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Abstract. The goal of graph clustering is to partition objects in a graph
database into different clusters based on various criteria such as vertex
connectivity, neighborhood similarity or the size of the maximum com-
mon subgraph. This can serve to structure the graph space and to im-
prove the understanding of the data. In this paper, we present a novel
method for structural graph clustering, i.e. graph clustering without gen-
erating features or decomposing graphs into parts. In contrast to many
related approaches, the method does not rely on computationally expen-
sive maximum common subgraph (MCS) operations or variants thereof,
but on frequent subgraph mining. More specifically, our problem for-
mulation takes advantage of the frequent subgraph miner gSpan (that
performs well on many practical problems) without effectively generat-
ing thousands of subgraphs in the process. In the proposed clustering
approach, clusters encompass all graphs that share a sufficiently large
common subgraph. The size of the common subgraph of a graph in a
cluster has to take at least a user-specified fraction of its overall size. The
new algorithm works in an online mode (processing one structure after
the other) and produces overlapping (non-disjoint) and non-exhaustive
clusters. In a series of experiments, we evaluated the effectiveness and ef-
ficiency of the structural clustering algorithm on various real world data
sets of molecular graphs.

1 Introduction

Mining graph data has attracted a lot of attention in the past ten years [1–3].
One family of methods is concerned with mining subgraph patterns in graph
databases [1, 2]. The criteria for interestingness are often based on the support
of a pattern in the graph database, e.g., requiring a minimum and/ or maxi-
mum frequency, closedness, freeness or class-correlation. However, in all of these
cases, the structural diversity of graph databases, i.e. the existence of groups of
similar or dissimilar graphs, is not explicitly taken into account or revealed by
the algorithm. Vice versa, the structural composition and existence of groups of
similar graphs has a serious impact on the output and runtime performance of

J.L. Balcázar et al. (Eds.): ECML PKDD 2010, Part III, LNAI 6323, pp. 213–228, 2010.
c© Springer-Verlag Berlin Heidelberg 2010



214 M. Seeland et al.

pattern mining algorithms. To gain insights into the structural characteristics of
graph data sets, we developed a graph clustering algorithm that discovers groups
of structurally similar and dissimilar graphs. The algorithm can be practically
useful for a variety of purposes: benchmarking other graph mining algorithms,
descriptor calculation (e.g., for QSAR studies), computing local models for clas-
sification or regression (e.g., one per cluster) and calculation of the so-called
applicability domain of models.

To illustrate the impact of structural diversity on graph mining results, we con-
sider two data sets of molecular graphs of the same size and with approximately
the same number of atoms per molecule. The first data set, the COX2 data set
(http://pubs.acs.org/doi/suppl/10.1021/ci034143r), contains 414 com-
pounds, which possess a relatively high structural homogeneity. The second data
set is a subset of the CPDB data set (http://potency.berkeley.edu/) that
matches the COX2 data both in the number of structures and the number of
atoms per structure. The results of a typical graph mining representative, gSpan,
and the results of the graph clustering algorithm presented in this paper are
shown in Figure 1. In the upper part of the figure, we see the huge difference
in the runtime and the number of discovered patterns. For structurally homo-
geneous data (COX2), the number of patterns and runtime explodes, whereas
for structurally heterogeneous data (CPDB) the algorithm behaves as expected.
The reason for this difference in performance becomes evident in the graph clus-
tering results in the lower part of Figure 1. As can be seen, there is a small
number of large clusters in COX2 and a large number of small clusters in CPDB
(for each value of a parameter that is varied on the x-axis). This indicates a high
degree of structural homogeneity in COX2 and a low degree in CPDB, and also
hints at the usefulness of graph clustering to make the characteristics of a graph
database explicit.

The graph clustering algorithm presented in this paper operates directly on
the graphs, i.e. it does not require the computation of features or the decom-
position into subgraphs. It works online (processing one graph after the other)
and creates a non-disjoint and non-exhaustive clustering: graphs are allowed to
belong to several clusters or no cluster at all. One important component of the
algorithm is a variant of gSpan to determine cluster membership. Thus, the
proposed graph clustering approach is based on a practically fast graph mining
algorithm and not on typically time-consuming maximum common subgraph
(MCS) operations [4]. In contrast to another graph clustering approach based
on graph pattern mining [5], the (often quite numerous) frequent subgraphs are
just by-products, and not part of the output of the algorithm: the actual output
consists just of the clustered graphs sharing a common scaffold.

The remainder of the paper is organized as follows. In Section 2 the methodol-
ogy of our structure-based clustering algorithm is introduced. Section 3 presents
a description of the data sets and experiments as well as an interpretation of the
results. In Section 4 related work is discussed before Section 5 gives a conclusion
and an outlook to future work.

http://pubs.acs.org/doi/suppl/10.1021/ci034143r
http://potency.berkeley.edu/


Online Structural Graph Clustering Using Frequent Subgraph Mining 215

(a) (b)

(c) (d)

Fig. 1. (Above) (a) Runtime behavior and (b) number of subgraphs for gSpan on COX2
and CPDB. (Below) Results of structural clustering on (c) COX2 and (d) CPDB.

2 Structural Clustering

The following section presents the structural clustering algorithm that can be
used to cluster graph instances based on structural similarity. Starting with
some definitions from graph theory, we present the problem definition and the
algorithm in detail.

2.1 Notation and Definitions

In the following, all graphs are assumed to be labeled, undirected graphs. To be
more precise, a graph and its subgraphs are defined as follows: A labeled graph
is represented as a 4-tuple g = (V, E, α, β), where V is a set of vertices and
E ⊆ V ×V is a set of edges representing connections between all or some of the
vertices in V . α : V → L is a mapping that assigns labels to the vertices, and
β : V × V → L is a mapping that assigns labels to the edges. Given two labeled
graphs g = (V, E, α, β) and g′ = (V ′, E′, α′, β′), g′ is a subgraph of g, (g′ ⊆ g) if:

– V ′ ⊆ V
– E′ ⊆ E
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Fig. 2. Schematic overview of the cluster membership assignment for instance xi.
Graph instances are represented by x1, ..., xn, clusters by C1, ..., Ck.

– ∀x ∈ V ′ : α′(x) = α(x)
– ∀(x, y) ∈ V ′ × V ′ : β′((x, y)) = β((x, y))

Given two arbitrary labeled graphs g1 = (V1, E1, α1, β1) and g2 =
(V2, E2, α2, β2), a common subgraph of g1 and g2, cs(g1, g2), is a graph g =
(V, E, α, β) such that there exists a subgraph isomorphism from g to g1 and from
g to g2. This can be generalized to sets of graphs. The set of common subgraphs
of a set of graphs {g1, ..., gn} is then denoted by cs({g1, ..., gn}). Moreover, given
two graphs g1 and g2, a graph g is called a maximum common subgraph of g1

and g2 if g is a common subgraph of g1 and g2 and there exists no other common
subgraph of g1 and g2 that has more vertices than g. Finally, we define the size
of a graph as the number of its vertices, i.e. |V |.

2.2 Problem Definition

Structural clustering is the problem of finding groups of graphs sharing some
structural similarity. Instances with similar graph structures are expected to be
in the same cluster provided that the common subgraphs match to a satisfac-
tory extent. Only connected subgraphs are considered as common subgraphs.
The similarity between graphs is defined with respect to some user-defined size
threshold. The threshold is set such that the common subgraphs shared among
a query graph and all cluster instances make up a specific proportion of the size
of each graph. A graph is assigned to a cluster provided that there exists at least
one such common subgraph whose size is equal or bigger than the threshold. In
this way, an object can simultaneously belong to multiple clusters (overlapping
clustering) if the size of at least one common subgraph with these clusters is
equal or bigger than the threshold. If an object does not share a common sub-
graph with any cluster that meets the threshold, this object is not included in
any cluster (non-exhaustive clustering). A graphical overview is shown in Figure
2. For one graph after the other, it is decided whether it belongs to an existing
cluster or whether a new cluster is created.
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Formally, we frame the problem of structural clustering as follows. Given a set
of graph objects X = {x1, ..., xn}, we need to assign them into clusters which may
overlap with each other. In clustering these objects, one objective is considered:
to maximize the average number of objects contained in a cluster, such that
at any time for each cluster C there exists at least one common subgraph that
makes up a specific proportion, θ, of the size of each cluster member. Considering
the state of a cluster C = {x1, ..., xm}1 at any point in time, the criterion can
formally be defined as:

∃ s ∈ cs({x1, ..., xm})∀xi ∈ C : |s| ≥ θ|xi| (1)

where s is a subgraph and θ ∈ [0, 1] is a user-defined similarity coefficient. Ac-
cording to this goal, a minimum threshold for the size of the common subgraphs
shared by the query graph xm+1 and the instances in cluster C can be defined as

minSize = θ max(|xmax|, |xm+1|), (2)

where θ ∈ [0, 1] and xmax is the largest graph instance in the cluster. To obtain
meaningful and interpretable results, the minimum size of a graph considered for
cluster membership is further constrained by a minGraphSize threshold. Only
graphs whose size is greater than minGraphSize are considered for clustering.
Thus, the identification of the general cluster scaffold will not be impeded by
the presence of a few graph structures whose scaffold is much smaller than the
one the majority of the cluster members share. This will be especially useful
in real-world applications that often contain small fragments (see the minimum
size column in Table 1).

2.3 Algorithm

The clustering algorithm works as follows. Let minGraphSize be the minimum
threshold for the graph size and minSize be the minimum threshold for the size
of the common subgraphs specified by the user and defined in Equation 2. In
the first step, an initial cluster is created containing the first graph object that
is larger than minGraphSize. In the following steps, each instance is compared
against all existing clusters. In case the query instance meets the minGraphSize
threshold and shares at least one common subgraph with one or more clusters
that meets the cluster criterion in Equation 2, the instance is added to the
respective cluster. Unlike many traditional clustering algorithms, an object is
allowed to belong to no cluster, since it is possible that an object is not similar
to any cluster. Thus, in this case, a new singleton cluster is created containing
the query instance. The proposed clustering algorithm has two main advantages
over many clustering algorithms. First, the algorithm works in an online mode,
since it does not keep all the examples in memory at the same time, but pro-
cesses them one by one in a single pass. Second, in contrast to many clustering
algorithms which assume that the number of clusters is known beforehand, our
algorithm does not require the specification of the number of clusters a priori.
1 In slight abuse of notation, we use the same indices as above.
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Algorithm 1. Structural Clustering

1: // graph[] - array of n graphs to be clustered
2: // θ - similarity coefficient (θ ∈ [0, 1])
3: // minGraphSize - minimum graph size
4: procedure SC(graph[], θ, minGraphSize)
5: // Initialize the clustering with graph[0]
6: clusters[]←∞
7: // loop over all graphs
8: for (j ← 0, n) do
9: hasCluster← false

10: if (graph[j] ≥ minGraphSize) then
11: // compare graph against all existing clusters
12: for all c ∈ clusters[] do
13: minSize← θ ·max(size(graph[j]), size(c.max))
14: // check for cluster exclusion criteria defined in Equation 3 and 4
15: if (3) || (4) then
16: continue
17: else
18: minSup← c.size + 1
19: // add graph[j] to cluster c if gSpan finds at least one
20: // common subgraph that meets the minSize threshold
21: if gSpan′′(graph[j] ∪ c.graphs,minSup, minSize) then
22: c[last + 1]← graph[j]
23: hasCluster← true
24: end if
25: end if
26: end for
27: // create new cluster if the graph was not clustered
28: if (hasCluster = false) then
29: clusters[last + 1]← newCluster(graph[j])
30: end if
31: end if
32: end for
33: end procedure

The pseudocode for the structural clustering algorithm is shown in Algorithm 1.
For computing common subgraphs, we use a modified version of the graph

mining algorithm gSpan [2] that mines frequent subgraphs in a database
of graphs satisfying a given minimum frequency constraint. In this paper,
we require a minimum support threshold of minSup = 100% in a set
of graphs, i.e. all common subgraphs have to be embedded in all cluster
members. For our experiments with molecular graph data, we use gSpan’,
an optimization of the gSpan algorithm for mining molecular databases
(http://wwwkramer.in.tum.de/projects/gSpan.tgz). Since we do not need
to know all common subgraphs of a set of graphs, but rather only want to find
out if there exists at least one common subgraph that meets the minimum size
threshold defined in Equation 2, it is possible to terminate search once a solution

http://wwwkramer.in.tum.de/projects/gSpan.tgz
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is found. Due to the structural asymmetry of the search tree (all descendants
of a subgraph are generated before its right siblings are extended), it is thus
possible to modify gSpan’ such that the procedure exits immediately when a
common subgraph is found that satisfies the minimum size threshold defined in
Equation 2. In this way, a substantial improvement in runtime performance can
be achieved. In the pseudocode, this modification of gSpan’ is called gSpan”. We
introduced a special label for edges in cyclic graphs to ensure that cylic graph
structures are not subdivided any further. Moreover, we introduced the following
two cluster exclusion criteria to avoid unnecessary calls to the gSpan” algorithm:

|xm+1| > |xmax| ∧ minSize > |xmin| (3)

|xm+1| < |xmin| ∧ minSize > |xm+1|, (4)

where xmin is the smallest graph in cluster C and xm+1 and xmax are defined
as above. Due to these exclusion criteria, graph instances which cannot fulfill
the minimum subgraph size threshold are eliminated from further consideration.
The first criterion (3) excludes too large query instances that would break up
an existing cluster while the second one (4) excludes too small query instances.
In case at least one of the two exclusion citeria is met, we omit the computation
of the common subgraphs and continue with the next cluster comparison.

In summary, three factors contribute to the practically favorable performance
of the approach: First, the use of a gSpan variant to compute a sufficiently large
common subgraph, which is known to be effective on graphs of low density.
Second, the possibility to terminate search as soon as such a subgraph is found.
Third, the cluster exclusion criteria to avoid unnecessary runs of gSpan”.

3 Experiments

To evaluate the the effectiveness and efficiency of the new structure-based clus-
tering approach introduced in Section 2.3, we conducted several experiments on
eight publicly available data sets of molecular graphs (Table 1). In this section,
we describe the experimental set-up and the results.

Baseline Comparison with Fingerprint Clustering The structure-based
clustering algorithm was compared with a baseline clustering algorithm based on
fingerprint similarity. The goal of this experiment is to determine if our algorithm
is able to increase cluster homogeneity as compared to fingerprint clustering.
Fingerprint-based similarities can be calculated extremely fast and have been
found to perform reasonably well in practice. For the fingerprint calculation of
the molecular graph data, the chemical fingerprints in Chemaxon’s JChem Java
package are used. The Tanimoto coefficient is used as similarity measure between
fingerprints, since these fingerprints are equivalent to Daylight fingerprints
(http://www.daylight.com/dayhtml/doc/theory/theory.finger.html)
which were shown to work well in combination with the Tanimoto coefficient
[4, 6].

http://www.daylight.com/dayhtml/doc/theory/theory.finger.html
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Table 1. Overview of the data sets used for assessing the structural clustering method

Short-hand n min size mean size max size

CPDBAS MOUSEa 444 2 13 64
CPDBAS RAT a 580 2 14 90

CY P b 700 1 24 86
NCIanti−HIV c 36255 3 25 139

SACAd 107 5 27 79
EPAFHMe 580 2 10 55

FDAMDDf 1216 3 23 90
RepDoseg 590 2 10 88

a http://epa.gov/NCCT/dsstox/sdf_cpdbas.html b http://pubs.acs.org/doi/suppl/10.1021/ci0500536
c http://dtp.nci.nih.gov/docs/aids/aids_data.html d http://dtp.nci.nih.gov/docs/cancer/

searches/standard_mechanism.html e http://epa.gov/NCCT/dsstox/sdf_epafhm.html
f http://epa.gov/NCCT/dsstox/sdf_fdamdd.html g http://www.fraunhofer-repdose.de/

The fingerprint-based clustering (FP clustering) works as follows. Iteratively,
each molecular graph is compared against all yet existing clusters. In case the
query graph meets a predefined minimum graph size threshold, minGraphSize,
and exceeds the minimum accepted Tanimoto similarity coefficient compared to
each graph in the cluster, the query graph is added to the respective cluster;
otherwise a new singleton cluster is created containing the query graph. As the
FP does not provide a measure for the size of the shared subgraph between
the FP cluster members, the common cluster scaffold is obtained by calculating
the MCS common to all members in order to get a comparison metric for the
proportion of the common subgraph. Note that this step can be omitted in our
structural clustering approach, since the defined similarity coefficient provides a
measure for the proportion of the common subgraph. In case a graph i is added to
a cluster, the MCS between i and the current MCS of the cluster j is calculated.
This MCS is iteratively reduced in size as it is compared to the new cluster
members that may not share the entire subgraph. For the MCS calculation the
maximum common edge subgraph algorithm was used which is implemented in
Chemaxon’s JChem java package.

Our structural clustering approach was compared with the baseline FP clus-
tering method on the data sets in Table 1. Due to space limitations, we present
the results on three representative data sets, CPDBAS MOUSE, CPDBAS RAT
and EPAFHM. In all experiments, we performed structural clustering for θ ∈
[0.2, 0.8]. For FP clustering we used a Tanimoto coefficient value in the range of
[0.4, 0.8]. Due to the different input parameters of both clustering approaches,
it is not obvious how to compare the clustering results. However, the clustering
statistics in Figure 3 suggest a correlation between the results from structural
clustering for a similarity coefficient value of x (x ∈ [0, 1]) and the results from
FP clustering for a Tanimoto similarity value of y = x − 0.1 (y ∈ [0, 1]), due
to similar clustering results in terms of the number of clusters, the number of
singletons and the mean and maximum size of the clusters. Thus, we compare
the clustering results from both algorithms with respect to this heuristic. Figure

http://epa.gov/NCCT/dsstox/sdf_cpdbas.html
http://pubs.acs.org/doi/suppl/10.1021/ci0500536
http://dtp.nci.nih.gov/docs/aids/aids_data.html
http://dtp.nci.nih.gov/docs/cancer/
searches/standard_mechanism.html
http://epa.gov/NCCT/dsstox/sdf_epafhm.html
http://epa.gov/NCCT/dsstox/sdf_fdamdd.html
http://www.fraunhofer-repdose.de/
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(a) (b)

(c) (d)

(e) (f)

Fig. 3. Results of structural clustering (a), (c), (e) vs. fingerprint clustering (b), (d),
(f) on CPDBAS MOUSE, CPDBAS RAT and EPAFHM

4 shows the histogram of the share of the MCS of the largest cluster instance for
all non-singleton FP clusters for a sample Tanimoto coefficient value of 0.6. The
results indicate that the MCS size proportions are, in many cases, below the ac-
cording structural similarity coefficient θ, which serves as a lower bound on the
MCS size proportion. In contrast, each cluster obtained by structural clustering
contains at least one common subgraph whose share of each cluster member is
equal or bigger than θ. The results suggest that, in comparison to FP clustering,
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(a) (b) (c)

Fig. 4. Histogram of the share of the MCS of the largest cluster instance for fingerprint
clustering on (a) CPDBAS MOUSE, (b) CPDBAS RAT and (c) EPAFHM using a
Tanimoto coefficient value of 0.6.

structural clustering provides a superior clustering with reduced heterogeneity
in the individual clusters in the overall clustering.

Qualitative Analysis of Structure-Based Clustering. Cluster analysis was
performed on the data set of 107 standard anti-cancer agents (SACA) whose class
labels corresponding to their mechanisms of action have been clearly classified
[7, 8]. The purpose of the experiment was to test if the clusters obtained by
structural clustering were in good agreement with the known SACA class labels.
As an external measure for clustering validation we used the Rand index to
quantify the agreement of the clustering results with the SACA classes. Larger
values for the Rand index correspond to better agreement between the clustering
results and the SACA classes, with 1.0 indicating perfect concordance. Table 2
shows the Rand index values for different similarity coefficient values. Structural
clustering clearly shows the peak point of the Rand index at θ = 0.6. In the
following, we present the clustering results for θ = 0.6 partitioning the 107
agents into 52 clusters. 23 of these clusters have at least two members, while the
final 29 clusters consist of a single graph. Figure 5(a) gives a representation of the
structural clusters with at least two instances in a hypothetical (non-Euclidean)
two-dimensional (descriptor) space, where large circles represent clusters and
dots, rectangles and stars denote cluster members according to the SACA classes.
The results indicate that the clusters tend to be associated with certain SACA
classes. Across different values for θ we observed that with a higher similarity
coefficient a finer but cleaner grouping of the structures at the cost of generating
a larger number of smaller clusters is achieved. The graphs in each class are more
cleanly discriminated from other graphs in the data set. Moreover, the clustering
produces less overlapping clusters with internally higher structural similarity. In
summary, structural clustering is capable of effectively grouping the 107 agents.
Graphs instances from the same cluster not only share common subgraphs but
are also strongly associated with specific SACA classes of mechanisms of action.

Graph Clustering Comparison Method. Our method was compared with
a graph-based clustering based on variational Dirichlet process (DP) mixture
models and frequent subgraph mining by Tsuda and Kurihara [5]. This clus-
tering approach addresses the problem of learning a DP mixture model in the
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Table 2. Number of clusters and Rand index values for structural clustering on SACA

θ 0.02 0.05 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

# Clusters 6 7 11 22 32 39 48 52 60 66 82
Rand Index 0.408 0.436 0.515 0.765 0.827 0.854 0.863 0.869 0.866 0.848 0.833

(a) (b)

Fig. 5. Results of (a) structural clustering for θ = 0.6 and (b) DP Clustering for α = 0.1
and m = 1000 on the SACA data set. The different symbols for the cluster instances
represent the six SACA classes.

high dimensional feature space of graph data. We investigated if the approach
is also able to rediscover the known structure classes in the SACA database.
In this experiment, we varied the number of features m from 50 to 5000 and
set α = 0.01, 0.1, 1, 10. Table 3 shows the experimental results for α = 0.1. The
results for α = 0.01, 1, 10 were similar. We observed that the number of clusters
increases along with the number of features for m ≤ 500; for m > 500 the number
of clusters decreases significantly. Compared to structural clustering, DP clus-
tering produces less clusters. In order to make the results more comparable to
the results of our method, we varied the user-specified parameters. Nonetheless,
it is impossible to parameterize the DP clustering method to obtain more than
seven clusters. Figure 5(b) presents the clustering results for m = 1000, since
Tsuda reported a good behavior of the algorithm for this value. Moreover, addi-
tional features can reveal detailed structure of the data. However, this advantage
presents a disadvantage at the same time, since graph clusters with thousands
of features are difficult to interpret. The DP clustering results indicate that the
method is not able to discriminate the known structure classes in the SACA
data set very well. In contrast to the results of structural clustering presented in
Section 3, the DP clusters are, in many cases, associated with different structure
classes, indicated by lower values of the Rand index (Table 3).
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Table 3. Number of clusters and size of the DFS code tree for DP clustering on the
SACA data set with α = 0.1

# Features 50 100 500 1000 5000

# Clusters 6 7 7 6 2
Rand Index 0.639 0.572 0.761 0.747 0.364

Cluster Stability. The outcome of the proposed structure-based clustering
approach is dependent on the order in which the objects in the data set are
processed. In this experiment, we studied the impact of the order of objects in the
data sets by assessing the stability of the resulting clusters. We performed several
experiments on data sets that are based on different permutations of a data
set. The Tanimoto similarity coefficient was used as a cluster-wise measure of
cluster stability, which defines the similarity between two clusters in terms of the
intersection of common instances compared to the union of common instances.
Our results suggest that structural clustering is sensitive to the particular order
of the data sets. However, the obtained clusters are stable with respect to data
permutations, since approximately 85% of the clusters of size ≥ 2 of a clustering
yield a Tanimoto similarity value of 1 compared to the most similar cluster in
a reference clustering. Taking also singletons into account, the similarity of the
clusters rises to 94%.

Performance with/without Cluster Exclusion Criteria. We investigated
the impact of the cluster exclusion criteria defined in Equation 3 and 4 on the
performance of the structure-based clustering algorithm. Therefore, we ran the
algorithm on the data sets in Table 1 with and without the exclusion criteria.
Figure 6 shows the results of the experiment on three representative data sets,
i.e. CPDBAS MOUSE, CPDBAS RAT and EPAFHM. The results indicate that
a significant performance improvement can be achieved with the application of
the cluster exclusion criteria.

Scalability Experiments. To study the scalability, we performed experiments
on ten data sets from the NCI anti-HIV database that consist of x graphs (x ∈
[1000, 10000]) with a similarity coefficient θ ∈ [0.2, 0.8]. As it can be seen in
Figure 7, the structure-based clustering algorithm scales favorably as the size of

(a) (b) (c)

Fig. 6. Runtime performance of structure-based clustering with and without clustering
exclusion criteria on (a) CPDBAS MOUSE, (b) CPDBAS RAT and (c) EPAFHM
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Fig. 7. Runtime performance of the structure-based clustering approach on ten data
sets from the NCI anti-HIV database consisting of x graphs (x ∈ [1000, 10000])

the data set increases. However, for 0.6 ≤ θ ≤ 0.8, the algorithm did not respond
within a certain timeout period for a data set size larger than 4000 / 5000 objects.
The overall results suggest that, depending on reasonable parameter settings, our
clustering approach can handle data sets of at least 10,000 graphs.

4 Related Work

Graph clustering has been extensively investigated over the past few years. Ba-
sically, there exist two complementary approaches to graph clustering [9]. The
simpler and more established one is to calculate a vectorial representation of the
graphs and use standard similarity or distance measures in combination with
standard clustering algorithms. The feature vector can be composed of prop-
erties of the graph and/ or of subgraph occurrences [10]. Yoshida et al. [11]
describe a graph clustering method based on structural similarity of fragments
(connected subgraphs are considered) in graph-structured data. The approach
is experimentally evaluated on synthetic data only and does not consider edge
and node labels. The second approach is to use the structure of the graphs di-
rectly. Tsuda and Kudo [3] proposed an EM-based method for clustering graphs
based on weighted frequent pattern mining. Their method is fully probabilistic,
adopting a binomial mixture model defined on a very high dimensional vector
indicating the presence or absence of all possible patterns. However, the num-
ber of clusters has to be specified a priori, and the model selection procedure is
not discussed in their paper. Bunke et al. [12] proposed a new graph clustering
algorithm, which is an extension of Kohonen’s well-known Self-Organizing Map
(SOM) algorithm [13] into the domain of graphs. The approach is experimentally
evaluated on the graph representations of capital letters that are composed of
straight line segments. Chen and Hu [14] introduced a non-exhaustive clustering
algorithm that allows for clusters to be overlapping by modifying the traditional
k-medoid algorithm. This implies the drawback that the number of clusters has
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to be known beforehand. In a comparison of an MCS-based clustering with a
fingerprint-based clustering, Raymond et al. [15] report that no obvious ad-
vantage results from the use of the more sophisticated, graph-based similarity
measures. They draw the conclusion, that although the results obtained from the
use of graph-based similarities are different from fingerprint-based similarities,
there is no evidence to suggest that one approach is consistently better than the
other.

Summing up, all MCS-based clustering approaches appear to suffer from the
NP-hardness of the MCS computation. While no running times are reported and
no implementations appear to be publicly available, the graph data sets tested
in related papers typically contain less than 500 graphs [4, 15]. Our choice to
modify a frequent graph miner instead is partly motivated by the observation by
Bunke et al. [16] that for dense graphs association graph methods are preferable,
whereas for sparse graphs (as the molecular structures occurring in our applica-
tion domains) methods enumerating frequent subgraphs are to be preferred.

Related to our clustering approach, Aggarwal et al. [17] propose a structural
clustering method for clustering XML data. It employs a projection based struc-
tural approach and uses a set of frequent substructures as the representative
with respect to an intermediate cluster of XML documents. Paths extracted
from XML documents are used as a document representation. To mine frequent
closed sequences, the sequential pattern mining algorithm BIDE [18] was revised
in order to terminate search once a sequence reaches a specified size. Our work is
most closely related to the graph clustering approach by Tsuda and Kurihara [5].
They presented a graph clustering approach based on frequent pattern mining
that addresses the problem of learning a DP mixture model in the high dimen-
sional feature space of graph data. To keep the feature search space small, an
effective tree pruning condition was designed. Although our clustering approach
is similarly based on frequent subgraph mining there are several important dif-
ferences. First, there are differences in the output that makes our clustering
results easier to interpret. Despite the proposed feature selection method to ob-
tain a reduced feature set, DP clustering still outputs quite numerous frequent
subgraphs which make the graph clusters difficult to interpret. In contrast, our
method actually outputs just the clustered graphs sharing a common cluster
scaffold. Second, we provide an effective online algorithm that allows for over-
lapping and non-exhaustive clustering. Non-exhaustive clustering may be more
robust in case the set of objects to be clustered contains outliers. The rationale
of overlapping clustering is that in some applications it is not appropriate for an
object to belong to only one cluster.

5 Conclusion and Future Work

We presented a new online algorithm for clustering graph objects in terms of
structural similarity. Structural graph clustering can offer interesting new in-
sights into the composition of graph data sets. Moreover, it can be practically
useful to benchmark other graph mining algorithms, to derive new substructural
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descriptors, to compute local models for classifying graphs, and to calculate the
applicability domain of models. Several experiments were designed to evaluate
the effectiveness and efficiency of our approach on various real world data sets
of molecular graphs. First of all, the results indicate that the clustering method
is able to rediscover known structure classes in the NCI standard anti-cancer
agents. Moreover, a baseline comparison with a fingerprint-based clustering was
presented. The results demonstrate that the structural clustering approach yields
larger and more representative cluster scaffolds compared to FP based clus-
tering, thus reducing the heterogeneity in the clusters obtained by fingerprint
clustering. To show the importance of the cluster exclusion criteria defined in
Equation 3 and 4, we evaluated the performance of the structural clustering
approach with and without these criteria. Finally, to investigate how well the
algorithm scales regarding running time, we performed extensive experiments
with 10,000 compounds selected from the NCI aids anti-viral screen data. In
summary, our results suggest that this overlapping, non-exhaustive structural
clustering approach generates interpretable clusterings in acceptable time. Fur-
ther work, from an application point of view, includes the following: First, it
would be interesting to investigate the effects of preprocessing steps, e.g., down-
weighting longer chains (acyclic substructures) or reduced graph representations
(transforming cycles, in chemical terms: rings, into special nodes). Second, the
algorithm could be extended easily to take into account the physico-chemical
properties of whole molecules. Technically, this would mean that only graphs
within a certain distance with respect to such global graph properties are added
to a cluster.
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