long-term tracking task in unconstrained environment, merely learning the de-

scriptive or discriminative features of the target cannot ensure the robustness of the

system. Yang et al. constructed a context-aware tracker (CAT) [13] to track random

field around the target instead of the target itself. The introduction of auxiliary ob-

jects that are suitable for tracking and have consistent motion correlations to the target

greatly prevents the tracker from being trapped into drifting problem. Amir Saffari et.

al [14] proposed a novel multi-class LPBoost algorithm to handle the tracking task.

They treated the tracking task as a multi-class classification problem where background

patterns become virtual classes. The proposed method performs well in constrained
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environments, but it fails to handle the complex environments, e.g. occlusion, back-

ground clutter and illumination variations. Similar as [13], in [15], Gu and Tomasi

considered the spatial relation between the similar target and track these similar tar-

gets simultaneously. However, the method ignores the temporary information of the

target which causes its sensitiveness to target appearance changes and it may collapse

when motion blur occurs due to the utilization of SIFT descriptors. Grabner et al. [16]

introduced the definition of supporters which are useful features to predict the target

location. The tracker in [16] utilizes strong motion coupling constraints to locate the

target even when the target is invisible, with the help of some other available related

context information. However, its detecting and matching all of the local features are

expensive and the motion of the object of the view is not easily predicted. To further ex-

pand the theory of supporter, Dinh et al. developed a new context framework based on

distracters and supporters [17]. The distracters are the regions that have similar appear-

ance as the target and the supporters are the local key-points around the target which

have the motion correlation with the target in a short time span. Although the introduc-

tion of context in these trackers expands the available information we can get from the

scene, the motion correlation between the target and the context is hard to define.

1.2 Our Approach

The novel spatio-temporal structural context based tracker (STT) we build here greatly

differs from the previous published models. For temporal context part, a new incremen-

tal subspace model is constructed to represent the gist of target with low dimensionality

feature vectors, in which several sequential positive samples are packed into one sub-

space to update the model. Most of the appearance information of the target, including

pose, scale, and illumination are efficiently incorporated into the model to help predict

the next state of the target, as shown in the left side of Fig. 1. For the spatial context

part, we introduce the contributors that are the regions having the same size and consis-

tent motion correlation with the target. The positions of these contributors are produced

by the key-point detection method SURF [18], which represent more information than

those non-key-points. Based on the success of Fragment Tracker [2], we also decom-

pose the target and the contributors into several small blocks. In another words, the

intra-structural information and the inter-structural features are incorporated. In uncon-

strained environment, it is not easy to dig out the strong contextual contributors to help

locate the target. Instead, numerous weak contextual contributors around the target can

be combined together into a strong supporting field, as shown in the right side of Fig. 1.

The representative features within the strong supporting field are optimally selected by

boosting method [5] from the weak features pool. The contributions and the differences

of our algorithm from other previous methods are as follows:

– The global temporal context model is constructed by the linear subspace method,

which is updated with continuous positive samples and the correlation between

them is considered.

– The appearance information of contributors is also considered in our model, and the

pairwise features are produced by the difference between target and contributors to

describe the spatial correlations.
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Global Temporal Contextt tt Local Spatial Context

Fig. 1. The instruction of the temporal context constraint and the spatial context constraint of

tracking task

– The target and contributors are decomposed into small blocks, hence the intra- and

inter- structural information is described.

– Instead of building complex motion models to represent the correlation between the

target and contributors, our approach efficiently utilizes boosting method to select

the most representative weak relations to construct a strong supporting field.

2 MAP Spatio-temporal Structure Context Based Tracker

The tracking task is formulated as a state estimation problem and the motion process

is assumed to be a Markovian state transition process. Let O1:i = {O1, · · · ,Oi} rep-

resent the observation data set up to time i. Zi is the state of the target at time i, which

contains the position and size information of the target. In our tracker, the state vector

Zi is composed by the position of the target centered at lt = (xt, yt), target width wt,

target height ht, which is defined as Zt = (xt, yt,wt, ht). The posterior probability is

estimated as the recursive equation:

p(Zt|O1:t) ∝ p(Ot|Zt)

∫

p(Zt|Zt−1)p(Zt−1|O1:t−1)dZt−1 (1)

where p(Ot|Zt) is the likelihood of the candidate samples provided by our spatio-

temporal structural context constraint. p(Zt|Zt−1) is the state transition probability and

p(Zt−1|O1:t−1) is the state estimation probability given all observations up to time t−1.

Similar as [5], we adopt the simplest greedy Maximum A Posteriori probability (MAP)

strategy to solve the above equation, where the motion model is specified as:

p(lt|lt−1) =

{

1 ‖lt − lt−1‖2 < r

0 ‖lt − lt−1‖2 ≥ r
(2)

where lt is the position of the target at time t, r is the search radius. The scale of the

target is similarly handled as the strategy utilized in [5].

Assume there are K contributors of the target of state s, which is represented as

f(s) = {f1(s), · · · , fK (s)}. The appearance model of the target in Equ. 1 is defined

based on the global temporal context and the local spatial context:

Z ∗
t = argmax

Zt

p(Ot|Zt) = argmax
Zt

{e−(1−α)U (Zt)−αU (Zt|f(Zt))} (3)
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where Z ∗
t is the optimal state at time t, α ∈ (0, 1) is the coherence parameter to bal-

ance the global temporal context constraint and the local spatial context constraint. The

energy function mentioned above consists of two terms: the global temporal context

constraint energy function U (Zt) and local spatial context constraint energy function

U (Zt|f(Zt)). In order to avoid the unreliable updating, we set the predefined thresholds

θs and θt to decide whether the spatial and temporal context models will be updated.

The algorithm of the proposed tracker is summarized in Algorithm 1 and the temporal

and spatial context models are detailed in the following sections.

Algorithm 1. Spatio-Temporal Structural Context based Tracker

1: Initialize target T , extract the contributors f (·).
2: Initialize the global temporal context model Mt and the local spatial context model Ms.

3: while run do

4: Sample the image to get the Candidates.

5: for all Candidates do

6: Calculate the global temporal context constraint energy U (Zt);
7: Calculate the local spatial context constraint energy U (Zt|f(Zt));
8: Combine them to get the energy of the Candidates (Eq. 3)

9: end for

10: Find the MAP solution of the Candidates to get the minimum energy state Z ∗

t (Eq. 3).

11: if U (Z ∗

t |f(Z
∗

t )) < θs and U (Z ∗

t ) < θt then

12: Update contributors around of the target state Z ∗

t .

13: Update the global temporal context model Mt with the optimal target state Z ∗

t .

14: Update the local spatial context model Ms with the generated contributors.

15: end if

16: end while

3 Global Temporal Context with Incremental Subspace Model

Target tracking is a physically and psychologically continuous process, hence all of

the prior information will be used to predict the next state of the target. The following

appearances of the target have more or less correlation to the previous appearance infor-

mation. For example, a man cannot abruptly change into a monkey based on historical

appearances. Under this premise, global temporal context exploits historical appearance

variations as an extra source of global constraints to estimate the configuration of the

target. Murphy et al. [19] exploit context features using a scene ’gist’, which influences

priors of the object existence and state, and the work of Torralba et al. [20] shows ’gist’

is sufficient to provide a useful prior for what types of objects may appear in the image.

This opens our mind that we also can use object ’gist’ to constrain the following states

of the target. Here, we define the ’gist’ as the feature vector that summarizes the tar-

get. A newly proposed incremental linear subspace method is used to reduce the high

dimensionality of the feature space, so that more historical information will be stored

and used efficiently.
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Unlike the Hall’s subspace learning method [21] and its variant [1], the newly pro-

posed subspace learning strategy updates the energy dissipation of subspace dimension

reduction in the updating process (Algorithm 2), which acquires the target features more

accurately. Meanwhile, it utilizes the combined samples in adjacent frames rather than

individual ones for updating. The proposed method is called Incremental Multiple In-

stance Subspace Learning (IMISL), which can eliminate the homogeneous noise in se-

quential samples effectively. An observed instance Ot ∈ R
d is a vectorized image patch

corresponding to the state Zt and d is the feature dimension of the observations. Let

Ωt = (µt,Vt,Λt, nt), where µt, Vt, Λt and nt represent the mean vector, the eigenvec-

tors, the eigenvalues and the number of samples of the subspace at time t respectively.

Let Λt = (λ1,t, · · · , λq,t). To evaluate the probability of a candidate belonging to the

subspace, similar to [22], the following equation is utilized:

U (Zt) =
ε(Ot)

2

2σ2
t

+ (d− q) log σt +

q
∑

i=1

(

G2
i,t

2λi,t

+
1

2
logλi,t

)

(4)

where q is the reduction dimension of the subspace, ε(Ot) = ‖Ot − VV TOt‖2 is

the projection error of the candidate sample, σt is the energy dissipation in dimension

reduction of covariance matrix at time t and Gt = (G1,t, · · · ,Gq,t) = V T
t (Ot − µt).

The core problem in incremental subspace learning is the updating strategy. Our

proposed strategy utilizes the subspaces for updating instead of single samples, namely

merges the two subspaces into one subspace. We first compress D updating instances

into a local subspace. The subspace construction process can be completed by Eigen-

value Decomposition (EVD) or the efficient Expectation Maximization (EM) algorithm

proposed in [23]. A η-truncation is utilized to decide the reduction dimension of the

subspace to maintain the energy, that is q = argmini(
∑

i λi

tr(Λ) ≥ η). We derive from the

basic equations of the mean value and covariance matrix of the training data, that are:

µ(k) = 1
k

∑k

i=1 Ii, S
(k) = 1

k

∑k

i=1(Ii − µ(k))(Ii − µ(k))T , where S (k) represents the

covariance matrix of the subspace, Ii is the updating sample and µ(k) is the mean value

of the samples. We get the covariance matrix of the merged subspace:

S (k+l) =
k

k + l
S (k) +

l

k + l
S (l) + yyT (5)

where y =
√

k·l
(k+l)2 (µ

(k) − µ(l)). Furthermore, the covariance matrix can be de-

composed as the following: S (k) = σ2
kI +

∑qk
i=1(λi,k − σ2

k)vi,kv
T
i,k , where σ2

k =
1

dk−qk

∑dk

qk+1 λi,k , and qk is the reduction dimension. Then plug the equation to (5):

S (k+l) =
kσ2

k + lσ2
l

k + l
I+

k

k + l

qk
∑

i=1

(λi,k−σ2
k)vi,kv

T
i,k+

l

k + l

ql
∑

i=1

(λi,l−σ2
l )vi,lv

T
i,l+yyT

(6)

where vi,k, λi,k, σk and vi,l λi,l, σl are the ith eigenvector, ith eigenvalue, energy

dissipation in dimension reduction of the covariance matrix S (k) and S (l) respectively.

We reformulate the Equ. 6 to get:

S (k+l) =
kσ2

k + lσ2
l

k + l
I + LLT (7)
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whereL = [
√

ρ(λ1,k − σ2
k)v1,k, · · · ,

√

ρ(λqk,k − σ2
k)vqk,k,

√

(1− ρ)(λ1,l − σ2
l )v1,l,

· · · ,
√

(1 − ρ)(λql,l − σ2
l )vql,l, y] and ρ = k

k+l
.

Due to the computation complexity of decomposing matrix LLT directly, we decom-

pose LTL instead, to get the decomposition of matrix S (k+l). Let Q = LTL. The size

of matrix Q is q×q, where q = qk+ql+1. We utilize the partitioned matrix to represent

the matrix Q =

(

Σ β

βT α

)

, where Σ =

(

Σ1 A

AT Σ2

)

,α = yT y and

βi =

{

√

ρ(λi,k − σ2
k)v

T
i,ky 1 ≤ i ≤ qk

√

(1− ρ)(λi,l − σ2
l )v

T
i,ly qk < i < q

A(i, j) =
√

ρ(1 − ρ)(λi,k − σ2
k)(λj,l − σ2

l )v
T
i,kvj,l

Σ1 = diag{ρ(λ1,k − σ2
k), · · · , ρ(λqk ,k − σ2

k)}

Σ2 = diag{(1− ρ)(λ1,l − σ2
l ), · · · , (1− ρ)(λql,l − σ2

l )}

Then the subspace updating process can be done efficiently by decomposing the matrix

LTL and the process is detailed in Algorithm 2. In this way, the ’gist’ features of the

target can be captured efficiently and be utilized to predict the state of the target in the

following frames.

Algorithm 2. The Subspace Updating Algorithm

1: Update the mean value of the subspaces, µ(k+l) = k
k+l

µ(k) + l
k+l

µ(l).

2: Set ρ = k
k+l

. Get the observation covariance matrix S (k+l) = (ρσ2
k + (1− ρ)σ2

l )I + LLT

3: Set Q = LTL =

(

Σ β

βT α

)

, the size of matrix Q is (q + 1) × (q + 1). Decompose Q as:

Q = UΓU T , where Γ = diag{ξ1, ξ2, · · · , ξq+1}, U TU = I . Then Vqk+ql+1 = LUΓ−
1
2 ,

where matrix Vqk+ql+1 = [v1,k+l, · · · , vqk+ql+1,k+l] is composed by the first qk + ql + 1
eigenvectors of the covariance matrix S (k+l).

4: The observation covariance matrix is represented as: S (k+l) = (ρσ2
k + (1 − ρ)σ2

l )I +
∑qk+ql+1

i=1 ξivi,k+lv
T
i,k+l. The first qk + ql + 1 eigenvalues of the covariance matrix

can be updated as λi,k+l = σ(k+l)2 + ξi, and the sigma value is updated as σ2
k+l =

1
d−qk+l

(
∑qk+ql+1

i=qk+l+1 λi,k+l + (d− qk − ql − 1)σ(k+l)2), then σ(k+l)2 = ρσ2
k + (1− ρ)σ2

l ,

and qk+l = argmini(
∑

i λi,k+l
∑qk+ql+1

j=1
ξj

≥ η).

4 Local Spatial Context with Contributors

As discussed in Section 1.2, local spatial context information is derived from the area

that surrounds the target to track (here we use surrounding patches as local context

information, as shown in the left side of Fig. 1). The role of local context has been stud-

ied in psychology for the task of object detection [24,25], The study in [24] has proved

the effectiveness of local context for object detection, and Sinha et al. [25] found that

the inclusion of local contextual regions such as facial bounding contour substantially
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improves face detection performance. Besides, the works in [13,16,17] show that the

local context information including supporters and distracters will enforce the robust-

ness of the tracker, even when the target is partially invisible. However, different from

[13] which constructs complex relative motion model between the target and auxiliary

objects and [17] which statistically counts the matched supporters around the target,

our proposed strategy focuses on the weak correlation between every contributor and

the target, and then combines them to construct a strong classifier to locate the tar-

get. Multiple instance boosting is exploited to efficiently select the most representative

contributors and combines them together to build the supporting field.

For multiple instance boosting, each selected weak classifier corresponds to a weak

correlation, and the correlations are combined together to vote the score (namely the

spatial energy item in Equ. 3) of a candidate sample. The vote is expressed as:

U (Zt|f(Zt)) ∝ −
∑

i

hi
t (8)

where hi
t is the ith selected weak classifier at time t. Please refer to [5,26] for more

details about multiple instance boosting algorithm.

Contributor Selection. For the contributor, similar to [17], we defines it as the key

point around the target that can help to locate the target. Here, SURF descriptor is em-

ployed to find the contributors around the target which is generated by the fast Hessian

algorithm. When updating, the SURF descriptor is generated in the rectangle around the

center of the target with the width rd · w and height rd · h, where rd is the enlargement

factor and we set rd ∈ [0.1, 0.6] in our experiments, w and h are the width and height

of the target in the current frame respectively. If the extracted candidate contributors are

more than the required ones, we randomly select some of them to be the final contribu-

tors. On the other hand, if they are inadequate, we randomly generate some more points

to supplement them.

Feature Construction. In order to incorporate the structure information of the target,

we try to partition the target and contributors into a few blocks, and the structure infor-

mation is constructed with the relationships between each blocks. The structure infor-

mation comes from two parts: one is the mutual-pairwise features between the blocks

of the target and the contributors, and the other one is the self-pairwise features of inner

blocks of the target itself. Then, these numerous relations are collected to build a feature

pool. For simplicity, the structure features are produced by the difference between the

sums of pixel values in each block. Certainly, other relation expression strategy can be

considered, e.g., Normalized Cross-Correlation (NCC). The structure features between

the target and contributors deliver the holistic and detailed information of the supporting

field.

Separately divide the target and contributors into N = n1 × n2 blocks (we set n1 =
5, n2 = 5 in our experiments), I (x, y) represents the pixel value of the image at position

(x, y), and Pi(s) represents the ith block of the target or contributors corresponding

to the target state s . Here we define the distance function d(Pm(s1),Pn(s2)) of two

blocks:

d(Pm(s1),Pn(s2)) =
∑

(i,j)∈Pm(s1)

I (i, j)−
∑

(i,j)∈Pn(s2)

I (i, j) (9)
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Next, we collect all these weak relations to construct the feature pool. As defined in

Section 2, the contributors of the target of the state s are f (s) = {f1(s), · · · , fK (s)}.

The pairwise feature pool F is constructed from two parts, the self-pairwise feature

pool Fsp and the mutual-pairwise feature pool Fmp, that is F = Fsp ∪ Fmp. The

self-pairwise feature pool of the target itself is constructed as

Fsp = {d(Pi(s),Pj(s))|i = 1, · · · ,N ; j = 1, · · · ,N ; i �= j} (10)

The mutual-pairwise feature pool of the target and its contributors is constructed as

Fmp = {d(Pi(s),Pj(fk(s)))|i = 1, · · · ,N ; j = 1, · · · ,N ; k = 1, · · · ,K} (11)

Then the multiple instance boosting algorithm is utilized to select some of the most rep-

resentative relations to construct the supporting field. In this paper, the weak classifier

is adopted as in [11,5].

5 Experiments

5.1 Experimental Setup

We conduct some experiments to evaluate the performance of our spatial-temporal

structural context based tracker. Our tracker is implemented in C++ code and runs on

the standard PC platform. The tracker is evaluated on 10 publicly available sequences

which contains different challenging conditions, and these sequences have been issued

in previous works [5,27,7,6], which can be found in their own websites. Our tracker

is initialized with the first frame and it outputs the trajectory of the target. The quan-

titative comparison results of IVT[1], FragTrack[2], SemiBoost[3], CoGD[4], MIL[5],

PROST[6], VTD[27], TLD[7], ContextT[17] and our tracker are shown in Fig. 2, Table

1 and Table 2. More results can be found in the supplementary materials.

Parameters. The search radius r of the tracker is set in the interval [20, 50]. For the

global temporal context model, every 5 frames are combined together to update the

subspace model and the parameter η = 0.99 of η-truncation in subspace construction.

For the local spatial context model, K = 12 contributors are generated to construct the

supporting field and each of them are partitioned into 5 × 5 blocks. About 350 weak

relations are combined together to construct the supporting field. For the positive bags,

the samples are collected from the circle with the radius 8 and about 45 of the collected

samples are packaged. For the negative bags, 50 samples are collected from the ring

of the radius interval [12, 40]. The conservative updating threshold in our experiments

are set as θs ∈ [−20,−10] and θt ∈ [10, 20]. For the experimental results of other

trackers we cite here, we utilize the default parameters which are provided in public

available codes and choose the best one of 5 runs, or take the results directly from the

published papers. Specifically, we reproduce the CoGD tracker in C++ code and adopt

the parameters as described in [4].
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Fig. 2. Tracking results of our tracker, FragTrack[2], SemiBoost[3], CoGD[4], MIL[5],

PROST[6], TLD[7], VTD[27] and Context tracker[17]. The results of five trackers with relatively

better results are displayed.

5.2 Comparison with Other Trackers

Heavy Occlusion. The targets in sequence car and occlude2 undergo long-term heavy

occlusion for several times, and IVT which uses holistic appearances without any con-

sideration of spatial information fails to track the target precisely. Relatively, TLD and

Context Tracker perform very well in these two sequences, because the detection based

trackers will re-locate the target after the occlusion, even though they lose the target dur-

ing occlusion. Since the spatio-temporal context increases the possibility of our tracker

to find the real target, our tracker also has good performance. A similar object usually

confuses the trackers and finally misleads the trackers when it occludes the target, just

like what happens in sequence girl. As shown in Fig. 3, approximately at the frame

463, TLD and MIL drift away for the fully occlusion of the man’s face, whereas the

context around the target and efficient temporal constraint provide our tracker strong

discriminative ability to recognize the target.

Abrupt Motion and Motion Blur. The robustness of many trackers will be challenged

by the abrupt motion resulting from hand-hold camera in sequence pedestrian1. The

spatio-temporal context information provides enough information to ensure the robust-

ness of the tracker. Another great challenge for the trackers is the motion blur. The loss

of appearance features attributing to motion blur in the sequence animal and lemming

finally results in the inaccuracy of FragTrack, SemiBoost, and TLD. However, since our

temporal constraint model represents the target with low dimensionality ‘gist’ and the

context information that can be clearly captured helps to locate the target, our tracker

still has the best performance.

Cluttered Background. The cluttered background in sequence animal and football

actually confuses the tracker a lot, as shown in Figure 3. Lacking spatial constraints,

MIL are easily hijacked by other objects that have similar appearance with the target.
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Table 1. Comparison results of average error center location in pixel

Seq. STT IVT CoGD Semi MIL Frag PROST VTD TLD ContextT

girl 10.4 40.4 14.1 22.8 31.6 25.4 19.0 12.5 35.7 18.6

occlude2 9.39 19.7 13.3 25.2 14.2 21.5 17.2 9.40 14.9 9.25

animal 5.20 226 7.38 12.3 80.3 71.4 - 9.68 50.7 81.2

basketball 10.5 95.4 13.8 153 93.3 12.7 - 11 158 159

football 6.15 17.2 9.16 102 12.7 9.92 - 6.25 13.0 51.2

pedestrian1 5.14 109 6.75 30.3 40.3 11.5 - 62.6 8.75 61.5

panda 5.20 58.2 64.5 41.7 9.42 6.85 - 6.33 17.7 77.5

car 6.26 56.9 16.6 46.4 80.7 28.6 - 51.8 11.8 5.47

lemming 8.45 128 39.8 99.8 40.5 82.8 25.1 98 167 182

board 23.9 169 74.5 389 69.2 90.1 39.0 70.1 134 103

Table 2. Tracking results. The numbers indicate the count of successful tracking frames based

on the evaluation metric of PASCAL VOC object detection[28] in which the overlap ratio larger

than 0.5 is regarded as successfully detected.

Seq. Frames STT IVT CoGD Semi MIL Frag PROST VTD TLD ContextT

girl 502 497 353 482 388 378 378 447 502 219 328

occlude2 812 797 583 767 548 807 618 665 792 712 687

animal 71 71 3 62 56 5 13 - 66 43 48

basketball 725 715 75 335 90 175 630 - 601 15 50

football 362 346 246 292 65 272 302 - 357 272 55

pedestrian1 140 113 4 135 35 71 92 - 45 80 27

panda 1000 580 120 175 375 195 465 - 510 315 300

car 945 915 414 804 504 101 644 - 571 878 896

lemming 1336 1246 284 907 733 882 733 942 471 234 40

board 698 583 30 279 105 354 474 524 274 95 60

Although TLD considers positive and negative constraints and Context Tracker incor-

porates semantic context, they still frequently skip to other objects because they depend

too much on detectors. The complex background in sequence board and lemming sig-

nificantly increases the difficulty in tracking task. This is also the reason why many

trackers which ignore background information including FragTrack, IVT and VTD per-

form bad in these sequences. Although CoGD, MIL, and PROST take the background

into account, their performances are not as accurate as ours.

Large Variation of Pose and Scale. Some trackers such as FragTrack does not update

their model effectively and easily lose the target when 3D pose of the target changes

dramatically, as seen in sequence girl, board, and lemming. IVT, CoGD, and VTD adopt

online updating mechanism to learn the different appearances of the target, but the large

pose variation still drives them to drift away and they cannot recover. TLD and Context

Tracker are good at long term surveillance sequence, but they cannot track the target

precisely once large pose variation happens. When non-rigid motion happens in se-

quence panda and basketball, IVT and SemiBoost perform bad. Some other trackers

such as CoGD, MIL and TLD have relatively good tracking results, but they do not suc-

ceed all the time. Since VTD combines multiple basic models with different features of

the target, it performs well in these two sequences. Nevertheless, it does not consider

the surrounding information, thus its tracking performances are not satisfactory as ours,

as described in Table 1 and Table 2.
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girl �089 girl �316 girl �463 lemming �720 lemming �1040 lemming �1292

animal �012 animal �041 animal �054 football �156 football �290 football �362

basketball �022 basketball �485 basketball �700 board �073 board �574 board �602

car �520 car �687 car �786 pedestrian1�020pedestrian1�078pedestrian1�110

Fig. 3. Tracking results. The results of our tracker, CoGD[4], MIL[5], PROST[6], TLD[7],

VTD[27] and ContextT[17] are depicted as yellow, blue, black, light green, cyan, red and purple

rectangles respectively. Only the trackers with relatively better performances of each sequences

are displayed.
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Fig. 4. The red pentagram represents the true target position, the blue triangle represents the false

positive in the background and the magenta circle represents other surrounding patches. The

relation between the target and its surroundings can greatly enhance the discriminability of the

tracker.

5.3 Analysis

In these sequences, our proposed spatio-temporal structural context based tracker out-

performs some of the state-of-the-art trackers [1,2,3,4,5,6,7,27,17]. The reason why our
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STT is so stable is the introduction of global and local constraints, namely temporal

and spatial context. The linear subspace (the global temporal context constraint) repre-

sents the historical appearance variations of the target with low dimensionality feature

vectors. Only the gist of the object will be preserved and other noise and valueless in-

formation will be discarded during the process of subspace construction. Therefore, it

is easy to explain why STT is able to handle illumination variation, motion blur, and

appearance changes, because these annoying factors nearly will not influence the accu-

racy of our temporal context model. Particularly, we also can notice that STT is very

good at dealing with the distraction by other objects which is similar to the target. As

depicted in Fig. 4, when there exists a false positive near the target, while the appear-

ances of the target and the false positive are highly similar, the surroundings of these

two objects are totally varied. Once we incorporate the surrounding information around

the target to build the supporting field, it is easy to differentiate the target from the

false positive. Someone may doubt that STT will be drifted away by the surroundings if

it keeps being updated with the surrounding information. Unlike TLD, Semiboot, and

Context Tracker which utilize detectors to correct their trackers, STT is supervised by

the temporal context which only focuses the target itself. The mutual supervision of

spatio-temporal context ensures the long term stability of our STT.

6 Conclusion

In this paper, a spatio-temporal structural context based tracker is proposed. The ap-

pearance of target is described by the global temporal context information and the local

spatial context information. The structured spatial context model automatically discov-

ers the contributors around the target, and incorporates them to build a supporting field.

In order to prevent our tracker from being drifted away by the surroundings, a strong

temporal constraint model is included, which represents the target with low dimension-

ality feature vectors. Experimental comparison with the state-of-the-art tracking strate-

gies demonstrates the superiority of our proposed tracker. Our future work includes the

introduction of the adaptive balance coefficient between the global temporal context

constraint and the local spatial context constraint, which will provide more robustness.
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