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Abstract

Online Trajectory Generation for Robot Manipulators in Dynamic Environment — An
Optimization-based Approach

by

Chi-Shen Tsai

Doctor of Philosophy in Engineering: Mechanical Engineering

University of California, Berkeley

Professor Masayoshi Tomizuka, Chair

Interest in robot manipulators interacting with dynamic environments has been continuously
growing because of the increasing demand for industrial robot collaboration. Human–robot
collaboration and robot–robot collaboration are the two scenarios of robot collaboration that
have generally been considered. The difficulties of such applications may be described from
two perspectives: a good perception of environment and a proper algorithm to react to the
dynamic environment for the robot manipulators. Online trajectory generation is one of
the approaches for robot reaction. In the generation of the trajectory, the transformation
between joint space and task space is necessary since the sensor measurement of the envi-
ronment is in task space and the trajectory of the robot manipulator is in joint space. The
transformation needs to be done online in a dynamic environment and hence easily results
in an exponential increase of the computational load.

This dissertation proposes a safety index and the associated robot safety system in order
to assess and ensure the safety of the agent in the collaboration scenarios. The agent could be
a human worker in human–robot collaboration or another robot in robot–robot collaboration.
In the robot safety system, the online trajectory generation algorithm is formulated in the
optimization-based trajectory planning framework. The safety index is evaluated using the
ellipsoid coordinates attached to the robot links that represents the distance between the
robot manipulator and the agent. To account for the inertial effect, the momentum of the
robot links are projected onto the coordinates to generate additional measures of safety.
The safety index is used as a constraint in the formulation of the optimization problem so
that a collision-free trajectory within a finite time horizon is generated online iteratively
for the robot to move toward the desired position. To reduce the computational load for
real-time implementation, the formulated optimization problem is further approximated by a
quadratic problem. Moreover, a heuristic strategy is proposed to select the active constraints
for the next iteration so as to further reduce the computational load. The safety index and
the proposed online trajectory generation algorithm are simulated and validated in both a
two-link planar robot and a seven-DOF robot in human–robot collaboration and robot–robot
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collaboration. Simulation results show that the proposed algorithm and robot safety system
are capable of generating collision-free and smooth trajectories online.

The proposed algorithm has been extended to consider measurement noise in the agent
information. Two possible approaches have been proposed for handling zero-mean Gaussian
noise in the agent information.
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Chapter 1

Introduction

1.1 Human–Robot and Robot–Robot Collaboration

in Industrial Automation

Robot manipulators have been widely used in assembly lines for mass production for decades.
They are the key components in automated production since they provide highly accurate
motions, capability of handling heavy loadings, and high repeatability. Recently, human–
robot collaborations and robot–robot collaborations have attracted more and more attention
because of their synergistic flexibility in industrial production.

1.1.1 Human–Robot Collaboration

For the purpose of production efficiency, robot manipulators are normally operated at a high
speed, and thus are isolated by fences from human workers for safety concerns. Convention-
ally, when the overlap of robot manipulator workspaces and human worker workspaces is
necessary, the motions of robot manipulators are ceased. Recently, with the need of shorter
product life cycles and more complex products, more attention from both the industrial
field [59, 69, 31] and the academic community [66, 64, 51, 33] has been paid to release robot
manipulators from fences and increase the capability of human–robot collaboration. Human–
robot collaboration intends to combine the benefits from both sides: the adaptability and
the decision making skill from human workers, and the precision and the strength from robot
manipulators.

Generally speaking, human–robot collaborations can be classified into two types depend-
ing on the existence of intentional physical contact between these two sides. In the type
with intentional physical contact, robot manipulators assist human workers to move heavy
objects by holding an object and compensating for the object’s inertia. On the other hand,
for the type without intentional physical contact, robot manipulators act like co-workers and
cooperate with human workers while avoiding physical contact and collisions. For example,
robot manipulators could be workpiece dispensers that provide assembly components to hu-
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man workers during the assembly process [64]. Another example from industry is that robot
manipulators carry heavy components and finish the non-ergonomic part of the assembly
process, and then the human workers continue the part which requires adaptability [69].
In such cases where robot manipulators cooperate with human workers, the workspaces of
human workers and robot manipulators often overlap with each other. Because of safety con-
cerns, the human workers and robot manipulators are either separated by space or by time,
which largely reduces the production efficiency and limits the applicability of human–robot
collaboration. In order to fully exploit the advantages of the human–robot collaborative as-
sembly, ensuring the safety of the human workers inside the shared workspace is the critical
issue that needs to be considered.

1.1.2 Decentralized Robot–Robot Collaboration

In addition to human–robot collaborations, robot–robot collaborations are also gaining at-
tention from the industry for effective and flexible automation utilizing robot manipulators.
A centralized control structure is normally adopted in robot–robot collaborations, in which
the reference trajectories for all robot manipulators are programmed prior to the production
operation. The preparation effort for the centralized control structure, however, is huge in
order to prevent any collisions with each other, and it gets worse when the number of the
robot manipulators in the collaboration team increases. It is an undesired disadvantage for
an assembly process with short product life cycles.

Some focus has been shifted to decentralized robot–robot collaboration [17, 45, 49], in
which two or more robot manipulators perform either the same tasks, such as load trans-
port [49] and dexterous grasping [46], or different tasks, such as coordinate welding [70] and
cooperative assembly, for the same assembly goal. In decentralized robot–robot collabora-
tion, only the reference trajectories of some robot manipulators are designed prior to the
production operation. These manipulators with predefined trajectories are called the master
robot manipulators, and the others are the slave robot manipulators. Then the trajectories
of the slave robot manipulators are generated in an online fashion based on the motions
of the master robot manipulators. For all these applications of decentralized robot–robot
collaboration, collision avoidance is also an important issue and needs to be addressed.

1.2 Safety Concerns in Robot Collaborations

To release the robot manipulators from fences and put them in the applications of robotics
collaborations, the safety concern takes priority over any other matter. For decentralized
robot–robot collaboration, the safety concern can be split into two aspects: the control
strategy for collision avoidance among the robot team and the detection and reaction to
a collision if it occurs. The former corresponds to the safety prior to the occurrence of a
collision, and the latter is for the post-collision safety.
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Table 1.1: Aspects of safety concerns in human–robot collaboration and decentralized robot–
robot collaboration.

Human–Robot
collaboration

Decentralized
robot–robot
collaboration

Safety concerns
prior to collisions

• Perception of the human
workers
• Control strategy for
collision avoidance

• Control strategy for
collision avoidance

Post-collision
safety concerns

• Detection and reaction
to collisions
• Mechanical design of the
robot manipulator

• Detection and reaction
to collisions

The safety of the human workers in human–robot collaboration requires a significantly
higher level of attention. Any harm to human workers caused by robot manipulators needs
to be prevented. Compared to decentralized robot–robot collaboration, the safety of the
human workers needs to be considered in two more aspects: the perception of the human
workers, and the mechanical design of the robot manipulators. The perception of the human
workers means the acquiring of the knowledge of the vicinity of the robot manipulator, such
as the positions of the human workers. This aspect and the control strategy for collision
avoidance account for the safety prior to a collision, while the mechanical design of the robot
manipulators and the detection and reaction to a collision are for the post-collision safety.
These four aspects are summarized in Table 1.1 and introduced as follows.

1.2.1 Perception of the Human Workers

The robot perception of the human workers is the first key step in ensuring the safety of
the human workers in the shared workspace. A poor sensory system which cannot provide
precise or even adequate information about the position of the human workers could result
in failure of keeping the human workers safe.

Proximity sensors, such as sonars and lasers, have been used for years in the field of mobile
robotics for the detection of humans and obstacles; for example, [4, 67, 6]. In these cases,
the mobile robot and the obstacles are treated as objects moving on a two-dimensional
plane. However, the limitation from the working principle of the sonar and laser sensors
has hindered the applicability of these sensors in three-dimensional space in an industrial
assembly line.
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Recently, in consequence of the progress in the computer-vision field and the decline
in both the price and the size of cameras, vision-based sensors have been more frequently
utilized in the perception of the environment. In team@work proposed by Thiemermann [34,
65], three RGB cameras in trinocular arrangement are used to detect the human workers in
the cooperative work cell. The positions of a human’s hands and neck inside the workspace of
a SCARA robot can be reconstructed by a photogrammetric method using the characteristic
color and texture features of the human skin extracted from camera images. Henrich and
Gecks [24, 15] presented a four RGB camera system which is used to monitor and guide
a robot manipulator in a dynamic environment. The obstacle detection is achieved by
comparing the current four images with the reference images of the empty workspace taken
in a preliminary setup. Guggi and Riner [19] deployed the distributed smart camera system to
monitor the workspace of a crane. Every camera in the distributed camera system performs
a local image analysis in order to identify the shape of the obstacles in their field of view.
Shape information from the four cameras is then fused together to estimate the 3D structure
of the obstacles.

Microsoft Kinect sensor [48] is a commercial product which combines a RGB camera,
a infrared projector and a receiver, and a microphone array. It has been broadly used in
both the academic community and industry for human position and gesture detection since
its debut in 2010. For example, it was utilized in [57, 16] to capture depth images, and the
relative distance between the human worker and the robot manipulator can be obtained from
a depth space built upon the depth images. Morato et al. [50] proposed a multiple Kinect-
based exteroceptive sensing framework to capture a human worker as a twenty-joint skeleton
model. Instead of processing the depth space directly, their system fused the position data
of the skeleton model in the local coordinates from each Kinect in a filter scheme to obtain
a refined human model in the global coordinate.

SafetyEYE [59] from Pilz is a commercial safety system with three cameras mounted on
the roof of the workspace for 3D workspace surveillance. Whenever a human worker invades
into the predefined safety zones, the motions of the robot manipulators are slowed down or
even stopped. These safety zones are defined as static polygons with a given height, and
cannot be changed during active surveillance.

1.2.2 Control Strategy

In the perspective of robot control, human–robot collaboration can be viewed as a planning
problem in a dynamic environment, where the human workers are treated as dynamic agents
and the goal of the robot manipulators is to achieve their tasks and simultaneously avoid
collisions with the human workers. The same concept can be applied to decentralized robot–
robot collaboration, in which the master robot manipulators are the dynamic agents, and
the slave robot manipulators are desired to achieve their tasks without any collisions with
the master robot manipulators. Two frameworks are generally considered in such planning
problems: reactive control framework, and optimization-based path planning framework.
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For the reactive control framework, the control input to the robot manipulator is com-
puted based on the current manipulator state and the current agent state. The potential
field approach [32] proposed by Khatib is one of the well-known reactive control approaches.
In the potential field approach, the distance between the goal and the current positions of
the end-effector is transformed into a vector field to generate the attracting control torque.
There also exist the repelling control torques generated by another vector field built from
the relative distances between the agents to the predefined concern points on the robot ma-
nipulator. The attracting control torque and the repelling control torques then are combined
to form the control input to the robot manipulator. One drawback of this approach is that
the potential field does not capture the relative motion between the robot manipulator and
the agents. Another is that it may suffer from the local minimum problem, in which the
robot manipulator gets stuck in some other positions before reaching the goal position. This
problem is caused by the cancellation between the attracting control torque and the repelling
control torque.

Many approaches are inspired by the potential field approach and attempt to overcome
its downsides. The circular field approach [63] proposed by Singh et al. is motivated by a
charged particle in a magnetic field generated by a current flowing around the agents. In the
circular field, artificial electro-magnetic-fields are generated by the virtual current around
the surface of the agents so that the path of a point robot is rotated around the agents. This
method is further elaborated by Haddadin et al. [60, 22].

The kinetostatic danger field [41, 72] is built from the configuration and velocity of the
robot manipulator, and the integral of the field along the robot links gives the danger index
for the robot links. A feedback-like control law is derived from the danger index and the
danger field. Since only current states are considered, algorithms in this framework do not
guarantee smooth trajectories and often suffer from the local minimum problem.

Another framework is optimization-based path planning, in which the optimal path or
trajectory of a short horizon from the current manipulator state is obtained by solving an
optimization problem. This framework has gained attention recently since the boost of
computing power makes online implementation possible. In [3], the collision-free path of
the end-effector is searched by solving an optimization problem in which the end-effector
is only allowed to move along a set of predefined directions. In the formulation of the op-
timization problem, the robot manipulator and the human worker are represented by two
sets of spheres, and the reciprocal of the distances between all pairs of spheres from these
two sets are penalized in the objective function. In [14] and [13], the geometrical relation-
ships between the polygon-modeled agents and the robot manipulator are decomposed into
multiple linear inequality constraints with binary variables to control the activation of each
inequality constraint. Mixed Integer Linear Programming (MILP) is then utilized to solve
the optimization problem. Chung et al. [8] proposed elliptical sets for links of a two-link
planar robot as the non-collision zones. These zones are then incorporated in the robot
dynamic model as the hard constraints in the optimization-based approach to generate a
collision-free trajectory. However, because of the nonlinearity of the robot dynamics, solving
the optimization problem becomes the bottleneck and nearly infeasible even in such a simple
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case of a two-link planar robot.
Among all the approaches in both frameworks, the spatial relationship and the relative

motions between the robot manipulator and the agent are normally quantified as an index for
safety and evaluated from concern points on the robot manipulator to points on the agent.
These values are then used in the algorithms of collision avoidance. In most implementations,
however, the extension from a concern point to the entire robot results in an exponential
increase of computation. Moreover, since the agent states are measured in task space and
the robot manipulator states are in joint space, the nonlinear and non-convex transformation
between these two spaces requires even more computing power.

1.2.3 Mechanical Design for Compliant Manipulators

The methods in the previous two sections play important roles in the safety considerations
prior to the occurrence of collisions. On the other hand, when a collision occurs, the safety
consideration highly depends on the detection of the collision and the capability of absorbing
the impact force caused by the collision. Many innovative mechanical designs of the robot
manipulators are proposed to improve the compliance of the robot manipulator for the
purpose of absorbing the impact force.

Series elastic actuation (SEA) was first introduced by Pratt and Williamson [56] in which
a passive mechanical spring is deliberately connected between the motor output and the robot
link. It has the benefits of a simple design and lowering the robot joint stiffness, and hence
increases the safety without making the volume of the robot joints too bulky. SEA has been
widely used in many commercial robot manipulators, such as the lightweight robot (LWR)
[1] designed by Deutsches Zentrum für Luft- und Raumfahrt (DLR), and Baxter [58] from
Rethink Robotics.

Zinn et al. [74, 73] proposed a new actuation approach based on the design of the SEA,
named distributed macro-mini (DM2) actuation. In their design, the actuator in the SEA
is the main torque source, and is called the macro actuator. Another small actuator with
a high frequency bandwidth, referred as the mini one, is attached to the robot link for fast
responses. Namely, a pair of actuators is connected in parallel to the same joint, but on
different sides with respect to the transmission gear. This design is capable of reducing the
effective inertia of the robot links and of overcoming the bandwidth limitation occurring in
the SEA. Shin et al. [62] proposed an evolution of the DM2 approach in which compliant
pneumatic muscles are utilized as macro actuators for a more compact design, instead of
electric actuators.

Variable stiffness transmission (VST) is another approach which aims to dynamically
change the robot joint stiffness so that the robot manipulator can exhibit a low stiffness
when subjected to a collision force greater than the injury tolerance, but can maintain a
high stiffness at other times. Many new mechanisms have been developed to achieve the
variable stiffness, for example, [53, 7, 61, 54].
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1.2.4 Detection of the Occurrence of Collisions

In addition to the design of the compliant manipulators, some devices are developed for
detecting the occurrence of collisions without altering the mechanical structure of the robot
joints. The BI-Jacket [71] proposed by Yu et al. is a simple deformable collision detection
sensor which consists of a foam cover and multiple air pressure sensors. The foam cover
contains several air chambers, and each of them is well-sealed and connected to an air
pressure sensor. Because of the deformable material and the air chambers, the foam cover
serves as a buffering material between the robot link and the agent and absorbs partial
impact force when a collision occurs. The deformation of the foam makes the air pressure
inside the air chambers change, which enables the robot system to detect the occurrence of
a collision from the air pressure measurement. Jeong et al. [30, 29] has developed a similar
device which consists of multiple flexible air tubes and an air pressure sensor.

De Luca and Haddadin [11, 10] have developed a sensorless algorithm to detect a collision
from the total energy and generalized momentum of the robot manipulators using merely
the robot manipulator states. When a collision occurs, this method not only detects the
occurrence, but also identifies which robot link has collided. This algorithm was implemented
on the third generation of the LWR [21].

1.3 Safety Standards

For industrial applications, several standards have been made since 1999 to standardize the
safety of human workers who are in the same environment, but do not necessarily share the
workspace, with robot manipulators at the same time. Conservative safety guidelines, such
as ANSI/RIA R15.06-1999 [2], which is proposed by the Robotic Industries Association and
approved by the American National Standards Institute, prescribe the requirements for hu-
man workers using robot systems in industry. They require the physical separation between
robot manipulators and human workers. A relaxation toward more collaborative require-
ments was introduced in ISO 10218-1 [27] (International Organization for Standardization).
For the case of human–robot collaboration with the absence of intentional physical contact,
this standard states that one of the following requirements always has to be fulfilled: the
tool center point (TCP) velocity or flange velocity must be at most 0.25 m/s, the maximum
dynamic power at most 80 W, or the maximum static force at most 150 N. The ISO 10218-1
was harmonized with the ANSI/RIA R15.06-2012, which is an update to the 1999 version.
However, in [21], it was experimentally demonstrated that these requirements tend to be
unnecessarily restrictive, and therefore unnecessarily hinder the performance of the robot
manipulator.
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1.4 Dissertation Overview

1.4.1 Objective and Contributions

The objective of this dissertation is to develop a robot safety system for applications to robot
collaborations so that the robot manipulator can achieve its own task under the guarantee
of the safety of the agent. The agent, as mentioned, can be either the human worker in
human–robot collaboration or the master robot manipulator in decentralized robot–robot
collaboration. Ensuring the safety of the agent implies that no collisions will occur between
the agent and the robot manipulator during collaboration. Furthermore, this dissertation is
focusing on the high-level control strategy of the robot manipulator based on the assumption
that the perception of the human workers has been provided.

The contributions of this dissertation are listed below.

• A measure to evaluate the safety of the agent in the shared workspace is designed.
This safety index is designed in the ellipsoid coordinates, which are constructed upon
the local coordinates of the robot links and hence move along with the robot links.
With the design, the safety index for a pair of the robot link and the agent can be
computed directly without setting any concern points. The introduction of the ellipsoid
coordinates greatly alleviates the amount of computation when the assessment of the
agent safety regarding the entire robot manipulator is considered.

• An online trajectory generation algorithm in the optimization-based planning frame-
work is proposed to generate new trajectories for the robot manipulator. The opti-
mization problem is formulated so as to drive the robot manipulator to achieve its
task and avoid collisions with the agent simultaneously. Plus, the generated trajecto-
ries are inherently smooth by penalizing the joint jerk in the objective function of the
optimization problem.

• The formulated optimization problem is originally nonlinear and non-convex because
of the use of forward kinematics for transformation of the robot manipulator states
from joint space to task space. This formulation then is approximated by a quadratic
formulation. The performance of the quadratic formulation is validated by simulations
and is shown to be as good as that of the original formulation in terms of achieving
the manipulator’s task and collision avoidance.

• To further relax the assumption in the perception of the human workers, the position
information is extended to contain measurement noise. The proposed algorithm is then
extended to handle the stochastic model of the agent positions.

1.4.2 Dissertation Outline

The outline of this dissertation is as follows.
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Chapter 2: Simulation Environment and Performance Assessment

In this chapter, the structure of the robot safety system is proposed. Then the simulation
environment for the validation of the proposed algorithm with the robot safety system is
introduced. Simulations are conducted for the validation of the proposed online trajectory
generation algorithm in the MATLAB environment. Two robot manipulators are chosen
as the testbed in simulations. The first one is a two-link planar robot, which serves as a
good illustration to demonstrate the concept of the proposed algorithm because of its simple
mechanical structure. The second robot manipulator is a seven degree of freedom (DOF)
robot manipulator designed by Industrial Technology Research Institute (ITRI), Taiwan.
The second robot manipulator is used to illustrate the scalability of applying the proposed
algorithm to a robot manipulator with joint redundancy in three-dimensional task space.
This chapter concludes with performance considerations in three aspects for the proposed
algorithm, including safety of agents, smoothness of generated trajectories, and feasibility
for real-time implementation.

Chapter 3: Design of Safety Index

In this chapter, the design of a safety index for the agents, either a human worker or another
robot manipulator, inside the shared workspace is introduced. The safety index is designed
based not only on the relative distance level, but also on the robot links momentum level. The
relative distance is selected intuitively as a factor since the physical separation between the
robot manipulator and the agent implies that no collisions happen. Robot manipulators are
normally operated at a high speed for production efficiency resulting in a large momentum.
The larger the momentum, the more the impact of collision. Furthermore, a manipulator
with larger momentum normally requires a longer time and a longer distance to fully stop its
motion after the stop command is issued. Hence, the momentum of the robot links is another
factor that needs to be considered. The safety index is computed in the ellipsoid coordinates
attached to robot links, and hence the computational load can be greatly alleviated.

Chapter 4: Online Trajectory Generation Algorithm

In this chapter, the proposed online trajectory generation algorithm is stated in detail. This
algorithm is developed under the optimization-based path-planning framework with the use
of a receding horizon strategy, discretized kinematics model, and the safety index designed
in Chapter 3. By solving the optimization problem, the solution is a trajectory within a
short time horizon which achieves the functions of leading the robot manipulator toward the
goal position and avoiding any collisions with agents simultaneously.

The formulated optimization problem, with the use of the transformation between joint
space and task space, is highly nonlinear and non-convex. In order to reduce the compu-
tational load for the online trajectory generation, the formulated optimization problem is
approximated by a quadratic problem with linear constraints.
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In the formulation of the quadratic problem, the inequality constraints that account for
the safety are considered for each pair of the ellipsoid coordinate and the agent ellipsoid in
every time step within the planning time horizon. The approximation of these inequality
constraints results in a large increase of the computational load. A heuristic selection strategy
is proposed to effectively choose those inequality constraints which are active or almost active
so as to prevent the increase of the computational load.

Chapter 5: Simulation Studies

In this chapter, the proposed online trajectory generation algorithm along with the robot
safety system proposed in Section 2.2 are implemented and simulated. Three formulation—
the original formulation of the optimization problem, the quadratic problem, and the quadratic
problem with the selection strategy—are implemented and simulated for comparison. The
quadratic problem is an approximation of the original optimization problem. The selection
strategy is an heuristic method to further reduce the size of the quadratic optimization
problem. Simulations are conducted on the two robot manipulators for validation. Sim-
ulation results show that the quadratic formulation has an equivalent performance as the
original formulation in terms of ensuring the safety of the agents in the shared workspace.
The quadratic formulation, however, can be solved much faster compared to the nonlinear
formulation. The simulations of the quadratic formulation with and without the selection
strategy show almost identical performance, but the selection strategy has greatly reduce
the computational load.

Chapter 6: Measurement Noise in the Agent Information

In this chapter, noisy measurement of the agent position information is considered. A Gaus-
sian random vector is used to represent the measurement noise in sensing the agents in the
shared workspace. Two approaches are proposed to handle the contaminated agent infor-
mation. The first one is to consider the measurement noise in the agent position estimation
block, and then this block outputs the best estimate of the agent position to the decision
making block. An alternative approach is to handle the measurement noise in the formula-
tion of the optimization problem in the decision making block. The inequality constraints
accounting for the safety in the optimization problem become chance inequality constraints.
To realize the inequality chance constraints in implementation, these chance constraints are
transformed to normal deterministic constraints by utilizing the mathematical similarity
between the probability density function (PDF) of a Gaussian random vector and the ellip-
soid coordinates. The quadratic approximation then can be applied again for a fast online
trajectory generation.

Chapter 7: Conclusion and Future Research

Remarks about the proposed algorithm and the conclusions of this dissertation are summa-
rized in this chapter. Then some open issues and possible future work are discussed.
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Chapter 2

Simulation Environment and

Performance Assessment

2.1 Introduction

In this chapter, the structure of the robot safety system for the online trajectory generation
algorithm proposed in this dissertation is introduced. Then the simulation environment
for the validation of the proposed algorithm and the robot safety system is given. In the
simulation environment, two robot manipulators are used for validation, two scenarios of
simulations are selected, and one assumption about the robot perception is made. For the
assessment of the proposed algorithm in simulations, including the safety of the agents, the
smoothness of the generated trajectories, and the suitability for the real-time implementation
are considered.

2.2 Robot Safety System

The robot safety system in this dissertation modifies the original desired trajectory to ensure
that the robot completes the task while ensuring the safety of the agent. An overall structure
of the robot safety system is proposed and presented in Figure 2.1. It consists of four
components: a sensor block, an agent position estimation block, a controller block, and
a decision making block. The sensor block may contain several different sensors, such as
stereo cameras, proximity sensors, or even a Microsoft Kinect sensor [48], to detect the
agents inside the robot workspace. Note that the agents could be either human workers
or the master robot manipulators, depending on the application of robot collaborations.
The agent position estimation block then transforms the measurements from the sensor
block into a set of ellipsoids which can effectively envelop the space occupied by the agents.
Figure 2.2 shows examples of a human worker and a master robot manipulator which are
represented by two sets of ellipsoids. The sensor block and the agent position estimation
block accounts for the robot manipulator perception so as to provide the knowledge of
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Figure 2.1: The overall structure of the safety system for robot manipulators.

(a) (b)

Figure 2.2: Examples of (a) a human worker and (b) a robot manipulator being enveloped
by two sets of ellipsoids.

the vicinity of the robot manipulator. The reason that ellipsoids, rather than spheres or
polytopes, are selected to represent the agents is that the volume of an ellipsoid can be
written in a simple mathematical form without using any logical operations. Furthermore,
the shape of an ellipsoid can be controlled separately and easily along each dimension via its
parameters. With these advantages, an agent can be enveloped efficiently and simply using
a few ellipsoids.

The decision making block is the place where the online generation of trajectory exists. It
takes the states of the agent ellipsoids and the robot manipulator, computes the safety index,
and then generates a new trajectory by solving an optimization problem. The trajectory
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includes the position, the velocity, and the acceleration of the robot joints which will lead
the robot manipulator toward its goal position and avoid collisions with the agents. The
controller block then generates lower-level control commands for the robot manipulator to
track the collision-free trajectory generated by the decision making block.

2.3 Simulation Environment

2.3.1 Assumption

In the later chapters, the focus will be put on the proposed online trajectory generation in the
decision making block while the perception of the robot workspace is assumed to be ready.
Specifically, it is assumed that sensors in the sensor block are well-selected to provide effective
measurements for the agent position estimation block to transform the measurements into a
set of ellipsoids.

For decentralized robot–robot collaboration, this assumption is inherently valid since
the joint position of the master manipulator should be available through communication
with the robot system of the master robot in every controller time step. The parameters of
ellipsoids to envelop the entire master robot manipulator can be properly selected prior to the
collaboration operation. Hence, the information of these agent ellipsoids can be computed
in every time step.

For human–robot collaboration, this assumption is reasonable since there are existing
literature studies and commercial products devoted to the perception of the workspace for the
robot manipulator as detailed in Section 1.2.1. Among all the sensors, computer vision-based
sensors, such as a stereo camera or Microsoft Kinect, are widely utilized among all possible
sensors in both the academic community and industrial applications. For instance, Kulić
and Croft [38] used a stereo camera to build the depth map, and then the information of the
sphere set is generated to represent the human worker by the hierarchy spheres representation
[47]. A Microsoft Kinect [48] is able to output the position of each joint in the twenty-joint
skeleton model in the local coordinate of the Kinect. Because of the limitation of these
sensors, the sampling rate of this type of sensor is normally around 30 Hz [18, 48], which is
much lower than the controller sampling rate in most robot systems.

In this dissertation, the computer vision-based sensors are assumed to be selected in the
sensor block of the robot safety system. The information of the agent ellipsoids is assumed
to be available in every Tc controller time steps.

2.3.2 Robot Manipulators

In the simulations for validation of the proposed algorithm, two robot manipulators are
selected. The first one is a two-link planar SCARA (Selective Compliance Assembly Robot
Arm) robot as shown in Figure 2.3. The axes of the two joints in the two-link planar robot
are parallel with the Z-axis of task space, and hence the motion of the robot end-effector is
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Figure 2.3: The two-link planar robot for algorithm validation.

Table 2.1: Parameters of the two-link planar robot manipulator.

Joint limits
Joint position Joint velocity Joint acceleration

Joint 1 (−π, π) (-1.2,1.2) (-50,50)
Joint 2 (−π, π) (-1.28,1.28) (-20,20)
(unit) (rad) (rad/s) (rad/s2)

Length
Link 1 L1 =0.320 m
Link 2 L2 =0.215 m

Table 2.2: DH Parameters of the two-link planar robot manipulator.

ai αi di θi
Link 1 L1 0 0 θ1
Link 2 L2 0 0 θ2

limited on a two-dimensional plane. For simplicity, the two links and the end-effector of the
two-link planar robot are considered in the X–Y plane, and the base is at the origin of the
X–Y plane. The length and motion limits for position, velocity, and acceleration for each
link are listed in Table 2.1. The DH parameters [12] of the two-link planar robot arm are
listed in Table 2.2 where θ1 and θ2 are the two joint positions.

The second robot manipulator for algorithm validation is a seven-DOF robot manipulator
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Figure 2.4: The ITRI seven-DOF robot manipulator for algorithm validation.

Table 2.3: Parameters of the ITRI seven-DOF robot manipulator

Joint limits
Joint position Joint velocity Joint acceleration

Joint 1 (−π/2, π/2) (-1, 1) (-60,60)
Joint 2 (−1.0, 1.0) (-1, 1) (-60,60)
Joint 3 (−1.8, 1.8) (-1, 1) (-60,60)
Joint 4 (−3.0, 3.0) (-1, 1) (-36,36)
Joint 5 (−3.0, 3.0) (-1, 1) (-36,36)
Joint 6 (−π/2, π/2) (-1, 1) (-24,24)
Joint 7 (−1.2, 1.2) (-1, 1) (-24,24)
(unit) (rad) (rad/s) (rad/s2)

designed by Industrial Technology and Research Institute (ITRI), the CAD model of which
is shown in Figure 2.4. The kinematic structure of the ITRI seven-DOF robot manipulator
and the coordinate systems of robot links are illustrated in Figure 2.5. For simplicity, the
Y -axes of all robot link coordinates are not shown in the figure, but can be built via the
right-hand rule. The motion limits for joint position, velocity, and acceleration for the ITRI
seven-DOF robot manipulator are listed in Table 2.3, and the DH parameters are listed in
Table 2.4, where θ1, · · · , θ7 are the joint angles.

The choice of the two-link planar robot manipulator is to serve as an illustration of
the concept and the behavior of the proposed algorithm since it has a simple mechanical
structure. On the other hand, the selection of the ITRI seven-DOF robot manipulator
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, ,
,

,

Figure 2.5: The kinematic structure and the coordinate systems of links in the ITRI seven-
DOF robot manipulator. (For simplicity, the Y -axes of all coordinates are not shown in the
figure, but can be built via right-hand rule.)

Table 2.4: DH Parameters of the ITRI seven-DOF robot manipulator.

ai αi di θi
Link 1 0 −π/2 0 θ1
Link 2 0 π/2 0 θ2
Link 3 0.04 −π/2 0.33 θ3
Link 4 -0.04 π/2 0 θ4
Link 5 0 −π/2 0.29 θ5
Link 6 0 π/2 0 θ6
Link 7 0 0 0.16 θ7
(unit) (m) (rad) (m) (rad)

demonstrates the scalability of applying the proposed algorithm to a robot manipulator
with joint redundancy in a three-dimensional task space.

2.3.3 Simulation Setup

The proposed algorithm and the robot safety system is validated on the two robot manip-
ulators in the MATLAB environment. For the visualization of the simulation results, the
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Joint 1
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Joint 3

Joint 4
Joint 5

Joint 6
Joint 7

Figure 2.6: The model of the ITRI seven-DOF robot built by Robotics Toolbox [9] in MAT-
LAB. The blue cylinders indicate joint 1 to joint 7.

two-link planar robot is built and plotted in the X–Y plane as illustrated in Figure 2.3. The
ITRI seven-DOF robot manipulator is built in MATLAB utilizing Robotics Toolbox [9] as
shown in Figure 2.6. In the figure, each of the blue cylinders, labeled as joint 1 to joint 7,
indicates the corresponding joint.

2.3.4 Simulation Scenarios

In validation, scenarios of both human–robot collaboration and decentralized robot–robot
collaboration are simulated since the human worker and the master robot manipulator are
unified as the agents in the shared workspace. The details of both scenarios are stated in
the following.

Human–Robot Collaboration

In human–robot collaboration, the simulation scenario is that the robot manipulator working
on the non-ergonomic task next to a human worker in a close distance, similar to the situation
in [69]. In the scenario, the motion of the robot manipulator is to pick up a work piece in one
place, and then move to another place and finish this iteration of the assembly task. During
the collaboration, the human worker reaches out his/her hand unexpectedly to the place of
the assembly task when the robot manipulator is approaching toward the place or already
in the place of the assembly task. Without loss of generality, the end-effector path of the
robot manipulator is a straight line between two places when there is no human worker in
its workspace. The details of the motions of the human worker who is in the workspace of
either the two-link planar robot or the ITRI seven-DOF robot are stated below.
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Figure 2.7: Two desired configurations of the two-link planar robot manipulator in simu-
lations of human–robot collaboration. The straight line is the desired path for the robot
end-effector. The human worker is modeled by six circles and two ellipses.
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Figure 2.8: (a) The position and (b) velocity of the center of the ellipse representing the left
hand of the human worker.

In the case of the two-link planar robot, the picking and the assembling places are located
at (0.4, 0.3) and (0.4,−0.3) respectively, and are denoted by the red and the green crosses
labeled as S and E in Figure 2.7. The straight line between the two positions is the desired
path for the robot end-effector, and the corresponding configurations for reaching these two
positions are also shown in the figure. As shown in Figure 2.7, the human worker is modeled
by six circles and two ellipses in which two ellipses represent two hands, and the six circles
are used to model the human worker’s body. The two ellipses are identical with the radii
of 0.15 m and 0.03 m, and the radius of each circle is 0.06 m. The right-hand ellipse of the
human worker stays in the way of the robot manipulator during the motion of the robot
manipulator. The human worker stretches out the left-hand ellipse toward the E position
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Figure 2.9: (a) The picking and (b) the assembly configurations of the seven-DOF ITRI
robot manipulator in simulations of human–robot collaboration. The human worker is in
the initial gesture.

during the simulation. The starting position of the left hand ellipse center is (0.65,−0.22).
The motion of the ellipse is along the X-axis, and the leftmost point of the ellipse reaches
(0.3, 0.−0.22) during the motion. The position and velocity of the left-hand ellipse is shown
in Figure 2.8.

For the case of ITRI seven-DOF robot manipulator, the picking and the assembling
positions for the end-effector are located at (0.4,−0.4, 0.15) and (0.2, 0.35, 0.1). These two
positions are indicated by S and E, and the corresponding desired configurations for the robot
manipulator are shown in Figure 2.9a and Figure 2.9b, respectively. In the two figures, the
short lines connected to S and E represent the normal direction and the sliding direction of
the end-effector coordinate in the corresponding configuration. Note that the orientation of
the end-effector changes from the picking configuration to the assembling configuration. The
path of the end-effector in the original reference trajectory is a straight line with length of
0.7778 m, as shown in blue in the figure. The base of the ITRI seven-DOF robot manipulator
is set to the world coordinate origin as seen in the figures.

In simulations, the human worker is standing close to the assembling position of the
robot manipulator. The worker leans his/her torso forward with two hands stretching out
toward the assembling position, and then returns to initial posture. The motion of the
human worker is modeled using data from the Carnegie Mellon Motion Capture Database [68]
and MATLAB Motion Capture Toolbox [44]. The CMU Motion Capture Database contains
the position information of joints of the human body in a skeleton model, and then the
set of ellipsoids representing the human worker then can be constructed from the skeleton
model. Figure 2.10a and Figure 2.10b show the skeleton model of a human subject from the
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Figure 2.10: (a) The skeleton of a human subject from the Carnegie Mellon Motion Capture
Database [68], and (b) the ellipsoid representation of the human worker based on the skeleton
model.
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Figure 2.11: The snapshot of the human worker in a gesture which the worker’s hands reach
the farthest positions in simulations. (a) Isometric view, and (b) top views.

database and the corresponding ellipsoid representation. The human worker is chosen to be
represented by twenty ellipsoids: three ellipsoids for each of legs, five ellipsoids for each arm,
three ellipsoids for the torso, and one ellipsoid for the head. The radii of each ellipsoid are
defined based on the skeleton model. For example, one radius of the ellipsoid representing
the left thigh is half of the length of the link between L-hip joint and L-knee joint, and
reasonable values are set to the other two radii of this ellipsoid.

Figure 2.11 shows the snapshot in isometric and top views of the human worker in a
gesture in which his/her hands reach the farthest positions in his/her motion in simula-
tions. The centers of ellipsoids representing the two fists in the gesture are located at
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Figure 2.12: Motions of the agent ellipsoids representing the two fists of the human worker.
(a) Left fist, and (b) right fist.

(0.255, 0.527,−0.007) and (0.234, 0.201,−0.011). It shows that when the human worker is
in this gesture, the two fists of the human worker are very close to the assembling position.
The position and velocity of both fists are shown in Figure 2.12.

Decentralized Robot–Robot Collaboration

In decentralized robot–robot collaboration, the scenario of a master robot manipulator coop-
erating with a slave robot manipulator within close proximity is simulated. The task of the
master robot manipulator has a higher priority while the task of the slave robot manipulator
is less important or depends on the completeness of the master robot task. For instance, the
slave robot manipulator is working on a pick-and-place task and the master robot manipula-
tor is focusing on the assembling task on the workpiece provided by the slave robot. Because
of the decentralized collaboration structure, it is possible that the slave robot is approaching
the place-down spot while the master robot manipulator is still working at the same spot.

For the slave robot manipulator, the pick-up and place-down locations and the corre-
sponding configurations in simulations remain the same as those defined in human–robot
collaboration. For simplicity but without loss of generality, the same model of the robot
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Figure 2.13: Initial condition in simulations of decentralized robot–robot collaboration for
the case of two two-link planar robot manipulators. The points Sm, Em, S, and E are the
desired positions for the end-effectors of the master and the slave robot manipulators.
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Figure 2.14: The trajectory of the master robot manipulator in the simulations of decentral-
ized robot–robot collaboration for the case of the two-link planar robot.

manipulator is used for the master and the slave robot manipulators in the simulation study.
The motion of the master robot manipulator is detailed below.

In the case of a two-link planar robot, the base of the master robot arm is located at
(0.75, 0.2) in the X–Y plane. Two predefined positions for the end-effector of the master
robot arm are (0.7517,−0.2) and (0.45,−0.2), and denoted as Sm and Em in Figure 2.13.
The straight line in red between Sm and Em is the path of the master robot end-effector.
The master robot manipulator moves from Sm to Em with a maximum task space velocity
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Figure 2.15: Initial condition in simulations of decentralized robot–robot collaboration for
the case of two ITRI seven-DOF robot manipulators. Points Sm, Em, S, and E are the
desired positions for the end-effectors of the master and the slave robot manipulators. (a)
Isometric view, and (b) top view.

of 0.33 m/s on its end-effector, stays at Em position for one second to finish its task, and
then moves back to Sm with the same but mirrored motion. The reference trajectory of the
master robot manipulator is shown in Figure 2.14.

In the case of ITRI seven-DOF robot manipulator, the base of the master robot manip-
ulator is at (0.5, 0, 0). The two predefined positions for the end-effector are (0.9, 0.4, 0.15)
and (0.15, 0.2, 0.1), as shown in Figure 2.15 as Sm and Em. In simulations, the master robot
manipulator moves back and forth between these two positions and the maximum velocity
in task space for the end-effector is 0.583 m/s. The reference trajectory of the master robot
manipulator for one route, i.e., from Sm to Em and then back to Sm, is shown in Figure 2.16.

2.4 Performance Assessment

To evaluate the effectiveness of the proposed algorithm in human–robot collaboration and
decentralized robot–robot collaboration in simulations, three factors are considered.

Safety of the Agents

The guarantee of no collisions during the collaboration is the most significant factor and has
the highest priority over other performance factors. An index to quantify the safety of the
agents inside the shared workspace is designed and introduced in the next chapter. The safety
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Figure 2.16: The reference trajectory of the master robot manipulator in simulations of
decentralized robot–robot collaboration for the case of the ITRI seven-DOF robot. The
solid blue, green, and red lines in the left column represent joint 1, joint 2, and joint 3. The
dashed blue, green, red, and cyan lines in the right column represent the joint 4 to joint 7,
respectively.

index is desired to stay inside the predefined safe interval during the entire collaboration in
simulations.

Smoothness of Generated Trajectories

The smoothness of the generated trajectory is another important factor in the trajectory
planning for the industrial robot manipulator. It is well-known that a trajectory with high
values of joint jerk, which is the derivative of joint acceleration, increases the mechanical
structure wear of the robot manipulator and deteriorates the tracking accuracy [40, 55, 28].
To avoid this, a smooth trajectory is normally defined by having a bounded joint jerk, or a
continuous joint acceleration. In the case of human–robot collaboration, from the perspective
of the human worker, a smooth trajectory also implies a more predictable motion of the robot
manipulator and hence causes less mental stress to the human worker. The joint jerk of the
generated trajectory, thus, becomes a factor to examine the proposed trajectory generation
algorithm.
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Feasibility for Real-Time Implementation

Since the trajectory for the robot manipulator is generated online to lead the manipulator
toward the desired position and avoid any collisions, the feasibility of a real-time implemen-
tation of the proposed algorithm is important and needs to be considered.

2.5 Summary

In this chapter, the structure of the robot system for controlling the robot manipulator and
handling the safety of the agents inside the shared workspace was proposed. The simulation
environment, including the assumption of the robot perception, the robot manipulators
used in simulations, and the scenarios, was introduced. The two robot manipulators are
the two-link planar robot manipulator and the ITRI seven-DOF robot manipulator. The
scenarios of human–robot collaboration and decentralized robot–robot collaboration are both
simulated in the cases of two robot manipulators. Finally, the considerations of assessing
the performance of the proposed algorithm were given.
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Chapter 3

Design of Safety Index

3.1 Introduction

As aforementioned, a safety system in charge of the safety for the human worker and the
robots is necessary in human–robot or robot–robot collaboration. A structure of the robot
safety system was proposed in the previous chapter and assumptions were made about the
agent position estimation block in the system. In this chapter, a measure, or a safety index,
to assess the safety of the agents in the shared workspace is introduced. Firstly, a literature
review about the safety index for the agents inside the shared workspace is given. Then,
the design of the safety index for the agent ellipsoids, either representing the human worker
or the master robot manipulator, inside the shared workspace is introduced. Two factors
are taken into account: the distances between the robot manipulator and the set of the
agent ellipsoids, and the momentum of the robot links toward the agent ellipsoids. Distance
safety index (DSI) and momentum safety index (MSI) are designed based on these two
factors, correspondingly. In order to decrease the computational load, ellipsoid coordinates
are introduced in the design of the two safety indices. Two candidates are proposed to
further combine the two safety indices into an overall safety index.

3.2 Concept and Related Work of the Safety Index

Preventing collisions with the agent inside the shared workspace is the most crucial issue in
robot collaborations. For human–robot collaboration, standards and regulations as stated
in Section 1.2 are the basic guidelines to follow. These guidelines, however, tend to con-
servatively limit either the maximum motion or the maximum power output of the robot
manipulator so that the safety of the agent is guaranteed even when collisions occur. It
substantially attenuates the performance of robot manipulators and fails to fully exploit the
benefits of human–robot collaboration. In order to ensure the safety of the human worker in
human–robot collaboration while minimizing the sacrifice of the robot manipulator perfor-
mance, a measure is necessary to quantitatively indicate the safeness, or the dangerousness,
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of the human worker in the shared workspace in collaboration. The robot manipulator then
can be controlled in the way that the performance is maximized while the measure stays
within a predefined safe interval. For instance, when the entire robot manipulator is moving
away from the human worker, it can be viewed as a less dangerous situation and the robot
manipulator should be allowed to operate at a higher speed. In the scenario of decentralized
robot–robot collaboration, the same measure can be applied to indicate the safeness of the
master robot manipulator since the human robot and the master robot manipulator in the
shared workspace are both treated as dynamic agents.

Many researchers have proposed different indices to quantitatively describe the safety of
the agents in robot collaborations. In [25, 26, 52], Ikuta et al. proposed a danger index defined
as a product of factors constructed by evaluating the potential impact force from the aspects
of the mechanical design and the control of the robot manipulator. In the control aspect of
the robot manipulator, the relative distance between the agent and the robot end-effector,
the approaching velocity, and the momentum of the robot end-effector are considered. As
a result, the danger index provides an assessment in the mechanical design and the control
strategy of the robot manipulator so that the safety of the agent is guaranteed even when
collisions occur.

Heinzmann et al. [23] designed a measure named impact potential which is defined as
the maximum impact force that can be generated from a collision between a point of concern
on the robot manipulator and a static obstacle. For each point of concern, an inequality
constraint over the joint torque then can be obtained to restrict the command torque to the
entire robot manipulator. In the work of Kulić and Croft [36, 35, 39, 38, 37], a danger index
is estimated based on factors influencing the impact force during a collision, such as effective
robot inertia, the relative velocity, and the relative distance.

All the measures proposed in above approaches are defined between a predefined point
of concern on the robot manipulator and a point on the agent. When the entire robot
manipulator is considered in the assessment of the safety or danger index, a normal method
is to assign multiple points of concern on each link or searching for the point nearest to
the agent. An analogous situation happens when the whole body of the human worker or
the master robot manipulator are considered. As a result, these approaches encounter an
exponential increase of the computational load.

In [41, 42, 72, 43], Lacevic et al. proposed the kinetostatic danger field which is built
from the configuration and velocity of the robot arm, and the integral of the field along a
robot link gives the danger index for the specific robot link. The kinetostatic danger field
provides a danger index of the entire robot manipulator for every point in the workspace. In
the practical implementation, extra computational power is still needed to find the closest
point on the agents.

In this chapter, two safety indices, DSI and MSI, are proposed based on the distance
from the robot manipulator to the agent and the robot links momentum to assess the safety of
the agents. To suppress the exponentially increasing computational load due to the number
of points of concern on the robot links or the search of the closest point on the agents, the
safety indices are evaluated in the ellipsoid coordinates attached to the robot links.
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Figure 3.1: An example of an ellipsoid coordinate constructed on an ellipse in the X–Y
plane.

3.3 The Design of the Distance Safety Index

Intuitively, the relative distance between the robot and the agent is a direct indicator of the
safety for the agent. A shorter distance implies a higher chance of collisions and is less safe.
Hence one candidate for the DSI is the reciprocal of the distance between a point of concern
on the robot manipulator and a point on the agent model. A point of concern could be, for
example, the robot end-effector or the robot joint. However, to relieve the computational
load issue as aforementioned, the ellipsoid coordinate for each robot link is introduced.

3.3.1 The Ellipsoid Coordinates on Robot Links

An ellipsoid, E , can be written in mathematical form as

E = {x ∈ R
m | (x− xc)

TQ(x− xc) = 1}, (3.1)

where xc ∈ R
m and Q ∈ R

m×m are the center and the matrix of the ellipsoid, respectively.
m is the dimension of the space where the ellipsoid exists. Q can be explicitly expressed as

Q = RA−1RT , (3.2)

where

A =











λ2
1 0 · · · 0
0 λ2

2 · · · 0
...

...
. . .

...
0 0 · · · λ2

m











. (3.3)

R ∈ R
m×m is an unitary matrix, and A ∈ R

m×m is a diagonal matrix. The positive square
roots of the diagonal elements of A, denoted as λ1, . . . , λm, are the radii of the ellipsoid.
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Figure 3.2: An example of an ellipsoid coordinate constructed on the second link of a two-link
planar robot.

An ellipsoid coordinate then can be built upon the ellipsoid by selecting the ellipsoid
center as the ellipsoid coordinate origin and aligning coordinate axes with ellipsoid axes.
Figure 3.1 shows an example of an ellipsoid coordinate constructed on the green ellipse in
the X–Y plane. The center, the major radius, and the minor radius of the ellipse are xc,
λ1, and λ2. The origin of the ellipsoid coordinate is then located at xc and the ellipsoid
coordinate axes, denoted as ~xell and ~yell, are aligned with the major and the minor axes of
the ellipse. A point, xoi, is in the X–Y plane, and the distance in the ellipsoid coordinate
from this point to xc can be obtained by

doic =
[

(xoi − xc)
TQ(xoi − xc)

]
1

2 . (3.4)

For each robot link, an ellipsoid coordinate is constructed by properly selecting the el-
lipsoid radii and the ellipsoid center in the local link coordinate so that each link is enclosed
by a unit ellipsoid in the ellipsoid coordinate, and the ellipsoid coordinate moves along with
the link. Figure 3.2 shows an example of the ellipsoid coordinate denoted by ~xell and ~yell
attached on the second link of a two-link planar robot. The base of the robot arm is located
at the origin of the X–Y plane. The ellipsoid coordinate origin is at xc2 , which is the middle
point of the second link, and the ellipsoid radii are 0.17 m and 0.08 m. Since two radii of
the ellipsoid are different, the magnitude of unit vectors in the ellipsoid coordinate along
~xell and ~yell are different. The green, brown, and red contours in Figure 3.2 represent the
squared distance r2e of 1, 2, and 4 to xc2 in the ellipsoid coordinate. The green contour with
r2e = 1 represents the unit ellipsoid. For instance, every point on the red contour is of the
same distance to xc2 in the ellipsoid coordinate, which is 2. Then the distance between a
robot link and a point in the agent model, say xoi, can be represented by the distance in
the corresponding ellipsoid coordinate from xoi to the ellipsoid coordinate origin. Thus, the
squared distance from xoi to each ellipsoid coordinate origin is computed as

d2ji = (xoi − xcj(q))
TQj(q)(xoi − xcj(q)), (3.5)
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Figure 3.3: An example of an ellipsoid coordinate constructed on the second link of a two-link
planar robot with an ellipse agent.

where xcj(q) and Qj(q) are the center and the matrix of the j-th ellipsoid coordinate attached
to the j-th robot link, respectively. Since the ellipsoid coordinates move along with the robot
links, the origin and the matrix of each ellipsoid coordinate are functions of the joint space
position vector, q, where q ∈ R

Nj and Nj is the number of robot joints.

3.3.2 Ellipsoids in an Ellipsoid Coordinate

The agent model, however, is composed of ellipsoids rather than a set of points. The shortest
squared distance from the surface of an agent ellipsoid to each ellipsoid coordinate origin
needs to be computed. Figure 3.3 shows an ellipse which is centered at xoi and represents a
simple agent model in the same example case of the two-link planar robot. It is seen that the
agent ellipsoid is tangent to the red contour at xt, and hence, the shortest squared distance
in the ellipsoid coordinate from the agent ellipsoid to the ellipsoid coordinate origin is 4.
Note that three points, xc2 , xoi, and xt, are not aligned. In fact, there is no analytical form
solution for finding the tangent point in the general case.

Alternatively, the tangent point, xt, and the shortest squared distance, d2ji, can be found
via solving the optimization problem,

d2ji =min
xt

(xt − xcj(q))
TQj(q)(xt − xcj(q)),

s.t. (xt − xoi)
TPi(xt − xoi) = 1

(3.6)

where Pi is the matrix of the agent ellipsoid.
Instead of solving the optimization problem in (3.6) directly, the problem is transformed

into a root-finding problem for a polynomial function. Firstly, it is given from the geometrical
relationship that the normal vector passing xt outward from the agent ellipsoid and another
normal vector outward from the contour of the ellipsoid coordinate align with each other.
These two vectors are denoted by ~noi and ~nc2 as shown in Figure 3.3. The alignment between
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~noi and ~nc2 can be written mathematically as

Qj(q)(xt − xcj(q)) = tPi(xt − xoi), (3.7)

where t is a scalar variable whose physical meaning is the ratio of the magnitude between
these two normal vectors. With some algebraic manipulation, it becomes,

xt = (Qj(q)− tPi)
−1(Qj(q)xcj(q)− tPixoi). (3.8)

Hence xt depends on t. Since xt is always on the surface of the agent ellipsoid, a polynomial
function, fd(t) can be obtained by plugging xt in (3.8) into the expression of the agent
ellipsoid as,

fd(t) = (xt − xoi)
TPi(xt − xoi)− 1. (3.9)

From the physical meaning of t, it can be shown that fd(t) has one real positive root and
one real negative root. The negative one indicates the external tangent of the agent ellipsoid
and the contour, and the positive one is for the internal tangent. The negative root of fd(t)
is the t we are looking for, and xt and d2ji can be computed after t is found.

3.3.3 The Definition of the Distance Safety Index

With the introduction of the ellipsoid coordinate, the distance safety index for the pair of
(j, i), the j-th ellipsoid coordinate attached on the robot link and the i-th ellipsoid in the
agent model, can be designed as

DSIji(q) =
1

d2ji
. (3.10)

3.4 The Design of the Momentum Safety Index

Robots with larger momentum normally require a longer time and a longer distance to fully
stop the motion after the stop command is issued. Hence the momentum of the robot links
is also a factor need to be considered. The momentum safety index is designed to represent
the linear momentum of the robot links computed from the origins of the corresponding
ellipsoid coordinates toward the direction to the agents. This can be obtained by taking the
projection of the linear momentum vector onto the vector from the origin of the ellipsoid
coordinate pointing to the center of the agent ellipsoid as,

pji(q, q̇) = Mj(ẋcj(q, q̇)− ẋoi)
T xoi − xcj(q)

‖xoi − xcj(q)‖2
, (3.11)

whereMj and ẋcj(q, q̇) are the mass of the j-th link and the linear velocity of the j-th ellipsoid
coordinate origin in task space. The linear velocity ẋcj(q, q̇) is a function of the joint position
and velocity of the robot manipulator because the ellipsoid coordinate is attached and moving
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Figure 3.4: Examples of the momentum safety index (MSI) in the case of a two-link planar
robot with two agent ellipses which have the same motion, i.e., ẋo1 = ẋo2 , but are at different
positions. All dashed lines connect the origin of the ellipsoid coordinate with the agent ellipse
centers. (a) The angles between the relative motion vector and two dashed lines for two agent
ellipses are different. (b) The angles are the same for two ellipses, but the two ellipses are
in the different distances to the origin of the ellipsoid coordinate.

with the robot link. ẋoi is the linear velocity in task space of the center of the i-th agent
ellipsoid. The MSI for the pair of (j, i) is defined based on pji(q, q̇) as,

MSIji(q, q̇) =
1

d2ji

[

max
{

pji(q, q̇), 0
}

]2

. (3.12)

In other words, MSIji(q, q̇) can be rewritten as

MSIji(q, q̇) = max
{

sign
(

pji(q, q̇)
)

(pji(q, q̇)

dji

)2

, 0
}

. (3.13)

The maximization in (3.12) indicates that only the case when the link moves toward the
agent model is considered in the MSI. Once the angle between the relative motion direction,
(ẋcj(q, q̇) − ẋoi), and the vector pointing from the origin of the ellipsoid coordinate to the
agent ellipsoid center, (xoi − xcj(q)), is larger than or equal to π

2
, it is considered as a safe

situation and the momentum safety index for this pair is zero. Figure 3.4a is an example
showing the concept. Two agent ellipsoids exist in the workspace of a two-link planar robot,
and both of them have the same velocity, i.e., ẋo1 is equal to ẋo2 . These two agent ellipsoids
could be, for instance, a part of a human arm or a link of the master robot arm. In this
scenario, only the MSI21 is greater than zero since the angle between (ẋc2 − ẋo1) and the
vector (xo1−xc2) is less than

π
2
. On the other hand, the MSI22 is zero because of the obtuse

angle between (ẋc2 − ẋo1) and the vector (xo2 − xc2).



Chapter 3. Design of Safety Index 33

The denominator, d2ji, the squared distance in the ellipsoid coordinate, is used to differ-
entiate the MSI between cases that a robot has the same magnitude of linear velocity at
the ellipsoid coordinate origins but is in a different relative positions to an agent. A robot
link that has a high momentum toward an agent but still far away should be considered
as less dangerous. Figure 3.4b is another example. In this example, the linear momenta of
the second link toward the two agent ellipsoids, p21 and p22, are identical, but the MSI21
is larger than MSI22 since the first agent ellipsoid is closer to the robot link. The squared
term and d2ji in (3.12) makes the MSIji quadratic in form analogous to the squared distance
in the DSIji.

3.5 The Overall Safety Index

In Section 3.3 and Section 3.4, the distance safety index and the momentum safety index are
defined for the pair of (j, i), the j-th ellipsoid coordinate attached to the robot link and the
i-th agent ellipsoid. It can be observed that they have the nature of a smaller value indicating
a safer situation. Hence the overall safety index should be designed by combining all DSIji’s
and MSIji’s and then selecting the maximum value among all pairs of (j, i) to capture the
worst-case scenario. Two candidates of the overall safety index are defined below.

Candidate 1:

SI(q, q̇) = max
j,i

{

kdsiDSIji(q) + kmsiMSIji(q, q̇)
}

. (3.14)

The weightings, kdsi and kmsi, are chosen as the reciprocal of the maximum acceptable
distance safety index and momentum safety index by the Bryson-like rule [5] for the purpose
of normalizing the DSIji and the MSIji:

kdsi =
1

Sad

, kmsi =
1

Sam

, (3.15)

where Sad and Sam are the maximum acceptable distance safety index and momentum safety
index, respectively. This candidate of the overall safety index is taking the linear combination
of DSIji and MSIji into consideration, and selecting the maximum value of the linear
combination among all pairs of (j, i).

Candidate 2:

SI(q, q̇) = max
j,i

{

max
{

kdsiDSIji(q), kmsiMSIji(q, q̇)
}

}

, (3.16)

where kdsi and kmsi are defined in the same way as in (3.15) in the first candidate. For this
candidate, the DSIji and MSIji are considered independently without any combination,
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Table 3.1: Parameters of the ellipsoid coordinates in the two-link planar robot manipulator
in simulations.

Link
Ellipsoid coordinate Unit ellipsoid

origin on each radii
link coordinate λ1 λ2

Ellipsoid coordinate 1 1 (0.16, 0) 0.22 0.1
Ellipsoid coordinate 2 2 (0.1075, 0) 0.17 0.08

(unit) (m)
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Figure 3.5: The ellipsoid coordinates constructed on the two-link planar robot manipulator
in simulations.

and the overall safety index is the maximum value among all DSIji’s and MSIji’s. For the
definition, we can find that the second candidate is less conservative than the first candidate.

3.6 Ellipsoid Coordinates of the Two Robot

Manipulators

Table 3.1 and Figure 3.5 show the two ellipsoid coordinates constructed on the two-link planar
robot for algorithm validation in simulations. The origins of the two ellipsoid coordinates are
both at the centers of the robot links. The two radii of the unit ellipsoid in each coordinate
are chosen reasonably so that each unit ellipsoid can enclose the corresponding link.

Table 3.2 and Figure 3.6 show the ellipsoid coordinates for the ITRI seven-DOF robot
manipulator. It can be observed from Figure 2.4 that the rotation axis of joint 5 is parallel
to link 4 and link 5, and hence the space occupied by these two links remains the same
during the rotation of joint 5. The same observations can be made for joint 3 and joint 7,
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Table 3.2: Parameters of the ellipsoid coordinates on the ITRI seven-DOF robot in simula-
tions.

Link
Ellipsoid coordinate

origin on each Unit ellipsoid radii
link coordinate λ1 λ2 λ3

Ellipsoid coordinate 1 2 (0,0,0.165) 0.12 0.12 0.25
Ellipsoid coordinate 2 4 (0,0,0,145) 0.10 0.10 0.25
Ellipsoid coordinate 3 6 (0,0,0.07) 0.10 0.10 0.20

(unit) (m)

(a)

X

Z

(b)

Figure 3.6: The ellipsoid coordinates constructed on the ITRI seven-DOF robot manipulator.

and the links connected to them. With these properties, only three ellipsoid coordinates
are necessary for evaluating the safety index. The centers of the three ellipsoid coordinates
attached to link 2, link 4, and link 6 are selected reasonably with their radii set accordingly.
The unit ellipsoids of the three coordinates are shown in Figure 3.6.

3.7 Summary

In this chapter, the design of the quantitative measure, called safety index, was given in
order to assess the safety of the agent in the shared workspace. The concept of the safety
index was explained and related works were cited. In the design of the proposed safety index,
two factors are considered: the relative distances between the robot manipulator and the
agent, and the linear momentum of the robot links toward the agent. The distance safety
index and the momentum safety index are constructed correspondingly based on the two



Chapter 3. Design of Safety Index 36

factors. In the design of the two safety indices, the ellipsoid coordinates were introduced
for the purpose of decreasing the computational load. An overall safety index can then be
constructed from the linear combination of the distance safety index and momentum safety
index. Two candidates of the overall safety index were proposed. In the last, the setup of
ellipsoid coordinates in the two testbed robot manipulators were given.
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Chapter 4

Online Trajectory Generation

Algorithm

4.1 Introduction

In this chapter, the proposed online trajectory generation algorithm is stated in detail. This
algorithm is developed under the optimization-based path planning framework with the
use of receding horizon strategy, discretized kinematics model, and the safety index. By
solving the optimization problem, the solution is a trajectory within a short time horizon
which achieves the functions of leading the robot manipulator toward the goal position and
avoiding any collisions with agents simultaneously. The formulated optimization problem,
because of the transformation of variables between joint space and task space, is highly
nonlinear and non-convex. In order to achieve online trajectory generation, the formulated
optimization problem is approximated by a quadratic formulation. To further attenuate the
computational load, a heuristic method is proposed to select the inequality constraints which
are likely to become active in the next iteration. Simulations of two scenarios, human–robot
collaboration and decentralized robot–robot collaboration, are conducted on the two robot
manipulators for validation.

4.2 Dynamic Model of Agent Ellipsoids

In Section 2.3, an assumption was made about the sensor block being capable of providing
position measurements of the agents in every Tc∆t second. The ∆t is the robot controller
sampling time, and Tc is a positive integer. The agent position estimation block then trans-
forms the position measurements into a set of agent ellipsoids and outputs the information of
the agent ellipsoids. The information of agent ellipsoids includes the task space positions and
velocities of the agent ellipsoid centers and the matrices of the agent ellipsoids accounting
for the orientation of agent ellipsoids. This is the necessary information for evaluating the
safety index between an agent ellipsoid and an ellipsoid coordinate attached on a robot link.
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Agent Position
Estimation Position measurements

of the agent model in
every            second    

Estimated information of the agent 
ellipsoids in every         second within
the planning horizon

Figure 4.1: The input and output of the agent position estimation block. ∆t is the robot
controller sampling time and position measurements are assumed to be available for every
Tc∆t second. The information of agent ellipsoids includes the task space positions and
velocities of the agent ellipsoid centers and the matrices of the agent ellipsoids.

In the proposed online trajectory generation algorithm, the safety index of the future time
steps within a horizon are taken into consideration. Thus, the agent position estimation block
needs not only to transform the current sensor measurements into the information of agent
ellipsoids, but also estimate the information of agent ellipsoids in the future and within the
planning horizon. The input and output of the agent position estimation block is shown
schematically in Figure 4.1.

In this thesis, a simple method is used to estimate the information of the agent ellip-
soids within the planning time horizon in both human–robot collaboration and decentralized
robot–robot collaboration. This method in the two robot collaborations are detailed below.

4.2.1 Dynamic Model of Agent Ellipsoids in Human–Robot

Collaboration

In human–robot collaboration, since the position measurements from the sensor block are
position measurements of task space, a simple and intuitive way is to utilize the constant-
velocity model to estimate the agent ellipsoids information. In other words, the task space
positions of agent ellipsoid centers transformed from the current and previous sensor mea-
surements are used to compute the velocity of the agent ellipsoids. For instance, the velocity
of the i-th agent ellipsoid in the k-th time step can be computed by

voi(k) =
1

Tc∆t
(xoi(k) − xoi(k−Tc)), (4.1)

where xoi(k) and xoi(k−Tc) are the task space positions of the i-th agent ellipsoid center trans-
formed from the current and previous sensor measurements. ∆t is the controller sampling
time. Using the velocity voi(k) and the current position xoi(k), the positions of the i-th agent
ellipsoid after the k-th time step can be estimated by

xoi(k+l) = xoi(k) + (l∆t)voi(k), l = 0, . . . , N, (4.2)

where l is a non-negative integer and is less than or equal to N , and N is the predefined
planning time horizon. In the constant-velocity model, the rotations of the agent ellipsoids
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are ignored, and hence the matrices of agent ellipsoids Pi(k)’s remain the same for all k within
the time horizon, i.e.,

Pi(k+l) = Pi(k), l = 0, . . . , N. (4.3)

For the radii of the agent ellipsoids, the same radii are used as well.

4.2.2 Dynamic Model of Agent Ellipsoids in Decentralized

Robot–Robot Collaboration

In decentralized robot–robot collaboration, the constant-velocity method is utilized in joint
space since the position measurements of the master robot manipulator are the joint space
positions. The joint velocity of the master robot at the k-th time step then is estimated as

q̇m(k) =
1

Tc∆t
(qm(k) − qm(k−Tc)), (4.4)

where qm(k) and qm(k−Tc) are the joint positions of the master robot manipulator at the k-
th and (k − Tc)-th time step, and q̇m(k) is the estimate joint velocity of the master robot
manipulator. The estimated joint position within the time horizon can be obtained as

qm(k+l) = qm(k) + (l∆t)q̇m(k), , l = 0, . . . , N. (4.5)

Then, the information of the agent ellipsoids for each time step within the planning horizon,
N , can be computed based on the estimated joint position of the master robot.

4.3 Formulation of the Optimization Problem

4.3.1 Discretized Kinematics Model

In order to generate a trajectory rather than just a geometrical path, the joint position, joint
velocity, and joint acceleration need to be included as variables in the optimization problem.
To maintain the kinematic relationships among the joint position, velocity, and accelera-
tion, the robot kinematic model is introduced as an equality constraint in the optimization
problem. The kinematic model can be written in a state-space form as

d

dt

[

q(t)
q̇(t)

]

=

[

0 INj

0 0

] [

q(t)
q̇(t)

]

+

[

0
INj

]

q̈(t), (4.6)

where q(t), q̇(t), and q̈(t) are the joint position, velocity, and acceleration in continuous time,
respectively. All of them are vectors with length of Nj, where Nj is the number of joints in
the robot manipulator. INj

∈ R
Nj×Nj is the identity matrix. Discretizing (4.6) yields

[

q(k+1)

q̇(k+1)

]

=

[

INj
(∆t)INj

0 INj

] [

q(k)
q̇(k)

]

+

[

1
2
(∆t)2INj

(∆t)INj

]

q̈(k), (4.7)
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where ∆t is the controller sampling time. The discretized kinematic model in (4.7) can be
rewritten in z(k) as,

z(k+1) = Ad z(k) +Bd u(k), (4.8)

where

z(k) =

[

q(k)
q̇(k)

]

∈ R
2Nj ,

u(k) = q̈(k) ∈ R
Nj ,

Ad =

[

INj
(∆t)INj

0 INj

]

∈ R
2Nj×2Nj , and

Bd =

[

1
2
(∆t)2INj

(∆t)INj

]

∈ R
2Nj×Nj .

(4.9)

4.3.2 Formulation

The concept of optimization-based path planning is to generate the trajectory by solving
an optimization problem. As mentioned there are two objectives for trajectories generated
by the proposed online trajectory generation algorithm. The first is that the generated
trajectory leads the robot manipulator to reach its goal position and avoids collisions with
the agent ellipsoids simultaneously. The second objective is that the generated trajectory
is smooth. A smooth trajectory is normally defined by having a bounded joint jerk, or a
continuous joint acceleration. Thus, the optimization problem needs to be formulated to
achieve these two objectives.

The proposed formulation of the optimization problem is

min
Uk,Zk

kpJp(z(N)) + ku

N−1
∑

k=0

Ju(u(k), u(k−1)) (4.10a)

s.t. z(k+1) = Adz(k) +Bdu(k), k = 0, . . . , (N − 1) (4.10b)

SI(z(k)) ≤ Sa, k = 1, . . . , N (4.10c)

u ≤ u(k) ≤ u, k = 0, . . . , (N − 1) (4.10d)

z ≤ z(k) ≤ z, k = 1, . . . , N (4.10e)

where

Jp(z(N)) =
(

xe(z(N))− xg

)T (
xe(z(N))− xg

)

+ kpns
(

xne(z(N))− xgne

)T (
xne(z(N))− xgne

)

+ kpns
(

xse(z(N))− xgse

)T (
xse(z(N))− xgse

)

(4.11)

Ju(u(k), u(k−1)) =
(

u(k) − u(k−1)

)T (
u(k) − u(k−1)

)

(4.12)

Uk = {u(0), . . . , u(N−1)} (4.13)

Zk = {z(1), . . . , z(N)} (4.14)
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Variables of the optimization problem are two sets, Uk and Zk, which include all joint po-
sitions, q(k), joint velocities, q̇(k), and joint accelerations, q̈(k), within the time horizon of
N . The subscript k in parentheses indicates the time index. For simplicity, z(k) is used to
represent the stack of q(k) and q̇(k), and u(k) is q̈(k) as shown in (4.9).

The equality constraints in (4.10b) are the discretized kinematic model of the robot
manipulator for the purpose of enforcing the relationships among the joint position, velocity,
and acceleration. The inequality constraint on the safety index in (4.10c) guarantees that no
collisions will occur along the generated trajectory, and Sa is a predefined safety threshold.
Equations (4.10d) and (4.10e) enforce the bounds on the inputs and the states, respectively,
where u and u are the lower and upper bounds of u(k), and z and z are the lower and upper
bounds of z(k).

The objective function is composed of Jp(z(N)) and Ju(u(k), u(k−1)) which are weighed
by kp and ku, and elaborated in (4.11) and (4.12). In (4.11), xe(z(N)) and xg are the task
space positions of the end-effector at the last step of the planning horizon and at the goal
configuration, respectively. xne(z(N)) and xgne are the unit vectors in task space starting from
xe(z(N)) and xg along the normal directions of the end-effector coordinate at configuration
of z(N) and at the goal configuration, respectively. xse(z(N)) and xgse are the unit vectors
defined in the same way for the sliding directions. The first term in Jp(z(N)) penalizes the
squared distance in task space from the end-effector at the last step of the planning horizon
to the final goal position. The last two terms are to penalize the deviation of the end-
effector orientation from the configuration of z(N) to the goal configuration. The constant
kpns is the weighting factor for the penalty of the last two terms. Note that these three
terms are formulated in quadratic form of the task space vectors, instead of the joint space
position vector. In other words, Jp(z(N)) in (4.11) is designed to drive the robot manipulator
by the deviation of the position and orientation of the end-effector between z(N) and the
goal configuration. Ju(u(k), u(k−1)) in (4.12) is designed to penalize the difference of the
consecutive joint accelerations, u(k) and u(k−1), for a smooth trajectory.

This formulation results in an optimization problem with 3NNj variables, 2NNj equality
constraints accounting for kinematics relationships among problem variables, N inequality
constraints for the safety, and bound constraints on all variables.

4.4 Approximation

With a closer look, one can find that positions and velocities in both joint space and task
space are involved in the formulation of the optimization problem in (4.10). The variables
of the optimization problem are in joint space, but Jp(z(N)) and SI(z(k)) are designed based
on the task space positions because of practical issues. For example, the goal position and
the end-effector orientation are more likely to be designed in task space on assembly lines.
For human–robot collaboration, the positions of human workers are also available directly in
task space. As a result, computing Jp(z(N)) and SI(z(k)) requires the forward kinematics and
forward differential kinematics to transfer the joint space positions and velocities of the robot
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manipulator to the task space positions and velocities. These two transformations, however,
are highly nonlinear and non-convex with respect to the joint position, and hence makes the
formulation in (4.10) nonlinear and non-convex. Solving such a problem is computationally
expensive and therefore is difficult to be implemented in a online fashion.

To overcome this, approximations for Jp(z(N)) and SI(z(k)) are proposed. These are in a
quadratic form and an affine form in joint space respectively. With the approximation, the
original optimization formulation in (4.10) becomes a convex optimization formulation with
a quadratic objective function and linear constraints. The approximation of Jp(z(N)) and
SI(z(k)) are detailed below.

4.4.1 Approximation of SI(z(k))

In Section 3.5, two candidates of the overall safety index are proposed, and both provide a way
to combine the distance safety index and the momentum safety index. The approximation
of the two candidates are similar and presented in the following.

Candidate 1:

Based on the definition of candidate 1 of the safety index in (3.14), equation (4.10c) implies
that the maximum of the safety index among all pairs of (j, i) has to be less than or equal
to Sa. This is equivalent to that the safety index of all pairs have to be less than or equal to
Sa as,

kdsiDSIji(z(k)) + kmsiMSIji(z(k)) ≤ Sa, ∀k, j, i. (4.15)

From the definition ofMSIji(z(k)) in (3.12), we can find that the value ofMSIji(z(k)) depends
on the sign of pji(z(k)). Hence, the inequality in (4.15) is equivalent to two inequalities as,

kdsiDSIji(z(k)) ≤ Sa, ∀k, j, i, (4.16a)

kdsiDSIji(z(k)) + kmsiMSIji(z(k)) ≤ Sa, ∀k, j, i, (4.16b)

where

MSIji(z(k)) = sign
(

pji(z(k))
)p2ji(z(k))

d2ji
. (4.17)

The equivalence between (4.15) and (4.16) means that the feasible sets of them are identical.
For instance, when pji(zk) is negative, the left-hand side of (4.16b) is always less than that of
(4.16a), and hence the feasible set of (4.16) is controlled by (4.16a). A negative pji(zk) also
implies that MSIji(zk) is zero, and thus (4.15) is equivalent to (4.16a). The same conclusion
can be drawn for the case of a positive pji(zk).

Candidate 2:

Similarly, from the definition of candidate 2 of the safety index in (3.16), equation (4.10c)
can be equivalently substituted by the inequalities of DSIji(z(k)) and MSIji(z(k)) among all
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(j, i, k) less than or equal to Sa, as shown below.

kdsiDSIji(z(k)) ≤ Sa, ∀k, j, i (4.18a)

kmsiMSIji(z(k)) ≤ Sa, ∀k, j, i. (4.18b)

The predefined safety threshold, Sa, is always positive, so the MSIji(z(k)) in (4.18b) can be
replaced by MSIji(z(k)). Equation (4.18) then becomes

kdsiDSIji(z(k)) ≤ Sa, ∀k, j, i (4.19a)

kmsiMSIji(z(k)) ≤ Sa, ∀k, j, i. (4.19b)

Taylor Series Expansion

The overall safety index in (4.16) and (4.19) is the equivalent form of (4.10c) in the per-
spective of having the same feasible set. Equation (4.16), however, needs to be evaluated
for every triple of (j, i, k), where j is the index of the ellipsoid coordinate, i is the index of
the agent ellipsoid, and k is the time index within the horizon, N . Namely, the number of
the inequality constraints accounting for safety increases from N to 2NeNoN , where Ne is
the number of ellipsoid coordinates on the robot manipulator, and No is the size of agent
ellipsoids.

The left-hand sides of (4.16) and (4.19) can then be approximated by the first-order
Taylor expansion around z0k as

cakji +mT
akji(z(k) − z0k) ≤ Sa, ∀k, j, i. (4.20a)

cbkji +mT
bkji(z(k) − z0k) ≤ Sa, ∀k, j, i, (4.20b)

where (4.20a) represents the first-order Taylor expansion of (4.16a) and (4.19a) around z0k,
and (4.20b) is for (4.16b) and (4.19b). The vector z0k is the initial guess value of z(k) and
defined in the same way as z(k) as z

0
k = [q0Tk , q̇0Tk ]T . cakji and cbkji are the constant terms of the

first-order Taylor expansion around z0k, and makji and mbkji are the gradient vectors of the
left-hand side of (4.16) and (4.19) evaluated at z0k. The cakji and makji for both candidates
are the same, but cbkji and mbkji, on the other hand, are different. All of them are shown
below,

Candidate 1:

cakji = kdsiDSIji(z
0
k), (4.21a)

makji = kdsi
∂DSIji(z(k))

∂z(k)

∣

∣

∣

∣

z0
k

, (4.21b)

cbkji = kdsiDSIji(z
0
k) + kmsiMSIji(z

0
k), (4.21c)

mbkji = kdsi
∂DSIji(z(k))

∂z(k)

∣

∣

∣

∣

z0
k

+ kmsi

∂MSIji(z(k))

∂z(k)

∣

∣

∣

∣

z0
k

. (4.21d)
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Candidate 2:

cakji = kdsiDSIji(z
0
k), (4.22a)

makji = kdsi
∂DSIji(z(k))

∂z(k)

∣

∣

∣

∣

z0
k

. (4.22b)

cbkji = kmsiMSIji(z
0
k), (4.22c)

mbkji = kmsi

∂MSIji(z(k))

∂z(k)

∣

∣

∣

∣

z0
k

. (4.22d)

Because of the complexity of the DSIji and MSIji, makji and mbkji in (4.21) and (4.22) are
computed numerically in simulation validation. The algorithm for computing the gradient
vector of a function numerically at a point is shown in Appendix A.

4.4.2 Approximation of Jp(z(N))

The first part of the objective function in (4.11), i.e., Jp(z(N)), contains three terms in
quadratic form of task space positions. All of these three terms can be approximated by a
quadratic form of joint space positions. In the first term of Jp(z(N)), xe(z(N)) can be rewritten
by using the velocity of the end-effector in task space and the differential kinematics equation,
ẋe(z(k)) = Je(q(k))q̇(k), as

xe(z(N)) = xe(z(0)) +
N−1
∑

k=0

ẋe(z(k))∆t

= xe(z(0)) +
N−1
∑

k=0

Je(q(k))q̇(k)∆t,

(4.23)

where Je(q(k)) ∈ R
Nx×Nj is the Jacobian matrix for the end-effector of the robot manipulator

evaluated at the configuration of q(k), andNx is the dimension of task space. The evaluation of
the Jacobian matrix, Je(q(k)), is nonlinear and non-convex with respect to the joint position.
The Jacobian matrix, Je(q(k)), is approximated by Je(q

0
k). Then (xe(z(N)) − xg) in the first

term of Jp(z(N)) becomes,

xe(z(N))− xg ≈ xe(z(0)) +
N−1
∑

k=0

Je(q
0
k)q̇(k)∆t− xg

= xe(z(0)) + ∆t Je(q(0)) q̇(0)+

∆t Je(q
0
(1)) q̇(1) + · · ·+∆t Je(q

0
N−1) q̇(N−1) − xg

= ∆tBpesz + ape,

(4.24)
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where

ape =
(

xe(z(0)) + ∆t Je(q(0))q̇(0) − xg

)

∈ R
Nx , (4.25)

Bpe =
[

0, Je(q
0
1), . . . ,0, Je(q

0
N−1),0,0

]

∈ R
Nx×2NNj , (4.26)

sz =
[

zT(1), z
T
(2), . . . , z

T
(N)

]T

∈ R
2NNj . (4.27)

q(0) and q̇(0) are the joint position and velocity of the current time step, which are known.
ape is a vector of length Nx. Every 0 in Bpe represents a zero matrix of the same size as the
Jacobian matrix, Je(•). Thus the size of Bpe is Nx by 2NjN . Note that both ape and Bpe are
constant and can be computed before solving the optimization problem in each iteration. sz
is a vector stacked by all z(k)’s in Zk, and has the length of 2NjN . With this approximation,
the first term in Jp(z(N)) is transformed into a quadratic form of all z(k)’s as,

(

xe(z(N))− xg

)T (
xe(z(N))− xg

)

≈
(

∆tBpesz + ape
)T (

∆tBpesz + ape
)

. (4.28)

In the last two terms of Jp(z(N)), xne(z(N)) and xse(z(N)) are unit vectors starting from
xe(z(N)) and can be obtained by

xne(z(N)) =xn(z(N))− xe(z(N)), (4.29)

xse(z(N)) =xs(z(N))− xe(z(N)), (4.30)

where xn(•) and xs(•) are the points one unit away from xe(•) along the normal and the
sliding directions, respectively. Then the last two terms of Jp(zN) can be approximated by
quadratic form of all z(k)’s using the same procedure as

(

xne(z(N))− xgne

)T (
xne(z(N))− xgne

)

≈
(

apn − ape +∆t(Bpn − Bpe)sz

)T(

apn − ape +∆t(Bpn − Bpe)sz

)

,
(4.31)

(

xse(z(N))− xgse

)T (
xse(z(N))− xgse

)

≈
(

aps − ape +∆t(Bps − Bpe)sz

)T(

aps − ape +∆t(Bps − Bpe)sz

)

,
(4.32)

where

apn = xn(z(0)) + ∆t Jn(q(0)) q̇(0) − xgn, (4.33)

aps = xs(z(0)) + ∆t Js(q(0)) q̇(0) − xgs, (4.34)

Bpn =
[

0, Jn(q
0
1), 0, Jn(q

0
2), . . . , 0, Jn(q

0
N−1), 0, 0

]

, (4.35)

Bps =
[

0, Js(q
0
1), 0, Js(q

0
2), . . . , 0, Js(q

0
N−1), 0, 0

]

. (4.36)

Matrices Jn(•) and Js(•) are the Jacobian matrices of xn(•) and xs(•) evaluated at •. Sim-
ilarly, all a•’s and B•’s are constant vectors and constant matrices and can be computed
before solving the optimization problem in each iteration. Hence the last two terms are in
the quadratic form of joint space variables.
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4.4.3 The Resulting Quadratic Formulation

Because of the approximation of Jp(z(N)) and SI(z(k)), the objective function in (4.10) be-
comes in quadratic form, and all inequality constraints become linear inequalities. With
some algebraic manipulation, the optimization problem in (4.10) then can be transformed
into a standard quadratic programming problem with linear constraints as

min
s

sTHs+ fT s (4.37a)

s.t. Aeqs = beq (4.37b)

Aineqs ≤ bineq (4.37c)

s ≤ s ≤ s. (4.37d)

where

s = [sTz , u
T
(0), · · · , uT

(N−1)]
T (4.38)

s = [zqp(1), · · · , z
qp
(N), u, · · · , u] (4.39)

s = [zqp(1), · · · , z
qp
(N), u, · · · , u] (4.40)

and

zqp(k) = max{z, z0k − ǫ}, ∀k ∈ {1, · · · , N}
zqp(k) = min{z, z0k + ǫ}, ∀k ∈ {1, · · · , N}.

Since the quadratic formulation is derived by using z0k to approximate z(k), a trust bound, ǫ,
for the approximation is necessary.

The resulting quadratic formulation has 3NNj variables, 2NNj equality constraints,
2NeNoN inequality constraints for the safety of the agent ellipsoids, and upper and lower
bounds for all variables. A comparison of the size of the formulated optimization problem
between (4.10) and (4.37) is summarized in Table 4.1.

4.5 Receding Horizon Strategy

The solution of the optimization problem in (4.10) is a trajectory with the length of N time
steps. The decision making block then outputs the generated trajectory to the controller
block and the control command is generated for the robot manipulator to track this trajec-
tory. The resulting control is then applied in a fashion of receding horizon strategy. Since
the sensor measurement about the agent is available in every Tc robot controller time step,
it is reasonable to apply the receding horizon strategy when a new measurement is available.
In other words, a collision-free trajectory is generated iteratively in every Tc time step, and
only the first Tc control command is applied to the robot manipulator. Figure 4.2 shows the
schematic of the receding horizon strategy, where kc is the current time step. In the figure,
the upper box represent the trajectory generated at the current time step, and the lower box
is the previously generated trajectory.
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Table 4.1: Summary of the optimization problems in the proposed trajectory generation
algorithm.

(4.10) (4.37)

Formulation of
optimization problem

The nonlinear and
non-convex

optimization problem

The approximated
quadratic

optimization problem
# of variables 3NNj

# of equality constraints 2NNj

# of inequality constraints N 2NNeNo

N : The planning time horizon.
Nj: The number of the robot joints.
Ne: The number of the ellipsoid coordinates in the robot.
No: The number of the ellipsoids used to represent the agent.

time index

Figure 4.2: The schematic of the receding horizon strategy, where kc indicates the current
time step, and N is the predefined planning time horizon. Sensor measurements are available
in every Tc time step.

4.6 Inequality Constraints Selection Strategy

The approximation derived in Section 4.4 shows the transformation of the original nonlinear
and non-convex formulation into a standard quadratic formulation with linear constraints.
In the formulation of the quadratic problem, some vectors and matrices that are treated as
constant parameters, nevertheless, vary from iteration to iteration. For instance, ape and
Bpe in Jp(z(N)), or cakji and makji in SI(z(k)). In implementation, these parameters need to
be computed before solving the quadratic problem in each iteration. Particular attention
should be paid to the parameters in the linearized safety inequality constraints, i.e., c•kji,
and m•kji in (4.20). The number of these inequality constraints depends on three numbers:
the number of the ellipsoid coordinates on the robot, Ne, the number of agent ellipsoids, No,
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Original
reference
trajectory

Output of 
Agent Position 

Estimation block

New
Trajectory

within Horizon

Joint position and velocity 
of the current time step

Solve QP 
problem

Compute the constant
parameters of QP problem

Memory
Select indices for active 

and almost active 
inequality constraints

Compute safety index
for every (j,i,k)

Figure 4.3: The flow chart of the selection method of inequality constraints.

and the length of the planning time horizon, N . Furthermore, there are two safety inequality
constraints for every pair of (j, i) in every time step.

From the perspective of the physical meaning of the safety index, it is unlikely that a
solution of (4.37) activates all of the inequality constraints of the same time step. Thus,
it would further reduce the computational load if only those inequality constraints which
are more likely to become active are selected and used in the quadratic problem. The
computational load can be reduced in two aspects. First, the quadratic problem could be
solved faster because it has fewer inequality constraints. Second, we do not need to compute
all of the gradient vectors in the Taylor expansion, i.e., makji and mbkji. This may greatly
save the computational load since makji and mbkji are computed numerically in simulation
validation.

A heuristic, yet intuitive, method to select the inequality constraints is proposed. The
idea is to keep track of those indices of (j, i, k) for the inequality constraints which are
active or almost active in the generated trajectory of the previous iteration. Then only the
inequality constraints corresponding to these indices are selected and used in the optimization
problem of the current iteration. An active or almost active inequality constraint implies that
the slack variable of this inequality constraint is zero or very close to zero. For example, the
equality equation transformed from the h-th inequality constraints of (4.37c) by introducing
the slack variable can be written as

ah,ineq s+ yh = bh,ineq, (4.41)
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where ah,ineq is the h-th row of Aineq in (4.37c), bh,ineq is the h-th element of bineq, and yh is
the slack variable. The slack variable is always non-negative. When yh is zero or very small,
the h-th inequality constraints, ah,ineq s ≤ bh,ineq is active or almost active.

This method is reasonable since the situation of the current iteration should not change
much from the situation of the previous iteration when Tc is not very large. Figure 4.3 shows
the flow chart of the inequality constraints selection strategy. After solving the quadratic
problem (4.37), the safety index for every pair of (j, i) in every time step within the planning
horizon is computed. Then the indices of (j, i, k) for the inequality constraints which are
active or almost active are selected for the next iteration. In simulation validation, when
the slack variable of an inequality constraint is less than or equal to 0.1, it is counted as an
almost active inequality constraint.

4.7 Summary

In this chapter, the proposed online trajectory generation algorithm is stated in detail. This
algorithm is developed under the optimization-based path planning framework with the use
of receding horizon strategy, discretized kinematics model, and the safety index designed in
Section 3. By solving the optimization problem, the solution is a trajectory within a short
time horizon which achieves the functions of leading the robot manipulator toward the goal
position and avoiding any collisions with agents simultaneously.

The formulated optimization problem, however, is highly nonlinear and non-convex be-
cause of the transformation of variables between joint space and task space. In order to
achieve online trajectory generation, the formulated optimization problem is approximated
by a quadratic formulation. Furthermore, a heuristic method is proposed for the selection of
the active or almost active inequality constraints to further reduce the computational load.
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Chapter 5

Simulation Studies

5.1 Introduction

In this chapter, the proposed online trajectory generation algorithm along with the robot
safety system proposed in Section 2.2 are implemented and simulated. Both the nonlin-
ear and non-convex optimization problem in (4.10) and the quadratic problem in (4.37)
with/without the selection strategy are simulated for comparison. The simulation environ-
ment and the motion of agents were introduced in Chapter 2. The nonlinear and non-convex
optimization problem in (4.10) is solved by the fmincon solver with the SQP algorithm of the
MATLAB optimization toolbox, and the quadratic problem is solved by the Gurobi solver
from Gurobi Optimization Inc.[20]. The first candidate of the overall safety index described
in (3.14) is used in simulations in this chapter. For simplicity, NLP and QP are used to
stand for the nonlinear and non-convex optimization problem in (4.10) and the quadratic
problem in (4.37) in the following simulation results. The quadratic problem with the use
of the selection strategy of inequality constraints is denoted by QPS.

5.2 Two-Link Planar Robot Manipulator

The parameters used in the optimization problem in the case of the two-link planar robot are
listed in Table 5.1. The weighting factor kdsi is chosen by setting the maximum acceptable
DSI, i.e., Sad in (3.15), as 1, and kmsi is chosen by allowing the maximum linear momentum
toward the agents, Sam, to be 0.2 m/s when DSI is 1. The factor kpo in kp is the squared
distance from S to E, which is 0.36 m2 in the case of the two-link planar robot. The factor
kpo and the length of the planning horizon N act as a normalization factor for kp. Because
of the simple mechanical structure in the case of the two-link planar robot, only the task
space squared distance from the end-effector at the last step of the planning horizon to the
final goal position is penalized in simulations. In other words, only the first term in Jp(z(N))
is used, and hence there is no kpns in the table.
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Table 5.1: Parameters of optimization problem in simulations of the two-link planar robot
manipulator.

kdsi kmsi kp kpo ku ǫ Sa ∆t
1 25 10N/kpo 0.36 (m2) 0.0025 0.5 1 0.01(sec)
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Figure 5.1: An example of different planning horizons in simulations of human–robot collab-
oration for the case of the two-link planar robot

In simulations, the robot controller sampling time is set as 0.01 sec. From the assumption
made in Section 2.3, the information of the human worker is set to be available for every three
robot controller time steps, and the information of the master robot manipulator is available
for every time step. In other words, Tc is equal to three in human–robot collaboration, and
is equal to one in decentralized robot–robot collaboration. The planning horizon N is set as
16 time steps in both scenarios of robot collaborations.

5.2.1 The Selection of the Planning Horizon N

The length of the planning horizon, N , plays an important role in the optimization-based
framework since it directly affects the size of the optimization problem. For the proposed
trajectory generation algorithm, the numbers of variables and constraints in the optimization
problem, as shown in Table 4.1, change with the planning horizon. A long planning horizon
provides the advantage of the early detection of a potential collision, but results in a large size
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Figure 5.2: The resulting trajectories of simulations with the planning horizon of 6, 10, and
16 in human–robot collaboration for the case of the two-link planar robot using NLP. (a)
Joint position, (b) joint velocity, and (c) joint acceleration.

optimization problem and hence being incapable of real-time trajectory generation. Another
issue, particularly in the proposed algorithm, is the motion estimation of the agents. The
estimated position of an agent ellipsoid in the far future maybe greatly deviate from its real
position. On the other hand, an optimization problem with a short planning horizon can be
solved more quickly, but the resulting trajectory may contain more oscillations. The reason
is that when an agent ellipsoid appears and is detected by the robot system, the robot needs
to react and avoid the agent in a short time. This generally results in a rapid and huge
change in the joint velocity and joint acceleration. Thus, the selection of the length of the
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Figure 5.3: The resulting paths in simulations of human–robot collaboration for the case of
the two-link planar robot using formulation (4.10), (4.37), and (4.37) with selection strategy
for inequality constraints. They are denoted as NLP, QP, and QPS.

planning horizon needs to be considered carefully.
The scenario of human–robot collaboration for the case of the two-link planar robot is

used as an example to demonstrate the trajectories generated by the same formulation but
with different planning horizons. Three trajectories are generated by NLP with the planning
horizon of 6, 10, and 16 time steps, and the corresponding paths are shown in Figure 5.1. In
the figure, the agent ellipsoids representing the human worker are in their initial positions.
As seen in the figure, when the robot manipulator is close to the left hand of the human
worker, its motion in the simulation of the planning horizon of 6 time steps contains more
oscillations than the motions in simulations of N = 10 and N = 16 . The oscillations in the
motion can be seen as well in the trajectories shown in Figure 5.2. The robot manipulator
in three simulations reaches the goal position. However, it takes 361 time steps in the
simulation with the planning horizon of N = 6 time steps, which is longer than the time
in other simulations. It takes 346 and 334 time steps in the simulations with the planning
horizon of N =10 and 16, respectively.

The selection of the planning horizon for the case of the two-link planar robot is chosen
as 16 time steps, and for the case of the ITRI seven-DOF robot manipulator, it is selected
as 12 time steps.

5.2.2 Human–Robot Collaboration

Figure 5.3 shows the resulting paths of the robot end-effector generated by NLP, QP, and
QPS in simulations. In the figure, the three paths in the black solid line, the blue dashed line,
and the red dash-dot line represent the resulting paths of NLP, QP, and QPS, respectively.
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Figure 5.4: The resulting trajectories in simulations of human–robot collaboration for the
case of the two-link planar robot using NLP, QP, and QPS. (a) The comparison of trajectories
between NLP and QP, and (b) the comparison of trajectories between QP and QPS.

The two green ellipses enveloping the two links of the robot are the unit ellipses of the ellipsoid
coordinates attached to the robot links. The agent ellipsoids representing the human worker
are in their initial positions. It is seen that the robot manipulator successfully reaches the
goal configuration in all simulations.

The end-effector paths generated by the three formulations show a high similarity. The
resulting trajectories are shown in Figure 5.4, where Figure 5.4a is the comparison between
the trajectories of using NLP and QP, and Figure 5.4b is the comparison between QP and
QPS. It can be seen in Figure 5.4a that the trajectory of using NLP is slightly different
from the trajectory generated by QP. The difference only shows up in the joint velocity and
joint acceleration at the time step of around 150 to 250. This shows that the quadratic
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Figure 5.5: The resulting safety indices in simulations of human–robot collaboration for the
case of the two-link planar robot using NLP, QP, and QPS. All the blue, green, and red lines
represent the overall safety index, the DSI, and the MSI. (a) The comparison between
NLP and QP; (b) The comparison between QP and QPS.

formulation can effectively approximate the nonlinear and non-convex formulation in the
case of the two-link planar robot. In Figure 5.4b, the trajectories generated by QP and QPS
are almost identical to each other, which implies that the selection strategy of the inequality
constraints does select the proper inequality constraints.

The safety indices of simulations of NLP, QP, and QPS are shown in Figure 5.5. In the
figure, the overall safety index, denoted by SI, is represented by blue lines, either solid or
dashed. The pair of kdsiDSIji and kmsiMSIji which imposes the maximum SI are shown in
the figure in green and red lines. A similar profile of the safety index in the three simulations
can be seen in the figure. This result is expected because of the similarity in their trajectories.
The SI in the three simulations are always less than or equal to the predefined threshold,
Sa, which indicates that the human worker is safe and has no collision with the robot arm
during his motion.

Figure 5.6 shows the snapshots of the simulation of using NLP. Figure 5.6a and Fig-
ure 5.6b show that the robot manipulator starts its motion, makes a turn, and then avoids
the right hand of the human worker. The turn is caused by the safety index reaching the
threshold, as seen in Figure 5.5a. In the period that the safety index is reaching the threshold,
the unit ellipse of the ellipsoid coordinate on the second robot link contacts the red ellipse
representing the right hand of the human worker, as shown in Figure 5.6b. From Figure 5.6b
to Figure 5.6c, the motion of the robot arm tends to move toward the goal position and
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Figure 5.6: Snapshots of the simulation of human–robot collaboration for the case of two-link
robot manipulator using NLP.

0 50 100 150 200 250 300
−1500

−1000

−500

0

500

1000

1500

J
o

in
t 

J
e

rk
(r

a
d

/s
3
)

 

 

NLP−J1

QP−J1

0 50 100 150 200 250 300

−1500

−1000

−500

0

500

1000

Time index

J
o

in
t 

J
e

rk
(r

a
d

/s
3
)

 

 

NLP−J2

QP−J2

(a)

0 50 100 150 200 250 300

−1000

−500

0

500

1000

J
o

in
t 

J
e

rk
(r

a
d

/s
3
)

 

 

QP−J1

QPS−J1

0 50 100 150 200 250 300

−1500

−1000

−500

0

500

1000

Time index

J
o

in
t 

J
e

rk
(r

a
d

/s
3
)

 

 

QP−J2

QPS−J2

(b)

Figure 5.7: The joint jerks (derived from joint accelerations numerically) in simulations of
human–robot collaboration for the case of the two-link planar robot. (a) The comparison
between NLP and QP, and (b) the comparison between QP and QPS.
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Figure 5.8: The workspace of two robot manipulators in simulations of decentralized robot–
robot collaboration.

meanwhile avoid the human worker. In about the same period of time, the human worker
stretches out his/her left hand. The motion of the left hand ellipsoid causes the increase of
the momentum safety index, and as a result, the robot manipulator moves roughly parallel
to the X-axis but in the opposite direction in order to reduce the momentum safety index.
This can be shown in Figure 5.6c to Figure 5.6e. After a short period of pause, the human
worker moves back his/her hands, and the robot manipulator also detours and then reaches
its goal position, as shown from Figure 5.6f to Figure 5.6h.

The joint jerks of the resulting trajectories are derived numerically from the joint acceler-
ations and shown in Figure 5.7. As seen in the figure the joint jerks in the three simulations
are all within the range from −1500 rad/s3 to 1500 rad/s3, and in most of the time the joint
jerks even stay within 1000 rad/s3 to 1000 rad/s3. This indicates that three trajectories
generated by the three formulations have a bounded jerk and are smooth. However, there
exists small chattering in the joint jerk and the joint acceleration.

5.2.3 Decentralized Robot–Robot Collaboration

The simulation results of using NLP, QP, and QPS in decentralized robot–robot collaboration
are shown in Figure 5.9 through Figure 5.12. The resulting end-effector paths of the slave
robot manipulator are illustrated in Figure 5.9. The two red ellipses are the agent ellipsoids
used to represent the master robot manipulator, and the red horizontal line is the path of
its end-effector in simulations. The resulting paths of all simulations are very close to each
other, and it can also be observed from the trajectories generated by these three formulations
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Figure 5.9: The resulting paths in simulations of decentralized robot–robot collaboration for
the case of the two-link planar robot using NLP, QP, and QPS.

in Figure 5.10. This indicates that QP can effectively approximate NLP in this case, and
moreover, the selection strategy of inequality constraints works successfully.

The resulting safety indices are shown in Figure 5.11. There is no distinguishable differ-
ence between the safety index of the three simulations, and it is always less than or equal to
Sa in simulations. It shows that no collision happens in three simulations. The snapshots of
the simulation using NLP are shown in Figure 5.12.

The joint jerks of the resulting trajectories are derived numerically from the joint ac-
celerations and are shown in Figure 5.13. It is seen that the jerks in all three simulations
are bounded by −1000 rad/s3 and 1000 rad/s3. Furthermore, there is no chattering in the
joint jerk. This indicates that the three trajectories generated by the three formulations are
smooth.

5.2.4 Computation Time

The sizes of the optimization problems in the three formulations and the average computation
time for each iteration in the simulations are summarized in Table 5.2. The first three rows
show the size of the optimization problem in the three formulations. Note that because
of the use of the selection strategy for the inequality constraints, the number of inequality
constraints in the formulation of QPS varies from iteration to iteration. Thus the number of
inequality constraints in the column of QPS is not a fixed value. The number of iterations
in each simulation indicates how long it takes for the robot manipulator to reach the goal
position. It can be seen that in the simulations of the two-link planar robot, the average
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Figure 5.10: The resulting trajectories in simulations of decentralized robot–robot collabora-
tion for the case of the two-link planar robot using NLP, QP, and QPS. (a) The comparison
between NLP and QP, and (b) the comparison between QP and QPS.

computation time of using QP is 0.0096 sec for human–robot collaboration and 0.0082 sec
for decentralized robot–robot collaboration. It is about 1/600 of the average time of using
NLP, which is 6.2853 sec for human–robot collaboration and 5.2604 sec for decentralized
robot–robot collaboration. With the use of selection strategy for the inequality constraints,
the average computation time is further reduced to 0.0069 sec in human–robot collaboration,
which is a 28% decrease. In the last row of Table 5.2, it lists the time spent on the Taylor
series expansion, which is used in approximation of the safety constraints as stated in (4.20)
and (4.21). It can be seen that the reduction in the average computation time is mainly
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Figure 5.11: The resulting safety indices in simulations of decentralized robot–robot col-
laboration for the case of the two-link planar robot using NLP, QP, and QPS. The blue,
green, and red lines represent the overall safety index, SI, the kdsiDSI, and the kmsiMSI,
respectively. (a) The comparison between NLP and QP; (b) The comparison between QP
and QPS.
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Figure 5.12: Snapshots of the simulation using NLP in decentralized robot–robot collabora-
tion for the case of the two-link planar robot manipulator.
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Figure 5.13: The joint jerk (derived from joint accelerations numerically) in simulations of
decentralized robot–robot collaboration for the case of the two-link planar robot using NLP,
QP, and QPS. (a) The comparison between NLP and QP, and (b) the comparison between
QP and QPS.

contributed by the reduction in the average time spent on the Taylor series expansion.
The reduction in the average computation time, however, does not appear in the scenario

of decentralized robot–robot collaboration. This is because of the practical implementation
issue. In the implementation of (4.21), the forward kinematics and the differential kinematics
need to be evaluated a large amount of times in order to obtain the gradient vector around
z0k. For the formulation of QP, some computational load can be saved, such as the Jacobian
matrix in the differential kinematics equation for all pairs of (j, i) in the same time step.
In the implementation of QPS, however, such advantages are not present since the index of
(j, i, k) is changing in every iteration. As a result, the reduction of the computational load in
doing a Taylor series expansion numerically is partially canceled by the increase of the com-
putational load in computing the forward kinematics and the differential kinematics. This
negative effect becomes larger when the difference in the number of inequality constraints
between QP and QPS is not large.
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Table 5.2: Size of the optimization problem in simulations of the two-link planar robot using
NLP, QP, and QPS and the computation time in simulations.

Human–robot
collaboration

Decentralized
Robot–robot
collaboration

Formulation of
optimization problem

NLP QP QPS NLP QP QPS

# of variables 96
# of equality constraints 64
# of inequality constraints 16 512 10∼28 16 128 20∼26
# of iterations 334 337 334 238 236 236
Average solving time (sec) 6.2853 0.0096 0.0069 5.2604 0.0082 0.0080
Average time of Taylor
series expansion (sec)

- 0.0036 0.0013 - 0.0010 0.0011

Table 5.3: Parameters of the optimization problem in simulations of the ITRI seven-DOF
robot manipulator.

kdsi kmsi kp kpo kpns ku ǫ Sa ∆t
1 25 20N/kpo 0.605 (m2) 0.04 0.0025 0.5 1 0.01(sec)

5.3 ITRI Seven-DOF Robot Manipulator

The parameters of the optimization problem used in the simulations of the ITRI seven-DOF
robot are listed in Table 5.3. The normalizing factor, kpo, is 0.605 m2 in simulations of the
ITRI seven-DOF robot manipulator. The weighting factor on the orientation of the end-
effector, kpns, is set to 0.04. Based on the assumption made in Section 2.3, Tc, is selected as
three time steps of the robot controller in human–robot collaboration and one time step in
decentralized robot–robot collaboration. The planning horizon N is set as 12 time steps in
both scenarios of robot collaborations.

5.3.1 Human–Robot Collaboration

The resulting paths of the robot end-effector in simulations using NLP, QP, and QPS are
shown in isometric view in Figure 5.14a, and paths along theX-, Y -, and Z-axis in task space
are shown in Figure 5.14b. The joint positions of the generated trajectories are shown in
Figure 5.15. From Figure 5.14b and Figure 5.15, one can find that the trajectory generated
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Figure 5.14: The resulting end-effector paths in simulations of human–robot collaboration
for the case of the ITRI seven-DOF robot using NLP, QP, and QPS. (a) The path in isometric
view, and (b) the paths along the X-, Y -, and Z-axis.

by QPS is very close to the trajectory of using QP. These two trajectories, however, are
different from the trajectory generated by NLP, especially when the robot end-effector is
getting close to the goal position E. The difference starts around the 60th time step and
can also be seen in the generated joint positions in Figure 5.15. A possible reason is the
improper trust bound ǫ in the approximation in (4.37) around that joint position and velocity
where the trajectory of QP starts to deviate from the trajectory of NLP. As a result, the
robot manipulator in simulations of using QP and QPS deviate but still reaches the goal
position. It takes 258 time steps for the robot manipulator to reach the goal position in the
simulation of using NLP, which is longer than 225 time steps in simulations using the other
two formulations.

The snapshots of the simulation using QP are shown in Figure 5.17. From Figure 5.17a
to Figure 5.17d, the robot manipulator is moving toward the goal position and meanwhile
slightly detouring because of the increasing momentum safety index caused by the human
motion. During the time period when the human worker slows down and then pauses his/her
motion, as shown from Figure 5.17d to Figure 5.17f, the robot manipulator keeps moving
toward the goal position and makes sure the safety index is equal to or smaller than Sa. In
this period, the robot manipulator is physically close to the human worker, and hence the
safety index is principally determined by the distance safety index. After Figure 5.17f, the
human worker moves back to his/her initial gesture, and the robot manipulator reaches the
goal position.

The overall safety index in simulations of using NLP, QP, and QPS is kept less than or
equal to Sa as shown in Figure 5.16a and Figure 5.16b. It implies that there is no collision
between the robot manipulator and the human worker. The safety index in the simulation
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Figure 5.15: The resulting joint positions generated by NLP, QP, and QPS in simulations
of human–robot collaboration for the case of the ITRI seven-DOF robot manipulator. (a)
NLP, and (b) comparison between QP and QPS.
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Figure 5.16: The resulting safety indices in simulations of human–robot collaboration for the
case of the ITRI seven-DOF robot manipulator using NLP, QP, and QPS. (a) NLP, and (b)
the comparison between QP and QPS.
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Figure 5.17: Snapshots of the simulation using QP in human–robot collaboration for the
case of the ITRI seven-DOF robot manipulator.

using QPS, however, slightly exceeds Sa, at time indices 100 and 101, and the values are
1.0217 and 1.0068, respectively. This may imply that the selection strategy does not perfectly
pick up all the active inequality constraints.

The numerically derived joint jerks from the trajectories generated by NLP, QP, and
QPS are shown in Figure 5.18. It is seen that in the simulation of using NLP, there exist
several peaks in the joint jerk, but all of the peaks range from 1000 rad/s3 to −1500 rad/s3.
In simulations of using QP, an undesired peak which is greater than 2000 rad/s3 appears
in the time step of 100. Other than that, the joint jerk is bounded. However, the joint
jerk in the QPS simulation in Figure 5.18c does not exhibit this peak. From the figures of
the safety index and the derived joint jerk, it can be concluded that the selection of the
inequality constraints does not work perfectly in the time step around 100. As a result,
the robot manipulator in the simulation using QPS proceeds less safely but with a smaller
squared joint jerk direction.
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Figure 5.18: The joint jerks (derived from joint accelerations numerically) in simulations of
human–robot collaboration for the case of the ITRI seven-DOF robot using NLP, QP, and
QPS. (a) NLP, (b) QP, and (c) QPS.
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Figure 5.19: The resulting end-effector paths in simulations of decentralized robot–robot
collaboration for the case of the ITRI seven-DOF robot. (a) The path in isometric view, and
(b) the paths along the X-, Y -, and Z-axis.

5.3.2 Decentralized Robot–Robot Collaboration

The simulation results of decentralized robot–robot collaboration of two ITRI seven-DOF
robots using formulations of NLP, QP, and QPS, are shown in Figure 5.19 through Fig-
ure 5.23. The resulting paths of the robot end-effector in simulations of NLP, QP, and QPS
are shown in isometric view in Figure 5.19a, and paths along the X-, Y -, and Z-axis in task
space are shown in Figure 5.19b. In Figure 5.19, the robot manipulator enveloped by the
half-transparent ellipsoids is the slave robot manipulator, and the master robot manipulator
is enclosed by the meshed ellipsoids. In Figure 5.19b, the path of the end-effector gener-
ated by NLP is different from the path generated by QP or QPS, and the paths of using
QP and QPS are almost identical to each other. The same observation can be drawn from
the joint position in the three simulations in Figure 5.20, in which Figure 5.20a is the joint
position generated by NLP and Figure 5.20b shows the comparison between QP and QPS.
The considerable similarity between the trajectories of QP and QPS indicates that the selec-
tion strategy of the inequality constraints works successfully. Furthermore, all formulations
provide the guarantee of a safe motion and the safety index in the three simulations are less
than or equal to the threshold Sa, as shown in Figure 5.21.

Figure 5.23 is snapshots of the simulation using the formulation of QP. The slave robot
manipulator, as shown in the snapshots, is making a curved detour to avoid the master robot
manipulator and moving toward the goal position at the same time.

Figure 5.22 shows the joint jerk derived from the joint acceleration generated in the three
formulations. The derived joint jerk in three simulations is bounded between 1000 rad/s3
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Figure 5.20: The resulting joint positions in simulations of decentralized robot–robot collab-
oration for the case of the ITRI seven-DOF robot manipulator using NLP, QP, and QPS.
(a) NLP, and (b) comparison between QP and QPS.
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Figure 5.21: The resulting safety indices in simulations of decentralized robot–robot collab-
oration for the case of the ITRI seven-DOF robot manipulator using NLP, QP, and QPS.
(a) NLP, and (b) the comparison between QP and QPS.
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Table 5.4: Size of optimization problem in simulations of the ITRI seven-DOF robot manip-
ulator using NLP, QP, and QPS and the computation time in simulations.

Human–robot
collaboration

Decentralized
Robot–robot
collaboration

Formulation of
optimization problem

NLP QP QPS NLP QP QPS

# of variables 252
# of equality constraints 168
# of inequality constraints 12 1440 0∼58 12 216 10∼60
# of iterations 258 228 219 360 306 306
Average solving time (sec) 44.9334 0.0938 0.0298 19.912 0.0318 0.0282
Average time of Taylor
series expansion (sec)

- 0.0718 0.0209 - 0.0171 0.0125

to −1000 rad/s3. Furthermore, the jerk is bounded by 500 rad/s3 and −500 rad/s3 except
in the beginning period of time. The bounded joint jerk implies that the three trajectories
generated by the three formulations are smooth.

5.3.3 Computation Time

The sizes of the optimization problem in the three formulations and the average computa-
tion time for each iteration in simulations of the ITRI seven-DOF robot manipulator are
summarized in Table 5.4. The first three rows show the size of the optimization problem in
the three formulations, and the fourth row shows the time steps for the robot manipulator to
reach the goal position. The average computation time of using QP is 0.0938 sec and 0.0318
sec in human–robot collaboration and decentralized robot–robot collaboration, respectively.
They are drastically smaller than the average time in the simulation of using NLP. By using
the strategy to select the inequality constraints, the average computation time decreases
from 0.0938 sec to 0.0298 sec in the case of human–robot collaboration, which is a 68.2%
decrease. As shown in the last row of Table 5.4, the reduction in time is mainly due to
the reduction in the average time spent on the Taylor series expansion, which reduces from
0.0718 sec to 0.0209 sec. In the scenario of decentralized robot–robot collaboration with the
ITRI seven-DOF robot, the average time for each iteration only drops to 0.0282 sec, which
is a 11.3% decrease. This is attributed to the practical issue in implementation as stated in
the case of the two-link planar robot manipulator.
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5.4 Remarks

In this chapter, the proposed online trajectory generation algorithm along with the robot
safety system proposed in Section 2.2 were implemented and simulated. Three formulations
of the optimization problems were implemented in the online trajectory generation algorithm,
including the original non-convex and nonlinear optimization problem, represented by NLP,
and the quadratic optimization problem with/without the selection strategy to the inequality
constraints, represented by QP and QPS. The quadratic optimization problem, QP, is used
to approximate the NLP into a quadratic problem in joint space. The selection strategy
of the inequality constraints is to further reduce the computational load in QP due to the
numerical evaluation of Taylor series expansion.

The resulting generated trajectories in the simulations show that QP and QPS can ef-
fectively approximate NLP with much less computational load in the case of the two-link
planar robot. In the case of the ITRI seven-DOF robot manipulator, the trajectories gener-
ated by using QP and QPS are different from the trajectory generated by using NLP. Yet
QP and QPS provide the equivalent performance in terms of ensuring the safety of the agent
in the shared workspace and leading the robot manipulator to its goal position. In other
words, the three formulations guarantee the online generation of a collision-free trajectory.
Because of the Ju term in the optimization problem, the trajectories generated by these three
formulations all have a bounded joint jerk and are smooth.

Although this selection strategy is a heuristic method, it works successfully in most of the
cases in simulation validation, especially when the number of inequality constraints is large.
With the selection strategy, the average computation time was greatly reduced. Regarding
the feasibility of the real-time implementation, the simulation results in the case of the two-
link planar robot show that it is feasible to achieve real-time trajectory generation. In the
case of the ITRI seven-DOF robot manipulator, however, the average computation time is
still too long. A big portion of the average computation time is for computing the Taylor
series expansion numerically.
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Figure 5.22: The joint jerks (derived from joint accelerations numerically) in simulations of
decentralized robot–robot collaboration for the case of the ITRI seven-DOF robot using (a)
NLP, (b) QP, and (c) QPS.
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Figure 5.23: The snapshots of the simulation of decentralized robot–robot collaboration for
the case of the ITRI seven-DOF robot using QP.
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Chapter 6

Measurement Noise in the Agent

Information

6.1 Introduction

In the development of the online trajectory generation algorithm in Chapter 4, a constant
velocity model built from the current and previous measurements is used to describe a dy-
namic model of the agent ellipsoids. However, a noisy measurement of the agent position
information is generally inevitable, especially in sensing the human worker in human–robot
collaboration. In this chapter, the situation that the position information of agent ellipsoids
contains measurement noise is considered. Specifically, a Gaussian random vector is intro-
duced to represent the measurement noise in the velocity level when sensing agents in the
shared workspace. Two approaches are proposed in the robot safety system to handle the
contaminated agent information. The first one is to consider the measurement noise in the
agent position estimation block, and then this block outputs the best estimate of the agent
position to the decision making block. The other approach is to handle the measurement
noise in the formulation of the optimization problem in the decision making block. The
details of the two approaches are stated in the subsequent sections.

6.2 Handling Measurement Noise in Agent Position

Estimation Block

In the proposed robot safety system in Figure 2.1, the function of the agent position es-
timation block is to transform the sensor measurements into a set of ellipsoids which can
effectively envelop the space occupied by the agent. Based on the information of the agent
ellipsoids, the decision making block generates a collision-free trajectory which leads the
robot manipulator toward the goal position. Thus, an intuitive approach is to handle the
noisy measurement in the agent position estimation block. This block then outputs the
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best estimate based on the current observation. The estimated output positions of agent
ellipsoids are treated as deterministic, and the online trajectory generation algorithm in the
decision making block generates a collision-free trajectory based on the estimated position.
The benefit of this approach is that no change is needed for the decision making block, and
the online trajectory generation stated in Chapter 4 can be directly used.

To estimate the centers of the agent ellipsoids, kinematic kalman filter (KKF) can be
utilized in the agent position estimation block. The dynamic model of the agent ellipsoids
can be written as,

[

xoi(n)

voi(n)

]

=

[

INx
(∆t)Tc

0 INx

] [

xoi(n−1)

voi(n−1)

]

+Bνν(n−1), (6.1a)

yoi(n) =
[

INx
0
]

[

xoi(n)

voi(n)

]

+ ω(n), (6.1b)

where xoi(•) and voi(•) are the task space position and velocity of the i-th agent ellipsoid
center, yoi(•) is the measurement received from the sensor block, INx

is an identity matrix
with size of Nx by Nx, Nx is the dimension of the task space, and ∆t is the sampling time
for the controller. Measurement is available every Tc time step, and n represents the n-th
measurement instance. The n-th measurement instance corresponds to the (kTc)-th robot
controller time step, and the (n− 1)-th to the ((k− 1)Tc)-th robot controller time step. The
vector ν(•) ∈ R

Nx is a Gaussian random vector, and Bνν(•) accounts for the dynamics which
could not be represented by the constant velocity model. In (6.1b), the vector ω(•) is the
measurement noise in the Gaussian distribution, which is the part we want to handle. The
Kalman Filter method is applied to (6.1) to estimate the task space position and velocity of
the centers of the agent ellipsoids.

6.3 Online Trajectory Generation with Measurement

Noise in Agent Ellipsoids

The second approach is to handle the measurement noise directly in the online trajectory
generation algorithm in the decision making block. The information of the agent ellipsoids is
contaminated by the measurement noise, which is represented by a Gaussian random vector,
and hence the dynamic model of the agent ellipsoids becomes stochastic. As a result, the
inequality constraints accounting for the safety of the agents in the optimization problem in
(4.10) become stochastic. These constraints need to be handled in a stochastic framework
as inequality chance constraints. The details of the chance constraints are stated below.



Chapter 6. Measurement Noise in the Agent Information 75

6.3.1 Stochastic Agent Model in the Formulation of the

Optimization Problem

The stochastic dynamic model of the agent ellipsoids is formulated by adding a Gaussian
random vector to the deterministic constant-velocity model in Section 4.2 as

xoi(k+1) = xoi(k) + (∆t)(voi + wi(k)), k = 0, . . . , N − 1 (6.2)

where
wi(k) ∼ N (0,Σ).

The index k indicates the k-th time step of the planning horizon. The vector xoi(•) is the
task space position of the i-th agent ellipsoid center. N is the planning horizon. wi(k) is a
Gaussian random vector representing the measurement noise in the velocity of the i-th agent
ellipsoid center at the k-th time step. The matrix Σ ∈ R

Nx×Nx is the covariance matrix
of the Gaussian random vector. voi is computed from the previous and current position
measurements as,

voi =
1

Tc∆t
(xoi(0) − xoi(−Tc)), (6.3)

where xoi(0) and xoi(−Tc) are the current and previous position measurements. The vector
xoi(k) is a random variable with normal distribution and can be expressed as,

xoi(k) ∼ N
(

xoi(0) + (k∆t)voi, k(∆t)2Σ
)

, ∀k = 1, . . . , N. (6.4)

With this stochastic agent model, the inequality constraints accounting for the safety
of the agents in the optimization problem in (4.10c) becomes non-deterministic. Thus, the
inequality constraints need to be handled in a stochastic framework as inequality chance
constraints as:

P
(

SI(z(k)) ≤ Sa

)

≥ 1− α, ∀k = 1, . . . , N. (6.5)

Equation (6.5) indicates that the probability of being safe, i.e., SI(z(k)) ≤ Sa, is greater than
or equal to a predefined value, 1 − α. The value of α should be very small, such as 0.05 or
0.01.

In the remainder, candidate 2 defined in (3.16) is used as the overall safety index. In Sec-
tion 4.4, the safety inequality constraint built from candidate 2 is shown to be equivalent to
the inequality constraints in (4.19). Hence the inequality chance constraint in (6.5) becomes

P
(

kdsiDSIji(z(k)) ≤ Sa

)

≥ 1− α, ∀j, i, k = 1, . . . , N, (6.6a)

P
(

kmsiMSIji(z(k)) ≤ Sa

)

≥ 1− α, ∀j, i, k = 1, . . . , N, (6.6b)

where MSIji(z(k)) is defined in (4.17).
In order to implement the inequality chance constraints, these chance constraints are

transformed to deterministic inequality constraints by utilizing the mathematical similar-
ity between the probability density function (PDF) of a Gaussian random vector and the
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agent ellipsoid. In the next section, a simple one-dimension case is used to illustrate the
transformation between the PDF of a Gaussian random vector and an ellipsoid.

6.3.2 Geometric Interpretation of a Gaussian Random Variable

with Confidence Interval

One-Dimensional Space

From statistics we know that the sum of squared independent random variables with standard
normal distributions is a random variable with a chi-squared distribution. The degree-of-
freedom of the chi-squared random variable is the only parameter of this distribution and is
determined by the number of the standard normal random variables used to construct it. For
instance, r ∈ R is a random variable with normal distribution, N (µ, σ2), and a chi-squared
random variable ρ with the degree-of-freedom of one can be constructed as

(r − µ)2

σ2
= ρ ∼ χ2

1. (6.7)

The value of ρ is always positive. From the cumulative distribution function (CDF) of χ2
1,

we can compute the probability for any given positive number ρs,

Fχ2

1
(ρs) = P

(

ρ ≤ ρs
)

= P
((r − µ)2

σ2
≤ ρs

)

= ps, (6.8)

where Fχ2

1
is the CDF of χ2

1. Since that CDF is always a monotonic function, for any
positive ρs, there exists a unique ps, and vice versa. With some algebraic manipulations of
the inequality, (r − µ)2/σ2 ≤ ρs, (6.8) is equivalent to,

P
(

µ−√ρsσ ≤ r ≤ µ+
√
ρsσ
)

= ps. (6.9)

Equation (6.9) can be graphically illustrated by the PDF of r as shown in Figure 6.1. In the
figure, the shadow area represents not only the probability of the random variable r staying
between (µ−√ρsσ) and (µ+

√
ρsσ), but also the probability of the random variable ρ less

than or equal to ρs. In other words, the area of the shadow zone is ps. This shadow zone
extends over a closed interval, which is symmetric to the mean of the normal distribution,
µ, and the width of the closed interval is 2

√
ρsσ. Since it is known that ps has a one-to-one

mapping with ρs from the CDF of χ2
1, the area of the shadow zone, ps, directly depends on

ρs. The mean and the variance of the random variable r only determine the shape and the
width of the shadow area without changing the area of the shadow zone.

In conclusion, for any one-dimensional closed interval, a random variable with a normal
distribution can be found such that this random variable stays inside this interval with a
certain probability. For instance, given a desired probability pd and a closed interval, [ra, rb],



Chapter 6. Measurement Noise in the Agent Information 77

−10 −5 0 5 10 15
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

pd
fo

f  
r 

r
Figure 6.1: An illustration of ρ ∼ χ2

1 in the probability density function (PDF) of a normal
random variable, r ∼ N (µ, σ2).

where rb > ra, the mean µ and the variance σ2 of the normal random variable can be obtained
by

µ = (ra + rb)/2, (6.10a)

σ2 = (rb − ra)
2/(4ρs), (6.10b)

ρs = F−1
χ2

1

(pd). (6.10c)

On the contrary, given a Gaussian random variable with mean µ and variance σ2 of a
Gaussian random variable and a desired probability pd, the corresponding closed interval,
[ra, rb], can also be computed by

rb = µ+
√
ρsσ (6.11a)

ra = µ−√ρsσ (6.11b)

ρs = F−1
χ2

1

(pd) (6.11c)

Higher Dimension Space

The same concept can be easily extended to the case of a higher dimensional space. Assume
ri ∈ R

Nx is a random vector with a normal distribution, N (µi,Σi), in task space. Then a
chi-squared random variable ρi can be constructed from ri as

(ri − µi)
TΣ−1

i (ri − µi) = ρi ∼ χ2
Nx
. (6.12)
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Given a positive number ρs, we know from the CDF of χ2
Nx

that

Fχ2

Nx
(ρs) = P

(

ρi ≤ ρs
)

= P
(

(ri − µi)
TΣ−1

i (ri − µi) ≤ ρs
)

= ps.
(6.13)

Equations (6.12) and (6.13) are equivalent to (6.7) and (6.8) for a higher dimensional space.
It can be observed that the part inside the probability in (6.13) is written in the same form
as an ellipsoid. Hence (6.13) also represents the probability of ri staying inside an ellipsoid
which is defined as

Ei = {x ∈ R
Nx | (x− µi)

T (ρsΣi)
−1(x− µi) ≤ 1}, (6.14)

where µi and (ρsΣi)
−1 are the center and the matrix of the ellipsoid Ei. It implies that

a closed interval in a higher dimensional space, such as the space of dimension Nx, is an
ellipsoid.

Hence, for an agent ellipsoid with matrix Pi and centered at xoi, we can find a normal
random vector ri such that the probability of ri staying inside the agent ellipsoid is pd. The
mean vector and the covariance matrix of the random vector ri can be obtained by

µx = xoi, (6.15a)

Σi = (ρsPi)
−1, (6.15b)

where
ρs = F−1

χ2

Nx

(pd). (6.16)

6.3.3 Chance Constraints of DSI

The chance constraint accounting for the distance safety index in (6.6a) can be transformed
into deterministic inequality constraints by applying the concept introduced in the previous
section. By utilizing the geometric interpretation of a Gaussian random vector given a
probability pd, each agent ellipsoid can be interpreted as a Gaussian random vector. For
instance, given a probability pd, a Gaussian random vector, ri, can be built for the i-th agent
ellipsoid. The mean and the covariance matrix of the random vector ri can be computed by
(6.15). The mean is at the agent ellipsoid center, and the covariance matrix is the inverse
of the product of the i-th agent ellipsoid matrix and ρs. ρs is computed from the inverse
of the CDF of χ2

Nx
evaluated at pd. The random vector ri is guaranteed to stay within the

i-th agent ellipsoid with the probability of pd. Furthermore, the position of the center of the
i-th agent ellipsoid in every time step within the planning horizon is another random vector
xoi(k) as stated in (6.4). By combining ri and xoi(k), the i-th agent ellipsoid in each time step
within the planning horizon can be represented as,

xi(k) ∼ N
(

µik(k), Σik(k)

)

, ∀k = 1, . . . , N, (6.17)
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where

µik(k) = xoi(0) + (k∆t)voi (6.18a)

Σik(k) = k(∆t)2Σ + Σi. (6.18b)

The mean of xi(k) is just the estimated position of the i-th agent ellipsoid center at the k-th
time step of the planning horizon when no measurement noise is considered. The random
vector xi(•) in every time step of the planning horizon is guaranteed to stay within the i-th
agent ellipsoid with the probability of pd, i.e.,

P
(

(xi(k) − µik(k))
TPi(xi(k) − µik(k)) ≤ 1

)

≥ pd, ∀k = 1, . . . , N. (6.19)

Note that xi(k) is a point in task space. In Section 3.3, we have defined the squared dis-
tance in ellipsoid coordinates from a point to the ellipsoid coordinate origin and the distance
safety index for the point. Hence, the squared distance in the j-th ellipsoid coordinate from
xi(k) to the ellipsoid coordinate origin can be computed as,

d2ji(k) =
(

xi(k) − xcj(z(k))
)T

Qj(z(k))
(

xi(k) − xcj(z(k))
)

. (6.20)

And the DSIji for the k-th time step of the planning horizon is,

DSIji(k) =
1

d2ji(k)
, ∀k = 1, . . . , N. (6.21)

The ellipsoid matrix Qj(z(k)) in (6.20) is composed of two matrices as

Qj(z(k)) = RT
j (z(k))AjRj(z(k)) (6.22)

where Rj(z(k)) is the rotation matrix of the ellipsoid coordinate with respect to the world
coordinate. The matrix Aj is a diagonal matrix as

Aj =











λ2
j1 0 · · · 0
0 λ2

j2 · · · 0
...

...
. . .

...
0 0 · · · λ2

jNx











. (6.23)

The diagonal elements, λj1, . . . , λjNx
, are the radii of the j-th ellipsoid coordinate and are

all positive. Substituting Qj(z(k)) in (6.22) into (6.20) yields,

d2ji(k) =
(

xi(k) − xcj(z(k))
)T

Rj(z(k))
TAjRj(z(k))

(

xi(k) − xcj(z(k))
)

=
(

A
1/2
j Rj(z(k))

(

xi(k) − xcj(z(k))
)

)T(

A
1/2
j Rj(z(k))

(

xi(k) − xcj(z(k))
)

)

: = yTji(k)yji(k)

(6.24)



Chapter 6. Measurement Noise in the Agent Information 80

The matrix Rj(z(k)) and the vector xcj(z(k)) are the variables used to describe the spatial
relationship between the j-th ellipsoid coordinate and the world coordinate at the k-th time
step in the planning horizon. They are deterministic and depend on the joint position and
joint velocity, i.e., z(k). The matrix Aj is a constant matrix. Hence the vector yji(k) is a
random vector generated by the random vector xi(k) with a rotation and a translation. yji(k)
is also normally distributed and can be written as

yji(k) ∼ N
(

µyji(k), Σyji(k)

)

, ∀k = 1, . . . , N (6.25)

where

µyji(k) = A
1/2
j Rj(z(k))

(

µik(k) − xcj(z(k))
)

(6.26a)

Σyji(k) = A
1/2
j Rj(z(k)) Σik(k) R

T
j (z(k))A

1/2
j . (6.26b)

Plugging the definition of DSIji in (6.21) into the chance constraint in (6.6a) and replacing
d2ji(k) by yTji(k)yji(k) yields,

P
(

kdsiDSIji(z(k)) ≤ Sa

)

= P
( kdsi
d2ji(k)

≤ Sa

)

= P
(

d2ji(k) ≥
kdsi
Sa

)

= P
(

yTji(k)yji(k) ≥
kdsi
Sa

)

≥ 1− α, ∀j, i, k = 1, . . . , N.

(6.27)

Since kdsi and Sa are all positive, (6.27) is equivalent to

P

(

‖yji(k)‖2 ≥
√

kdsi
Sa

)

≥ 1− α, ∀j, i, k = 1, . . . , N (6.28)

Equation (6.28) implies that the probability for the length of the random vector yji(k) being

greater than or equal to
√

kdsi/Sa is desired to be greater than or equal to 1 − α. This is
illustrated in cases of a one-dimension random variable and a two-dimension random vector
as shown in Figure 6.2. In the two examples, the probability is illustrated by the colored
area and is desired to be greater than or equal to 1− α.

From (6.27) and (6.28), the safety chance constraint accounting for the distance safety
index in (6.6a) can be expressed as another chance constraint. Then, the concept in the
previous section is used again to conservatively approximate this chance constraint in (6.28).
A chi-squared random variable can be constructed from the normal random vector, yji(k),
as,

(yji(k) − µyji(k))
TΣ−1

yji(k)(yji(k) − µyji(k)) = ρji(k) ∼ χ2
Nx
. (6.29)
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Figure 6.2: Examples of (6.28) in one-dimensional and two-dimensional space. (a) In one-
dimensional space, and (b) in two-dimensional space.

From the CDF of ρji(k), we can find one ρᾱ for a given probability 1− α such that

P
(

ρji(k) ≤ ρᾱ
)

= 1− α (6.30)

Equation (6.30) implies that the random vector yji(k) stays inside an ellipsoid with the
probability of 1− α. The center and the matrix of the ellipsoid are µyji(k) and (ρᾱΣyji(k))

−1

respectively, and the ellipsoid can be written mathematically as

Eji(k) = {x ∈ R
Nx | (x− µyji(k))

T (ρᾱΣyji(k))
−1(x− µyji(k)) ≤ 1}. (6.31)

In other words, an ellipsoid Eji(k) can be found such that yji(k) is guaranteed to stay inside
Eji(k) with the probability of 1 − α. Therefore, the chance constraint (6.28) is guaranteed

to be true if the ellipsoid Eji(k) does not overlap the sphere of radius
√

kdsi/Sa. This means
that if the shortest distance from the surface of the ellipsoid Eji(k) to the origin of the j-th
ellipsoid coordinate is greater than or equal to (kdsi/Sa)

1/2, then the chance constraint in
(6.28) is true. When the chance constraint in (6.28) is true, it implies that the safety index
is guaranteed to be less than or equal to Sa with at least the probability of 1−α. Thus, the
chance constraint in (6.28) is equivalent to

d2ji(k),ell ≥
kdsi
Sa

, ∀j, i, k = 1, . . . , N, (6.32)

where the shortest squared distance d2ji(k),ell can be computed using the method introduced
in Section 3.3 as,

d2ji(k),ell =min
xt

(

xt − xcj(z(k))
)T (

xt − xcj(z(k))
)

s.t. (xt − µyji(k))
T (ρᾱΣyji(k))

−1(xt − µyji(k)) ≤ 1.
(6.33)
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Equation (6.32) is deterministic and the chance constraint for the distance safety index in
(6.6a) is guaranteed to be valid when (6.32) is valid.

6.3.4 Chance Constraints of MSI

The chance constraint accounting for the momentum safety index for the stochastic agent
model is represented in (6.6b). Plugging the definition of MSIji(z(k)) in (4.17) yields,

P
(

kmsi sign
(

pji(z(k))
)p2ji(z(k))

d2ji(z(k))
≤ Sa

)

≥ 1− α, ∀j, i, k = 1, . . . , N. (6.34)

The scalar value pji(z(k)) is the projection of the linear momentum vector onto the vector
from the origin of the ellipsoid coordinate pointing to the center of the agent ellipsoid. It is
defined in (3.11) and can be written using z(k) as

pji(z(k)) = Mj(ẋcj(z(k))− ẋoi(k))
Txuji(k) (6.35)

where

xuji(k) =
xoi(k) − xcj(z(k))

‖xoi(k) − xcj(z(k))‖2
. (6.36)

From the stochastic dynamic model of agent ellipsoids in (6.2), the measurement noise is
represented by ωi(k) in the velocity level. Hence, the velocity of the i-th agent ellipsoid center,
xoi(k), is a Gaussian random vector as

ẋoi(k) = voi + ωi(k) ∼ N (voi,Σ) . (6.37)

Since the momentum safety index is designed on the velocity level between the agent
ellipsoids and ellipsoid coordinates attached on the robot, the unit vector xuji(k) is considered
as a deterministic vector. As a result, pji(z(k)) becomes a Gaussian random variable as

pji(z(k)) ∼ N
(

µpji(k), σ
2
pji(k)

)

, (6.38)

where

µpji(k) = Mj

(

ẋcj(z(k))− voi
)T

xuji(k) (6.39a)

σ2
pji(k) = xT

uji(k) Σxuji(k). (6.39b)

Knowing that pji(z(k)) is a random variable, (6.34) can be re-ordered as

P

(

sign
(

pji(z(k))
)

p2ji(z(k)) ≤ Sa

d2ji(z(k))

kmsi

)

≥ 1− α, ∀j, i, k = 1, . . . , N. (6.40)

The values of Sa, kmsi, and d2ji(z(k)) in the chance constraint are all positive, and the above
chance constraint is always valid when pji(z(k)) is negative. It is correct from the perspective
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of the physical meaning of the momentum safety index because a negative pji(z(k)) implies
a safe situation for this pair of (j, i). Thus, the probability in (6.40) is equivalent to

P
(

pji(z(k)) ≤ cmsi

)

≥ 1− α, ∀j, i, k = 1, . . . , N, (6.41)

where

cmsi =

√

Sa

d2ji(z(k))

kmsi

. (6.42)

Since pji(z(k)) is a Gaussian random variable, the probability in the preceding equation can
be computed as

P
(

pji(z(k)) ≤ cmsi

)

= P

(

pji(z(k))− µpji(k)

σpji(k)

= Z ≤ cmsi − µpji(k)

σpji(k)

)

= Φ

(

cmsi − µpji(k)

σpji(k)

)

(6.43)

where Z is the standard normal random variable and Φ is the CDF of Z. Then (6.41) is
equivalent to

cmsi − µpji(k)

σpji(k)

≥ Φ−1 (1− α) , ∀j, i, k = 1, . . . , N. (6.44)

In (6.44), Φ−1 (1− α) is constant, cmsi, µpji(k), and σpji(k) are deterministic but depend on
z(k). In other words, the chance constraint accounting for the momentum safety index in
(6.6b) is interpreted as a deterministic inequality constraint.

6.3.5 Formulation of the Optimization Problem

The chance constraints accounting for the safety index in (6.6) are transformed into the two
deterministic constraints, (6.32) and (6.44). The formulation of the optimization problem
for the stochastic agent model, thus, becomes

min
Uk,Zk

kpJp(z(N)) + ku

N−1
∑

k=0

Ju(u(k), u(k−1)) (6.45a)

s.t. z(k+1) = Adz(k) +Bdu(k), k = 0, . . . , (N − 1) (6.45b)

d2ji(k),ell ≥
kdsi
Sa

, ∀j, i, k = 1, . . . , N (6.45c)

cmsi − µpji(k)

σpji(k)

≥ Φ−1 (1− α) , ∀j, i, k = 1, . . . , N (6.45d)

u ≤ u(k) ≤ u, k = 0, . . . , (N − 1) (6.45e)

z ≤ z(k) ≤ z, k = 1, . . . , N (6.45f)

Uk = {u(0), . . . , u(N−1)} (6.45g)

Zk = {z(1), . . . , z(N)} (6.45h)
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Equations (6.45c) and (6.45d) are deterministic and transformed from chance constraints
(6.6). Then, the approximation of Jp(z(N)) detailed in Section 4.4 and the first order Taylor
series expansion can be used to further transform the optimization problem into a quadratic
formulation for real-time implementation.

6.4 Summary

This chapter has considered the situation where the position information of the agent contains
measurement noise. The measurement noise is represented by a zero-mean Gaussian random
vector in the velocity of the agent ellipsoids. To handle the noisy agent information in the
robot safety system, two possible approaches were proposed. The first one is to handle
the measurement noise in the agent position estimation block, and the best estimation is
input to the decision making block. The advantage of this approach is that no change
is required for the online trajectory generation algorithm in the decision making block.
However, the estimation required significant computational effort in addition to the online
trajectory generation. The second approach, on the other hand, is to handle the measurement
noise directly in the formulation of an optimization problem in the decision making block.
In this approach, the inequality constraints accounting for safety become chance inequality
constraints. By utilizing the mathematical similarity between the Gaussian random vector
and the agent ellipsoids, the chance constraints were transformed back to deterministic
inequality constraints.
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Chapter 7

Conclusion and Future Research

7.1 Summary and Conclusion

In this dissertation, a robot safety system with an online trajectory generation algorithm
was proposed for robot manipulators in dynamic environments to achieve the goal position
and avoid collisions simultaneously.

Two scenarios in robot collaborations were considered in dynamic environments. One
is human–robot collaboration and the other is decentralized robot–robot collaboration. In
this dissertation, the human worker in human–robot collaboration and the master robot in
decentralized robot–robot collaboration are generalized as agents. A set of ellipsoids which
envelope the agent is used to represent the agent in the proposed robot safety system. The
agent ellipsoids then are used in the online trajectory generation algorithm.

In order to quantitatively measure the safety of the agent ellipsoids, two factors are
taken into account. The first factor is the distances between the robot manipulator and
the agent ellipsoids, and the second factor is the momentum of the robot links toward the
agent ellipsoids. The distance safety index (DSI) and momentum safety index (MSI) were
designed based on the two factors. Two candidates of the overall safety index were proposed
to combine the distance safety index and the momentum safety index. The advantage of the
proposed safety index is the introduction of the ellipsoid coordinates which are constructed
on the local coordinates of robot links. The radius parameters of each ellipsoid coordinate
are properly selected so that the unit ellipsoid of each ellipsoid coordinate encloses the corre-
sponding robot link. The distance from an agent ellipsoid to a robot link then is represented
by the distance in the corresponding ellipsoid coordinate from the surface of the agent el-
lipsoid to the origin of the ellipsoid coordinate. With the use of ellipsoid coordinates and
ellipsoid representation for agents, the computational load does not increase exponentially
when the entire robot manipulator is regarded in evaluation of the safety index of the agent
ellipsoids.

The online trajectory generation algorithm was developed in the optimization-based
framework. A collision-free trajectory within a planning time horizon is generated by solv-
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ing the optimization problem. In the formulation of the optimization problem, the objective
function was designed to penalize the squared distance from the robot end-effector to the
goal position and the squared joint jerk. The discretized kinematics model of robot joints
and the safety index were used as the equality and inequality constraints. The original
formulation of the optimization problem is nonlinear and non-convex because of the use of
forward kinematics and differential forward kinematics. In order to achieve online trajectory
generation, the formulated optimization problem is approximated by a quadratic problem
with linear constraints. A heuristic method was proposed to select the inequality constraints
which are likely to become active or almost active for the next iteration so as to further
attenuate the computational load.

The robot safety system and the associated online trajectory generation algorithm were
validated in simulations. Three formulations of the optimization problems were validated,
including the original nonlinear and non-convex formulation, the quadratic problem approxi-
mation, and the quadratic problem approximation with the selection strategy of the inequal-
ity constraints. From the simulation results, we have found that the three formulations are
capable of generating a collision-free trajectory which lead the robot manipulator toward
the goal position. The generated trajectories from the three formulations are smooth. The
formulation of the quadratic problem can be solved considerably faster than the nonlinear
and non-convex formulation. The selection strategy for the inequality constraints further
enhances the computational performance of the quadratic problem. As a practical issue, the
measurement of the agents from the sensors could contain measurement noise. To handle the
noisy measurement of agent information, two approaches were proposed. The first one is to
consider the measurement noise in the agent position estimation block, and then this block
outputs the best estimate of the agent position to the decision making block. The second
approach, on the other hand, is to handle the measurement noise directly in the formulation
of the optimization problem in the decision making block. In this approach, the inequal-
ity constraints accounting for safety become chance inequality constraints. By utilizing the
mathematical similarity between the Gaussian random vector and the agent ellipsoids, the
chance constraints were transformed back to deterministic inequality constraints.

7.2 Future Research

Research may be continued to further improve the topics presented in this dissertation.
Because of the complexity of the distance safety index and momentum safety index, the
gradient vectors in the Taylor series expansion in this dissertation are computed numerically.
In order to reduce the computational load in the evaluation of the gradient vector numerically,
a heuristic selection strategy for the inequality constraints was proposed. Computational
load can be greatly reduced if the analytical form for the gradient vector in the Taylor
series expansion is known. Another possible research topic is a better selection strategy for
the inequality constraints of the quadratic problem, independent from whether the gradient
vectors are computed numerically or analytically. Furthermore, experimental validation
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should be done to verify the proposed safety system and the online trajectory generation
algorithm.
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Appendix A

Numerical Computation of Gradient

Vector

Algorithm 1 Numerical Computation of Gradient Vector

1: procedure Compute Gradient Vector(f,x0, δ)
2: g← Initialize Zero Vector(m)
3: for i = 1 to m do

4: xp ← Initialize Zero Vector(m)
5: xm ← Initialize Zero Vector(m)
6: xp ← x0 + δei
7: fp ← f(xp)
8: xm ← x0 − δei
9: fm ← f(xm)
10: g← g +

(

(fp − fm)/(2δ)
)

ei
11: end for

12: return g
13: end procedure

Algorithm 1 shows the algorithm to numerically compute the gradient vector, g, of a
function, f(•), at a point, x0 ∈ R

m. The function f : R
m → R takes a vector in an

m-dimensional space as the argument and returns a scalar function value of x. The third
argument of Algorithm 1, δ, is a small number used in the computation of gradient vector.
In the algorithm, ei ∈ R

m, is a vector that has 1 at the i-th element and zeros at the other
elements. The function, Initialize Zero Vector(m), is for generating a zero vector with length
m.

The concept of the algorithm is to evaluate two points finitely close to x0 in each dimen-
sion, and δ is used to determine how close they are. The slope of the line connecting two
points in each dimension is the element of the gradient vector.
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