
Online Task Remapping Strategies for Fault-tolerant
Network-on-Chip Multiprocessors

Onur Derin Deniz Kabakci Leandro Fiorin

ALaRI - Faculty of Informatics - University of Lugano
Via Buffi 13, 6904, Lugano, Switzerland

name.surname@usi.ch

ABSTRACT

As CMOS technology scales down into the deep-submicron
domain, the aspects of fault tolerance in complex Networks-
on-Chip (NoCs) architectures are assuming an increasing
relevance. Task remapping is a software based solution for
dealing with permanent failures in processing elements in
the NoC. In this work, we formulate the optimal task map-
ping problem for mesh-based NoC multiprocessors with de-
terministic routing as an integer linear programming (ILP)
problem with the objective of minimizing the communica-
tion traffic in the system and the total execution time of the
application. We find the optimal mappings at design time
for all scenarios where single-faults occur in the processing
nodes. We propose heuristics for the online task remapping
problem and compare their performance with the optimal
solutions.

Categories and Subject Descriptors

B.8.1 [Performance and Reliability]: Reliability, Test-
ing, and Fault-Tolerance; B.8.2 [Performance and Relia-

bility]: Performance Analysis and Design Aids

General Terms

Algorithms, Performance, Reliability, Theory

Keywords

adaptivity, fault-tolerance, Kahn Process Networks, Networks-
on-Chip, mapping

1. INTRODUCTION
As CMOS technology scales down into the deep-submicron

domain, the aspects of fault tolerance in complex Networks-
on-Chip (NoCs) architectures are assuming an increasing
relevance. In fact, devices and interconnect are subjected to
new types of malfunctions and failures that are often hardly

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
NOCS ’11, May 1-4, 2011 Pittsburgh, PA, USA
Copyright 2011 ACM 978-1-4503-0720-8 ...$10.00.

predictable and avoidable with current design methodolo-
gies [16]. Fault tolerant approaches are therefore necessary
to overcome these limitations, and new methodologies based
either on architectural or software solutions should be ex-
plored. Faults in NoCs may affect both the communication
system and the cores, and different solutions in the litera-
ture have been proposed to address these two specific classes
of malfunctioning.

In this work, we focus on the use of software based so-
lutions for tolerating permanent failures in processing ele-
ments, and allowing a graceful degradation of the system
performance by remapping online tasks running on faulty
processors. Tasks reallocation represents an alternative so-
lution to the classical use of resource redundancy, which
exploits the intrinsic availability of spare computation re-
sources available in modern Multiprocessor Systems-on-Chip
platforms. Moreover, it represents an obliged choice in par-
ticular in embedded systems, constrained in terms of number
of computation resources available.

Our paper presents two main contributions. The first one
is a method for finding an optimal solution to mapping tasks
onto heterogeneous NoC multiprocessor systems. In most of
related works [14, 11], the problem of optimal task mapping
has been addressed in two phases. The first phase addresses
the partitioning problem, which deals with the selection of
the IP for implementing the tasks of the application. Core
mapping constitutes the second phase, where the selected
IPs are mapped on the tiles of the NoC. The partitioning
deals with optimization of the computation, whereas core
mapping deals with optimizing communication. Partition-
ing problem starts with the task graph and a list of IPs; and
results in a core communication graph (CCG). Core map-
ping problem starts with the CCG and results in a mapping
of cores to tiles. Our formulation combines the two steps,
and starting from a task graph provides as output the map-
ping of tasks onto tiles. Therefore both computation and
communication is optimized in a single step. We adopt the
platform-based design paradigm, where the NoC architec-
tural platform with its pre-selected and pre-placed IPs is al-
ready given. Goal of the methodology is to execute a given
application on this platform optimizing both computation
and communication.

To achieve this goal, we propose an ILP formulation for
the problem. The same methodology is also applicable to
the core mapping problem, by interpreting the task graph
as a CCG and by considering an additional constraint which
imposes to map at most one task onto each tile. To the best
of our knowledge, the use of ILP formulation for finding

 This is the author's version of the work. The definitive work was published in the Proceedings of the Fifth ACM/IEEE International Symposium on
 Networks-On-Chip (NOCS 2011).

an optimal solution to the task mapping problem onto het-
erogeneous NoC multiprocessors has not been presented in
previous works. There have been several works that pro-
posed as possible solution to the optimization problem the
use of heuristics [8, 18, 9, 15, 23], evolutionary algorithms
[2, 25, 11, 3, 22, 7] and a mix of both [19, 17]. However, the
usual approach followed is to compare the performance of
the proposed solutions with each other, or with a solution
found by applying simulated annealing. An ILP formulation
guarantees to find an optimal solution to the problem; how-
ever, since the ILP solution is not scalable, and the needed
execution time will increase significantly with the dimension
of the NoC, we acknowledge that heuristics and evolutionary
algorithms are of significant value. Nevertheless, an optimal
solution to the problem will also serve a good deed in com-
paring the performances of heuristics-based solutions. In
fact, results of approaches based on evolutionary algorithms
are not guaranteed to be optimal whereas ILP results are.

ILP-based solutions to similar problems have been pro-
posed in the case of contention-aware application mapping
on NoC [5]; floor-planning and topology generation for NoC
[20]; task mapping and scheduling on multi-core architec-
tures [24]; task mapping on shared memory bus-based het-
erogeneous MPSoCs [6]. It is possible to classify the previ-
ous works in terms of the tackled problem (core mapping,
task mapping, partitioning, allocation, scheduling, routing,
topology generation); optimization goals (execution time,
delay, communication, power, robustness, contention, flexi-
bility); optimization techniques (heuristics, evolutionary al-
gorithms, exact solutions); architectural platform (fixed/free
NoC topology, fixed/free routing). Following such criteria,
our solution can be classified as an ILP solution to the task
mapping problem with minimization of total execution time,
and minimization of total communication, on mesh-based
NoC architectures with fixed routing algorithms.

Two of the most related works that target the applica-
tion mapping problem are [21] and [12]. They both apply
an optimization based on the use of genetic algorithms; the
former optimizes the total execution time and communica-
tion load; the latter optimizes the throughput, area and flex-
ibility. With respect to these works, our approach focuses
on platforms in which each NoC tile has one computational
core (either programmable or non-programmable).

In this work, we refer to a mesh-based NoC multiprocessor
architecture. Our analytical model for calculating the total
execution time of the application is valid for Kahn Process
Networks (KPN). Thus our task graphs are restricted to
KPN task graphs making our solution applicable to mostly
streaming applications. Our formulation is valid for any
deterministic routing scheme. Deterministic routing implies
that communication binding is implied by the task mapping
and that the task mapping is the only degree of freedom.

Our second main contribution is an online solution to the
task remapping problem in presence of run-time faults. We
propose heuristics and make a comparison of performance
degradations between heuristics and the optimal solutions
found by using the ILP formulation for various fault scenar-
ios. Regarding related work in this research direction, in
[1] authors address the core remapping problem in NoCs.In
that case, the only concern for remapping is the minimiza-
tion of the communication load. Whereas, in our case, we
move individual tasks on a core to, possibly, different cores.
Their remapping strategy can be imported to our context as

the center of gravity (CoG) technique described in section
4. Our results reveal that CoG does not perform well for
the computation objective.

The remainder of this paper is organized as follows. Sec-
tion 2 presents the ILP formulation for the mapping prob-
lem. In Section 3, we apply the proposed methodology to an
MPEG2 decoder case study, showing the obtained results.
In Section 4, we propose and evaluate a set of heuristics for
online task remapping using the MPEG2 decoder case study.
Finally, in Section 5, we discuss conclusions and future work.

2. ILP FORMULATIONOFTHEPROBLEM

• A task graph gt = (Vt, Et) is composed of tasks t ∈ Vt

and data dependencies e ∈ Et ⊆ Vt × Vt.

• An architecture graph ga = (Va, Ea) is composed of
processing nodes n ∈ Va and bidirectional communi-
cation links l ∈ Ea ⊆ Va × Va.

• A task mapping βt : Vt → Va is an assignment of tasks
t ∈ Vt to nodes n ∈ Va.

• A communication binding βc : Et → Ei
a is an assign-

ment of data dependencies e ∈ Et to paths of length
i in the architecture graph ga. A path p of length i is
given by i-tuple p = (l1, l2, ..., li).

• path : (Ea, Ea) → Ei
a is a function that implements

a deterministic routing algorithm and returns a path
between two given nodes. Path set P is the set of paths
between all node pairs:

P = {pk : pk = path(ni, nj), ∀ni, nj ∈ Va ∧ ni 6= nj}

Initial and final nodes of a path can be obtained by
source and sink functions.

pk = path(ni, nj)⇒ source(pk) = ni ∧ sink(pk) = nj

• The task graph can be annotated with demand values
where demand di on a data dependency ei ∈ Et, de-
notes the required bandwidth between the two tasks.
Demand values are application specific and can be cal-
culated by profiling the application with a test input.

• The architecture graph can be annotated with capacity
values where capacity on an architectural link li ∈ Ea,
ci, denotes the maximum bandwidth of the communi-
cation link between two architectural nodes.

• Core type set C consists of core types Ci and lists the
types of cores available in a given NoC platform.

We would like to minimize the total network traffic and
the computation time.

2.1 Minimization of the communication cost
In order to formulate the problem, we define several inci-

dence matrices, namely decision variables XNT , Y PE ; and
parameters MTE , MNP and MPL.

XNT is an incidence matrix of size |Va|×|Vt| that denotes
the mapping of tasks onto the nodes and it consists of the
main decision variables of the problem.

X
NT
ij =

1, if tj ∈ Vt is bound onto node ni ∈ Va

0, otherwise

Y PE is an incidence matrix of size |P |× |Et| that denotes
which path realizes which data dependency. Y PE depends
on the task mapping, hence it constitutes the second set of
our decision variables.

Y
PE

ij =

1, if ej ∈ Et is mapped to pi ∈ P

0, otherwise

MTE is an oriented incidence matrix of size |Vt| × |Et|
that relates the tasks to the data dependencies. For a given
task graph, MTE is known.

M
TE
ij =

8

<

:

1, if ∃tk, ej = (ti, tk) ∈ Et

−1, if ∃tk, ej = (tk, ti) ∈ Et

0, otherwise

MNP is an oriented incidence matrix of size |Va| × |P |
that denotes the relation between the paths and the nodes
that the path connects. For a given routing algorithm and
architecture graph, MNP is known.

M
NP
ij =

8

<

:

1, if source(pj) = ni

−1, if sink(pj) = ni

0, otherwise

MPL is an incidence matrix of size |P |×|Ea| that denotes
the relation between all paths resulting from a given deter-
ministic routing algorithm and the links that make up the
path. For a given routing algorithm and architecture graph,
MPL is known.

M
PL
ij =

1, if lj ∈ pi

0, otherwise

Constraint 1 (routing): We have derived the following
linear equation that constrains the task mapping and the
communication binding with each other. Such a constraint
arises from the routing algorithm implemented in the NoC.

X
NT

M
TE = M

NP
Y

PE (1)

Constraint 2 (task mapping): A task can be mapped
exactly on one node.

X
TN

1|Va| = 1|Vt| (2)

where 1m is a matrix of size m×1 with all elements equal to
1. It is to be noted that XTN = (XNT)T . Similar relation
holds for all defined matrices.

Constraint 3 (communication mapping): A data depen-
dency can be mapped at most on one path.

Y
EP

1|P | ≤ 1|Et| (3)

Constraint 4 (capacity): Total bandwidth demand on a
link lj should not exceed the capacity of the link cj .

M
LP

Y
PE

d ≤ c (4)

Objective 1 (communication cost): The total traffic on
the links can be calculated as the sum of all demands di

on the links of the paths that arise according to a given
mapping with the following equation.

min: d
T

Y
EP

M
PL

1|Ea| (5)

This is a static model that has also been used in [18] and
disregards the congestion on the links. However at low load
conditions, it is argued that it is a good approximation.

Note that the communication cost takes into account the
inter-tile communication done over the NoC between tasks

and not the intra-tile communication when communicating
tasks are mapped onto the same node. The latter is usually
much faster compared to the former.

Therefore the objective for communication is the mini-
mization of the total traffic (Equation 5) subject to rout-
ing algorithm constraints (Equation 1), mapping constraints
(Equation 2, 3) and capacity constraints (Equation 4). Since
the equations are linear, this problem can be solved with an
integer linear programming (ILP) solver.

Given our analytical cost model, it is obvious that when
communication cost is taken as the only objective, the re-
sulting mapping will always be that all tasks are mapped on
a single node. However this will reflect badly on the compu-
tation time due to non-parallelism. Therefore we introduce
a conflicting second objective that favors tasks to be placed
on separate nodes.

2.2 Minimization of the total computation time
In order to formulate the problem we define additional

parameters in matrix form, namely MTC
cap , T TC

cap and MNC .

MTC
cap is an incidence matrix of size |Vt| × |C| that de-

notes which core types are capable of realizing which tasks.
Programmable cores would be capable of realizing differ-
ent kinds of task functionalities, whereas non-programmable
cores would have dedicated functions.

M
TC
cap ij

=

1, if Cj ∈ C is capable of realizing task ti ∈ Vt

0, otherwise

T TC
cap is a matrix of size |Vt| × |C| that denotes the com-

pletion times of all tasks on all core types for a test input.
This value is obtained multiplying the number of times the
task body is executed by the time it takes to process at each
firing. Given an application and architecture, this matrix
can be obtained by offline profiling.

T
TC
cap ij

=

(

completion time of ti on Cj , if MTC
cap ij

= 1

0, if MTC
cap ij

= 0

MNC is an incidence matrix of size |Va| × |C| that de-
notes the core type of the architectural nodes. Given an
architecture, MNC is known.

M
NC
ij =

1, if ni ∈ Va is of core type Cj ∈ C

0, otherwise

MTC is an incidence matrix of size |Vt|× |C| that denotes
the actual mapping of tasks on core types. Given a task to
node mapping matrix, XTN , it can be calculated as

M
TC = X

TN
M

NC

T T is a matrix of size |Vt|×1 that denotes the completion
time of the task on the core type that it is mapped onto. It
can be calculated as

T
T = (MTC . T

TC
cap) 1|C|

where the ’.’ operator represents element-wise matrix mul-
tiplication.

T N is a vector of size |Va| × 1. T N
i denotes the sum of

execution times of tasks that are mapped on the same node,
ni. It can be calculated as

T
N = X

NT
T

T

Constraint 5 (capability): All tasks should be mapped
on cores that are capable of implementing those tasks.

M
TC = X

TN
M

NC ≤M
TC
cap (6)

Objective 2 (total execution time): We calculate the to-
tal computation time of the application by finding the max-
imum of the sum of the execution times of tasks mapped on
the same core.

min: max(T N) = max(XNT (((XTN
M

NC) . T
TC
cap) 1|C|))

(7)
where max is a function that returns the maximum value in
a given vector.

This is a static model that has also been used in [21] and
disregards the context switching times. However it is ar-
gued that this model has a reasonable accuracy for typical
streaming applications.

The objective for computation is the minimization of the
total execution time (Equation 7) subject to capability con-
straints (Equation 6). The objective function in Equation
7 is not linear due to the multiplication XNT XTN and the
max function. However, there are linearization techniques
that transform these equations to linear counterparts by in-
troducing new variables.

Linearization of the product of binary decision variables
in XNT XTN by introducing new binary decision variables:

xijkl = xij ∗ xkl ⇒

8

<

:

xijkl ≤ xij

xijkl ≤ xkl

xijkl ≥ xij + xkl − 1

Linearization of max() can be done by introducing a new
variable:

min : max(x, y, z)⇒ min : t subject to t ≥ x, t ≥ y, t ≥ z

2.3 Multi-objective ILP optimization
We have defined two ILP problems that optimize two ob-

jectives separately. What we actually need is the multi-
objective optimization of the combined problem that should
result in a Pareto curve representing optimal solutions with
different trade-offs for the two objectives. This is done by
employing the ε-constraint method [4]. This method relies
on adding one of the objectives as a constraint by requiring
it to be smaller than a chosen threshold. By solving the ILP
problem several times for different values of the threshold
and for a single objective, we obtain a Pareto curve. It is
also possible to adjust the density of Pareto curve by adjust-
ing the intervals of the threshold range.

It is worth-noting that the solutions found by the multi-
objective ILP optimization are absolute optima unlike what
would be obtained by evolutionary algorithms. However we
acknowledge the fact that the time required to solve the ILP
problem will be multiplied by the desired number of Pareto
points.

3. CASE STUDY
We use the MPEG-2 decoder task graph shown in Figure

1 and offline profiling taken from [21]; and the XY-routing-
based NoC architecture in Figure 2 to illustrate the problem
formulation better. The throughput of the links of the NoC
is 100 MBps. The video is 15 seconds long with a resolution
of 704×576 pixels and the frame rate is 25 frames per second.

MTE can be obtained from the task graph. MNP and
MPL can be obtained from the given architecture. We avoid

t2

t3

t4

t5

t6

t7

t8

t1

e 1

t9

t10

t11 t12

2e

e 3

4e

5e

6e
7e

8e 9e

10e

11e

12e

13e

14e

Figure 1: An MPEG-2 encoder task graph with 12 tasks

n
1

l1

n

n
7

n
8

n
5

n

n
6

n
9

2 3

4

l

l5l4l3

l

l11 l12

l10l9

l7l6

2

8

n
RISC RISC

RISC

RISC RISCDSP

DSPDSP

DSP

Figure 2: A 3x3 mesh-based NoC with RISC and DSP pro-
cessors

writing them here due to space constraints. T CT
cap and d are

given in Table 1 and 2 respectively. Other parameters are
listed as follows:

ci = 100 MBps, 1 ≤ i ≤ |Ea|

C = {C1, C2} = {RISC, DSP}

M
TC
cap = 112×2

3.1 Results
The case study described in section 3 has been solved

using the IBM ILOG CPLEX optimizer. Figure 3 shows
the Pareto curve obtained. Considering that it was a 15
seconds long video clip, the solutions that satisfy the frame
rate requirement are those that have computation time less
than 15 seconds. One can choose the mapping among the
rest by trading off computation time and communication
load.

In order to have case studies with more number of tasks,
we have solved the optimal mapping problem of 2 and 3
MPEG2 decoders giving us two more task graphs with 24
and 36 tasks. The Pareto curves for these cases are also
plotted in Figure 3. The time for the ILP solver to obtain
these solutions was in average 0.78 sec, 27.87 sec and 1740
sec per Pareto point for the cases with 12, 24 and 36 tasks,
respectively.

Table 1: Execution times (in seconds) of tasks on the available core types (T CT
cap)

Tasks
Core type

t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 t11 t12
RISC 0.13 6.68 0.06 2.00 2.00 0.05 0.06 2.00 2.00 0.05 12.33 0.18
DSP 0.20 8.52 0.04 1.25 1.25 0.04 0.04 1.25 1.25 0.04 8.51 0.30

Table 2: Bandwidth demands (in MBps) of edges (d)

d1 d2 d3 d4 d5 d6 d7 d8 d9 d10 d11 d12 d13 d14

1.0 34.6 28.1 28.1 28.1 28.1 65.0 34.6 28.1 28.1 28.1 28.1 65.0 15.2

Figure 3: Pareto curves for optimal mapping of three appli-
cations with 12, 24 and 36 tasks

4. ONLINE TASK REMAPPING
Our overall goal is enabling the execution of KPN appli-

cations on NoC platforms in a fault tolerant manner. Self-
testing and self-checking are two techniques to detect and,
in the case of the latter, mask faults. After the faulty unit
is detected, it is followed by a reconfiguration phase. This
phase enables isolation of the fault and continuity of opera-
tion, possibly with a degraded performance.

The problem we are considering here is the reconfiguration
problem in the case of a fault in processing cores. Reconfigu-
ration in this particular case implies remapping of tasks onto
the remaining healthy cores. Upon receiving a fault signal
via the fault detection mechanisms, an algorithm will decide
on the new task assignment configuration. This has to be
a very fast algorithm, in order not to disrupt operation for
long. The study of migration cost in the context of real-time
systems is not the focus of this paper. We are currently more
focused on minimizing performance degradation rather than
minimizing migration costs. The task remapping algorithm
can work in two ways: limited task migration where only
the tasks on the faulty core are migrated to other cores; and
unlimited task migration where any task can be migrated.
The former will have a shorter reconfiguration time due to
less number of tasks being migrated. However it will most
likely result in a more degraded performance. The latter
will certainly require a long reconfiguration time while hav-
ing higher chance of less/non- degraded performance.

We propose an optimal solution to online task remapping
problem based on our ILP formulation for both limited and

unlimited task migration cases, and five different heuristics
for the limited task migration case. Obviously the ILP so-
lution cannot be applied at run-time. However, it makes it
possible to measure the quality of the heuristic methods.

4.1 Optimal Task Remapping
In the case of unlimited task migration, we are able to ob-

tain the Pareto curves for all single fault scenarios by adding
the faulty core constraint below to the original ILP formu-
lation.

Constraint (faulty core): Given a faulty node nf , a new
constraint is added to the ILP formulation that forbids map-
ping of tasks on the faulty node nf .

|Vt|
X

j=1

X
NT
fj = 0 (8)

In the case of limited task migration, the below constraint
should be added as well.

Constraint (migrate only tasks on the faulty core): Given
a faulty node nf and an initial task mapping MNT , a new
constraint is added to limit the reconfiguration just to the
tasks that are running on faulty node nf .

X
NT
ij = M

NT
ij , 1 ≤ i ≤ |Va|, 1 ≤ j ≤ |Vt|, i 6= f (9)

For an heterogeneous NoC with all IP cores being different
from each other, there can be |Va| successive single faults,
eventually leading to no remaining non-faulty cores. The
total number of different configurations N , from all healthy
cores to one healthy core is

N =

|Va|
X

i=1

|Va|

i

!

− 1 = 2|Va| − 1

It means that we will need to calculate N Pareto curves for
all these different scenarios. It is a heavy task even if it is
done offline. One way of implementing the task remapping
algorithm is by means of a look-up table where we keep the
resulting optimal mappings for all Pareto curves of the N
different configurations. Assuming we have p points in a
Pareto curve, encoding such information would cost B bits
calculated as

B = (2|Va| − 1) p |Vt| ⌈log(|Va|)⌉

For a case with |Va| = 9, |Vt| = 12, p = 5, we have
B = 14.97 Kbytes. As the number of cores with same
type increases and also depending on their placements in
the NoC, this number decreases due to the occurrences of
symmetrical configurations. In case the local memory in the

tiles is restricted and/or the size of the NoC and the problem
increase, this memory requirement may be prohibitive to ap-
ply the look-up table technique. However, it has been argued
that such an offline technique can provide more predictable,
faster reconfiguration times, and optimal degradations [13].

4.2 Center of Gravity method (CoG)
This heuristic places the task to be migrated in a core that

resides in between the other tasks it communicates with con-
sidering the amount of communication. This heuristic takes
into account only communication cost. More formally, let
ti ∈ Lf be the tasks that reside on the faulty core nf . Let
peers be a function that returns the list of tasks that a given
task communicates with. Let weight be a function that re-
turns the bandwidth demand between two given tasks. Let
coord be a function that returns the (x,y) coordinates of
a given node in mesh-based NoC. Let map be a function
that returns the node of the given task. We transform the
problem to finding the center of gravity of masses by con-
sidering the weights of communication as the masses of the
peer tasks. Then the new node ni for task ti ∈ Lf will have
coordinates coord(ni)

coordi =

P

tj∈peers(ti)
coord(map(tj)) weight(tj , ti)

P

tj∈peers(ti)
weight(tj , ti)

, ti ∈ Lf

It is most likely that coordi will not have integer values,
so we round it to obtain actual coordinates.

coord(ni) = ⌊coordi + (0.5, 0.5)⌋

If ni is not a core type that can realize the task ti or
it is a faulty core itself, then we look at the node in the
close vicinity with minimum computational load. If there
are tasks that communicate with each other and reside in
the faulty node, the resulting mapping will depend on which
order those tasks are being migrated. A logical decision is to
sort the tasks with respect to their total bandwidth demands
on their edges connected to the tasks on the non-faulty nodes
and then migrate them in descending order.

4.3 Nonidentical Multiprocessor Scheduling
The objective regarding computation is equivalent to the

scheduling of independent tasks on nonidentical processors
in order to minimize the makespan. We adopt three heuris-
tics that has been proposed in [10] for this problem. They
are slightly different from each other and it has been shown
that there are examples in which each of them is superior
to others. However they have different orders of complex-
ity, O(n), O(n log n), O(n2). These heuristics consider only
computation cost when remapping the tasks. It may be the
case that the resulting remapping does not satisfy the ca-
pacity constraints (Equation 4).

NMS-A: Lf is the set of tasks to be migrated from the
faulty node nf . T N

j is the sum of the execution times of
tasks assigned to node nj . Let Lj be the set of tasks assigned
to core nj . The execution time T TN

cap ij
of task ti if assigned

to node nj can be calculated in matrix form as

T
TN
cap = T

TC
cap M

CN

The task ti ∈ Lf is scheduled on the core that minimizes its
finishing time. Inputs to the NMS-A algorithm is the initial
mapping L and T N before the fault occurrence. The output
is the new mapping L.

Algorithm 1 NMS-A Algorithm

1: for all ti ∈ Lf do

2: find the smallest j such that T N
j + T TN

cap ij
≤ T N

l +

T TN
cap il

for all 1 ≤ l ≤ |Va|, l 6= f

3: Lj ← Lj ∪ {ti}, Lf ← Lf \ {ti}
4: T N

j ← T N
j + T TN

cap ij

5: end for

6: return

NMS-B : For each task ti ∈ Lf , Algorithm NMS-B first
orders the tasks in Lf according to decreasing min{T TN

cap ij
:

1 ≤ j ≤ |Va|}, and then calls Algorithm NMS-A.
NMS-C : This algorithm iteratively schedules the tasks by

choosing a task from Lf that gives the least finishing time.

Algorithm 2 NMS-C Algorithm

1: while Lf 6= ∅ do

2: find a task ti ∈ Lf and nj ∈ |Va| ∧ nj 6= nf such
that T N

j + T TN
cap ij

≤ T N
j + T TN

cap kj
for all tk ∈ Lf and

T N
j + T TN

cap ij
is minimum.

3: Lj ← Lj ∪ {ti}, Lf ← Lf \ {ti}
4: end while

5: return

4.4 Localized NMS Heuristic (LNMS)
The heuristics proposed above take into account either

communication or computation. In order to propose a heuris-
tic that performs well for both objectives, we limit the region
of nodes where we employ the NMS heuristics. This algo-
rithm is called the Localized NMS (LNMS) where commu-
nication cost is bounded by selecting a remapping region for
each task that falls in between the peer tasks. We define a
region function that returns a list of nodes for a given task.
All three NMS heuristics can have localized versions such
as LNMS-A, LNMS-B and LNMS-C. Rather than rewriting
the whole pseudocode, we highlight the differences in each
case:
LNMS-A and LNMS-B : In line 2, instead of 1 ≤ j ≤ |Va|,
we have nj ∈ region(ti).
LNMS-C : In line 2, instead of nj ∈ Va, we have nj ∈
region(ti).

We define a parametrized region(ti, s) function that takes
an integer s and returns a set of s nodes making up a re-
gion centered around the center of gravity of the peer tasks
of the given task ti. For s = 1, LNMS reduces to CoG
(LNMS(1) ≡ CoG) and for s = |Va|, it reduces to NMS
(LNMS(|Va|) ≡ NMS). Therefore we should be able to
obtain a sub-optimal Pareto curve for the range 1 ≤ s ≤ |Va|
that represents different trade-off points between communi-
cation and computation.

4.5 Results
For the case study described in section 3, we obtained

Pareto curves for 3 different fault scenarios: one with faulty
core n1, one with faulty n2 and one with faulty n5. There
are only 3 unique single fault scenarios for the 3x3 NoC in
Figure 2 because of symmetry relations (faulty n1 ≡ faulty
n3 ≡ faulty n7 ≡ faulty n9 etc). Figure 4a shows the Pareto-
optimal remappings in the case of faulty n5 and unlim-
ited task migration along with the Pareto-optimal mappings

(a) Pareto curves for optimal mappings and optimal remappings
(unlimited task migration)

(b) Comparison of results between heuristics, optimal remap-
pings and the initial mapping (limited task migration)

Figure 4: Remapping results for the MPEG2 decoder case study on a 3x3 mesh NoC-based heterogeneous multi-processor
architecture with a faulty node n5

when all nodes are working. The performance degradation
is clearly visible especially for more constrained values of
total execution time. This is simply because the required
parallelism, thus number of nodes, increases for such values
and n5 plays a key role as the central node of the mesh.

The limited task migration case has also been considered.
Starting with an initial optimal mapping (t7, t8, t9, t10 →
n1; t11 → n2; t3, t4, t5, t6 → n3; t1, t2, t12 → n5), the Pareto-
optimal remappings have been calculated for 3 different cases:
faulty n1, faulty n2 and faulty n5. Table 3 lists Pareto-
optimal remappings in limited case for the 3 fault scenarios
along with the performance degradation ratios with respect
to the initial mapping situation prior to the fault.

We have also calculated the remappings for the three fault
scenarios by using the CoG, NMS-A, NMS-B, NMS-C and
LNMS-C(4) heuristics. Table 4 lists these results providing
also the degradation with respect to the initial mapping.
The results for limited task remapping in the fault scenario
of n5 is visualized in Figure 4b. It shows the proximity of
the remapping results of 5 heuristics to the metrics of the
initial mapping and the Pareto-optimal remappings. The
results reveal that LNMS-C(4) gives a remapping that is the
closest to the optimal remapping values for all fault scenarios
incurring at most 6% more degradation than Pareto-optimal
remappings for both of the objectives.

5. CONCLUSION AND FUTUREWORK
We formulated the optimal task mapping problem for mesh-

based NoC multiprocessors with deterministic routing as an
integer linear programming (ILP) problem with the objec-
tive of minimizing the communication traffic in the system
and the total execution time of the application. We used it
to obtain optimal task remappings in presence of faults in
processing cores. Several heuristics has been proposed and
compared with respect to the optimal remappings. We have
found out that LNMS-C has performed the best (within 6%

Table 3: Degradation achieved by Pareto-optimal limited
remappings for all single fault scenarios

faulty
mapping

exe.time com.cost degradation
node (obj. 1) (obj. 2)

obj. 1 obj. 2
none initial 8.51 283.6 - -

n1

Pareto1 8.51 305.2 1.00 1.08
Pareto2 8.55 296.4 1.00 1.05
Pareto3 9.05 261.8 1.06 0.92
Pareto4 9.80 205.6 1.15 0.73
Pareto5 11.09 184.0 1.30 0.65

n2
Pareto1 8.51 413.6 1.00 1.46
Pareto2 16.44 298.8 1.93 1.05

n5

Pareto1 8.51 352.8 1.00 1.24
Pareto2 8.52 284.6 1.00 1.00
Pareto3 8.72 283.6 1.02 1.00
Pareto4 8.81 268.4 1.04 0.95
Pareto5 10.79 200.2 1.27 0.71
Pareto6 10.92 199.2 1.28 0.70

proximity to optimum) in the MPEG2 decoder case study
with three fault scenarios. We wish to continue this work by
evaluating our heuristics on more applications, larger NoC
dimensions and more fault scenarios. Although our exam-
ples involved single fault scenarios, the proposed technique
can be applied in presence of successive faults.

Acknowledgment

This work was funded by the European Commission un-
der the Project MADNESS (No. FP7-ICT-2009-4-248424).
The authors would like to thank Mariagiovanna Sami and
Z. Caner Taskin for their valuable comments on this work.

Table 4: Degradation achieved by proposed heuristics for all
single fault scenarios

faulty
Approach

exe.time com.cost degradation
node (obj. 1) (obj. 2)

obj. 1 obj. 2
none initial 8.51 283.6 - -

n1

CoG 10.99 296.4 1.29 1.05
NMS-A 8.51 603.8 1.00 2.13
NMS-B 8.51 603.8 1.00 2.13
NMS-C 8.51 482.6 1.00 1.70
LNMS-C(4) 8.51 314 1.00 1.11

n2

CoG 16.44 298.8 1.93 1.05
NMS-A 8.51 413.6 1.00 1.46
NMS-B 8.51 413.6 1.00 1.46
NMS-C 8.51 413.6 1.00 1.46
LNMS-C(4) 8.51 413.6 1.00 1.46

n5

CoG 17.53 199.2 2.06 0.70
NMS-A 8.51 370.0 1.00 1.30
NMS-B 8.51 384.2 1.00 1.35
NMS-C 8.51 383.2 1.00 1.35
LNMS-C(4) 9.02 298.8 1.06 1.05

6. REFERENCES

[1] C. Ababei and R. Katti. Achieving network on chip
fault tolerance by adaptive remapping. Int. Parallel
and Distributed Processing Symposium, 0:1–4, 2009.

[2] G. Ascia, V. Catania, and M. Palesi. Multi-objective
mapping for mesh-based noc architectures. In Int.
Conf. on Hardware/Software Codesign and System
Synthesis, pages 182 – 187, Sep 2004.

[3] K. Bhardwaj and R. Jena. Energy and bandwidth
aware mapping of ips onto regular noc architectures
using multi-objective genetic algorithms. In Int. Sym.
on System-on-Chip, pages 27–31, Oct 2009.

[4] V. Chankong and Y. Haimes. Multiobjective Decision
Making Theory and Methodology. North-Holland, 1983.

[5] C.-L. Chou and R. Marculescu. Contention-aware
application mapping for network-on-chip
communication architectures. In IEEE Int. Conf. on
Computer Design, pages 164–169, 2008.

[6] C. Erbas, S. Cerav-Erbas, and A. Pimentel.
Multiobjective optimization and evolutionary
algorithms for the application mapping problem in
multiprocessor system-on-chip design. IEEE Tran. on
Evolutionary Computation, 10(3):358–374, June 2006.

[7] A. R. Fekr, A. Khademzadeh, M. Janidarmian, and
V. S. Bokharaei. Bandwidth/fault
tolerance/contention aware application-specific noc
using pso as a mapping generator. In Proc. of The
World Congress on Engineering, pages 247–252, 2010.

[8] J. Hu and R. Marculescu. Energy-aware mapping for
tile-based noc architectures under performance
constraints. In Proc. of the Asia and South Pacific
Design Automation Conf., pages 233 – 239, Jan 2003.

[9] J. Hu and R. Marculescu. Energy and performance
aware mapping for regular noc architectures. IEEE
Trans. on Computer-Aided Design of Integrated
Circuits and Systems, 24(4):551–562, April 2005.

[10] O. H. Ibarra and C. E. Kim. Heuristic algorithms for
scheduling independent tasks on nonidentical

processors. J. ACM, 24:280–289, April 1977.

[11] R. K. Jena and P. K. Mahanti. Design space
exploration of network-on-chip - a system level
approach. Int. J. of Computing and ICT Research,
2:17–25, June 2008.

[12] S. Le Beux, G. Bois, G. Nicolescu, Y. Bouchebaba,
M. Langevin, and P. Paulin. Combining mapping and
partitioning exploration for noc-based embedded
systems. J. Syst. Archit., 56:223–232, 2010.

[13] C. Lee, H. Kim, H.-w. Park, S. Kim, H. Oh, and
S. Ha. A task remapping technique for reliable
multi-core embedded systems. In Proc. of the Eighth
Int. Conf. on Hardware/software codesign and system
synthesis, pages 307–316, 2010.

[14] T. Lei and S. Kumar. A two-step genetic algorithm for
mapping task graphs to a network on chip
architecture. In Proc. of Euromicro Symposium on
Digital System Design, pages 180 – 187, Sep 2003.

[15] C. Marcon, N. Calazans, F. Moraes, A. Susin, I. Reis,
and F. Hessel. Exploring noc mapping strategies: an
energy and timing aware technique. In Proc. of DATE,
pages 502–507, March 2005.

[16] R. Marculescu. Networks-On-Chip: The Quest for
On-Chip Fault-Tolerant Communication. In Proc. of
ISVLSI, page 8, Washington, DC, USA, 2003.

[17] M. Modarressi and H. Sarbazi-Azad. Power-aware
mapping for reconfigurable noc architectures. In 25th
Int. Conf. on Computer Design, pages 417 –422, 2007.

[18] S. Murali and G. De Micheli. Bandwidth-constrained
mapping of cores onto noc architectures. In Proc. of
the Design Automation and Test Europe Conf.,
volume 2, pages 896–901, Feb 2004.

[19] K. Srinivasan and K. Chatha. A technique for low
energy mapping and routing in network-on-chip
architectures. In Proc. of the Int. Symposium on Low
Power Electronics and Design, pages 387 – 392, 2005.

[20] K. Srinivasan, K. S. Chatha, and G. Konjevod.
Linear-programming-based techniques for synthesis of
network-on-chip architectures. IEEE Trans. Very
Large Scale Integr. Syst., 14:407–420, April 2006.

[21] L. Thiele, I. Bacivarov, W. Haid, and K. Huang.
Mapping applications to tiled multiprocessor
embedded systems. In Seventh Int. Conf. on
Application of Concurrency to System Design, pages
29 –40, July 2007.

[22] I. Walter, I. Cidon, A. Kolodny, and D. Sigalov. The
era of many-modules soc: revisiting the noc mapping
problem. In 2nd Int. Workshop on Network on Chip
Architectures, pages 43 –48, Dec 2009.

[23] X. Wang, M. Yang, Y. Jiang, and P. Liu. A
power-aware mapping approach to map ip cores onto
nocs under bandwidth and latency constraints. ACM
Trans. Archit. Code Optim., 7:1–30, 2010.

[24] Y. Yi, W. Han, X. Zhao, A. T. Erdogan, and
T. Arslan. An ilp formulation for task mapping and
scheduling on multi-core architectures. In Proc. of the
Design Automation and Test Europe Conf., pages
33–38, 2009.

[25] W. Zhou, Y. Zhang, and Z. Mao. Pareto based
multi-objective mapping ip cores onto noc
architectures. In IEEE Asia Pacific Conf. on Circuits
and Systems, pages 331 –334, Dec 2006.

