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Abstract Template attacks are a special kind of side-
channel attacks that work in two stages. In a first stage,
the attacker builds up a database of template traces col-
lected from a device which is identical to the attacked device,
but under the attacker’s control. In the second stage, traces
from the target device are compared to the template traces
to recover the secret key. In the context of attacking ellip-
tic curve scalar multiplication with template attacks, one can
interleave template generation and template matching and
reduce the amount of template traces. This paper enhances
the power of this technique by defining and applying the
concept of online template attacks, a general attack tech-
nique with minimal assumptions for an attacker, who has
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very very limited control over the template device. We show
that online template attacks need only one power consump-
tion trace of a scalar multiplication on the target device; they
are thus suitable not only against ECDSA and static elliptic
curve Diffie–Hellman (ECDH), but also against elliptic curve
scalar multiplication in ephemeral ECDH. In addition, online
template attacks need only one template trace per scalar bit
and they can be applied to a broad variety of scalar multiplica-
tion algorithms. To demonstrate the power of online template
attacks, we recover scalar bits of a scalar multiplication using
the double-and-add-always algorithm on a twisted Edwards
curve running on a smartcard with an ATmega163 CPU.

Keywords Side-channel analysis · Template attacks · Scalar
multiplication · Elliptic curves

1 Introduction

Side-channel attacks exploit various physical leakages of
secret information or instructions from cryptographic devices,
and they constitute a constant threat for cryptographic imple-
mentations. We focus on power analysis attacks that exploit
the power consumption leakage from a device running some
cryptographic algorithm. Attacking elliptic curve cryptosys-
tems (ECC) with natural protection against side-channel
attacks, e.g., implementations using Edwards curves, is
quite challenging. This form of elliptic curves, proposed
by Edwards in 2007 [17] and promoted for cryptographic
applications by Bernstein and Lange [5], has several advan-
tages compared to elliptic curves in Weierstrass form. For
instance, the fast and complete formulas for addition and
doubling make these types of curves more appealing for
memory-constrained devices and at the same time resis-
tant to classical simple power analysis (SPA) techniques.
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Although considered a very serious threat against ECC
implementations, differential power analysis (DPA), as pro-
posed in [14,31], cannot be applied directly to ECDSA or
ephemeral elliptic curve Diffie–Hellman (ECDH) because
the secret scalar is used only once. This is incompatible with
the requirement of DPA to see large number of power traces of
computations on the same secret data. In order to attack var-
ious asymmetric cryptosystems, new techniques that reside
between SPA and DPA were developed, most notably col-
lision [3,18,23,40,41,44] and template attacks [15,35,39].
The efficiency of most of those collision-based attacks is
shown only on simulated traces; no practical experiments
on real ECC implementations have verified these results. To
the best of our knowledge, only two practical collision-based
attacks on exponentiation algorithms are published, each of
which relies on very specific assumptions and deals with very
special cases. Hanley et al. exploit collisions between input
and output operations of the same trace [19]. Wenger et al.
in [42] performed a hardware-specific attack on consecutive
rounds of a Montgomery ladder implementation. However,
both attacks are very restrictive in terms of applicability to
various ECC implementations as they imply some special
implementation options, such as the use of López-Dahab
coordinates, where field multiplications use the same key-
dependent coordinate as input to two consecutive rounds. In
contrast, our attack is much more generic as it applies to
arbitrary choices of curves and coordinates, and many scalar
multiplication algorithms.

Related work Collision attacks exploit leakages by compar-
ing two portions of the same or different traces to discover
when values are reused. The Big Mac attack [41] is the first
theoretical attack on public key cryptosystems, in which only
a single trace is required to observe key dependencies and col-
lisions during an RSA exponentiation. Witteman et al. in [43]
performed a similar attack on the RSA modular exponen-
tiation in the presence of blinded messages. Clavier et al.
introduced in [13] horizontal correlation analysis, as a type
of attack where a single power trace is enough to recover the
private key. They also extended the Big Mac attack by using
different distinguishers. Horizontal correlation analysis was
performed on RSA using the Pearson correlation coefficient
in [13] and triangular trace analysis of the exponent in [12].

The first horizontal technique relevant to ECC is the
doubling attack, presented by Fouque and Valette in [18].
Homma et al. in [23] proposed a generalization of this attack
to binary right-to-left, m-ary and sliding-window methods.
An attack proposed by Bauer et al. in [3] is a type of horizontal
collision correlation attack on ECC, which combines atom-
icity and randomization techniques. A recent attack on ECC
is horizontal cross-correlation [20]; the approach is similar to
[43] but uses only a single trace. The most recent horizontal
attacks on ECC are single-trace attacks on a software imple-

mentation of scalar multiplication with precomputed points
(for example, an m-ary implementation) [25]. The presented
attacks target a single trace and employ clustering and cor-
relation to recover scalar bits.

Template attacks are a combination of statistical model-
ing and power analysis attacks consisting of two phases, as
follows. The first phase is the profiling or template-building

phase, where the attacker builds templates to characterize
the device by executing a sequence of instructions on fixed
data. The second phase is the matching phase, in which the
attacker matches the templates to actual traces of the device.
The attacker is assumed to possess a device which behaves
the same as the target device, in order to build template
traces while running the same implementation as the tar-
get. Medwed and Oswald demonstrated in [35] a practical
template attack on ECDSA. However, their attack required
an offline DPA attack on the EC scalar multiplication opera-
tion during the template-building phase, in order to select the
points of interest. They also need 33 template traces per key
bit. Furthermore, attacks against ECDSA and other elliptic
curve signature algorithms only need to recover a few bits of
the ephemeral scalar for multiple scalar multiplications with
different ephemeral scalars and can then employ lattice tech-
niques to recover the long-term secret key [4,15,39]. This is
not possible in the context of ephemeral ECDH: An attacker
gets only a single trace and needs to recover sufficiently many
bits of this ephemeral scalar from side-channel information
to be able to compute the remaining bits through, for exam-
ple, Kangaroo techniques.

Another template attack on ECC is presented in [21].
This attack exploits register location-based leakage using a
high-resolution inductive EM probe; therefore, the attack is
considerably expensive to execute. A template attack on a
wNAF ECC algorithm is presented in [45]. However, this
attack is applied to an implementation that is not protected
with either scalar randomization or base-point randomiza-
tion. Furthermore, contrary to our approach, all of the above
attacks require multiple traces to construct a template.

This paper is an extended version of the original paper on
online template attacks [2]. In the meantime, from the origi-
nal paper on OTA until this extended version is written, two
related works are published that verify the applicability of
OTA on different curves. The first work from Dugardin et.al
[16] performed OTA on Weierstrass (Brainpool and NIST)
curves using EM emanations. A follow-up work from Özgen
et. al [38] verified that OTA can successfully give the cor-
rect prediction on the scalar bit, by using distinguishers from
machine learning (classification methods).

Our contribution In this paper, we introduce an adaptive tem-
plate attack technique, which we call online template attacks

(OTA). This technique is able to recover a complete scalar
from only one power trace of a scalar multiplication using
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this scalar. The attack is characterized as online, because we
create the templates after the acquisition of the target trace.
While we use the same terminology, our attack is not a typi-
cal template attack; i.e., no preprocessing template-building
phase is necessary. Our attack functions by acquiring one tar-
get trace from the device under attack and comparing patterns
of certain operations from this trace with templates obtained
from the attacker’s device that runs the same implementa-
tion. Pattern matching is performed at suitable points in the
algorithm, where key bit-related assignments take place by
using an automated module based on the Pearson correlation
coefficient.

The attacker needs only very limited control over the
device used to generate the online template traces. The main
assumption is that the attacker can choose the input point
to a scalar multiplication, an assumption that trivially holds
even without any modification to the template device in the
context of ephemeral ECDH. It also holds in the context of
ECDSA, if the attacker can modify the implementation on the
template device or can modify internal values of the compu-
tation. This is no different than for previous template attacks
against ECDSA.

Our methodology offers a generic attack framework,
which is applicable to various forms of curves (Weierstrass,
Edwards and Montgomery curves) and implementations.
As a proof of concept, we attack the doubling operation
in the double-and-add-always algorithm. Contrary to the
doubling attack [18], our attack can be launched against
right-to-left algorithms and Montgomery ladder. We fur-
ther note that Medwed and Oswald perform a very special
template attack based on a set of assumptions: DPA per-
formed in advance to find intermediate points for templates,
implementation with Hamming weight leakage and applica-
bility only to ECDSA. Online template attacks do not have
these restrictions; they need only a single target trace and
only a single template trace per key bit. The advantages
of our attack over previously proposed attacks are as fol-
lows:

– It does not require any cumbersome preprocessing
template-building phase, but a rather simple post-
processing phase.

– It does not assume any previous knowledge of the leakage
model.

– It does not require full control of the device under attack.
– It works against SPA-protected and to some extent DPA-

protected implementations with unified formulas for
addition and doubling.

– Countermeasures such as scalar randomization and
changing point representation from affine to (determinis-
tic) projective representation inside the implementation
do not prevent our attack.

– It is applicable to the Montgomery ladder and to constant-
time (left-to-right and right-to-left) exponentiation algo-
rithms.

– It is experimentally confirmed on an implementation
of double-and-add-always scalar multiplication on the
twisted Edwards curve used in the Ed25519 signature
scheme.

– Our attack is a chosen input attack—it means that the
adversary needs to control the input of a scalar multipli-
cation (but not the scalar). Most ECC implementations
use inputs in affine (or compressed affine) coordinates
and internally convert to projective representation. In this
paper, we show how to apply the attack if an attacker con-
trols either the projective coordinates input or affine input
(even if it is compressed).

– Our attack works when the target trace and the tem-
plate traces are acquired from the same device and also
when the target trace is acquired from a different device
than the template traces, as shown in our experimental
results. Note that using the same device for both tem-
plates and target traces, would actually make the attack
easier, because there would be no vertical or horizontal
misalignment in the traces.

Online template attacks require only one target trace and
one online template trace per key bit. We therefore claim
that our technique is the most efficient practical side-channel
attack applicable to ephemeral scalar ECC. When applied
to ECDSA, the proposed attack can be used in combination
with lattice techniques similar to [4,39], in order to derive
the whole private key from a few bits of multiple ephemeral
keys.

As mentioned in the previous subsection, this paper is
an extended version of the original paper on online tem-
plate attacks [2]. We present the theoretic primitives of
the attack and verify our theory with new experiments
with different types of input, namely with 256-bit pro-
jective input, with the reduced 255-bit projective coor-
dinates and finally with affine coordinates. These exper-
iments verify the applicability of OTA and provide a
complete practical setting for this type of side-channel
attack.

Organization of the paper This paper is organized as fol-
lows. We introduce and explain OTA in Sect. 2. Section 3
gives specific examples of how the attack applies to dif-
ferent scalar multiplication algorithms. Section 4 presents
our practical OTA on double-and-add-always scalar multi-
plication. A discussion of how the proposed attack can be
applied to implementations that include countermeasures that
randomize the algorithm or operands is given in Sect. 5.
Finally, Sect. 6 summarizes our contribution and concludes
the paper.
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2 Online template attacks

We define an online template attack as a side-channel attack
with the following conditions:

1 The attacker obtains only one power trace of the crypto-
graphic algorithm involving the targeted secret data. This
trace is called the target trace. We call the device from
which the target trace is obtained the target device. This
property makes it possible to attack scalar multiplication
algorithms with ephemeral scalar and with randomized
scalar.

2 The attacker is generating template traces after having
obtained the target trace. These traces are called (online)

template traces.
3 The attacker obtains the template traces on the target

device or a similar device1 with very limited control over

it, i.e., access to the device to run several executions with
chosen public inputs. The attacker does not rely on the
assumption that the secret data are the same for all tem-
plate traces.

4 At least one assignment in the exponentiation algorithm
is made depending on the value of particular scalar bit(s),
but there are no branches with key-dependent computa-
tions. Since we are attacking the doubling operation, this
key-dependent assignment should be during doubling.
As a counterexample, we note that the binary right-to-
left add-always algorithm for Lucas recurrences [29] is
resistant to the proposed attack, because the result of the
doubling is stored in a non-key-dependent variable.

In the following, we show that online template attacks
are feasible and can be applied against implementations of
various scalar multiplication algorithms. In fact, we show that
we need only a single template trace per scalar bit. Transfer of
the approach to the corresponding exponentiation algorithms
(for example in RSA or DSA) is straightforward. Transfer
to other cryptographic algorithms is clearly not trivial; we
consider online template attacks as a specialized means to
attack scalar multiplication and exponentiation algorithms.

2.1 Attack description

Template attacks consist of two phases, template building

for characterizing the device and template matching, where
the characterization of the device together with a power
trace from the device under attack is used to determine the
secret [34]. Therefore, the first condition of our proposed
attack is typically fulfilled by all attacks of this kind.

1 By similar device, we mean the same type of microcontroller running
the same algorithm. Observe that the target device may be the same as
the target one.

It is well known that template attacks against scalar
multiplication can generate templates “on-the-fly,” i.e., inter-
leaving the template-building and matching phases. See, for
example, [35, Sec. 5.3]. We take this idea further by building
templates after the target trace has been obtained (condition
2). The attacker, being able to do things in this order, needs
only limited control over the target device. Moreover, the
attacker is not affected by randomization of the secret data
during different executions of the algorithm, since he always
has to compare his template traces with the same target trace.

The basic idea consists of comparing the target trace and
an online template trace while executing scalar multiplication
and then finding similar patterns between them, based on
hypothesis on a bit for a given operation. The target trace is
obtained only once with input P . For every bit of the scalar,
we need to obtain an online template trace with input k P, k ∈

Z, where k is chosen as a function of our hypothesis on this
bit. The attack requires to send a different point to the device,
thus generating a template trace for each of these points. Each
template trace should be then compared with the part of the
target trace that corresponds to the manipulated bit. However,
due to jitter, for example, it may be not easy to determine that
part. Therefore, we compare the template trace with the target
trace at each sample offset.

We performed pattern matching for our traces using an
automated module based on the Pearson correlation coef-
ficient, ρ(X, Y ), which measures the linear relationship
between two variables X and Y . For power traces, the corre-
lation coefficient shows the relationship between two points
of the trace, which indicates the leakage of key-dependent
assignments during the execution of a cryptographic algo-
rithm. The leakage can be due to differences in Hamming
weight or Hamming distance of the variables, but the exact
leakage model does not affect online template attacks in any
way. Extensions to other leakage models and distinguish-
ers are straightforward. Our pattern matching corresponds
to a list of the correlation coefficients that show the rela-
tionship between all samples from the template trace to the
same consecutive amount of samples in the target trace. If
our hypothesis on the given key bit is correct, then the pat-
tern match between our traces at the targeted operation will
be high (in our experiments it reached 99%).

In this way, we can recover the first i bits of the key. Knowl-
edge of the first i bits provides us with complete knowledge of
the internal state of the algorithm just before the (i +1)th bit
is processed. Since at least one operation in the loop depends
on this bit, we can make a hypothesis about the (i + 1)th bit,
compute an online template trace based on this hypothesis
and correlate this trace with the target trace at the relevant
predetermined point of the algorithm.

A separate question is how many templates need to be cre-
ated per attacked bit. In this paper, we show that only a single
template trace per key bit is sufficient if a correct template can
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be safely recognized from any incorrect template, see Sect. 4
for examples. Essentially, for each experiment we establish
a correlation threshold to recognize correct templates from
incorrect ones; then, we can create one template (for bit 0,
for example), and depending on the template correlation and
the threshold, we can recover the scalar bit. If the difference
between the correlation for correct and incorrect templates
is sufficiently large, then the threshold can be learned either
through profiling or by computing two templates (for 0 and
1) in the first few iterations.

Furthermore, note that if a bit is incorrectly identified then
all subsequent templates would not match with the target
trace. In case this happens, then it is possible to backtrack to
the last successful matching and restart the attack.

3 Applying the attack to scalar multiplication

algorithms

3.1 Attacking the left-to-right double-and-add-always

algorithm

The core idea and feasibility of the attack is demonstrated
by considering the example of the double-and-add-always
algorithm described in Algorithm 1. We note that the first
execution of the loop always starts by doubling the input point
P , for all values of k. We assume that kx−1 = 1. Depending
on the second most significant key bit kx−2, the output of
the first iteration of the algorithm will be either 2P or 3P .
For any point P , we can, therefore, get a power trace for the
operation 2P , i.e., we let the algorithm execute the first two
double-and-add iterations. In our setup, we can zoom into the
level of one doubling, which will be our template trace. Then
we perform the same procedure with 2P as the input point to
obtain the online template trace that we want to compare with
the target trace. If we assume that the second most significant
bit of k is 0, then we compare the 2P template with the output
of the doubling at first iteration. Otherwise, we compare it
with the online template trace for 3P .

Algorithm 1: The left-to-right double-and-add-always
algorithm

Input: P , k = (kx−1, kx−2, . . . , k0)2
Output: Q = k · P

R0 ← P ;
for i ← x − 2 down to 0 do

R0 ← 2R0 ;
R1 ← R0 + P ;
R0 ← Rki

;
end

return R0

Assuming that the first (i −1) bits of k are known, we can
derive the i th bit by computing the two possible states of R0

after this bit has been treated and recover the key iteratively.
Note that only the assignment in the i th iteration depends on
the key bit ki , but none of the computations do, so we need to
compare the trace of the doubling operation in the (i + 1)th
iteration with our original target trace. To decide whether
the i th bit of k is zero or one, we compare the trace that the
doubling operation in the (i + 1)th iteration would give for
ki+1 = 0 with the target trace. For completeness, we can
compare the target trace with a trace obtained for ki+1 = 1
and verify that it has lower pattern match percentage; in this
case, the performed attack needs two online template traces
per key bit. However, if during the acquisition phase the noise
level is low and the signal is of good quality, we can perform
an efficient attack with only our target trace and a single trace
for the hypothetical value of Rki+1 .

Note that the method above assumes that one template
trace is acquired to recover a single bit. It is possible to
acquire multiple template traces to recover multiple bits at
the same time, for example, three template traces can be pro-
duced to recover 2 bits at once. However, attacking single bits
is more efficient in terms of storage of template traces and
offline precomputation than attacking a group of bits. This is
an advantage of building online templates compared to the
usual template attacks. In particular, sequentially attacking 2
bits requires 2 template traces; if a template is similar to the
target trace, then the bit is guessed correctly; otherwise, the
bit is incorrect. Attacking both bits at once requires 3 tem-
plate traces (the fourth choice can be implied if none of the
3 templates matches the attacked trace). In general, attack-
ing n bits simultaneously requires an offline computation of
(2n − 1) template traces.

3.2 Attacking the right-to-left double-and-add-always

algorithm

In this section, we examine the binary right-to-left add-
always algorithm of [27], as Algorithm 2. Contrary to
Algorithm 1, the computations in the main loop of the above
algorithm clearly depend on the key.

Algorithm 2: Binary right-to-left double-and-add-
always algorithm

Input: P , k = (kx−1, kx−2, . . . , k0)2
Output: Q = k · P

R0 ← O;
R1 ← P ;
for i ← 0 up to x-1 do

b ← 1 − ki ;
Rb ← 2Rb ;
Rb ← Rb + Rki

;
end

return R0
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Attacking the right-to-left double-and-add-always algo-
rithm of [27] is a type of key-dependent assignment OTA.
We target the doubling operation and note that the input point
will be doubled either in the first (if k0 = 0) or in the second
iteration of the loop (if k0 = 1). If k is fixed, we can easily
decide between the two by inputting different points, since
if k0 = 1 we will see the common operation 2 O. If the k

is not fixed, we simply measure the first two iterations and
again use the operation 2 O if the template generator should
use the first or second iteration. Once we are able to obtain
clear traces, the attack itself follows the general description
of Sect. 2. If we assume that the first i bits of k are known and
we wish to derive the (i + 1)th bit, this means that we know
the values of R0 and R1 at the start of the (i + 1)th iteration.
By making a hypothesis on the value of the (i + 1)th key bit,
we can decide according to the matching percentage if R0 or
R1 was used.

3.3 Attacking the Montgomery ladder

The Montgomery ladder, initially presented by Montgomery
in [36] as a way to speed up scalar multiplication on ellip-
tic curves, and later used as the primary secure and efficient
choice for resource-constrained devices, is one of the most
challenging algorithms for simple side-channel analysis due
to its natural regularity of operations. A comprehensive secu-
rity analysis of the Montgomery ladder given by Joye and Yen
in [26] showed that the regularity of the algorithm makes it
intrinsically protected against a large variety of implemen-
tation attacks (SPA, some fault attacks, etc.). For a specific
choice of projective coordinates for the Montgomery ladder,
as described in Algorithm 3, one can do computations with
only X and Z coordinates, which makes this option more
memory efficient than other algorithms.

Algorithm 3: The Montgomery Ladder
Input: P , k = (kx−1, kx−2, . . . , k0)2
Output: Q = k · P

R0 ← P ;
R1 ← 2P ;
for i ← x − 2 down to 0 do

b ← 1 − ki ;
Rb ← R0 + R1 ;
Rki

← 2 · Rki
;

end

return R0

The main observation that makes our attack applicable to
the Montgomery ladder is that at least one of the computa-
tions, namely the doubling in the main loop, directly depends
on the key bit ki . For example, if we assume that the first three
bits of the key are 100, then the output of the first iteration

will be R0 = 2P . If we assume that the first bits are 110, then
the output of the first iteration will be R0 = 3P . Therefore,
if we compare the pattern of the output of the first iteration
of Algorithm 3 with scalar k = 100, we will observe higher
correlation with the pattern of R0 = 2P than with the pattern
of R0 = 3P . This is demonstrated in the following working
example.

k = 100 k = 110
R0 = P, R1 = 2P R0 = P, R1 = 2P

b = 1 : R1 = 3P, R0 = 2P b = 0 : R0 = 3P, R1 = 4P

b = 1 : R1 = 5P, R0 = 4P b = 1 : R1 = 7P, R0 = 6P

3.4 Attacking Side-Channel Atomicity

Side-channel atomicity is a countermeasure proposed by
Chevallier-Mames et al. [11], in which individual operations
are implemented in such a way that they have an identical
side-channel profile (e.g., for any branch and any key bit-
related subroutine). In short, it is suggested in [11] that the
point doubling and addition operations are implemented such
that the same code is executed for both operations. This ren-
ders the operations indistinguishable by simply inspecting
a suitable side channel. One could, therefore, implement an
exponentiation as described in Algorithm 4.

Algorithm 4: Side-Channel Atomic double-and-add
algorithm

Input: P , k = (kx−1, kx−2, . . . , k0)2
Output: Q = k · P

R0 ← O; R1 ← P ; i ← x − 1 ;
n ← 0 ;
while i ≥ 0 do

R0 ← R0 + Rn ;
n ← n ⊕ ki ;
i ← i − ¬n ;

end

return R0

There are certain choices of coordinates and curves where
this approach can be deployed by using unified or complete
addition formulas for the group operations. For example, the
Jacobi form [33] and Hessian [30] curves come with a unified
group law and Edwards curves [8,9] even have a complete
group law. For Weierstrass curves, Brier and Joye suggest an
approach for unified addition in [10].

Simple atomic algorithms do not offer any protection
against online template attacks, because the regularity of
point operations does not prevent mounting this sort of attack.
The point 2P , as output of the third iteration of Algorithm 4,
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will produce a power trace with very similar pattern to the
trace that would have the point 2P as input. Therefore, the
attack will be the similar as the one described in Sect. 3.1; the
only difference is that instead of the output of the second iter-
ation of the algorithm, we have to focus on the pattern of the
third iteration. In general, when an attacker forms a hypoth-
esis about a certain number of bits of k, the hypothesis will
include the point in time where R0 will contain the predicted
value. This will mean that an attacker would have to acquire
a larger target trace to allow all hypotheses to be tested.

4 Experimental results

This section presents our experimental results. Firstly, in
Sect. 4.1 we describe the attacked implementation and the
measurement setup that we use to perform attacks. Then, we
present experimental results of an OTA with extended projec-
tive coordinates of 256-bit in Sect. 4.2; this is the usual input
value for our smart card. In Sect. 4.3, we present OTA on
extended projective coordinates with reduced 255-bit input.
Finally, Sect. 4.4 presents an OTA applied to input points with
affine compressed coordinates. All the attacks target are per-
formed iteratively bit by bit, and they five most significant
bits of the scalar.

4.1 Target implementation and experimental setup

To validate feasibility and efficiency of our proposed method,
we attack an elliptic curve scalar multiplication implemen-
tation running on an “ATmega card,” i.e., an ATmega163
microcontroller [1] in a smart card. To illustrate that our
attack also works if the template device is not the same as the
target device, we used two different smart cards: one to obtain
the target trace and one to obtain the online template traces.

Our measurement setup uses a Picoscope 52032 with sam-
pling rate of 125M samples per second for both target trace
and online template traces. This oscilloscope has limited
acquisition memory buffer to 32M samples. Since 5 itera-
tions of the scalar multiplication algorithm take around 235
ms, it means that with sampling rate of 125M samples per
second we can record a trace of approximately 29.4M sam-
ples.

The scalar multiplication algorithm is based on the curve
arithmetic of the Ed25519 implementation presented in [24],
which is available online at http://cryptojedi.org/crypto/#
avrnacl. The elliptic curve used in Ed25519 is the twisted
Edwards curve E : −x2 + y2 = 1 + dx2 y2 with d =

−(121,665/121,666) and base point

2 http://www.picotech.com/discontinued/PicoScope5203.html.

P = (1511222134953540077250115140958853151145

4012693041857206046113283949847762202,

4631683569492647816942839400347516314

1307993866256225615783033603165251855960).

For more details on Ed25519 and this specific curve, see [6,
7].

We modified the software to perform a double-and-add-
always scalar multiplication (see Algorithm 1). The whole
underlying field and curve arithmetic is the same as in [24].
This means in particular that points are internally represented
in extended coordinates as proposed in [22]. In this coordi-
nate system, a point P = (x, y) is represented as (X :Y :Z :T )

with x = X/Z , y = Y/Z and x · y = T/Z .

4.2 Online template attack with 256-bit projective input

In this subsection, we describe how to apply an OTA if the
input supplied to the scalar multiplication is in extended pro-
jective coordinates, i.e, if the attacker has full control over all
coordinates of the starting point. This is a realistic assumption
if a protocol avoids inversions entirely and protects against
leakage of projective coordinates by randomization as pro-
posed in [37, Sec. 6]. Recall that for extended coordinates,
T is fully determined by X , Y and Z ; they are an extension
of standard projective coordinates.

The attack targets the output of the doubling operation.
We performed pattern matching for our traces as described in
Sect. 2.1. In this way, we could determine the leakage of key-
dependent assignments during the execution of the algorithm.

We first demonstrate how to attack a single bit, and then,
we present our results from recovering the five most signif-
icant unknown bits of the scalar (recall that the highest bit
is always set to one; see Algorithm 1). The remaining bits
can be attacked iteratively in the same way as described in
Sect. 2.1; as stated above, we were not able to do so due to
technical limitations of our measurement setup.

The first observation from our experiments is that when
we execute the same algorithm with the same input point
on two different cards, there is a constant vertical misalign-
ment between the two obtained traces, but the patterns look
almost identical. This fact validates our choice of the corre-
lation coefficient as our pattern matching metric, since this
metric does not depend on the difference in absolute values,
and therefore, the constant misalignment does not affect the
results. Figure 1 shows this vertical misalignment between
the brown trace obtained from the target and the blue trace
obtained from the template device for the same instance of
the algorithm.

For our target trace, we compute a multiple of a point P

with coordinates
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Fig. 1 Similarity between 2P on the target card with 2P on the templates’ card

Fig. 2 Difference between P (target trace, brown) at second iteration and 2P (matching template trace, blue) at first iteration. For illustration,
both traces are obtained from the same card to avoid vertical misalignment (color figure online)

P x = 0x6218E309D40065FCC338B3127F468371

82324BD01CE6F3CF81AB44E62959C82A,

P y = 0x5501492265E073D874D9E5B81E7F8784

8A826E80CCE2869072AC60C3004356E5,

P z = 0x00000000000000000000000000000000

00000000000000000000000000000001,

P t = 0x3FC17C25A0F70F2B3113A05A48E6CD8B

CD341E229CB10E4833B819EA5D3A8762.

We know that the most significant bit of the scalar is 1, so
after the first iteration of the double-and-add-always loop the
value of R0 is either 2P (if the second bit of k is zero) or 3P

(if the second bit of k is one). We furthermore know from the
addition formulas used by the implementation that R0 = 2P

or R0 = 3P have the following specific representation in
extended coordinates:tt

2P x = 0xB83008EEB749E519BA5C05E63EDAABA1

E2BA0C92037A02796B1D92A636A49746,

2P y = 0x910B931F833256DB68C1D2597194A774

97C4A9FAD63D042535C511840C51A692,

2P z = 0xD098E5677B2A9CCA678238279BFC55B6

0A4B5F377438DF015EC2BFCC83B2B922,

2P t = 0x180C2E1536BACE17B096A0EE222B0299

AAF2CBEE868CEB1D2D74800E735F48D4;

3P x = 0xEAB3BE0B61DEEB0B915B228B3E00376A

CB7C487114BCB34CD90A1275BA586422,

3P y = 0x2342D54933AFB7E1CA079AE79EC1B9DF

DD45D0CB96DE25DF0C4C474C524B6EEC,

3P z = 0xA9C7590B5B803C2EAB6BADE97EA9C331

1AE83BC98D659AE13A9D4D0AD6F93D2A,

3P t = 0x4A9D4C7F687A53B21CFD06DB1400B1EA

7AA4434DE904EF2624D001F49B491434.

To determine the second bit of the secret scalar k, we
generate template traces by inputting exactly those represen-
tations of 2P and 3P and computing the correlation of the
first iteration of the template trace with the second iteration
of the target trace. At this point, we use that inputs are given
in projective representation.

In fact, we will see that the correlation between the correct
template trace and the target trace is so much higher than
between the wrong template trace and the target trace that
just one of the two template traces is sufficient to determine
the second bit of k. This is depicted in Figs. 2 and 3; all
figures are taken with the six most significant bits of k set to
100110. Figure 2 shows power traces of the second iteration
of the target trace (brown) and the first iteration of the 2P

template trace, i.e., the matching template trace. Figure 3
shows power traces of the second iteration of the target trace
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Fig. 3 Difference between P (target trace, brown) at second iteration and 3P (non-matching template trace, blue) at first iteration. For illustration,
both traces are obtained from the same card to avoid vertical misalignment (color figure online)

Fig. 4 Pattern matching 2P to P (blue) and 3P to P (brown); the target and template traces are obtained from different cards (color figure online)

Fig. 5 Pattern matching 2P to P (blue) and 3P to P with P (brown) obtained for the second most significant scalar bit (color figure online)

(brown) and the first iteration of the 3P template trace, i.e.,
the non-matching template trace.

For validation of our results, we conducted several experi-
ments with different input points from the target card and the
template card, and computed the correlation in the obtained
power traces. Figure 4 shows the correlation of the template
trace (iteration 1) for 2P to the target trace (iteration 2) in
blue and the correlation of the template trace (iteration 1)
for 3P to the same target trace (iteration 2) in brown. We
notice that the trace obtained from the point 2P is almost
identical to the pattern obtained from the target trace; as
expected, the correlation is at least 97% for all our exper-
iments. On the other hand, the correlation of the target trace
with the template trace for 3P is at most 83%. To deter-
mine the value of one bit, we can thus simply compute

only one template trace and decide the value of the tar-
geted bit depending on whether the correlation is above or
below a certain threshold set somewhere between 83 and
97%.

The results presented so far are obtained while attack-
ing one single bit of the exponent. When we attack five bits
with one acquisition, we observe lower numbers for pattern
matching for both the correct and the wrong scalar guess.
The correlation results for pattern matching are not so high,
mainly due to the noise that is occurring in our setup dur-
ing longer acquisitions. This follows from the fact that our
power supply is not perfectly stable during acquisitions that
are longer than 200 ms. However, the difference between cor-
rect and wrong assumptions is still remarkable as depicted
in Figs. 5, 6, 7, 8 and 9, showing the OTA on five scalar bits
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Fig. 6 Pattern matching 4P to P (blue) and 5P to P with P (brown) obtained for the third most significant scalar bit (color figure online)

Fig. 7 Pattern matching 8P to P (blue) and 9P to P with P (brown) obtained for the fourth most significant scalar bit (color figure online)

Fig. 8 Pattern matching 18P to P (blue) and 19P to P with P (brown) obtained for the fifth most significant scalar bit (color figure online)

Fig. 9 Pattern matching 38P to P (blue) and 39P to P with P (brown) obtained for the sixth most significant scalar bit (color figure online)

k = 100110 at once.3 The templates are always acquired
during the first iteration and the target trace contains all five
iterations; note that the input points for the templates depend
on the already recovered exponent bits.

3 Observe that the correlation for the incorrect template in Fig. 6 is
slightly lower than in the other figures. This can be explained not only
by noise, but also by different degrees of similarity between the incorrect
inputs for the template traces and the intermediate points for the target
trace. Nonetheless, the important fact is that all correlations for the
incorrect templates are much lower than the correlations for the correct
templates.

Correct bit assumptions have 84–88% matching patterns,
while the correlation for the wrong assumptions drops to 50–
72%. Therefore, we can set a threshold for recognizing a bit
to be at 80%.

Note that the attack with projective inputs does not make
any assumptions on formulas used for elliptic curve addition
and doubling. In fact, we carried out the attack for special-
ized doubling and for doubling that use the same unified
addition formulas as addition. The results were similar, and
all traces shown above are from the experiments that used
unified addition formulas for both addition and doubling.
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4.3 Online template attack with 255-bit projective input

In the previous section, for simplicity, we deliberately
ignored the case of coordinates reduction in the field, in order
to make the concept of the attack clear. The implementation
that we attack, for the sake of efficiency, operates on 256-
bit coordinates and not 255-bit coordinates from the field
F2255−19. The 256-bit coordinates correspond the coordinates
from F2255−19 by applying the modulo 2255 − 19 operation;
by using 256 bits, the implementation can save time by not
performing some modulo operations.

So far, we assumed that we can send to the card the
optimized 256-bit coordinates. It is interesting to examine
a more complex attack scenario in which we can only input
the 255-bit coordinates. In this section, we show that OTA
is successful in this scenario too, a fact that makes OTA a
powerful attack technique independent of the prime p of the
field used. Fast modular reduction is implemented in [24] by
using simple shifts and additions, which are relatively cheap
on AVRs.

Our idea is not to attack a whole doubling operation but
just a single squaring. More precisely, we show how to per-
form OTA on the squaring operation of the Z coordinate.
First, let us consider the old 256-bit templates. There are two
distinct attack cases, namely:

– MSB = 0 for the Z projective coordinate (the remaining
coordinates can have the most signification bit equal to
1); therefore, the Z coordinate after reduction remains
the same.
In this case, OTA can be applied in a similar way as
in Sect. 4.2. We take the old template coordinates and
perform a reduction in all the coordinates modulo our
prime number 2255 −19; then, we send those coordinates
as input to the card to obtain the new templates.

– The Z coordinate has MSB = 1, and therefore, there is
a 9 bits difference from the corresponding 256-bit coor-
dinate.
In this case, the reduced point differs from its 256-
bit equivalent in the M SB and in the least significant
byte due to the pseudomersenne prime that we use (i.e.,
2255 − 19). This case is the most interesting and we will
analyze in the remaining part of this section.

We focus on Step D: the computation of Z2 (see Fig. 11
for the details about the doubling formula that we use); we
choose a new Z ′, such that MSBZ ′ = 0 and the rest of the
bits are the same as the Z coordinate of the old template.

So our new point has only 1 bit difference with the original
target trace. For this Z ′, we recalculate X ′, Y ′ and T ′ using
the following equations:

X ′ = X · Z ′,

Y ′ = Y · Z ′,

T ′ = T/Z ′,

where X , Y , Z and T denote the coordinates of the old tem-
plate.

Figure 10 presents the pattern match between a template
trace during computation of D ← Z2 with template with 1
bit difference, 9 bit difference or wrong template (iteration 1)
to the target trace (iteration 2). As expected, the highest peak
corresponds to the template with only 1 bit difference, the
slightly smaller peak correspond to the 9 bits difference and
the lowest peak corresponds to a wrong template. The results
obtained from this attack are similar to the previous section,
and therefore, we do not present the correlation figures for
all 5 bits.

The results above suggest that the templates with 9 bits
difference are sufficient for a successful attack although the
correlation values are slightly affected. However, for a more
noisy setup, 9 incorrect bits may lower the correlation too
much. Therefore, we concentrate on an attack that allows
only a single bit to be incorrect.

Successful key guesses (for the templates that have at most
1 bit difference) give correlation values between 81 and 86%,
while unsuccessful ones are below 76%. The success and
unsuccessful rates are different than in Sect. 4.2 because now
we concentrate on a single squaring and not the whole dou-
bling. Furthermore, we used different cards for this attack,
because one of the cards used for experiments reported in
Sect. 4.2 got broken.

4.4 Online template attack with affine input

The attack as explained in the previous sections makes the
assumption that the attacker has a full control over the input
in projective coordinates. Most implementations of ECC use
inputs in affine (or compressed affine) coordinates and inter-
nally convert to projective representation. The input is now
given as (x, y) and at the beginning of the computation con-
verted to (x : y : 1 : xy). We observe that the points P, 2P

and 3P do not have any coordinates in common with the pro-
jective representations used internally. Already after the first
iteration of the double-and-add-always loop, Z = 1 does
not hold anymore. Those attacks are more elaborate, since
the internal point representation changes at every step of the
algorithm.

First we consider an attack on the second most significant
bit (which is again set to zero) and the input point P of the
target trace with coordinates
P x = 0x6218E309D40065FCC338B3127F468371

82324BD01CE6F3CF81AB44E62959C82A,

P y = 0x5501492265E073D874D9E5B81E7F8784

8A826E80CCE2869072AC60C3004356E5.
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Fig. 10 Pattern matching during computation of D of a template with 1 bit difference (cyan), a template with 9 bit difference (blue) and a wrong
template to the target trace for area of computing D (brown) (color figure online)

Fig. 11 Unified addition/doubling formula from [22]

Choosing the affine versions of 2P and 3P to generate
template traces does not help us now because they do not have
any coordinates in common with the projective representa-
tions used internally.4 To successfully perform the attack,
we need to modify our approach and take a closer look at the
formulas used for point doubling. We illustrate the approach
with the unified doubling formula from [22]5 These formulas
contain the operations listed in Fig. 11.

The main idea of the attack is to focus on the first multi-
plication (Y1 − X1)(Y2 − X2), where in case of a doubling
would be (Y − X)2. We give now a detailed description on
how to generate the necessary templates for (Y − X)2.

Let us assume that the target trace with the point P is
already acquired and that we attack bit bi , where 0 ≤ i <

x . Firstly, depending on already recovered bits of scalar
bx , . . . bi+1 (at the beginning we only know that the most

4 This property follows from the fact that the Z coordinate of 2P during
the conversion to extended coordinates is always set to 0x01 while the
Z coordinate of the point P after being squared in the first iteration
of the exponentiation loop does not equal 0x01 with overwhelming
probability.
5 For details, see http://www.hyperelliptic.org/EFD/g1p/auto-twisted-
extended-1.html#addition-madd-2008-hwcd-3.

significant bit bx is 1), the coordinates of P and the bit
guess bi ∈ {0, 1}, we can compute the intermediate value
λ = Y − X that is squared in Step 1 (Fig. 11) during acquisi-
tion of the target trace. Secondly, we search for a new point
P i = (x ′, y′) such that Y ′−X ′ = λ.6 Such a point P i cannot
always be found on the curve, but we can flip the least signifi-
cant bit ofλ and check whether this point belongs to the curve.
If this fails, we flip the bit back and then flip the second least
significant bit of λ; we continue this way with subsequent
least significant bits until we find a point on the curve. From
our experiments, we succeed in finding a point on the curve
in a maximum of five trials. Such a point will differ from λ

on at most 1 bit (in least significant byte of the coordinate).
Using the method described above, we compute two points

P[kx−2 = 0] and P[kx−2 = 1], where kx−2 indicates the
second most significant bit.

P[kx−2=0]x =0x2B1FDBA73C0BB44A21D59EE599B66E5B

470EA5ADB62777A55254E646F0ADE032,

P[kx−2 =0] y =0x03FB65D807F4260BD03B6B58CC706A2D

FC19431688EA79511CFC6524C65AEF7C,

P[kx−2 =1]x =0x340C1C83C144EA9C5B707C5081FD770C

F6C2C95FC044604B45ABAEF3F4F3EDAE,

P[kx−2 =1] y =0x6D9B33C19315B772941CF4ACE2BEF982

088C51BA4265D2DD78EDE3CA8CE6F852.

Let us assume that, the same as in Sect. 4.2, the six most
significant bits of for the scalar k are set to 100110 (recall that
the most significant bit is always set to 1). When we compare
the trace for P as input at the second iteration to the trace
for P[kx − 2 = 0] at the first iteration during the second
squaring operation (computing A), we can observe that the
two traces are almost identical; see Figure 12 for details.

Figure 13 shows the pattern match between a template
trace during computation of A ← (Y − X)2 with input point
P[kx −1 = 0] (iteration 1) to the target trace for P (iteration
2) and the pattern match between the template trace (iteration
1) for P[kx − 1 = 1] to the target trace (iteration 2).

6 Note that we cannot use P(X, Y, Z) “freely,” because now Z �= 1.
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Fig. 12 Comparison between P at the second iteration (blue) to P[kx −2 = 0] at first iteration (brown); the area of computing A is marked (color
figure online)

Fig. 13 Pattern matching during the A computation of P[kx − 2 = 0] to P (blue) and P[kx − 2 = 1] to P (brown) with P obtained for the 2nd
most significant scalar bit (color figure online)

We notice that the trace obtained from the point P[kx −

2 = 0] is almost identical to the pattern obtained from the
target trace; as expected, the correlation is 86% for the correct
key guess and under 73% for the incorrect one.

Since we know the two most significant we can continue
the attack for next bits. We repeat the attack for the 5 most
significant bit (in total we will know 6 most significant bits
since the most significant is always 1).

Using the same method as for computing the points
P[kx −2 = 0] and P[kx −2 = 1], we compute the point for
the 8 subsequent template points. We list them as follows.

P[kx−3 =0]x =0xDDBDB790FD617CFBEA18EEFAC3D7E9B5

E8C7E0AAD45BA08B63B0B8E99E005747,

P[kx−3 =0] y =0x0EE63580391125F3438EBB6E384AEE09

8B8F8333A3A800CF1D76D35513FF595E,

P[kx−3 =1]x =0xF31755BF0F9F1328EB2E54E207DD4E36

907B902AD596D95AA2E5D3138D9E0488,

P[kx−3 =1] y =0x2B4A5C2C075C5230AD0AD93B793FF8FE

8F365F0C3C50A2F7C20F9C0BEDD17B28,

P[kx−4 =0]x =0x23547DC40EF3F2D370930784C3ACB402

F3BEF1CB01A4DD6C5E44AD5CE017BF14,

P[kx−4 =0] y =0x22D06B73034E069C20F285AE1E67BEF4

ACB69B6DCEE39D6A33DE3222C7BDBB84,

P[kx−4 =1]x =0x507A558593D15CDD3134476723F4E85C

FBE11738016C03080284C708E270FC90,

P[kx−4 =1] y =0x667B8A91051E6551E076114DA2E868C8

E15A256663F9D063D4AC42F92DA8A7D6,

P[kx−5 = 0]x =0xF666568414BA6E418A05082EB5901CFA

A361C0103DA239A92F1299AA246BAFE6,

P[kx−5 =0] y =0x1D9931D9308201FB42F54CBC96AC59A7

77DC17A3A80418E991C8C44CD9169C6C,

P[kx−5 =1]x =0xF816DE1164F0617FA7A98B03F0804972

B66398938A6EDF92DF5A2366B4C3ECF0,

P[kx−5 =1] y =0x513BCB7EB92B614727BCDCE104A2B5A4

3F0CC9572999B5035F34743D5FC7BE63,

P[kx−6 = 0]x =0xD5FB7999C3E03EC0CFA16E6E4A2EADE0

E8E9E4DDD5439BF7080E60C07EE8045E,

P[kx−6 = 0] y =0x7476658D00EB04256A8265757A6F90D2

38E5904B9BE42B8DDFB941D9C4050109,

P[kx−6=1]x =0x64F1BB3CF1E751164D909F628A58373E

647749E70A254D5B1282C0434B3EA80A,

P[kx−6=1] y =0x307C54240DC1A35827B597FFED49EE91

9A9707108779E744C600AF11A1344864.

The pattern match results for the templates are presented
in Figs. 14, 15, 16 and 17.

The correlation is 84–87% for the correct key guesses. For
the non-matching template point, the correlation value of the
matching patterns is at most 73%.

5 Countermeasures and future work

Coron’s first and second DPA countermeasures result in
scalar or point being blinded to counteract the statistical anal-
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Fig. 14 Pattern matching during computation of A of P[kx−3 = 0] to P (blue) and P[kx−3 = 1] to P (brown) with P obtained for the third most
significant scalar bit (color figure online)

Fig. 15 Pattern matching during computation of A of P[kx−4 = 0] to P (blue) and P[kx−4 = 1] to P (brown) with P obtained for the fourth
most significant scalar bit (color figure online)

Fig. 16 Pattern matching during computation of A of P[kx−5 = 0] to P (blue) and P[kx−5 = 1] to P (brown) with P obtained for the fifth most
significant scalar bit (color figure online)

Fig. 17 Pattern Matching during computation of A of P[kx−6 = 0] to P (blue) and P[kx−6 = 1] to P (brown) with P obtained for the sixth
most significant scalar bit (color figure online)

ysis of DPA attacks [14]. Given that an attacker needs to
predict the intermediate state of an algorithm at a given point
in time, we can assume that the countermeasures that are used
to prevent DPA will also have an effect on the OTA. All pro-
posed countermeasures rely on some kind of randomization,
which can be of either a scalar, a point or the algorithm itself.
However, if we assume that the attacker has no technical lim-
itations, i.e an oscilloscope with enough memory to acquire
the power consumption during an entire scalar multiplica-
tion, it would be possible to derive the entire scalar being
used from just one acquisition. Therefore, if one depends
on scalar blinding [14,32], this method provides no protec-

tion against our attack, as the attacker could derive a value
equivalent to the exponent.

There are methods for changing the representation of a
point, which can prevent OTA and make the result unpre-
dictable to the attacker. Most notably those countermeasures
are randomizing the projective coordinates, as proposed
in [37, Sec. 6] and randomizing the coordinates through a
random field isomorphism as described in [28]. However,
inserting a point in affine coordinates and changing to (deter-
ministic) projective coordinates during the execution of the
scalar multiplication (compressing and decompressing of a
point) do not affect our attack.
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We aim exclusively at the doubling operation in the execu-
tion of each algorithm. Since most of the blinding techniques
are based on the cyclic property of the elliptic curve groups,
attacking the addition operation in practice would be an inter-
esting future research topic.

6 Conclusions

In this paper, we presented a new side-channel attack tech-
nique, which can be used to recover the private key during a
scalar multiplication on ECC with only one target trace and
one online template trace per bit. Our attack succeeds against
a protected target implementation with unified formulas for
doubling and adding and against implementations where the
point is given in affine coordinates and changes to projective
coordinates representation. By performing our attack on two
physically different devices, we showed that key-dependent
assignments leak, even when there are no branches in the
cryptographic algorithm. This fact enhances the feasibility
of OTA and validates our initial claim that one target trace is
enough to recover the secret scalar.

Open Access This article is distributed under the terms of the Creative
Commons Attribution 4.0 International License (http://creativecomm
ons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit
to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made.
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