
Online trajectory analysis with scalable event recognition

Emmanouil Ntoulias
NCSR “Demokritos”

manosntoulias@iit.demokritos.gr

Elias Alevizos
National and Kapodistrian University of Athens

NCSR “Demokritos”
ilalev@di.uoa.gr

Alexander Artikis
University of Piraeus
NCSR “Demokritos”
a.artikis@unipi.gr

Athanasios Koumparos
Vodafone Innovus

athanasios.koumparos@vodafoneinnovus.com

ABSTRACT

Moving object monitoring is becoming essential for companies

and organizations that need to manage thousands or even mil-

lions of commercial vehicles or vessels, detect dangerous situa-

tions (e.g., collisions or malfunctions) and optimize their behavior.

It is a task that must be executed in real-time, reporting any such

situations or opportunities as soon as they appear. Given the

growing sizes of �eets worldwide, a monitoring system must

be highly e�cient and scalable. It is becoming an increasingly

common requirement that such monitoring systems should be

able to automatically detect complex situations, possibly involv-

ing multiple moving objects and requiring extensive background

knowledge. Building a monitoring system that is both expres-

sive and scalable is a signi�cant challenge. Typically, the more

expressive a system is, the less �exible it becomes in terms of

its parallelization potential. We present a system that strikes a

balance between expressiveness and scalability. Our proposed

system employs a formalism that allows analysts to de�ne com-

plex patterns in a user-friendly manner while maintaining un-

ambiguous semantics and avoiding ad hoc constructs. At the

same time, depending on the problem at hand, it can employ

di�erent parallelization strategies in order to address the issue

of scalability. Our experimental results show that our system

can detect complex patterns over moving entities with minimal

latency, even when the load on our system surpasses what is to

be realistically expected in real-world scenarios.

1 INTRODUCTION

Commercial vehicle �eets constitute a major part of Europe’s

economy. There were approximately 37 million commercial vehi-

cles in the European Union in 20151 and this number is growing

every year with an increasing rate. Devices emitting spatial and

operational information are installed on commercial vehicles.

This information helps �eet management applications improve

the management and planning of transportation services [31].

Consider another case ofmonitoring ofmoving objects, equally

important from an economic and environmental point of view:

maritime monitoring systems. Such systems have been attracting

considerable attention for economic as well as environmental

reasons [24, 29, 30]. The Automatic Identi�cation System (AIS) 2

is used to track vessels at sea in real-time through data exchange

1http://www.acea.be/statistics/article/vehicles-in-use-europe-2017
2http://www.imo.org/OurWork/Safety/Navigation/Pages/AIS.aspx

© 2021 Copyright for this paper by its author(s). Published in theWorkshop Proceed-
ings of the EDBT/ICDT 2021 Joint Conference (March 23—26, 2021, Nicosia, Cyprus)
on CEUR-WS.org. Use permitted under Creative Commons License Attribution 4.0
International (CC BY 4.0)

with other ships nearby, coastal stations, or even satellites. Cargo

ships of at least 300 gross tonnage and all passenger ships, re-

gardless of size, are nowadays required to have AIS equipment

installed and regularly emit AIS messages while sailing at sea.

Currently, there are more than 500.000 vessels worldwide that

can be tracked using AIS technology3. It is crucial, both for au-

thorities and for maritime companies, to be able to track the

behavior of ships at sea in order to avoid accidents and ensure

that ships adhere to international regulations.

Streams of transient data emitted from vehicles or ships must

be processed with minimal latency, if a monitoring system is to

provide signi�cant margins for action in case of critical situations.

We therefore need to detect complex patterns of interest upon

these streams in an online and highly e�cient manner that can

gracefully scale as the number of monitored entities increases.

Besides kinematic data, it is also important to be able to take

into account static (or “almost” static, with respect to the rate

of the streaming data), background knowledge, such as weather

data, point of interest (POI) information (like gas stations, ports,

parking lots, police departments, etc. [21], NATURA areas where

ships are not allowed to sail, etc. This enhanced data stream

produces valuable opportunities for the detection of complex

events. One can identify certain routes a vehicle or a ship is

taking, malfunctions in the device installed, in the GPS tracker or

the AIS transponder, cases of illegal shipping in protected areas

or possible collisions between ships moving dangerously close

to each other, to name but a few of the possible patterns which

could be of interest to analysts.

As a solution to the problem of monitoring of moving objects,

we present a Complex Event Processing system that aims to

improve the operating e�ciency of a commercial �eet. It oper-

ates online with enriched data in a streaming environment. Our

contributions are the following:

• We present a Complex Event Processing (CEP) system

based on symbolic automata which allows analysts to

de�ne complex patterns in a user-friendly language. Our

proposed language has formal semantics, while being able

to also take into account background knowledge.

• We de�ne a series of realistic complex patterns that iden-

tify routes and malfunctions of vehicles and detect critical

situations for vessels at sea.

• We present and compare various implementations of par-

allel processing techniques and discuss their applicability.

• We test our approach using large, real-world, heteroge-

neous data streams from diverse application domains,

showing that we can achieve real-time performance even

3https://www.vessel�nder.com

http://www.acea.be/statistics/article/vehicles-in-use-europe-2017
http://www.imo.org/OurWork/Safety/Navigation/Pages/AIS.aspx
https://www.vesselfinder.com

in cases of signi�cantly increased load, beyond the current

demand levels.

The remainder of this paper is organized as follows. Section 2

discusses related work, while Section 3 describes our CEP engine.

In Section 4 the distributed version of our engine is presented.

Section 5 summarizes the datasets of vehicle and vessel traces

and de�nes the recognition patterns. It also presents our empiri-

cal evaluation. Finally, we conclude the paper in section 6 and

describe our future work.

2 RELATED WORK

Complex event recognition systems accept as input a stream of

time-stamped, “simple, derived events” (SDEs). These SDEs are

the result of applying a simple transformation to some other

event (e.g., a measurement from a sensor). By processing them, a

CEP engine can recognize complex events (CEs), i.e. collections

of SDEs satisfying some pattern. There are multiple CEP systems

proposed in the literature during the last 15 years, falling under

various classes [16, 19]. Automata-based systems constitute the

most common category. They compile patterns (de�nitions of

complex events) into �nite state automata, which are then used to

consume streams of simple events and report matches whenever

an automaton reaches a �nal state. Examples of such systems

may be found in [5, 11, 18, 28, 32]. Another important class of

CEP systems are the logic-based ones. In this case, patterns are

de�ned as rules, with a head and a body de�ning the conditions

which, if satis�ed, lead to the detection of a CE. A typical example

of a logic-based system may be found in [12]. Finally, there are

some tree-based systems, such as [22, 23], which are attractive

because they are amenable to various optimization techniques.

For e�cient processing on big data streams, distributed archi-

tectures need to be employed [19]. Big data platforms, such as

Apache Spark and Storm, have been used to embed CEP engines

into their operators. Both platforms have incorporated Sidhi [7, 9]

and Esper [3, 4] as their embedded engines. Flink [1], on the other

hand, provides support for CEP with the FlinkCEP built-in library

[5]. Besides using these Big Data platforms, numerous other par-

allelization techniques have been proposed in the literature that

can achieve a more �ne-grained control over how the processing

load is distributed among workers. Pattern-based parallelization

is the most obvious solution, where the patterns are distributed

among the processing units [15]. One disadvantage of this paral-

lelization scheme is that events have to be replicated to multiple

processing units, since a new input event may need to be con-

sumed by more than one pattern. Moreover, the parallelization

level is necessarily limited by the number of patterns (for a single

pattern, this method o�ers no bene�ts). Operator-based paral-

lelization constitutes another approach, where the CEP operators

are assigned to di�erent processing units [13, 28]. This allows for

multi-pattern optimizations and avoids the data replication issue

of the previous technique. On the other hand, the paralleliza-

tion level is again limited, this time by the number of operators

present in the pattern (which is closely related to the number

of automaton states in automata-based CEP systems). Finally,

in data-parallelization schemes, events are split among multiple

instances of the same pattern [20]. For example, a pattern trying

to detect violations of speed limits must be applied to all the

monitored vehicles and thus the input stream may be partitioned

according to the id of the vehicles. The advantage of this method

is that it can scale well with the input event rate. It is, however,

not always obvious how an input stream should be partitioned,

while avoiding data replication.

3 AUTOMATA-BASED EVENT
RECOGNITION

We begin by �rst presenting our framework for CEP. It is based

on Wayeb, a Complex Event Processing and Forecasting engine

which employs symbolic automata as its computational model

[10, 11]. The rationale behind our choice of Wayeb is that, con-

trary to other automata-based CEP engines, it has clear, compo-

sitional semantics due to the fact that symbolic automata have

nice closure properties [17]. At the same time, it is expressive

enough to support most of the common CEP operators [19], while

remaining amenable to the standard parallelization solutions. In

this paper, we extend Wayeb’s language in order to support more

expressive patterns.

Symbolic automata constitute a variation of classical automata,

with the main di�erence being that their transitions, instead of

being labeled with a symbol from an alphabet, are equipped with

formulas from Boolean algebra [17]. A symbolic automaton con-

sumes strings and, after every new element, applies the predicates

of its current state’s outgoing transitions to that element. If a

predicate evaluates to TRUE then the corresponding transition is

triggered and the automaton moves to that transition’s target

state. A Boolean algebra is de�ned as follows:

De�nition 3.1 (E�ective Boolean algebra [17]). A Boolean al-

gebra is a tuple (D, Ψ, ⟦_⟧, ⊥, ⊤, ∨, ∧, ¬) where D is a set

of domain elements; Ψ is a set of predicates closed under the

Boolean connectives; ⊥,⊤ ∈ Ψ; the component ⟦_⟧ : Ψ → 2D

is a denotation function such that ⟦⊥⟧ = ∅, ⟦⊤⟧ = D and

∀ϕ,ψ ∈ Ψ: a) ⟦ϕ ∨ψ⟧ = ⟦ϕ⟧∪ ⟦ψ⟧; b) ⟦ϕ ∧ψ⟧ = ⟦ϕ⟧∩ ⟦ψ⟧; and

c) ⟦¬ϕ⟧ = D \ ⟦ϕ⟧.

Elements of D are called characters and �nite sequences of

characters are called strings. A set of strings L constructed from

elements of D (L ⊆ D∗, where ∗ denotes Kleene-star) is called

a language over D.

Wayeb uses symbolic regular expressions to de�ne patterns

and to represent a class of languages over D. Wayeb’s standard

operators are those of the classical regular expressions, i.e., con-

catenation, disjunction and Kleene-star. We extend Wayeb to

include various extra CEP operators: that of negation and those

of di�erent selection policies (see [19] for a discussion of selection

policies). Symbolic regular expressions are de�ned as follows:

De�nition 3.2 (Symbolic regular expression). AWayeb symbolic

regular expression (SRE) over a Boolean algebra (D, Ψ, ⟦_⟧, ⊥,

⊤, ∨, ∧, ¬) is recursively de�ned as follows:

• If ψ ∈ Ψ, then R := ψ is a symbolic regular expression,

with L(ψ) = ⟦ψ⟧, i.e., the language of ψ is the subset of

D for whichψ evaluates to TRUE;

• Disjunction / Union: If R1 and R2 are symbolic regular

expressions, then R := R1 + R2 is also a symbolic regular

expression, with L(R) = L(R1) ∪ L(R2);

• Concatenation / Sequence: If R1 and R2 are symbolic reg-

ular expressions, then R := R1 · R2 is also a symbolic

regular expression, with L(R) = L(R1) · L(R2), where ·

denotes concatenation. L(R) is then the set of all strings

constructed from concatenating each element of L(R1)

with each element of L(R2);

• Iteration / Kleene-star: If R is a symbolic regular expres-

sion, then R′ := R∗ is a symbolic regular expression, with

L(R∗) = (L(R))∗, where L∗
=

⋃

i≥0
Li and Li is the con-

catenation of L with itself i times.

• Bounded iteration: If R is a symbolic regular expression,

then R′ := Rx+ is a symbolic regular expression, with

Rx+ =
x times

R · · · · · R · R∗.

• Negation / complement: If R is a symbolic regular expres-

sion, then R′ := !R is a symbolic regular expression, with

L(R′) = (L(R))c .

• skip-till-any-match selection policy: If R1,R2, · · · ,Rn are sym-

bolic regular expressions, then R′ := #(R1,R2, · · · ,Rn) is

a symbolic regular expression, with R′ := R1 · ⊤
∗ · R2 ·

⊤∗ · · · ⊤∗ · Rn .

• skip-till-next-match selection policy: If R1,R2, · · · ,Rn are sym-

bolic regular expressions, then R′ := @(R1,R2, · · · ,Rn) is

a symbolic regular expression, with R′ := R1·!(⊤
∗ · R2 ·

⊤∗) · R2 · · ·!(⊤
∗ · Rn · ⊤∗) · Rn .

A Wayeb expression without a selection policy implicitly fol-

lows the strict-contiguity policy, i.e., the SDEs involved in a match

of a pattern should occur contiguously in the input stream. The

other two selection policies relax the strict requirement of con-

tiguity (see [19] for details). Note that all these operators, even

those of selection policies, may be arbitrarily used and nested

in an expression, without any limitations. This is in contrast to

other CEP systems where nested operations may be prohibited.

Wayeb patterns are de�ned as symbolic regular expressions

which are subsequently compiled into symbolic automata. The

de�nition for a symbolic automaton is the following:

De�nition 3.3 (Symbolic �nite automaton [17]). A symbolic

�nite automaton (SFA) is a tupleM =(A,Q , qs , F , ∆), whereA is

an e�ective Boolean algebra; Q is a �nite set of states; qs ∈ Q is

the initial state;Q f ⊆ Q is the set of �nal states; ∆ ⊆ Q ×ΨA ×Q

is a �nite set of transitions.

A string w = a1a2 · · ·ak is accepted by a SFA M i�, for 1 ≤

i ≤ k , there exist transitions qi−1
ai
→ qi such that q0 = qs and

qk ∈ Q f . The set of strings accepted byM is the language ofM ,

denoted by L(M). It can be proven that every symbolic regular

expression can be translated to an equivalent (i.e., with the same

language) symbolic automaton [17].

We are now in a position to precisely de�ne the meaning of

“complex events”. Input events come in the form of tuples with

both numerical and categorical values. These tuples constitute the

set of domain elementsD. A stream S is an in�nite sequence S =

t1, t2, · · · , where each ti is a tuple (ti ∈ D). Our goal is to report

the indices i at which a CE is detected. If S1..k = · · · , tk−1, tk is

the pre�x of S up to the index k , we say that an instance of a SRE

R is detected at k i� there exists a su�x Sm ..k of S1..k such that

Sm ..k ∈ L(R). If we attempted to detect CEs, as de�ned above, by

directly compiling an expression R to an automaton, we would

fail. Consider, for example, the (classical) regular expression R :=

a · b and the (classical) stream/string S = a,b, c,a,b, c . If we

compile R to a (classical) automaton and feed S to it, then the

automaton would reach its �nal state after reading the second

element t2 of the string. However, it would then never reach its

�nal state again. We would like our automaton to reach its �nal

state every time it encounters a,b as a su�x, e.g., again after

reading t5 of S . We can achieve this with a simple trick. Instead of

using R, we �rst convert it to Rs = ⊤∗ ·R. Using Rs we can detect

CEs of R while consuming a stream S , since a stream segment

Sm ..k is recognized by R i� the pre�x S1..k is recognized by Rs .

Table 1: An example stream composed of six events. Each

event has a vehicle identi�er, a value for that vehicle’s

speed and a timestamp.

vehicle id 78986 78986 78986 78986 78986 ...

speed 85 93 99 104 111 ...

timestamp 1 2 3 4 5 ...

0start 1 2

speed > 100

⊤

speed > 100

Figure 1: Streaming symbolic automaton created from the

expression R := (speed > 100) · (speed > 100).

flinkSource event2

event1

...

eventN

...

CEP Engine

CEP Engine

CEP Engine

...
pattern2

pattern1

patternN

(a) Pattern-based parallelization.

flinkSource event2

event1

...

eventN

...

CEP Engine

CEP Engine

CEP Engine

...
pattern2

pattern1

patternN

(b) Partition-based parallelization.

flinkSource

flinkSource

flinkSource

events

events

...

events

CEP Engine

CEP Engine

CEP Engine

...
pattern2

pattern1

patternN

(c) Special case of Partition-Based paralleliza-

tion when one-to-one relation between sources

and CEP engines exists.

Figure 2: Parallel schemes used with Wayeb.

The pre�x ⊤∗ lets us skip any number of events from the stream

and start recognition at any indexm, 1 ≤ m ≤ k .

As an example, consider the domain of vehicle monitoring.

An analyst could use the Wayeb language to de�ne the pattern

R := (speed > 100) · (speed > 100) in order to detect speed viola-

tions on roads where the maximum allowed speed is 100 km/h.

This pattern detects two consecutive events where the speed

exceeds the threshold in order to avoid cases where a vehicle

momentarily exceeds the threshold, possibly due to some mea-

surement error. This pattern would be compiled to the (non-

deterministic) automaton of Figure 1. Table 1 shows an example

stream processed by this automaton. For the �rst three input

events, the automaton would remain in its start state, state 0.

After the fourth event, it would move to state 1 and after the �fth

event it would reach its �nal state, state 2. We would thus say

that a complex event R was detected at timestamp = 5.

4 SCALABLE EVENT RECOGNITION OVER
MULTIPLE TRAJECTORIES

We now discuss how various parallelization schemes may be ap-

plied to our CEP engine. For this purpose, we leverage a popular

streaming platform, Apache Flink [1, 14]. Flink is a distributed

processing engine for stateful computations over unbounded and

bounded data streams. It is designed to run in cluster environ-

ments and perform computations at in-memory speed. In this

paper, we focus on two parallelization techniques: pattern-based

and partition-based parallelization [19]. We currently exclude

state-based parallelization, since, as explained above, its paral-

lelization level is limited by the number of automaton states,

which is typically quite low (it is often a single-digit number).

We do intend, however, to examine in the future how it could

be combined with pattern- or partition-based parallelization to

provide them with an extra performance boost.

In pattern-based parallelization, each available CEP engine

receives a unique subset of the patterns and performs recognition

for these patterns only, with these subsets being (almost) equal

in size (see Figure 2a). On the other hand, the stream is broadcast

to all parallel instances of any downstream operators. This is a

signi�cant (yet unavoidable) drawback of pattern-based paral-

lelization, since each worker has a subset of the patterns while

each pattern may need to process the whole stream. Note that

each blue rectangle in Figure 2a represents a single thread. This

means that in this architecture we have one thread for the source

plus as many threads as the parallelism of the CEP operator.

In partition-based parallelization the opposite happens. Every

CEP engine is initialized with all patterns, but the stream is not

broadcast (see Figure 2b). A partitioning function is used to decide

where each new input event should be forwarded. This function

takes as input any attribute of the event (we use the id of a vehicle

or vessel) and, by performing hashing, it outputs which parallel

instance of the next operator the event will go to. As with pattern-

based parallelization, we have one thread for the source plus as

many threads as the parallelism of the CEP operator.

Besides Flink, we also use the Apache Kafka messaging plat-

form to connect our stream sources toWayeb instances [2]. Kafka

provides various ways to consume streams. So far, we have fo-

cused on linear streams, i.e., events are assumed to be totally

ordered and arrive at our system sequentially one after another.

With Kafka, however, there is the option of using parallel input

streams. A Kafka input topic can have multiple partitions and

each partition can be consumed in parallel by a di�erent con-

sumer. In this case the input stream is already partitioned on

some attribute of the events.

Through this Kafka functionality, a variant of partition-based

parallelization becomes possible, where both the input source

and the recognition engine work in parallel (see Figure 2c). If

the parallelism of the input source (i.e., the number of partitions

of the topic is the same as that of the recognition operator (i.e.,

number of CEP engines), then we can simply attach each source

instance to a CEP engine instance without further re-partitioning

on our end. When, however, the parallelisms are di�erent, fur-

ther re-partitioning is performed by partitioning each source the

same way we partitioned the single threaded source. Unlike the

previous architectures, each pair of a source and a CEP operator

parallel instances belong in a single thread. This is attributed to

operator chaining [8], a Flink mechanism that chains operators

of the same parallelism in a single thread for better performance.

Similarly to partition, we can have multiple sources for pattern

based parallelism as well. Messages in Kafka are still partitioned

by a desired attribute, albeit we always have to perform the

broadcasting step for each source. Hence, we don’t have a variant

of pattern parallelization, rather we use it only as a way to process

streams of greater input rate.

5 EXPERIMENTAL EVALUATION

We present an extensive experimental evaluation of our parallel

CEP engine on two datasets containing real-world trajectories

of moving objects. The �rst dataset comes from the domain of

�eet management for vehicles moving on roads and emitting

information about their status. The second dataset consists of

vessel trajectories from ships sailing at sea. In both cases, our

goal is to simultaneously monitor thousands of moving objects

and detect interesting (or even critical) behavioral patterns in

real-time, as de�ned by domain experts. All experiments were

conducted on a server with 24 processors. Each processor is an

Intel(R) Xeon(R) CPU E5-2630 v2 @ 2.60GHz. The server has 252

GB of RAM. The source code for Wayeb may be found in the

following repository: https://github.com/ElAlev/Wayeb.

5.1 Fleet Management

E�cient �eet management is essential for transportation and

logistics companies. We show how our proposed solution can

e�ectively help in this task. With the help of experts, we de�ne a

set of patterns to be detected on real-time streams of trajectories

and show that our engine can detect these patterns with an

e�ciency that is orders of magnitude better than real-time.

5.1.1 Dataset Description. The dataset is provided by Voda-

fone Innovus4, our partner in the Track & Know project, which

o�ers �eet management services. It contains approximately 270M

records (243GB). It covers a period of 5 months, from June 30,

2018 11:00:00 PM to November 30, 2018 11:59:59 PM. The initial

source emitting the data is composed of GPS (Global Positioning

System) traces of moving vehicles. The data also includes speed

information provided by an installed accelerometer and informa-

tion regarding the level of fuel in a vehicle’s tank measured by a

fuel sensor. It is also enriched with weather and point-of-interest

(POI) information (e.g., if a vehicle is close to a gas station, a

university, a school etc), as described in [31]. Duration, accela-

ration and distance are some extra attributes that are calculated

on the �y as they enter our system by storing information from

previous events.

5.1.2 Pa�ern Definitions. The �rst pattern we have de�ned

concerns vehicle routes. A route is the basic element of vehicle

management and aggregates data between the start and the end

point of a vehicle’s motion cycle. A motion cycle is based on

the engine status. Each vehicle route must start and end with

an “engine-o�” message, i.e., a message whose engine status

attribute is “o�”. According to Vodafone Innovus, there are 12

patterns that describe the most frequent routes. These 12 route

patterns can be expressed with a single Wayeb pattern as follows:

De�nition 5.1. A route pattern for a vehicle is de�ned as the

following sequence: emitting “engine-o�” messages for at least

30 minutes, emitting at least one “moving” message and again

emitting “engine-o�” messages for at least 30 minutes:

Route := (Engine = O� ∧ Duration > 30)·

(Engine = Moving)+·

(Engine = O� ∧ Duration > 30)

Unfortunately, the expected data �ow can be corrupted due to a

variety of reasons. These reasons include bad connection during

the device installation or after the vehicle has been serviced,

movement of the satellites, hardware malfunctions or, simply,

4https://www.vodafoneinnovus.com/

https://github.com/ElAlev/Wayeb

just an issue with the GPS. The result of these reasons is re�ected

in the data. For example, coordinates may change even though

the vehicle is not moving or the vehicle may be moving but the

coordinates remain the same. It is also often the case that the

engine status is incorrect (e.g., parked messages are emitted even

though engine is on, vehicle is moving yet engine status is not

moving etc). These issues are important and need to be detected.

We have summarized those issues in a number of patterns, de�ned

as follows:

De�nition 5.2. ParkedMovingSwing. Engine status swings be-

tween “parked” and “moving” during consecutive events.

ParkedMovingSwing := (Engine = Parked) · (Engine = Moving)·

(Engine = Parked) · (Engine = Moving)

De�nition 5.3. IdleParkedSwing. Engine status swings between

“idle” and “parked” during consecutive events.

IdleParkedSwing := (Engine = Idle) · (Engine = Parked)·

(Engine = Idle) · (Engine = Parked)

De�nition 5.4. SpeedSwing. Speed swings between 0km/h and

greater than 50km/h during consecutive events.

SpeedSwing := (Speed > 50)·(Speed = 0)·(Speed > 50)·(Speed = 0)

De�nition 5.5. MovingWithZeroSpeed. Engine status is “mov-

ing”, distance traveled is greater than 30m, yet speed is 0km/h

for more than 3 consecutive messages.

MWZS := (Engine = Moving ∧ Speed = 0 ∧ Distance > 30)3+

De�nition 5.6. MovingWithBadSignal. Vehicle is accelerating

and distance traveled is greater than 30m yet there are no satel-

lites tracking the vehicle for more than 3 consecutive messages.

MWBS := (Accelaration ∧ Satellites = 0 ∧ Distance > 30)3+

In addition to the above issues, possibly related to malfunc-

tions, experts are also interested in the following patterns:

De�nition 5.7. Possible Theft. Engine status is parked, speed is

0km/h and distance traveled is greater than 30m for more than 3

consecutive messages.

Possible�e� := (Engine = Parked ∧

Speed = 0 ∧ Distance > 30)3+

De�nition 5.8. Dangerous Driving. There is ice on the road and

the vehicle is moving above a speci�c speed limit for at least 2

consecutive messages.

DangerousDriving := (IceExists = TRUE ∧ Speed > vlimit)
2+

De�nition 5.9. Refuel Opportunity. Vehicle is close to a gas

station and the fuel in the tank is less than 50% for at least 2

consecutive messages.

RefuelOpp := (CloseToGasStation = TRUE ∧ FuelLevel < 0.5)2+

(a) 16 patterns

(b) 48 patterns

Figure 3: Recognition times of di�erent parallelization

techniques for di�erent workloads. The horizontal axis

represents the number of worker threads.

5.1.3 Recognition Results. Figure 3a showcases recognition

times for our various parallelization techniques: pattern-based,

partition-based and partition-based with one source per engine.

We also show results for the non-parallel version. We have du-

plicated some of the patterns de�ned previously to simulate a

greater workload of 16 patterns.We have repeated the experiment

for 1, 2, 4 ,8 and 16 cores. Compared to the original single-core

version, all three parallelization techniques exhibit speed-ups.

For partition- and pattern-based parallelization, however, there

seems to be an upper limit on the number of cores it is most

e�cient to use. For pattern-based parallelization there is a signif-

icant raise in time after 4 cores, while for partition-based there is

no improvement after 2 cores. The reason is that the single source

acts as a bottleneck. For partition-based parallelization we have

one thread (the partitioner) deciding in which core each event

will be forwarded, while for pattern-based events are broadcast

to all cores, again in a single threaded manner. This explanation

is supported by the smooth decrease in time when a parallel

source is used for partition-based parallelization. While it starts

o� worse than pattern- and partition-based, it exhibits the best

results for 16 cores.

To further support our claim above, we conducted a second

experiment with a larger load, as shown in Figure 3b. 48 pat-

terns were used this time (replicated in similar fashion as before)

without any other changes. Indeed, with every recognition node

having more work to do, execution time becomes less dependent

on partitioning/broadcasting and more dependent on the actual

recognition. Hence, speed-ups are now visible even for higher

number of cores. As suspected, for parallel sources the results are

not a�ected. Partition-based parallelization with parallel sources

is slower when few threads are used (e.g., for 2 threads). This is

0 5 10 15

0

0.2

0.4

0.6

0.8

CER parallelism

B
a
ck
p
re
ss
u
re

par = 1

par = 2

par = 3

par = 4

par = 5

par = 6

(a) Partition-based.

1 2 3 4 5 6

0.2

0.4

0.6

0.8

CER parallelism

B
a
ck
p
re
ss
u
re

par=1

par=2

par=3

par=4

par=5

par=6

(b) Pattern-based.

Figure 4: Backpressure experiments for �eetmanagement.

The horizontial axis expresses the number of recognition

threads. Workload is 6 patterns. Each dashed line repre-

sents a di�erent parallelism of the source stream.

because the other two techniques have an extra thread handling

the whole stream source and the work is in fact split between

this one source thread and two others performing recognition.

We thus have 3 threads performing similar volumes of work.

When parallel sources are used, however, each parallel source is

chained to a Wayeb engine in a single thread and we thus have 2

threads doing more work. Each thread handles half the source

and performs recognition on half the stream.

In order to evaluate recognition speed independently from

source speed we had to turn operator chaining o� as we can’t

measure them separately when they belong in the same thread

(i.e., in the case of one source per CEP engine). In addition, we

leveraged parallel sources to achieve input streams of higher

input rate. The goal here is to determine if our system can process

input events faster than the source produces them. Flink o�ers a

metric for this purpose, called backpressure [6]. Backpressure is

judged on the availability of output bu�ers. Assuming that some

task A sends events to some task B, if there is no output bu�er

available for task A, we say that task B is back pressuring task

A. In our case A, is the source operator and B is the operator

with the CEP Engine. 100 samples (each sample checks if there is

any output bu�er available) are triggered every 50ms in order to

measure backpressure. The resulting ratio noti�es us how many

of these samples were indicating back pressure, e.g. 0.6 indicates

that 60 in 100 were stuck requesting bu�ers from the network

stack. According to the documentation [6] a ratio between 0

and 0.1 is normal. 0.1 to 0.5 is considered to be low and anything

above 0.5 is high. Note that low and high pressure will slow down

the source to match the throughput of the pressuring operator.

Results for Partition-based distribution are presented in Fig-

ure 4a. The backpressure ratio is plotted against the number of

threads used for recognition. Generally, the more threads used

the faster Wayeb can process events and hence less pressure

is noted. Each dashed line represents a source with parallelism

varying from 1 to 6. The event rate of a parallel source is mea-

sured by executing an experiment with 0% backpressure (i.e., it

will not slow down due to pressure) and summing the event rate

of each parallel instance presented by the �ink dashboard (e.g.,

for 2 parallel instances of 120K events/second (e/s) for each one

the overall sum is 120 + 120 = 240K (e/s)). Although, the greater

the parallelism of the source the larger the event rate, it is not a

multiplier as for 1, 2, 3, 4, 5 and 6 sources the rate becomes 130K,

240K, 350K, 430K, 440K and 490K e/s respectively. The workload

in this experiment tries to emulate a real scenario and hence the

route and the 5 malfunction patterns are used (i.e., they are not

replicated). The results show that Wayeb can e�ectively process

streams of at least 490K e/s (black line) for this workload as 0

pressure is exhibited when 16 workers are used. As it was stated

before, the duration of the dataset is 5 months which translates

to roughly 13M seconds. Since the total number of input events is

270M, the average event input rate is 270M/13M ≈ 20 e/s. Com-

paring the pattern throughput rate (490K e/s) with the event input

rate clearly exhibits a performance that is 4 orders of magnitude

better than the real-time requirements of this use case.

We perform a similar experiment for pattern-based paralleliza-

tion. This time the number of threads used for recognition varies

between 1, 2, 3 and 6 as there are only 6 patterns - a handicap

of this technique discussed earlier. Figure 4b showcases the re-

sults of our experiment. Unfortunately, even with 6 recognition

threads and a single threaded source (purple dashed line) there is

about 13% backpressure. Due to this, all sources are being slowed

down to 110K e/s regardless of their parallelism. There is a drop

in pressure the more recognition threads are used due to the

better distribution of the patterns. However, it is not signi�cant

as the events are also multiplied as many times as the number of

these threads and add extra pressure. Eventually more space is

requested from the output network bu�ers of the source.

5.2 Maritime Monitoring

We now present experimental results on another real-world

dataset. This dataset contains trajectories of vessels sailing at

sea. We have de�ned a set of patterns that are similar to the

ones presented in [24, 26], which have been constructed with the

help of domain experts. We demonstrate the e�ectiveness of our

system which is capable of e�ciently processing a dataset that

contains trajectories from ≈ 5K vessels and covers a period of 6

months in less than one hour.

5.2.1 Dataset Description. A public dataset of 18M position

signals from 5K vessels sailing in the Atlantic Ocean around the

port of Brest, France, between October 1st 2015 and 31st March

2016 has been utilized [27]. A derivative dataset has been released

in [25], containing a compressed version of the original dataset

(4.5M signals), as decribed in [24]. Each trajectory in this dataset

contains only the so-called critical points of the original trajec-

tory, i.e., points that indicate a signi�cant change in a vessel’s

behavior (e.g., a change in speed or heading) and from which the

original trajectory can be faithfully reconstructed. We processed

these compressed trajectories in order to determine the proximity

of vessels to various areas and locations of interest, such as ports,

�shing areas, protected NATURA areas, the coastline, etc.

5.2.2 Pa�ern Definitions. We now present a detailed descrip-

tion of the maritime patterns that we implemented, assuming

that the input events contain the information described above.

De�nition 5.10. High Speed Near Coast: Vessel is within 300

meters from the coast and is sailing with speed greater than 5

knots for at least one message.

HSNC := (IsNear(Coast) = TRUE ∧ Speed > 5)+

De�nition 5.11. Anchored: Vessel is inside an anchorage area

or near a port and is sailing with speed less than 0.5 knots for at

least three messages.

Anchored := ((IsNear(Port) = TRUE ∨

WithinArea(Anchorage) = TRUE) ∧

speed < 0.5)3+

De�nition 5.12. Drifting: There is a di�erence between heading

and actual course over ground greater than 30 degrees while the

vessel is sailing with at least 0.5 knots for at least three messages.

Dri�ing := (|Heading − Cog | > 30 ∧ Speed > 0.5)3+

De�nition 5.13. Trawling: A vessel is inside a �shing area sail-

ing with speed between 1 and 9 knots for at least three messages.

In addition, it must be a �shing vessel.

Trawling := (VesselType = Fishing ∧

WithinArea(Fishing) = TRUE ∧

speed > 1.0 ∧ speed < 9.0)3+

De�nition 5.14. Search and Rescue: A SAR Vessel sails with

a speed of greater than 2.7 knots and constantly changes its

heading for at least three messages.

SAR := (ChangeInHeading = TRUE ∧

VesselType = SAR ∧ speed > 2.7)3+

De�nition 5.15. Loitering: Vessel is neither near port nor the

coastline while it sails with speed below 0.5 knots.

Loitering := (IsNear(Port) = FALSE ∧

IsNear(Coast) = FALSE ∧

speed < 0.5)3+

5.2.3 Recognition Results. We used the 6 patterns de�ned

above as the workload for a number of experiments. Following

a similar approach to our �eet management experiments, we

avoided replicating the patterns to emulate a real scenario and

evaluated them for streams of di�erent event rates.

Figure 5a presents results for the partition-based paralleliza-

tion scheme. This time the backpressure remains always above

40% for a 6-threaded input source, even with 16 recognition

threads. Due to the fact that the CEP operator cannot keep up

with the initial rate of the source, the source has to adjust its

rate to match the throughput of the CER operator. According

to the Flink dashboard, this rate is at most 180K e/s (with 16

worker threads). This lower throughput of our CEP operator

(compared with the �eet management use case) can be attrib-

uted to the fact that the patterns are now more complex, as on

average they contain more unions, disjunctions and iterations to

evaluate for every event. The duration of the dataset is 6 months

which translates to roughly 15.5M seconds. Since the total num-

ber of input events is about 4.5M, the average event input rate is

0 5 10 15

0

0.2

0.4

0.6

0.8

1

CER parallelism

B
a
ck
p
re
ss
u
re

par = 1

par = 2

par = 3

par = 4

par = 5

par = 6

(a) Partition-based backpressure for aworkload of 6 patterns.

Each dashed line represents a di�erent parallelism of the

source stream. Event rate is capped at 180K e/s due to back-

pressure.

1 2 3 4 5 6
0

0.2

0.4

0.6

0.8

1

CER parallelism

B
a
ck
p
re
ss
u
re

par=1

par=2

par=3

par=4

par=5

par=6

(b) Pattern-based backpressure for a workload of 6 patterns.

Each dashed line represents a di�erent parallelism of the

source stream. Event rate is capped at 90K e/s due to back-

pressure.

0 5 10 15

0

0.2

0.4

0.6

0.8

1

CER parallelism

B
a
ck
p
re
ss
u
re

partition 1 hour

pattern 1 hour

partition 0.5 hour

pattern 0.5 hour

(c) Partition- and pattern-based parallelism for the dataset being

replayed in one 1 and 0.5 hours respectively. Workload is 220 pat-

terns of vessels approaching 220 di�erent ports.

Figure 5: Backpressure experiments for the Maritime

dataset. The horizontal axis expresses the number of

recognition threads.

15.5M/4.5M ≈ 3.5 e/s. Comparing the pattern throughput rate

with the event input rate showcases again a performance that

is 4 orders of magnitude better than the real-time requirements

of this use case. The results for pattern-based parallelism are

presented in Figure 5b and follow a similar trend. The event rate

here is capped at 90K e/s due to backpressure.

We conducted a second series of experiments with a setting

where the number of patterns is naturally high, in order to de-

termine whether pattern-based parallelism o�ers an advantage

in such settings. Consider the following pattern, describing the

movement of a vessel as it a approaches a port.

De�nition 5.16. Approaching Port: Vessel is initially more than

7 km away from the port, then, for at least on message, its dis-

tance from the port is between 5 and 7 km and �nally it enters

the port (i.e., its distance from the port falls below 5 km).

Port := (DistanceToPort(PortX) > 7 .0) ∧

DistanceToPort(PortX) < 10.0)·

(DistanceToPort(PortX) > 5.0) ∧

DistanceToPort(PortX) < 7 .0)+ ·

(DistanceToPort(PortX) < 5.0)

The predicateDistanceToPort calculates the distance of a vessel

from the port PortX passed as argument and is evaluated online.

If we want to monitor vessel activity around every port in a given

area, then we need to replicate this pattern N times, if there are N

distinct ports. We would thus naturally have N patterns, which

would be almost identical except for the argument passed to

DistanceToPort (Port1, Port2 , up to PortN). For the area of Brest,

the total number of ports is 220. We run an experiment with

these 220 patterns with partition- and then with pattern-based

parallelization. Figure 5c shows the results. Contrary to previous

experiments, in this one we used a stream simulator to feed the

dataset to our CEP system. This simulator, instead of reading

input events from a �le and instantly sending them to our engine,

has the ability to insert a delay between consecutive events. For

example, we can set the delay to be exactly the time di�erence

between two events. This would allow us to re-play the stream

as it was actually produced, which would take 6 months for

this dataset. We also have the ability to re-play the stream at

higher speeds. For these experiments, we re-played the stream

at various di�erent speeds in order to determine the “breaking

point” of our system. Figure 5c shows the results for two such

speeds, where the whole stream was processed in 0.5 and 1 hour,

corresponding to a speed-up of x8640 and x4320 compared to

the original dataset. While the CEP operator lags behind the

source when it is re-played at half an hour, it is evident that it

can process it without any problems when it is replayed at one

hour, as both pattern- and partition-based parallelism exhibit 0%

backpressure. In fact, pattern-based parallelism performs better

in this experiment. This lends credence to our belief that pattern-

based parallelism might actually be more suitable than partition-

based parallelism when there is a high number of patterns to be

processed simultaneously.

6 SUMMARY AND FUTUREWORK

In this paper, we presented Wayeb, a tool for Complex Event Pro-

cessing, as a means of processing big mobility data streams. We

de�ned a number of detection patterns that are useful in �eetman-

agement and maritime monitoring applications. Moreover, we

presented implementations of two distributed recognition tech-

niques and compared their e�ciency against the single-core ver-

sion. Our results demonstrate the superiority of partition-based

over pattern-based parallelization, when the number of patterns

is relatively low. When this number is signi�cantly high, then

pattern-based parallelization becomes a viable option. For the

future, we intend to combine various distribution techniques and

to construct more patterns for the domains presented. Another

interesting research avenue would be to compare our automata-

based method against other approaches, such as logic-based ones,

which have been applied to similar datasets [24, 31].

ACKNOWLEDGMENTS

This work was funded by European Union’s Horizon 2020 re-

search and innovation programme Track & Know "Big Data for

Mobility Tracking Knowledge Extraction in Urban Areas", under

grant agreement No 780754. It is also supported by the European

Commission under the INFORE project (H2020-ICT- 825070).

REFERENCES
[1] [n.d.]. Apache Flink - Stateful Computations over Data Streams. https://�ink.

apache.org/.
[2] [n.d.]. Apache Kafka. https://kafka.apache.org/.
[3] [n.d.]. Esper. http://www.espertech.com/esper.
[4] [n.d.]. Esperonstorm. https://github.com/tomdz/storm-esper.
[5] [n.d.]. FlinkCEP - Complex event processing for Flink. https://ci.apache.org/

projects/�ink/�ink-docs-stable/dev/libs/cep.html.
[6] [n.d.]. Monitoring Back Pressure. https://ci.apache.org/projects/�ink/

�ink-docs-release-1.9/monitoring/back_pressure.html.
[7] [n.d.]. Siddhi CEP. https://github.com/wso2/siddhi.
[8] [n.d.]. Task chaining and resource groups. https://ci.apache.

org/projects/�ink/�ink-docs-release-1.9/dev/stream/operators/
#task-chaining-and-resource-groups.

[9] [n.d.]. WSO2. Creating a Storm Based Distributed Execu-tionPlan.
https://docs.wso2.com/display/CEP410/Creating+a+Storm+Based+
Distributed+Execution+Plan.

[10] E Alevizos, A Artikis, and G Paliouras. 2017. Event Forecasting with Pattern
Markov Chains. In DEBS.

[11] E Alevizos, A Artikis, and G Paliouras. 2018. Wayeb: a Tool for Complex Event
Forecasting. In LPAR.

[12] A Artikis, M Sergot, and G Paliouras. 2015. An Event Calculus for Event
Recognition. IEEE Trans. Knowl. Data Eng. (2015).

[13] C Balkesen, N Dindar, M Wetter, and N Tatbul. 2013. RIP: run-based intra-
query parallelism for scalable complex event processing. In DEBS.

[14] P Carbone, A Katsifodimos, S Ewen, V Markl, S Haridi, and K Tzoumas. 2015.
Apache Flink™: Stream and Batch Processing in a Single Engine. IEEE Data
Eng. Bull. (2015).

[15] G Cugola and A Margara. 2012. Complex event processing with T-REX. J.
Syst. Softw. (2012).

[16] G Cugola and A Margara. 2012. Processing �ows of information: From data
stream to complex event processing. ACM Comput. Surv. (2012).

[17] L D’Antoni and M Veanes. 2017. The Power of Symbolic Automata and
Transducers. In CAV (1).

[18] A Demers, J Gehrke, B Panda, M Riedewald, V Sharma, and WWhite. 2007.
Cayuga: A General Purpose Event Monitoring System. In CIDR.

[19] N Giatrakos, E Alevizos, A Artikis, A Deligiannakis, and M Garofalakis. 2020.
Complex event recognition in the Big Data era: a survey. VLDB J. (2020).

[20] Martin Hirzel. 2012. Partition and compose: parallel complex event processing.
In DEBS.

[21] N Koutroumanis, G Santipantakis, A Glenis, C Doulkeridis, and G Vouros.
2019. Integration of Mobility Data with Weather Information. In EDBT/ICDT
Workshops.

[22] M Liu, E Rundensteiner, K Green�eld, C Gupta, S Wang, I Ari, and A Mehta.
2011. E-Cube: multi-dimensional event sequence analysis using hierarchical
pattern query sharing. In SIGMOD.

[23] Y Mei and S Madden. 2009. ZStream: a cost-based query processor for adap-
tively detecting composite events. In SIGMOD.

[24] K Patroumpas, E Alevizos, A Artikis, M Vodas, N Pelekis, and Y Theodoridis.
2017. Online event recognition from moving vessel trajectories. GeoInformat-
ica (2017).

[25] K Patroumpas, D Spirelis, E Chondrodima, H Georgiou, Petrou P, Tampakis
P, Sideridis S, Pelekis N, and Theodoridis Y. 2018. Final dataset of Trajectory
Synopses over AIS kinematic messages in Brest area (ver. 0.8) [Data set],
10.5281/zenodo.2563256. https://doi.org/10.5281/zenodo.2563256

[26] M Pitsikalis, A Artikis, R Dreo, C Ray, E Camossi, and A-L Jousselme. 2019.
Composite Event Recognition for Maritime Monitoring. In DEBS.

[27] C Ray, R Dreo, E Camossi, and AL Jousselme. 2018. Heterogeneous Inte-
grated Dataset for Maritime Intelligence, Surveillance, and Reconnaissance,
10.5281/zenodo.1167595. https://doi.org/10.5281/zenodo.1167595

[28] N Schultz-Møller, M Migliavacca, and P Pietzuch. 2009. Distributed complex
event processing with query rewriting. In DEBS.

[29] L Snidaro, I Visentini, and K Bryan. 2015. Fusing uncertain knowledge and
evidence for maritime situational awareness via Markov Logic Networks. Inf.
Fusion (2015).

[30] F Terroso-Saenz, M Valdés-Vela, and A Skarmeta-Gómez. 2016. A complex
event processing approach to detect abnormal behaviours in the marine envi-
ronment. Inf. Syst. Frontiers (2016).

[31] E Tsilionis, N Koutroumanis, P Nikitopoulos, C Doulkeridis, and A Artikis.
2019. Online Event Recognition from Moving Vehicles: Application Paper.
TPLP (2019).

[32] H Zhang, Y Diao, and N Immerman. 2014. On complexity and optimization of
expensive queries in complex event processing. In SIGMOD.

https://flink.apache.org/
https://flink.apache.org/
https://kafka.apache.org/
http://www.espertech.com/esper
https://github.com/tomdz/storm-esper
https://ci.apache.org/projects/flink/flink-docs-stable/dev/libs/cep.html
https://ci.apache.org/projects/flink/flink-docs-stable/dev/libs/cep.html
https://ci.apache.org/projects/flink/flink-docs-release-1.9/monitoring/back_pressure.html
https://ci.apache.org/projects/flink/flink-docs-release-1.9/monitoring/back_pressure.html
https://github.com/wso2/siddhi
https://ci.apache.org/projects/flink/flink-docs-release-1.9/dev/stream/operators/#task-chaining-and-resource-groups
https://ci.apache.org/projects/flink/flink-docs-release-1.9/dev/stream/operators/#task-chaining-and-resource-groups
https://ci.apache.org/projects/flink/flink-docs-release-1.9/dev/stream/operators/#task-chaining-and-resource-groups
https://docs.wso2.com/display/CEP410/Creating+a+Storm+Based+Distributed+Execution+Plan
https://docs.wso2.com/display/CEP410/Creating+a+Storm+Based+Distributed+Execution+Plan
https://doi.org/10.5281/zenodo.2563256
https://doi.org/10.5281/zenodo.1167595

	Abstract
	1 Introduction
	2 Related Work
	3 Automata-based Event Recognition
	4 Scalable Event Recognition Over Multiple Trajectories
	5 Experimental Evaluation
	5.1 Fleet Management
	5.2 Maritime Monitoring

	6 Summary and Future Work
	Acknowledgments
	References

