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Abstract

In the last decade, optimized treatment for non-small cell lung cancer had lead to improved prognosis, but the overall
survival is still very short. To further understand the molecular basis of the disease we have to identify biomarkers related to
survival. Here we present the development of an online tool suitable for the real-time meta-analysis of published lung
cancer microarray datasets to identify biomarkers related to survival. We searched the caBIG, GEO and TCGA repositories to
identify samples with published gene expression data and survival information. Univariate and multivariate Cox regression
analysis, Kaplan-Meier survival plot with hazard ratio and logrank P value are calculated and plotted in R. The complete
analysis tool can be accessed online at: www.kmplot.com/lung. All together 1,715 samples of ten independent datasets
were integrated into the system. As a demonstration, we used the tool to validate 21 previously published survival
associated biomarkers. Of these, survival was best predicted by CDK1 (p,1E-16), CD24 (p,1E-16) and CADM1 (p = 7E-12) in
adenocarcinomas and by CCNE1 (p = 2.3E-09) and VEGF (p = 3.3E-10) in all NSCLC patients. Additional genes significantly
correlated to survival include RAD51, CDKN2A, OPN, EZH2, ANXA3, ADAM28 and ERCC1. In summary, we established an
integrated database and an online tool capable of uni- and multivariate analysis for in silico validation of new biomarker
candidates in non-small cell lung cancer.
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Introduction

Although lung cancer treatment options have improved

significantly in the last decade leading to better survival for

patients with every stage of the disease, it is still leading cancer

related deaths in the United States with 160 thousand deaths each

year [1]. With approximately 85% of all cases the most common

type of lung cancer is non-small cell lung cancer (NSCLC), which

includes adenocarcinoma, squamous cell carcinoma, large cell

carcinoma, and bronchioloalveolar carcinoma [2]. Similarly to

other cancer entities we can expect new molecular subtypes to

emerge in the future, as it is now well accepted that the light

microscopy based histologic subdivision uses only one of many

phenotypic manifestations of the genetic changes that underlie

lung cancer development [2].

The identification of genes whose altered expression is

associated with survival differences might enclose the knowledge

to pinpoint those which could serve as indicators of the tumor’s

biological state. In essence there are two possible scenarios for this:

such biomarker can either be an individual gene or a signature

comprising a set of genes. While numerous individual genes

associated with survival have been published in the last thirty

years, new microarray-based multigene molecular prognostic

models using genomic signatures have only emerged in the last

ten years [3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19]. A pre-

requisite for the reproducibility of such genomic signatures is the

availability of raw data, which was only ensured by publications of

the last six years [9,10,11,12,13,14,15,16,17,18]. Remarkably, in

two cases not the signature as a whole, but genes as each

individually important prognostic markers have been identified

[15,19].

The initial discovery of a prognostic marker must be followed by

several validation studies. Then, the results of these are usually

synthesized in a meta-analysis including a large number of

preferably more than thousand patients. Here, by uniting relevant

data from several studies, statistical power is increased and more

accurate estimates can be achieved. Several previous meta-

analyses endeavored to perform such a meta-analysis of previous

studies for solitary gene candidates including VEGF [20], MMP9

[21], cyclin E [22], survivin [23] and CDK1 [24].

Here, we integrated available genome-level transcriptomic

datasets and then used this database to perform a meta-analysis

of previously suggested survival associated biomarker-candidates.

We also set up a global portal for such meta-analysis enabling

express validation of new candidates without large-scale bioinfor-

matic effort in an automated framework.
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Materials and Methods

Construction of lung cancer microarray database
We explored the Cancer Biomedical Informatics Grid (caBIG,

http://cabig.cancer.gov/, microarray samples are published in the

caArray project), the Gene Expression Omnibus (GEO, http://

www.ncbi.nlm.nih.gov/geo/) and The Cancer Genome Atlas

(TCGA, http://cancergenome.nih.gov) to identify lung cancer

datasets using the keywords ‘‘lung’’, ‘‘cancer’’, ‘‘small-cell’’,

‘‘NSCLC’’, ‘‘survival’’, ‘‘GPL96’’, ‘‘GPL3921’’ and ‘‘GPL570’’

(and the alternative names of the microarray platforms). The

search was restricted to publications with simultaneously available

microarray gene expression data and published clinical charac-

teristics including survival. To test randomness, a pairwise rank

test was performed for the collected clinical data including age,

sex, smoking history, histology, stage, grade, success of surgery,

radiotherapy and applied chemotherapy for all patients in WinStat

2013. For the pairwise rank test, the samples were first sorted

according to datasets. Then, each sample (‘‘X’’) in the series was

compared with all values which occur later in the list of all samples

(‘‘Y’’) - assuming randomness, the probability of X.Y is 1/2. The

correlations between clinical variables and survival were investi-

gated and Kaplan-Meier plots for these were plotted using

WinStat 2013. Among the different microarray platforms,

Affymetrix HG-U133A (GPL96), HG-U133 Plus 2.0 (GPL570)

and HG-U133A 2.0 (GPL3921) were included, because these are

regularly used and because these arrays have 22,277 probe sets in

common. The use of the same probe sets enables to measure the

same gene with similar accuracy, relative scale and dynamic range.

To avoid potential bias due to array errors, we have performed

a quality check for all arrays. In this, the background (between 19

and 218), the raw Q (between 0.5 and 14), the percentage of

present calls (over 30%), the presence of bioB-/C-/D- spikes, the

GAPDH 39to 59 ratio (below 4.3) and the beta-actin 39 to 59 ratio

(below 18) were checked. The threshold values correspond to the

95% range of the arrays as described previously [25]. Quality

control was not possible for GSE4573 as for this dataset only the

MAS5 normalized data was available. A filtering was added to the

database to exclude potentially biased arrays. Additionally, we

compared all microarray files using the ranked expression of all

genes to spot microarrays re-published in different studies.

Set-up of server for online survival calculation
The unprocessed.CEL files were MAS5 normalized in the R

environment (http://www.r-project.org) using the simpleaffy

library (http://bioinformatics.picr.man.ac.uk/simpleaffy/). We

have selected MAS5 for normalization as it ranked among the

best normalization methods when contrasted to the results of RT-

PCR measurements in our previous study [26]. Moreover, MAS5

can be applied to single arrays, enabling seamless future extensions

of the database. For the complete database, only the common

probes measured in all three array platforms were retained

(n = 22,277). Then, a second scaling normalization was performed

to center the mean expression for each array to 1000 - this

technique can significantly reduce batch effects. Gene expression

and clinical data were integrated using PostgreSQL, an open

source object-relational database system (http://www.postgresql.

org/).

To assess the prognostic value of a gene, each percentile (of

expression) between the lower and upper quartiles were computed

and the best performing threshold was used as the final cutoff in a

univariate Cox regression analysis. Histology, grade, stage, gender

and smoking history can be used in the multivariate analysis.

However, the multivariate analysis uses less patients as the

univariate analysis because not each patients has all clinical

information. Kaplan-Meier survival plot and the hazard ratio with

95% confidence intervals and logrank P value were calculated and

plotted in R using the ‘‘survplot’’ function of the ‘‘survival’’

Bioconductor package. The R script used by the software to

perform the Kaplan-Meier analysis and to identify the best cutoff

is available as R script S1.

The entire computational pathway is made accessible for re-

analysis in a platform independent online available software

running on a Debian Linux (http://www.debian.org) server

powered by Apache (http://www.apache.org). The scripts on

the server-side were developed in PHP, these control the user

interface, the requests and the delivery of the results. The RODBC

package provides a middleware layer between R and the

PostgreSQL database. This platform can be reached over the

internet via http://www.kmplot.com/lung.

Validation of previously published survival associated
biomarkers
A Pubmed search was performed to identify lung cancer

survival associated biomarkers using all combinations of the

keywords ‘‘lung cancer’’, ‘‘NSCLC’’, ‘‘adenocarcinoma’’, ‘‘squa-

mous cell carcinoma’’, ‘‘survival’’, ‘‘gene expression’’, ‘‘signature’’

and ‘‘meta analysis’’. Only studies published in English were

included. Eligibility criteria also included the investigation of the

biomarker in at least 50 patients - biomarkers described in

experimental models only were omitted. For each gene/signature

the exact conditions in which it was identified have been retrieved,

and these have been used as filtering when selecting the patients

for the survival analysis.

To visualize the performance of the various biomarkers in

datasets including different number of patients, we have generated

funnel plots depicting the hazard ratio (and confidence intervals)

on the horizontal axis vs. the sample size on the vertical axis for

each dataset. We also added an option to the online interface to

simultaneously perform the analysis in each of the individual

datasets. Finally, significance was set at p,0.01.

Results

Construction of combined lung cancer microarray
database
We identified all together 1,715 patients, 1,120 in seven GEO

datasets, 133 patients in TCGA and 462 patients in caArray.

There were no samples repeatedly published. One sample

(GSM370984) failed two parameters in the quality control - this

array was excluded from all analyses. Additionally, in 215 arrays

one parameter was out of the 95% range of all arrays - these arrays

can be excluded from analyses by selecting the ‘‘exclude outlier

arrays’’ in the online interface. Overall survival was published for

1,405 patients and time to first progression was published for 764

patients. We have collected age, sex, smoking history, histology,

stage, grade, success of surgery, radiotherapy and applied

chemotherapy for all patients - none of these parameters was

significant in the pairwise rank test indicating random distribution

of the data. A summary of these clinical properties for each dataset

used is presented in Table 1. The survival of the patients stratified

by subtype, gender, smoking history and stage is presented in

Figure 1.

Set-up of online survival analysis platform
We have employed Kaplan-Meier plots to visualize the

association between the gene under investigation and survival.

Before analysis, the patients were filtered using the available

Survival Analysis in Lung Cancer
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clinical parameters to include only those patients where the

relevance of the gene is to be assessed. Besides filtering options

specific for clinical parameters, we implemented an algorithm

which includes the use of all percentiles between the lower and

upper quartile to identify the best performing cutoff.

To our knowledge, present development is the very first system

enabling real-time multivariate survival analysis of genes in

available transcriptomic cohorts.

Validation of previously published NSCLC biomarkers
We identified 21 previously published survival associated

individual genes and 7 gene expression signatures (listed in Table

S1). Each of these biomarker candidates were investigated in a

cohort having similar clinical characteristics as the patients in

which they were originally described. For genes measured by

several probe sets on the microarrays, those with the highest

quality were used (high quality: average expression over 500 or

maximal expression over 1000, low quality: average expression

below 100, intermediate: all other probes). In case there were

several high quality probes then the best performing was used. The

analysis results are presented in Table 2 and Figure 2.

Discussion

The importance of cancer biomarkers is highlighted by the

success of the HER2 gene in breast cancer. High HER2

expression was first a marker of worse survival, but the

introduction of targeted anti-HER2 therapy changed the picture:

today HER2 positive patients have an improved prognosis

compared to women with HER2 negative disease [27].

Here, by using an integrated database of ten previously

published transcriptomic datasets, we validated the association

with survival for a set of genes in non-small-cell lung cancer.

Generally, the strongest associations were found for those also

investigated in a previous meta-analysis (VEGF, CCNE1 and

CDK1). For all of these genes higher expression was associated

with shorter survival. With over 5,000 patients, the meta-analysis

for VEGF [20] employed the highest number of patients – our

analysis also confirmed the correlation of VEGF expression and

overall survival in NSCLC patients by both univariate and

multivariate analyses. The importance of VEGF is due to the

availability of targeted agents directly inhibiting its activation.

Interestingly, for one of the genes (CDK1) a previous meta-

analysis actually rejected a correlation between the gene and

survival [24]. In contrast, our results represent a large-scale

independent validation of the gene. In individual genes, only a few

were associated with longer survival when displaying higher

expression – these include CADM1, ANXA3, ADAM28, XIAP

and XAF1. Future therapeutic targeting of these will only be

possible using a different approach than for most genes in which

higher expression actually results in shorter survival.

After surgery, about two-thirds of recurrences for early stage

disease occur at distant sites. Therefore, the eradication of

micrometastases must have a high priority as early as possible. A

previous meta-analysis of all the trials investigating chemotherapy

benefit demonstrated a 5% improvement in overall survival [28].

This survival advantage with chemotherapy was also maintained

at 9 years of follow-up. For these reasons the use of adjuvant

chemotherapy is the current standard of care for patients with

early stage NSCLC. In our analysis system we have integrated the

use of chemotherapy to enable the validation of genes specifically

related to survival in chemotherapy treated patients.

A major etiological factor for lung cancer is cigarette smoking

which accounts for nearly 85% of all cases. Lung cancer
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Table 2. Performance of previously published biomarker candidates associated with survival in non-small-cell lung cancer.

Gene Literature data Meta-analysis results

Symbol Ref. n Method used Cohort Probe ID* n & Cutoff & HR&

p value:

univariate

p value:

multivariate

Genes examined in a meta-analysis

VEGF [20] 5386 IHC, RT-PCR NSCLC 211527_x_at 1404 244 1.9 3.3e-10 ,1e-16

MMP9 [21] 2029 IHC, RT-PCR NSCLC 203936_s_at 1404 1865 1.21 0.012 -

ADE 486 734 1.51 0.02 -

CCNE1 cyclin E [22] 2606 IHC NSCLC 213523_at 1404 276 1.59 2.3e-09 0.0096

ADE 486 167 2.44 4.8e-08# 0.0013

BIRC5 survivin [23] 2703 IHC, FISH RT-PCR NSCLC stage 2 202095_s_at 185 295 1.56 0.077 -

CDC2 CDK1 [24] 2731 IHC, RT-PCR NSCLC 210559_s_at 1404 266 2.56 ,1e-16# 0.0019

Genes identified in original studies

CADM1 [15] 617 Array + IHC ADE 209031_at 486 1793 0.38 7e-12# 0.0001

CEA [33] 97 IHC NSCLC 206199_at 1404 110 1.21 0.02 -

RAD51 [34] 383 IHC NSCLC 205023_at 1404 44 1.4 2.4e-05 0.24

ADE 486 34 1.36 0.046 -

SCC 421 45 1.2 0.18 -

CDKN2A P16 [35] 106 IHC NSCLC 209644_x_at 1404 1382 1.65 1.8e-09 0.12

ADE 486 486 2.23 6.8e-08 0.012

OPN [36] 25 IHC All patients 209875_s_at 1404 4151 1.5 2.8e-06 0.0001

[37] 82 RT-PCR NSCLC surgical
margin neg.

704 4101 1.93 1.5e-06 0.0032

EZH2 [38] 106 IHC NSCLC stage 1 203358_s_at 440 600 2.07 2.6e-06 0.32

IFNAR2 [39] 113 IHC NSCLC PFS 204785_x_at 764 799 1.41 0.0012 0.05

ANXA3 [40] 125 MS, 2D-DIGE ADE 209369_at 486 811 0.49 9.2e-07 0.0093

S100A4 [41] 400 IHC SCC 203186_s_at 421 2844 1.24 0.12 -

ADAM28 [42] 90 ELISA NSCLC 205997_at 1404 143 0.69 8.3e-06 0.003

XIAP [43] 144 IHC NSCLC 206536_s_at 1404 85 0.86 0.071 -

XAF1 [44] 51 RT-PCR SCC 206133_at 421 253 0.72 0.025 -

CD24 [45] 267 IHC ADE 209772_s_at 486 618 2.45 3.6e-10 ,1e–16

ERCC1 [46] 51 RT-PCR NSCLC 203719_at 1404 685 1.65 1.4e-10 ,1e-16

HER2 [47] 83 RT-PCR NSCLC 216836_s_at 1404 898 1.25 0.0057 0.12

CD82 [48] 151 RT-PCR NSCLC 203904_x_at 1404 506 1.27 0.0029 0.09

Gene expression signatures identified using microarrays

139-gene [13] 253 Array NSCLC stage I see Table S1 440 3368.7 3.59 8.9e-16# ,1e-16

59-gene [14] 100 Array NSCLC see Table S1 1404 4038.6 0.66 9.9e-08 0.035

15-gene [10] 133 Array + RT-PCR NSCLC + chemo see Table S1 173 573.7 0.6 0.042 -

50-gene [9] 129 Array + RT-PCR + IHC SCC see Table S1 421 754.3 0.65 0.0016 0.0023

17-gene [11] 91 Array NSCLC see Table S1 1404 618.3 1.27 0.0027 0.48

6-gene [16] 138 Array + RT-PCR NSCLC PFS see Table S1 764 543.5 0.77 0.017 -

38-gene [17] 462 Array ADE see Table S1 468 437.7 0.64 0.0031 0.092

ADE: adenocarcinoma; SCC: squamous cell carcinoma; 2D-DIGE: two-dimensional difference gel electrophoresis; MS: mass spectrometry; n: number of tumor samples
included in the study; *highest quality probe, when several high quality probes then the best performing; # see Figure 2. for the survival plots; & of the univariate
analysis; multivariate: using those two parameters where most data was available (histology and gender for NSCLC, gender and stage for adenocarcinoma and
squamous cell carcinoma). Multivariate analysis was performed only for biomarker candidates significant at p,0.01 in the univariate analysis.
doi:10.1371/journal.pone.0082241.t002

Figure 1. Survival characteristics of the patients included in the database including histology of adenocarcinoma (adeno),
squamous cell carcinoma (SCC) and large cell carcinoma (large), gender, stage (only with overall survival) and smoking history.
doi:10.1371/journal.pone.0082241.g001
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development is similar to other cancer types by involving a

stepwise progression to a malignant transformation driven by the

collective effect of genetic changes induced by inhaled carcinogens

[29]. At the same time, the number of previously never-smoker

lung cancer patients is also increasing [30]. Gathering new insights

into the underlying mechanism and etiological factors in these

patients is necessary to better understand the disease and to

develop new treatment strategies [2]. In our database we had the

smoking history for 1,042 patients (of these 187 never smoker) and

the meta-analysis tool also includes the option to restrict to either

smoker on nonsmoker cohorts of patients. Additional filtering

options include the use of gender (data is available for 1,564

patients) and staging (697 patients). Combinations of these options

enable to validate biomarker candidates in sub-cohorts having a

size not reached by any of the previous individual studies.

Previously, within the directors’ challenge project for lung

adenocarcinoma, the combined use of clinical and gene expression

information performed best for predicting prognosis [17]. The

multivariate analysis in the online software enables to compare

clinical and molecular variables. Unfortunately, not all clinical

information is published for each patient - this significantly limits

the potential of any multivariate analysis including both clinical

and gene expression variables.

We must also mention some issues with meta-analyses that may

undermine their validity - these include biases related to patient

selection, to clinical heterogeneity, to different outcome measures,

to methodological and statistical techniques [31]. One option the

test for biases is plotting the sample size against the effect size as

this is usually skewed and asymmetrical in the presence a bias [32].

Basically, without a bias, the largest variation should be observed

most in the small studies and least in large studies. This is the

concept of the original funnel plot which we employed to

demonstrate the correlation between hazard rates and sample

sizes for two selected genes. We added an analysis option to our

tool to run the computations in each dataset separately to enable

swift construction of such analyses for any gene.

Finally, we have also assessed previously published gene

expression signatures to predict survival. Today, the clinical

application of multigene signatures is still controversial, as many of

them do not outperform prognostication using conventional

parameters. Here, out of seven signatures, two were capable to

predict survival in stage I [13], and in all NSCLC patients [14].

In summary, by utilizing genome-wide microarray datasets

published in the last five years, we have successfully integrated a

large scale database suitable for the in silico validation of biomarker

candidates in non-small cell lung cancer.

Supporting Information

Table S1 List of genes involved in previously published gene

sets.

(XLS)

R Script S1 R script used to generate Kaplan-Meier plots

(R)

Author Contributions

Conceived and designed the experiments: BG. Performed the experiments:

BG PS JB AL. Analyzed the data: BG PS JB AL. Contributed reagents/

materials/analysis tools: BG PS JB AL. Wrote the paper: BG.

References

1. Siegel R, Naishadham D, Jemal A (2012) Cancer statistics, 2012. CA

Cancer J Clin 62: 10–29.

2. Ramalingam SS, Owonikoko TK, Khuri FR (2011) Lung cancer: New

biological insights and recent therapeutic advances. CA Cancer J Clin 61: 91–

112.

3. Bhattacharjee A, Richards WG, Staunton J, Li C, Monti S, et al. (2001)

Classification of human lung carcinomas by mRNA expression profiling reveals

distinct adenocarcinoma subclasses. Proc Natl Acad Sci U S A 98: 13790–13795.

4. Beer DG, Kardia SL, Huang CC, Giordano TJ, Levin AM, et al. (2002) Gene-

expression profiles predict survival of patients with lung adenocarcinoma. Nat

Med 8: 816–824.

5. Lu Y, Lemon W, Liu PY, Yi Y, Morrison C, et al. (2006) A gene expression

signature predicts survival of patients with stage I non-small cell lung cancer.

PLoS Med 3: e467.

6. Hayes DN, Monti S, Parmigiani G, Gilks CB, Naoki K, et al. (2006) Gene

expression profiling reveals reproducible human lung adenocarcinoma subtypes

in multiple independent patient cohorts. J Clin Oncol 24: 5079–5090.

7. Xi L, Lyons-Weiler J, Coello MC, Huang X, Gooding WE, et al. (2005)

Prediction of lymph node metastasis by analysis of gene expression profiles in

primary lung adenocarcinomas. Clin Cancer Res 11: 4128–4135.

8. Guo L, Ma Y, Ward R, Castranova V, Shi X, et al. (2006) Constructing

molecular classifiers for the accurate prognosis of lung adenocarcinoma. Clin

Cancer Res 12: 3344–3354.

9. Raponi M, Zhang Y, Yu J, Chen G, Lee G, et al. (2006) Gene expression

signatures for predicting prognosis of squamous cell and adenocarcinomas of the

lung. Cancer Res 66: 7466–7472.

10. Zhu CQ, Ding K, Strumpf D, Weir BA, Meyerson M, et al. (2010) Prognostic

and predictive gene signature for adjuvant chemotherapy in resected non-small-

cell lung cancer. J Clin Oncol 28: 4417–4424.

11. Hou J, Aerts J, den Hamer B, van Ijcken W, den Bakker M, et al. (2010) Gene

expression-based classification of non-small cell lung carcinomas and survival

prediction. PLoS One 5: e10312.

12. Bild AH, Yao G, Chang JT, Wang Q, Potti A, et al. (2006) Oncogenic pathway

signatures in human cancers as a guide to targeted therapies. Nature 439: 353–

357.

13. Yamauchi M, Yamaguchi R, Nakata A, Kohno T, Nagasaki M, et al. (2012)

Epidermal growth factor receptor tyrosine kinase defines critical prognostic

genes of stage I lung adenocarcinoma. PLoS One 7: e43923.

14. Xie Y, Xiao G, Coombes KR, Behrens C, Solis LM, et al. (2011) Robust gene

expression signature from formalin-fixed paraffin-embedded samples predicts

prognosis of non-small-cell lung cancer patients. Clin Cancer Res 17: 5705–

5714.

15. Botling J, Edlund K, Lohr M, Hellwig B, Holmberg L, et al. (2012) Biomarker

discovery in non-small cell lung cancer: integrating gene expression profiling,

meta-analysis and tissue microarray validation. Clin Cancer Res.

16. Lee ES, Son DS, Kim SH, Lee J, Jo J, et al. (2008) Prediction of recurrence-free

survival in postoperative non-small cell lung cancer patients by using an

integrated model of clinical information and gene expression. Clin Cancer Res

14: 7397–7404.

17. Shedden K, Taylor JM, Enkemann SA, Tsao MS, Yeatman TJ, et al. (2008)

Gene expression-based survival prediction in lung adenocarcinoma: a multi-site,

blinded validation study. Nat Med 14: 822–827.

18. Hammerman PS, Hayes DN, Wilkerson MD, Schultz N, Bose R, et al. (2012)

Comprehensive genomic characterization of squamous cell lung cancers. Nature

489: 519–525.

19. Lu C, Soria JC, Tang X, Xu XC, Wang L, et al. (2004) Prognostic factors in

resected stage I non-small-cell lung cancer: a multivariate analysis of six

molecular markers. J Clin Oncol 22: 4575–4583.

20. Zhan P, Wang J, Lv XJ, Wang Q, Qiu LX, et al. (2009) Prognostic value of

vascular endothelial growth factor expression in patients with lung cancer: a

systematic review with meta-analysis. J Thorac Oncol 4: 1094–1103.

21. Peng WJ, Zhang JQ, Wang BX, Pan HF, Lu MM, et al. (2012) Prognostic value

of matrix metalloproteinase 9 expression in patients with non-small cell lung

cancer. Clin Chim Acta 413: 1121–1126.

Figure 2. Validation of 29 previously published NSCLC biomarkers. Meta-analysis of these genes and signatures in the respective sample
cohort yielded CCNE1, CDC2 and CADM1 as the best performing individual genes (A–C) and the signature of Yamauchi et al. (D). A funnel plot
depicting the hazard ratios (with confidence intervals) versus sample number for CDC2 and VEGF shows more reliable estimation with larger
database sizes (E–F).
doi:10.1371/journal.pone.0082241.g002

Survival Analysis in Lung Cancer

PLOS ONE | www.plosone.org 7 December 2013 | Volume 8 | Issue 12 | e82241



22. Huang LN, Wang DS, Chen YQ, Li W, Hu FD, et al. (2012) Meta-analysis for
cyclin E in lung cancer survival. Clin Chim Acta 413: 663–668.

23. Zhang LQ, Wang J, Jiang F, Xu L, Liu FY, et al. (2012) Prognostic value of
survivin in patients with non-small cell lung carcinoma: a systematic review with
meta-analysis. PLoS One 7: e34100.

24. Zhang LQ, Jiang F, Xu L, Wang J, Bai JL, et al. (2012) The role of cyclin D1
expression and patient’s survival in non-small-cell lung cancer: a systematic
review with meta-analysis. Clin Lung Cancer 13: 188–195.

25. Gyorffy B, Benke Z, Lanczky A, Balazs B, Szallasi Z, et al. (2012)
RecurrenceOnline: an online analysis tool to determine breast cancer recurrence
and hormone receptor status using microarray data. Breast Cancer Res Treat
132: 1025–1034.

26. Gyorffy B, Molnar B, Lage H, Szallasi Z, Eklund AC (2009) Evaluation of
microarray preprocessing algorithms based on concordance with RT-PCR in
clinical samples. PLoS One 4: e5645.

27. Dawood S, Broglio K, Buzdar AU, Hortobagyi GN, Giordano SH (2010)
Prognosis of women with metastatic breast cancer by HER2 status and
trastuzumab treatment: an institutional-based review. J Clin Oncol 28: 92–98.

28. Pignon JP, Tribodet H, Scagliotti GV, Douillard JY, Shepherd FA, et al. (2008)
Lung adjuvant cisplatin evaluation: a pooled analysis by the LACE
Collaborative Group. J Clin Oncol 26: 3552–3559.

29. Boyle P, Maisonneuve P, Bueno de Mesquita B, Ghadirian P, Howe GR, et al.
(1996) Cigarette smoking and pancreas cancer: a case control study of the search
programme of the IARC. International Journal of Cancer 67: 63–71.

30. Wakelee HA, Chang ET, Gomez SL, Keegan TH, Feskanich D, et al. (2007)
Lung cancer incidence in never smokers. J Clin Oncol 25: 472–478.

31. Trikalinos TA, Salanti G, Zintzaras E, Ioannidis JP (2008) Meta-analysis
methods. Adv Genet 60: 311–334.

32. Sterne JA, Egger M (2001) Funnel plots for detecting bias in meta-analysis:
guidelines on choice of axis. J Clin Epidemiol 54: 1046–1055.

33. Ford CH, Stokes HJ, Newman CE (1981) Carcinoembryonic antigen and
prognosis after radical surgery for lung cancer: immunocytochemical localization
and serum levels. Br J Cancer 44: 145–153.

34. Qiao GB, Wu YL, Yang XN, Zhong WZ, Xie D, et al. (2005) High-level
expression of Rad51 is an independent prognostic marker of survival in non-
small-cell lung cancer patients. Br J Cancer 93: 137–143.

35. Jin M, Inoue S, Umemura T, Moriya J, Arakawa M, et al. (2001) Cyclin D1, p16
and retinoblastoma gene product expression as a predictor for prognosis in non-
small cell lung cancer at stages I and II. Lung Cancer 34: 207–218.

36. Chambers AF, Wilson SM, Kerkvliet N, O’Malley FP, Harris JF, et al. (1996)
Osteopontin expression in lung cancer. Lung Cancer 15: 311–323.

37. Schneider S, Yochim J, Brabender J, Uchida K, Danenberg KD, et al. (2004)

Osteopontin but not osteonectin messenger RNA expression is a prognostic

marker in curatively resected non-small cell lung cancer. Clin Cancer Res 10:

1588–1596.

38. Huqun, Ishikawa R, Zhang J, Miyazawa H, Goto Y, et al. (2012) Enhancer of

zeste homolog 2 is a novel prognostic biomarker in nonsmall cell lung cancer.

Cancer 118: 1599–1606.

39. Tanaka S, Hattori N, Ishikawa N, Horimasu Y, Deguchi N, et al. (2012)

Interferon (alpha, beta and omega) receptor 2 is a prognostic biomarker for lung

cancer. Pathobiology 79: 24–33.

40. Liu YF, Xiao ZQ, Li MX, Li MY, Zhang PF, et al. (2009) Quantitative

proteome analysis reveals annexin A3 as a novel biomarker in lung

adenocarcinoma. J Pathol 217: 54–64.

41. Tsuna M, Kageyama S, Fukuoka J, Kitano H, Doki Y, et al. (2009) Significance

of S100A4 as a prognostic marker of lung squamous cell carcinoma. Anticancer

Research 29: 2547–2554.

42. Kuroda H, Mochizuki S, Shimoda M, Chijiiwa M, Kamiya K, et al. (2010)

ADAM28 is a serological and histochemical marker for non-small-cell lung

cancers. International Journal of Cancer 127: 1844–1856.

43. Ferreira CG, van der Valk P, Span SW, Ludwig I, Smit EF, et al. (2001)

Expression of X-linked inhibitor of apoptosis as a novel prognostic marker in

radically resected non-small cell lung cancer patients. Clin Cancer Res 7: 2468–

2474.

44. Chen YB, Shu J, Yang WT, Shi L, Guo XF, et al. (2011) XAF1 as a prognostic

biomarker and therapeutic target in squamous cell lung cancer. Chin

Med J (Engl) 124: 3238–3243.

45. Lee HJ, Choe G, Jheon S, Sung SW, Lee CT, et al. (2010) CD24, a novel cancer

biomarker, predicting disease-free survival of non-small cell lung carcinomas: a

retrospective study of prognostic factor analysis from the viewpoint of

forthcoming (seventh) new TNM classification. J Thorac Oncol 5: 649–657.

46. Simon GR, Sharma S, Cantor A, Smith P, Bepler G (2005) ERCC1 expression

is a predictor of survival in resected patients with non-small cell lung cancer.

Chest 127: 978–983.

47. Brabender J, Danenberg KD, Metzger R, Schneider PM, Park J, et al. (2001)

Epidermal growth factor receptor and HER2-neu mRNA expression in non-

small cell lung cancer Is correlated with survival. Clin Cancer Res 7: 1850–1855.

48. Adachi M, Taki T, Ieki Y, Huang CL, Higashiyama M, et al. (1996) Correlation

of KAI1/CD82 gene expression with good prognosis in patients with non-small

cell lung cancer. Cancer Res 56: 1751–1755.

Survival Analysis in Lung Cancer

PLOS ONE | www.plosone.org 8 December 2013 | Volume 8 | Issue 12 | e82241


