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Online unsupervised detection of structural changes using 
train-induced dynamic responses 

Andreia Meixedo1, João Santos2, Diogo Ribeiro3, Rui Calçada4, Michael D. Todd5 

ABSTRACT  

This paper exploits unsupervised data-driven structural health monitoring (SHM) in order to propose a 

continuous online procedure for damage detection based on train-induced dynamic bridge responses, taking 

advantage of the large-magnitude loading for enhancing sensitivity to small-scale structural changes. While such 

large responses induced by trains might create more damage-sensitive information in the measured response, it 

also amplifies the effects on those measurements from the environment. Thus, one of the biggest contributions 

herein is a methodology that exploits the large bridge responses induced by train passage while rejecting the 

confounding influences of the environment in such a way that false positive detections are mitigated. Furthermore, 

this research work introduces an adaptable confidence decision threshold that further improves damage detection 

over time. To ensure an online continuous assessment, a hybrid combination of autoregressive exogenous input 

(ARX) models, principal components analysis (PCA), and clustering algorithms was sequentially applied to the 

monitoring data, in a moving window process. A comparison between the performance obtained from 

autoregressive (AR) and ARX models as feature extractors was conducted, and it was concluded that ARX models 

lead to increased sensitivity to damage due to their ability to capture cross information between the sensors. The 

PCA proved its importance and effectiveness in removing observable changes induced by variations in train speed 

or temperature without the need to measure them, and the clustering methods allowed for an automatic 

classification of the damage-sensitive features. Since it was not possible to introduce damage to the bridge, several 

structural conditions were simulated with a highly reliable digital twin of the Sado Bridge, tuned with 

experimental data acquired from a SHM system installed on site, in order to test and validate the efficiency of the 

proposed procedure. The strategy proved to be robust when detecting a comprehensive set of damage scenarios 

with a false detection incidence of 2%. Moreover, it showed sensitivity to smaller damage levels (earlier in life), 

even when it consists of small stiffness reductions that do not impair structural safety and are imperceptible in the 

original signals.  

Keywords: online assessment; unsupervised learning; damage detection; Structural Health Monitoring; 
traffic-induced dynamic responses; ARX model; PCA; cluster analysis. 

                                                 
1 Ph.D. Student, CONSTRUCT-LESE, Faculty of Engineering, University of Porto, Portugal, ameixedo@fe.up.pt 
2 Researcher, LNEC, Laboratório Nacional de Engenharia Civil, Portugal, josantos@lnec.pt 
3 Adjunct Professor, CONSTRUCT-LESE, School of Engineering, Polytechnic of Porto,  Portugal, drr@isep.ipp.pt 
4 Full Professor, CONSTRUCT-LESE, Faculty of Engineering, University of Porto, Portugal, ruiabc@fe.up.pt 
5 Full Professor, Department of Structural Engineering, University California San Diego, USA, mdtodd@eng.ucsd.edu 



2 

1. Introduction 

The critical dependency of modern societies upon transport infrastructure such as roads or railway bridges and 

tunnels has motivated active research that aims to reduce the costs of inspection and maintenance. A large number 

of bridges are nearing the end of their original design life, and since this infrastructure cannot be economically 

replaced, techniques for damage detection are being developed and implemented so that their safe operation may 

be extended beyond the design basis for service life [1]. Structural health monitoring (SHM) represents a 

promising strategy in this ongoing challenge of achieving sustainable infrastructural systems since it has the 

potential to identify structural damage before it becomes critical, enabling early preventive actions to be taken to 

minimize costs [2]. The main goal of SHM should not be to replace the traditional inspection techniques, but to 

complement them with quantitative information [3,4]. Proactive conservation strategies based on long-term 

monitoring are increasingly recommended for special structures such as long-span bridges. In fact, disruption or 

even the collapse of a bridge can lead to important and irreversible negative consequences for society and the 

economy [5]. 

A combination of damage assessment technologies is necessary, and new developments in SHM aim at 

covering as many structures as possible at a reasonable cost. Although most bridges are already monitored using 

sophisticated measurement systems employing hundreds of sensors, there is a lack of useful and efficient 

interpretation of the results provided, with frequent difficulty in detecting early damage [6,7]. Thus, there is a 

need for data interpretation techniques that provide reliable information to assist engineers in structural 

management. It is crucial to devise robust online continuous SHM systems that allow structures to be designed 

and operated safely, without extended downtime periods associated with additional inspection or maintenance. 

Also, it is important to develop unsupervised data-driven SHM systems that can be used in any geometry and that 

can detect damage in old structures, which already have a changed structural condition, in order to support the 

decision making process related to maintenance and conservation strategies. 

Damage identification techniques in civil engineering structures, including bridges, have consistently focused 

on ambient vibration or static responses. Modal-based damage-sensitive features are directly related to intrinsic 

parameters of the structure such as stiffness [8–11], which is expected to change in the presence of damage. In 

addition, modal quantities also have the advantage of being used for structural design and for assessing the 

vulnerability of the structures to actions and hazards [12]. Regardless of these advantages, ambient vibration 

analyses are typically based on small-magnitude responses that do not provide local damage-sensitive information 

or fail to excite nonlinearities where the damage might be more observable. Thus, Operational Modal Analysis 

(OMA)-based information can be considered insensitive to early damage due to the need of identifying high order 

modes shapes, which is particularly challenging for any real structure’s complex loading combinations and 

environmental variability [13]. On the other hand, measuring static responses to generate health data cannot 

characterize the dynamic response, which often has its own unique and sensitive correlations to some kinds of 

damage. Recent works have been using the structural responses generated by traffic on bridges to take advantage 

of the repeatability of these actions, their known behaviour, and their great magnitude [14,15]. Azim & Gül [16] 

presented a sensor-clustering-based time-series analysis method for continuous global monitoring of girder-type 

railway bridges using operational data. The main limitations pointed out by the authors were the linear nature of 

the methods used and the influence of environmental condition changes, which was not considered in their study. 
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Moreover, the validation of the methodology was carried out with a numerical model that was not experimentally 

validated. Gonzalez & Karoumi [17] proposed a model-free damage detection method that uses deck accelerations 

and bridge weigh-in-motion data to train a machine learning setup based on ANN and a Gaussian process to 

classify the data into healthy or damaged. The method was further developed by Neves et al. [18], however, the 

limitations found for the proposed strategy were the limited number of damage scenarios and the non-

consideration of environmental and operational effects. Nie et al. [19] proposed a data-driven damage detection 

method based on fixed moving principal component analysis to examine structural dynamic responses and 

monitor the damage occurrence. A beam bridge model subjected to stochastic loads was used in numerical 

simulation and experimental tests. The authors mentioned that further studies were necessary to determine the 

optimal number of sensors required for a reliable structural condition detection with respect to the sensor 

locations, structural types, size of structures, and quality of recorded data.  

Despite the research made in this field, transient signals generated by traffic have not been used efficiently 

and robustly for damage detection. In the majority of the methodologies, their validation is performed using 

numerical simulations on simple structural elements, the type of damage studied is limited, the loading scenarios 

are very specific, the influence of environmental and operational variations (EOVs) on the structural response is 

often underestimated, and/or the online and unsupervised character is not fully addressed. All these constraints 

limit the usefulness of SHM for real complex bridges, especially in those where it is expected to be most useful, 

such as older and underperforming structures.  

While the large dynamic responses induced by trains might create more damage-sensitive information in the 

measured response, it also amplifies the effects on those measurements from the environment. In this context, one 

of the biggest contributions herein is a machine learning procedure that exploits the large bridge responses induced 

by train passage while rejecting the confounding influences of the environment in such a way that false positive 

detections are mitigated. Furthermore, the unsupervised character of the proposed procedure includes the ability 

of detecting damage in bridges that already exhibit changed structural conditions, through an adaptable confidence 

decision threshold that further improves damage detection over time. This achievement plays a central role in the 

support to the decision making process related to maintenance and conservation strategies. 

The proposed damage detection procedure aims at being generic enough to be applied to any type of railway 

bridges. The focus is placed on ensuring robustness and efficiency using a hybrid combination of autoregressive 

models with exogenous input (ARX) for feature extraction, principal component analysis (PCA) as well as 

Mahalanobis distance for feature modelling and data fusion, and cluster analysis for feature discrimination. The 

novelty lies in automatically extracting compact, meaningful information sets related to the bridge condition with 

a moving window data-driven strategy that allows a continuous and real-time damage detection with a negligible 

number of false positive detections. Finally, the use of a latent-variable method such as PCA grants the strategy 

the ability to remove EOVs without the need to measure them. The validation of the damage detection procedure 

is conducted using a highly reliable digital-twin of a complex long-span railway bridge along with experimental 

data as input, which proves its potential to be readily used on a real structure of interest. 

It is worth noting that a different combination of techniques was firstly tested and presented in Meixedo et al. 

[20]. The machine learning strategy proposed herein is a clear step forward in terms of effectiveness, which 

allowed a completely online and automatic implementation. 
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2. The Sado Railway Bridge 

2.1 Structure and monitoring system  

The structural system studied herein is the bowstring arch bridge over the Sado River, located on the southern 

line of the Portuguese railway network that establishes the connection between Lisbon and Algarve (Figure 1). 

The structure is prepared for conventional and tilting passenger trains with speeds up to 250 km/h, as well as for 

freight trains with a maximum axle load of 25 t.  

 
Figure 1. Overview of the Sado Bridge. 

 
 

 

The bridge has a total length of 480 m, divided into 3 continuous spans each 160 m long, and it is part of a 

longer structure that includes the North access viaduct at 1115 m length and the South access viaduct with a length 

of 1140 m. As shown in Figure 2a, the bridge is suspended from three parabolic arches connected to each span of 

the deck by 18 hangers distributed over a single plane on the axis of the structure. The arches have a hexagonal 

hollow cross-section, with a variable width increasing towards the top. The bridge deck consists of a concrete 

slab laid over a U-shaped steel box girder. The connection between the deck and the hangers is performed through 

spherical hinges that allow the torsional rotation of the deck. The suspension of the deck loads is performed by 

the hangers by means of steel diaphragms and two diagonal strings at each connection. Each pier has a hexagonal 

hollow cross-section and rests on heads of reinforced concrete piles with lengths up to 50 m and 2 m diameters. 

Piers P1 and P4 are supported by nine piles, while piers P2 and P3 by twelve. At the top of each pier, there are 

two spherical and multidirectional steel sliding bearing devices, 4 m apart. The bearing devices have a circular 

contact surface and include an antifriction layer in XLIDE material. The deck is fixed on pier P1 whereas on piers 

P2, P3 and P4 only the transverse movements of the deck are restrained.  

The structural health of the railway bridge over the Sado River has been monitored with a comprehensive 

autonomous online monitoring system (Figure 2) since the beginning of its life cycle. To identify each train that 

crosses the bridge and compute its speed, two pairs of optical sensors were installed at both ends of the bridge. 

The structural temperature action is measured by twelve NTC thermistors installed in three sections of the arch, 

four NTC thermistors fixed to the steel box girder and three PT100 sensors embedded in the concrete slab. To 

control the behaviour of the bearing devices, one longitudinal MEMS DC accelerometer was installed on top of 

each pier. The set of sensors also includes one vertical piezoelectric accelerometer fixed at the mid-span of the 

concrete slab, two triaxial force balance accelerometers at the thirds of the mid-span steel box girder and twelve 

vertical force balance accelerometers fixed along each span of the steel box girder. Data acquisition is carried out 

continuously by a locally deployed industrial computer in order to save the time history while the train is crossing.  

The responses of the optical sensors are acquired at a sampling rate of 2000 Hz, while the responses of the 

remaining sensors are acquired at 200 Hz.  
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Figure 2. SHM system installed in the Sado railway bridge: a) overview, b) cross-section of the deck with the sensors 

location, c) photographs of the sensors installed in situ. 

2.2 Dynamic numerical simulation 

To test the machine learning strategy proposed in Section 3 and the online damage detection procedure 

described in Section 4, the monitored structural response of the Sado railway bridge was replicated using dynamic 

numerical simulations comprising realistic damage scenarios, since it was not possible to obtain such conditions 

experimentally. For this purpose, a 3D numerical model (Figure 3) composed of 38620 finite elements was 

developed in the ANSYS software [21] and validated using experimental measurements. Among the modelled 

structural elements, those defined as beam finite elements consist of piers, sleepers, ballast-retaining walls, rails, 

arches, hangers, transverse stiffeners, diaphragms, and diagonals. Shell elements were used to model the concrete 

slab and the steel box girder, while the rail pads, the ballast layer and the foundations were modelled using linear 

spring-dashpot assemblies. The mass of the non-structural elements and the ballast layer was distributed along 

the concrete slab. Concentrated mass elements were used to reproduce the mass of the arches’ diaphragms and 

the mass of the sleepers simply positioned at their extremities. The connection between the concrete slab and the 

upper flanges of the steel box girder, as well as the connection between the deck and the track, were performed 

using rigid links. A special focus was afforded to the bearing devices, since they can strongly influence the 

performance of the bridge. In order to simulate the sliding behaviour of the bearings, nonlinear contact elements 

were applied. These elements allow for contact and sliding between any pair of nodes and are capable of 

supporting compression forces normal to their plane and friction forces along the tangential directions based on 
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a Coulomb model. Their coefficient of friction μ was defined as 1.5% during the numerical analysis, based on the 

design specifications [22]. Additionally, constraint elements located between the bearings were used to restrict 

the transversal movement in each pier, and both longitudinal and transversal movements in the case of the first 

pier.  

The deck’s steel was defined with a modulus of elasticity of 210 GPa, a Poisson’s ratio of 0.3 and a density of 

7850 kg/m3, while the concrete slab and piers have a density of 2500 kg/m3, a Poisson’s ratio of 0.15 and a 

modulus of elasticity of 43 GPa based on the updated model presented in [23]. The boundary conditions were 

simulated using the results obtained from in-situ geotechnical tests conducted during the construction of the bridge 

[22]. An equivalent soil stiffness in each direction was computed and included in the numerical model of the 

bridge using spring elements. During these calculations, the SPT N-values and the shear wave velocity of the soil 

(Vs), obtained from the in-situ tests, were considered, along with the classification of the soil resulting from the 

laboratory analyses of the samples collected during the same tests.  

X Y

Z

b) c)

a)

 
Figure 3. 3D numerical model of the railway Sado bridge: a) lateral view, b) front view, and c) middle span detail. 

 

The dynamic numerical simulations conducted in the present work followed the aim of reproducing the 

structural quantities being measured, at the exact locations of the actual sensors installed on site, as a train crosses 

the bridge. To accurately replicate these structural responses, the temperature action measured by the SHM system 

precisely during each train crossing was introduced as input in the numerical model. A clustering strategy was 

considered regarding the input of the experimentally acquired temperatures in the numerical elements. The steel 

box was divided into four clusters, the concrete slab was divided into three, and each arch was also divided into 

three clusters, with the temperature being introduced in the upper and bottom part of the arch section. Using the 

measurements of the optical sensor network installed at both ends of the bridge, the train speed and axle 

configuration were obtained, and the train type was identified [24]. The dynamic analyses mentioned hereinafter 

were carried out for two of the passenger trains that normally cross the Sado Bridge, namely the Alfa Pendular 

(AP) train and the Intercity (IC) train. Their common speeds on the bridge are 220 km/h for the AP train and 

190 km/h for the IC train. The loading schemes of both trains are presented in Figure 4. Rayleigh damping was 
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used with the damping matrix computed using the frequencies and damping coefficients identified in an ambient 

vibration test performed on the structure [25]. The nonlinear problem was solved based on the full 

Newton-Raphson method and the dynamic analyses were performed by the Newmark direct integration method, 

using a moving loads methodology [26]. The integration time step used in the analyses was 0.005 s.  
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Figure 4. Trains and corresponding loading schemes: (a) Alfa Pendular, (b) Intercity. 

To guarantee that the numerical model accurately simulates the structural behaviour of the bridge, the 

responses obtained from the dynamic analysis were compared with those measured by the SHM system (Figure 

5). Numerical simulations were conducted considering the AP train as a set of moving loads crossing the Sado 

Bridge at a speed of 216 km/h. Figure 5a-c shows a very good agreement between experimental and numerical 

responses, in terms of longitudinal accelerations measured on pier P2 and vertical accelerations acquired on the 

concrete slab and on the steel box girder at the second mid-span. Regarding the auto-spectra resulting from the 

accelerations measurements, the main frequency is repeatedly 2.3 Hz, which corresponds to the passage of equally 

spaced axles groups of the AP train, illustrating a clear influence of the action on the bridge response. In Figure 

5a, some frequencies around 10 Hz are not present in the numerical longitudinal accelerations. The corresponding 

modes may appear due to the action of seismic dampers that can be partially activated by rapid actions such as a 

train crossing. These elements were not modelled since they are extremely complex and in the majority of the 

cases are fully activated only during seismic events. Both experimental and numerical time-series are plotted as 

were acquired/simulated. They are synchronised, have a sampling rate of 200 Hz, and before the comparison were 

filtered based on a low-pass digital filter with a cut-off frequency equal to 15 Hz. A detailed description of the 

numerical modelling and its validation can be found in Meixedo et al. [27].  

The structural response of the Sado Bridge during the passage of the AP and IC trains was replicated for the 

23 accelerometers shown in Figure 2 using dynamic numerical simulations comprising several realistic scenarios, 

for both baseline and damaged conditions. Figure 6a summarizes different combinations for the baseline 

(undamaged) condition that aim at reproducing the bridge responses considering the variability of train type, 

speed, temperature actions, and loads. During each simulation, real temperatures measured by the SHM system 

were introduced in to the numerical elements. The average values for each season were 30ºC for summer, 16ºC 

for autumn, 10ºC for winter and 21ºC for spring, but the dispersion across the structure was considered by 

measuring and using temperature values in all elements of the bridge. The simulations included passages of the 

AP and IC trains (Figure 4), which were taken with ten different loading schemes, according to the experimental 

observations previously made by Pimentel et al. [28]. Three train speeds were considered for each type of train, 

as observed in Figure 6a, resulting in 100 dynamic simulations for the baseline condition, each taking 

approximately 10 hours of calculation time on a 4.2 GHz Quad-Core desktop with 32.0 GB of RAM. 
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Figure 5. Numerical and experimental accelerations and corresponding auto-spectra, with the AP train crossing at 

216 km/h: a) longitudinal accelerations at the pier (AL-P2), b) vertical accelerations at the concrete slab (Ac1), c) vertical 
accelerations at the steel box girder (AsV3). 

The damage scenarios were chosen based on possible vulnerabilities identified for the type of structural 

system, taking into account its materials, connections, behaviour and loadings [29]. Among the several scenarios 

that can be considered, those related to friction increments in mechanical moving elements of the structural system 

(such as bearing devices), and those associated with corrosion in structural and reinforcing steel as well as 

cracking of concrete, were assumed as the most likely [29–32] and therefore simulated to validate the techniques 

presented herein. While friction increments were simulated in all bearing devices, cracking and corrosion were 

considered in several sections across the structure to ensure representativeness. Hence, damage scenarios were 

simulated, along with dynamic traffic loading, according to four different classes: i) damage in the bearing devices 

(type D1), ii) damage in the concrete slab (type D2), iii) damage in the diaphragms (type D3) and iv) damage in 

the arches (type D4). The locations of each type of damage are illustrated in Figure 6b, where different codes 

were assigned to each location depending on the damage type (e.g., D2:m1 is a damage in the concrete slab 

located in the first mid-span). Each scenario was simulated considering only one damage location. Regarding the 
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damages of type D1, it was simulated as a discrete damage and four severities were included, namely, increases 

of the friction coefficient from a reference value of 1.5% to 1.8%, 2.4%, 3.0% as well as to the full restraint of 

the movements between the pier and the deck. The remaining damage scenarios consisted of 5%, 10% and 20% 

stiffness reductions in the chosen sections of the bridge (Figure 6b). The damage type D2 consisted of a stiffness 

reduction in the cross section of the concrete slab comprising a 2 m length of the bridge and a damage-to-span 

length ratio of 1.25%. The damage type D3 involved a local stiffness reduction in one diaphragm. For each 

location of the damage type D4, a stiffness reduction was applied in an arch extension of 8 m, which represents 

4.7% of the arc length. These structural changes were simulated by reducing the modulus of elasticity of the 

concrete (damage type D2) and of steel (damage types D3 and D4). Thus, a total of 114 damage scenarios were 

simulated for AP train crossings at 220 km/h, using the loading scheme presented in Figure 4a and adding as input 

the temperatures measured on site. Additional damage scenarios could have been simulated for different 

combinations of EOVs. However, as it will be discussed in section 3.2, the proposed methodology is effective in 

removing these effects and keeping only those generated by structural changes. 
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Figure 6. Baseline and damage scenarios: a) combination of simulations for the baseline condition, b) type and location of 

the damages. 

To obtain the most similar and reliable reproduction of the real SHM data, the noise measured on site by each 

accelerometer was added to the corresponding numerical output. These noise distributions were acquired while 

no trains were travelling over the bridge on non-windy days. Each simulation was corrupted with different noise 

signals acquired at different days, thus ensuring the most representative validation for the techniques developed 

herein. Figure 7 presents an example of a vertical acceleration bridge response at the second mid-span of the 

concrete slab for an AP train crossing, before and after being corrupted. The noise distribution applied to the 

response, which was measured by sensor Ac1 of the SHM system, is also shown. 
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Figure 7. Experimental noise distribution and simulated vertical acceleration of the bridge before and after being corrupted.  

The time-series illustrated in Figure 8 are examples of simulated responses for undamaged baseline conditions, 

acquired from the accelerometer located at the second mid-span of the concrete slab (Ac1). Each plot concerns a 

single event with variations associated to different train types, loading schemes, train speed and temperature 

actions. A clear distinction between the bridge responses to the crossings of the AP train (Figure 8a) and the IC 

train (Figure 8b) can be observed, showing the need of taking into account different train types for the 

development of damage detection strategies. Conversely, the same plots allow observing that different loading 

schemes generate smaller changes in the dynamic responses. This behaviour is expected since the trains 

considered are passenger trains, whereby the loading variation is small. Temperature action and train speed also 

influence the structural response imposed by trains crossing the bridge, as it can be readily observed in Figure 8c 

and Figure 8d for AP train crossings. Regarding Figure 8c, the specific combination between the autumn 

temperature and the train entering in the bridge leads to a more abrupt initial response of the structure in the first 

2 seconds. Nevertheless, this frequency is quickly attenuated. 
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Figure 8. Baseline time-series simulations of sensor Ac1: a) using different loading schemes of the AP train at 220 km/h, b) 
using different loading schemes of the IC train at 190 km/h, c) using temperature measurements from different seasons, d) 

with the AP train traveling at different speeds. 
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Figure 9a,b shows examples of simulated responses of the Ac1 accelerometer for damaged scenarios in the 

concrete slab (D2: m2) and in the bearings on pier P2 (D1: P2), respectively, during a summer day and with the 

AP train crossing the bridge at 220 km/h. The influence of damage scenarios on the signal obtained for train 

crossings appears to be much smaller than that observed for changes in temperature actions, train type and train 

speed, even when analysing sensors adjacent to the damages and for the largest magnitudes considered (20% 

stiffness reduction and full restraint of the bearing). This conclusion can be easily derived from Figure 9, where 

the high overlapping of the time-series obtained from the baseline condition and the remaining ones puts in 

evidence the small magnitude of the simulated damage scenarios, which can be considered as early-damage. 
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Figure 9. Time-series simulated for a summer day with the AP train at 220 km/h: a) stiffness reduction D2:m2 and vertical 

acceleration from sensor Ac1, b) friction increase D1:P2 and vertical acceleration from sensor Ac1. 
 

3. Machine learning strategy for train-induced damage detection  

3.1 Feature extraction  

Features are extracted from a statistical time series analysis. In this section, a brief discussion about the 

autoregressive model with exogenous inputs (ARX) and the autoregressive (AR) model is presented. The ARX 

model regresses the current measurement upon finite measurements of its past and upon an exogenous input 

series: 

= + +  (1) 

where , , and  are output, input, and error terms of the model at the signal value , respectively. On the other 

hand, ,  and ,  represent the orders and the parameters of the output and input data, respectively. The 

ARX model can be simplified to the AR model if  is set to zero: 

= +  (2) 

The process of extracting the AR/ARX parameters,  and , is based on fitting the AR/ARX models to 

vibration time-domain responses, acquired from different sensors, in the undamaged and damaged conditions. 

The vectors of the AR/ARX model parameters in the baseline and damaged state conditions are used as the 
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damage-sensitive features, which depend on sensors from multiple locations. Typical time-series lead to an 

overdetermined set of equations that must be solved to obtain optimal estimates of the AR and ARX coefficients. 

There are several methods that can be used to solve the coefficients; the least-squares method was the one applied 

in this study [33]. 

Regarding the ARX model, the accelerometer located at the second mid-span of the concrete slab 

(Ac1 - Figure 2), named as the reference channel, was defined as output, , since it is located in a central point 

of the bridge and is representative of its global behaviour. Each of the other installed sensors was defined as the 

input signal, .   

The ARX model orders should be rationally determined considering the data characteristics. Here, the 

Normalized Root Mean Square Error (NRMSE) fitness value (Eq. 3) was used to quantify the model accuracy 

according to the ARX order defined.  

= 1 −
∑ ( − )
∑ ( − )

 (3) 

where,  is the measured data,  is the simulated data through the ARX model, and  is the mean of the measured 

dataset. For each baseline structural condition, the parameters were estimated using the least squares technique 

applied to time-series from all twenty-three accelerometers, and the NRMSE values were computed for 

ARX models of increasing order. Figure 10 plots the average NRMSE values, which represent the difference 

between the actual data and the ARX model predicted data. It is possible to observe that the accuracy of the ARX 

model gradually increases with the ARX model order and appears to stabilize close to 30, whereby both the input 

and output orders of the ARX model were set to 30. The same output order was adopted for the AR model.  
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Figure 10. Model accuracy according to the ARX order. 

Based on these assessments, for each structural condition and for each accelerometer, individual ARX (30, 30) 

and AR (30) models were implemented to fit the corresponding time-series and their parameters were used as 

damage-sensitive features.  

Figure 11 shows the 60 ARX parameters for each of the 100 simulations of the baseline condition and 114 

simulations of the damaged condition, considering as output the measurements from the accelerometer located at 

the second mid-span of the concrete slab (Ac1), and as input the measurements of the accelerometer located at 
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the second mid-span of the steel box girder (AsV3). A comparison of the features’ amplitude between scenarios 

allows observing a higher variability of the ARX parameters for EOVs (Figure 11a) than for damages (Figure 

11b). Additional damage-sensitive features were extracted likewise from each one of the remaining 21 

accelerometers installed on site comprising time-series with 2112 measurements, which resulted in a 

three-dimensional feature matrix of 214-by-60-by-22 elements.  

 
Figure 11. ARX features obtained from the simulated accelerations responses in the mid-span section of the concrete slab 

(Ac1) and steel-box girder (AsV3): a) for each of the 100 simulations of the baseline (undamaged) condition, b) for each of 
the 114 damage scenarios. 

 
Figure 12 shows the 30 AR damage-sensitive features computed with the measurements from the 

accelerometer located at the second mid-span of the concrete slab (Ac1) for baseline and damaged conditions. As 

observed with the ARX parameters, comparing the undamaged (Figure 12a) and the damaged features (Figure 

12b), the AR parameters also present a higher variability in the presence of a range of EOVs, compared to a range 

of damage scenarios. The outcome after applying the AR model to each structural condition and to each of the 23 

accelerometers was a three-dimensional feature matrix of 214-by-30-by-23 elements.   
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Figure 12. AR features obtained from the simulated accelerations responses in the mid-span section of the concrete slab 

(Ac1): a) for each of the 100 simulations of the baseline (undamaged) condition, b) for each of the 114 damage scenarios. 
 

To illustrate the feature extraction procedure, Figure 13 details two ARX output parameters (ARX1 and 

ARX10) and two ARX input parameters (ARX50 and ARX60) obtained considering the output sensor Ac1 and 

the input sensor AsV3, as well as all the sixty ARX parameters (ARX1 to ARX60) represented by 

box-and-whisker plots. The features are divided into two major groups according to the structural condition: 

baseline (first 100 simulations) and damaged (114 subsequent simulations). In the plots shown in Figure 13a, for 

each baseline condition, the seven symbols in a row, in the case of the AP train, and the three symbols in a row, 

in the case of the IC train, represent the different loading schemes considered for each train type and speed, and 

for each temperature. For each damage location (codes from Figure 6), a sequence of three or four symbols 

represents different levels of severity (low to high from left to right). 

A comparison between the values of the ARX1 and ARX10 output parameters across all 214 scenarios allows 

concluding that each feature is describing distinct trends of the analysed data. The main changes in the amplitudes 

of these parameters are induced by the type and speed of the train. In addition, for each value of speed, the 

observed changes in the amplitude of these parameters are generated by variations in the values of structural 

temperature (spanning all four seasonal average temperatures). The loading schemes are the operational factor 

with the least impact on the parameter variability in the baseline simulations. However, the input parameters 

ARX50 and ARX60 exhibit a completely different behaviour, since for them, the influence of EOVs (baseline) 

is not as predominant when compared to the influence of damage, as it is in the other two parameters (ARX1 and 

ARX10). Instead, the amplitude of the features has an identical magnitude in all 214 structural conditions. This 

trend can also be observed in the box-and-whisker plots presented in Figure 13b. For the output parameters (ARX1 

to ARX30), there is an increased importance of the distributions of baseline conditions, and, consequently, of 
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EOVs, in relation to the distributions of damage scenarios, while, for the input parameters (ARX31 to ARX60) 

these distributions are more similar, which denotes an increase in the damage preponderance.    
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Figure 13. For all 214 structural conditions considering the simulated responses of accelerometer Ac1 as output and sensor 
AsV3 as input: a) amplitude of four of the sixty ARX parameters, b) box-and-whiskers plots representing the sixty ARX 

parameters. 

The same study was also conducted for the thirty AR parameters obtained for sensor Ac1, with two of these 

(AR1 and AR10) shown in detail in Figure 14a. Here it is possible to observe that each feature is describing 
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distinct inner relationships of the analysed data and that the features from the baseline condition have a much 

higher amplitude variation than the features from damage scenarios. Figure 14b confirms that the distributions of 

all thirty AR parameters from damage scenarios vary significantly less when compared to the distributions of 

baseline conditions, which leads to a preponderance of EOVs, regardless of the type of damage as well as its 

location and severity.  
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Figure 14. For all 214 structural conditions considering the simulated responses of accelerometer Ac1: a) amplitude of two 

of the thirty AR parameters, b) box-and-whiskers plots representing the thirty AR parameters. 

The importance of a disperse sensors network can be observed in Figure 15, where the ARX features extracted 

for each state condition represent very distinct distributions depending on the input sensor. In this figure, the 

signal obtained from sensor Ac1 was taken as the output and each one of the sensors AsV3, AL-P3 and AsTt2 as 

the input. Figure 15 illustrates the ARX features extracted for two simulations of the baseline condition: a) 

AP|220km/h|SUM: the AP train crossing the bridge at 220 km/h in a summer day, and b) AP|210km/h|AUT: the 

AP train at 210 km/h during an autumn day. The features extracted from the following four damage scenarios are 

also shown: a) D1 (P3: restrained), the full restraint of the bearing devices at pier P3, b) D2 (m2:20%), the 20% 

stiffness reduction in the second mid-span of the concrete slab, c) D3 (m2:20%), the 20% stiffness reduction at 

the diaphragm, also in the second mid-span, and d) D4 (t2s:20%), the 20% stiffness reduction in the arch at 

one-third south of the central span. The bar charts presented in Figure 15 were drawn from the sum of the 

differences between the amplitude of the parameters from each of these scenarios and the amplitude of the 

parameters from the baseline condition AP|220km/h|SUM. 

The ARX parameters’ amplitudes obtained from the output sensor Ac1 are higher than those extracted from 

the input sensors, especially for the damage scenario closest to this sensor - D2 (m2:20%). As expected, 
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comparing the bar charts of Figure 15a, b and c, there is a consistency in terms of the relative amplitude of the 

parameters from the output sensor Ac1, regardless of the input sensor. On the other hand, the features from sensor 

AsV3 have the lowest amplitude, which can be justified by the fact that this is the input sensor that is closest to 

the output sensor Ac1. The bar chart in Figure 15a shows that the ARX parameters from this input sensor are 

more sensitive to damage scenario D2 (m2:20%), which is adjacent to this sensor. Regarding the input sensor 

AL-P3 (Figure 15b), the features with the highest amplitude are those of the parameters of the damage scenario 

D1 (P3: restrained), which is also the closest to this sensor, as can be clearly confirmed in the bar chart of Figure 

15b. This bar chart also shows the importance of considering and modelling EOVs, since the input parameters 

from the baseline condition AP|210km/h|AUT present an equal or higher relative amplitude than the damage 

scenarios D2, D3 and D4. Figure 15c presents the ARX input parameters extracted from sensor AsTt2, which are 

highly sensitive to damage D1 (P3: restrained) and damage D2 (m2:20%). Its corresponding bar chart allows 

observing that, in this case, the ARX input parameters from the damage scenario D3 (m2:20%) and the baseline 

scenario AP|210km/h|AUT have less sensitivity than those extracted from the baseline scenario 

AP|220km/h|SUM. 
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Figure 15. ARX features obtained for the simulated accelerations responses from one output sensor and three different 

input sensors regarding two baseline and four damaged structural conditions: a) Ac1 and AsV3, b) Ac1 and AL-P3, c) Ac1 
and AsTt2. 

The same analysis was conducted for the AR parameters extracted from sensors Ac1 (Figure 16a), AL-P3 

(Figure 16b) and AsTt2 (Figure 16c). As with the ARX model, the plots show that the parameters’ amplitudes for 

sensor Ac1, located at mid-span, are those with the most significant changes from one of the baseline scenarios, 

especially for the damage condition adjacent to this sensor - D2 (m2:20%). A comparison between the bar charts 

between Figure 16a and Figure 15 indicates a similarity in the relative amplitude obtained when using the signal 

from sensor Ac1 as output in both the AR and ARX models. Regarding the sensor AL-P3, the features with higher 

amplitude were observed for the parameters of the damage scenario D1 (P3: restrained), which is the closest to 
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this sensor. By comparing these results with those obtained with the ARX model (Figure 15b), a considerable 

decrease in the relative amplitude of the features is observed in the bar chart of Figure 16b. The AR parameters 

extracted from the transversal accelerometer AsTt2, located in the steel-box girder at the southern third of the 

central span (Figure 16c), show more sensitivity to a damage simulated in the same section but in the arch – D4 

(t2s:20%) and to a damage in the mid-span of the concrete slab – D2 (m2:20%).  

As a result from this study, the clear advantage of crossing information between sensors has shown that ARX 

models allow for an improvement in terms of the knowledge extracted from the features, which may lead to 

greater sensitivity.  
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Figure 16. AR features obtained from the accelerations responses simulated at three sensors locations regarding two 

baseline and four damaged structural conditions: a) Ac1, b) AL-P3 and c) AsTt2. 

3.2 Feature modelling  

One of the main obstacles in applying vibration-based SHM systems in operational conditions is the challenge 

in separating (assumed unmeasured) EOVs from the dynamic responses to obtain features that are primarily 

sensitive to damage. To overcome this problem, principal component analysis (PCA) [8] is used here for feature 

modelling. PCA is a multivariate statistical method that produces a set of linearly uncorrelated vectors called 

principal components (PCs) or scores, from a multivariate set of vector data [34]. PCA can be used to remove the 

linear effects of EOVs on the responses of the structure during a training period, from which scores are obtained. 

New effects present in a test dataset, which did not exist in the training dictionary, are highlighted when projected 

in the subspace of the test dataset [13,35,36]. Considering an n-by-m matrix  with the original features extracted 

from the dynamic responses, where m is the number of ARX or AR parameters and n is the number of simulations 

for the baseline condition, a transformation to another set of m parameters, , designated principal components 

or scores, can be achieved by the following equation: 

= ∙  (4) 
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where  is an m-by-m orthonormal linear transformation matrix that applies a rotation to the original coordinate 

system. The covariance matrix of the ARX/AR parameters in the baseline condition, , is related to the covariance 

matrix of the scores, , as follows: 

= ∙ ∙  (5) 

in which  and  are matrixes obtained by the singular value decomposition of the covariance matrix  of the 

ARX/AR parameters. The columns of  are the eigenvectors and the diagonal matrix  comprises the eigenvalues 

of the matrix  in descending order. Hence, the eigenvalues stored in  are the variances of the components of  

and express the relative importance of each principal component in the entire data set variation [8].  

The PCA is able to retain meaningful information related to EOVs in the first components, whereas variations 

related to local effects of small-magnitude, such as early-damage, may be summarized in latter components [13]. 

Since the aim of the present work is to detect damage, the feature modelling procedure consists of removing the 

most significant PCs from the features. With this in mind, the matrix  can be divided into a matrix with the first 

 eigenvalues and a matrix with the remaining m-p. Defining the number of  components remains an open 

question with regard to the representation of the multivariate data; although several approaches have been 

proposed, there is still no definitive answer [37].  In the context of SHM, according to Yan et al. [8], the selection 

of an appropriate dimension  is not so critical as it appear, because what is being looked for is a change in the 

hyperplane defined by the  principal components adopted from the reference state to the current state. Therefore, 

stable results can be obtained using different  principal components. In this work, the value of  is determined 

based on a rule of thumb in which the cumulative percentage of the variance reaches 80% [37,38]. As mention in 

Jolliffe [38], the justification to implement this rule is mainly because it is intuitively plausible and it works in 

practice. Choosing a cut-off of 80%, provides a rule which in practice discards in the first PCs most of the 

information, which is in line with the research detailed in Santos et al [13]. After choosing , the m-p components 

of the matrix  can be calculated using Equation (4) and a transformation matrix  built with the remaining m-p 

columns of . Those m-p components can be remapped to the original space using the following:  

= ∙ ∙  (6) 

where  is the n-by-m matrix of PCA-based features, expected to be less sensitive to EOVs and to be more 

sensitive to the damage cases. This procedure is repeated for each sensor.  

The implementation of the PCA modelling to the ARX parameters resulted in a 22-by-60 matrix with 

PCA-based features for each train crossing. Since the cumulative percentage of the variance of the sum of the 

first three principal components was higher than 80% for different structural conditions, these three PCs were 

discarded during the modelling process (i.e., = 3). The same procedure was applied to the AR parameters and 

the outcome was a 23-by-30 matrix with PCA-based features. Figure 17a shows four series of parameters, across 

the 214 scenarios, obtained for an ARX model comprising accelerometer Ac1 (output) and accelerometer AsV3 

(input), after the application of the PCA. Figure 17b shows the boxplots obtained from the sixty ARX-PCA-based 

features. The direct comparison of these action-free ARX parameters (Figure 17) with those shown before 

applying PCA (Figure 13) shows that, in fact, feature modelling allowed minimizing the differences generated by 

the effects of train type and speed and by temperature, shown in grey box-and-whiskers plots, which significantly 

reduce from one figure to the other. The same is not observed in the features from damage cases, represented in 
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green box-and-whiskers plots, which remain identical or even increase. As corroborated by Figure 17b, the EOVs 

were mitigated and a clear improvement is obtained, especially for the first thirty parameters (the output), which 

after feature modelling reveal distributions that are similar to those from the thirty input parameters (ARX31-

ARX60). 
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Figure 17. For all 214 structural conditions considering the simulated responses of accelerometer Ac1: a) amplitude of four 

of the sixty ARX-PCA-based features, b) box-and-whiskers plots representing the sixty ARX-PCA-based features. 
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Figure 18 shows two AR parameters for accelerometer Ac1, obtained after applying the PCA-based modelling, 

and the thirty box-and-whiskers plots for the thirty AR-PCA-based features. The comparison of these plots with 

those shown in Figure 14 shows the suppression of the changes generated by EOVs; however, an improvement 

between the distributions of the baseline simulations and the damage scenarios is not as clear as that obtained 

with the ARX-PCA-based modelling (Figure 17b). 

Nevertheless, the differences between the several structural conditions, after PCA implementation, are not 

enough to allow for a clear distinction between undamaged and damaged scenarios, either for ARX or AR 

parameters. In this sense, a data fusion is performed and discussed in the next section. 
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Figure 18. For all 214 structural conditions considering the simulated responses of accelerometer Ac1: a) amplitude of two 

of the thirty AR-PCA-based features, b) box-and-whiskers plots representing the thirty AR-PCA-based features. 

3.3 Data Fusion  

To fuse the data obtained from all AR/ARX parameters and describe the variability present in the features, a 

Mahalanobis distance (MD) measure was computed on the PCA estimation errors. The MD consists of a weighted 

metric, used herein as damage indicator, in which the weights are determined by the covariance structure. The 

weighting proportional to the covariance structure provides an additional layer of feature modelling which, when 

defined for regular actions, allows outlining with high sensitivity those that were not used for the definition of the 

covariance structure. Thus, the MD was selected since it is based on the AR/ARX parameters’ centre and 

covariance, therefore enabling additional sensitivity if these quantities are computed using only the AR/ARX 

parameters extracted from the baseline conditions. With this approach, the MD measures the distance between 

the representative baseline and each set of features extracted from a train crossing. Smaller MD values represent 



22 

greater similarities with the representative baseline, while higher values reveal greater differences, and, therefore, 

more dissimilar structural conditions. The analytical expression of MD for each simulation   is given by 

= ( − ̅) ∙ ∙ ( − ̅) , (7) 

where  is a vector of  features representing the potential damage/outlier, ̅ is the matrix of the means of the 

features estimated on baseline simulations, and  is the covariance matrix of the baseline simulations.  

The MD allows transforming, for each sensor and for each train crossing, the 60 ARX-PCA-based parameters 

into one single distance-based feature; this feature exhibits higher values for distinct structural conditions and 

nominal values for identical structural scenarios. The outcome of this procedure is a 214-by-1 vector of distances 

for each sensor. The three plots in Figure 19a clearly show a sensitivity improvement for sensors’ cluster 

Ac1+AsV3, Ac1+AL-P3, and Ac1+AsTt2 to each structural condition. A variation among the values of the 

Mahalanobis distance for the damage scenarios can be observed for the three sensors’ clusters. Two main aspects 

can explain this behaviour: (i) the diversity of damages simulated, which are different in nature, type and location 

across the structure, as detailed in section 2.2, and (ii) the sensitivity of the ARX-based features. 
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Figure 19. Mahalanobis distance of the ARX-PCA-based features for all 214 structural conditions: a) considering the 

simulated responses from accelerometers Ac1+AsV3, Ac1+AL-P3 and Ac1+AsTt2, b) box-and-whiskers plots for each 
sensor combination. 

 



 

23 

In addition, Figure 19a corroborates that different sensors show different sensitivity to the damage, which 

leads to different variations in the Mahalanobis distance. Figure 19b shows the distribution obtained from each 

of the twenty-two sensors’ clusters (with the locations presented in Figure 2), which suggests an evident 

separation between the simulations of the baseline condition and the damage scenarios. 

The same procedure was applied to the 30 AR-PCA-based features, which also resulted in a 214-by-1 vector 

of distances for each sensor. Figure 20a shows a sensitivity increment of each sensor in distinguish baseline from 

damaged conditions, especially when observing the distributions in Figure 20b. However, there is an undeniable 

superior performance of the ARX model when comparing both outcomes. For this reason, the online SHM 

procedure described hereafter was based on damage-sensitive features extracted from the ARX model.  
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Figure 20. Mahalanobis distance of the AR-PCA-based features for all 214 structural conditions: a) considering the 

simulated responses from accelerometers Ac1, AL-P3 and AsTt2, b) box-and-whiskers plots for each sensor combination. 

3.4 Feature discrimination – cluster analysis 

Times-series analysis and distance measures can help perform data analysis and suggest the existence of 

different structural behaviours within a data set, as shown in the previous sections. However, the development of 

online SHM strategies should resort to machine learning algorithms that can autonomously decide whether one 

or more distinct structural behaviours are being observed from patterns in the features. Hence, feature 

discrimination is addressed herein using unsupervised discrimination algorithms - cluster analysis. 
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The aim of the clustering process is to divide a dataset into groups, which must be as compact and separate as 

possible [39]. This can be mathematically posed as an attempt to minimize the dissimilarity between features 

assigned to the same cluster (within-cluster distance), which, consequently, maximizes the dissimilarity between 

the features assigned to different clusters (between-cluster distance) [40]. Considering a given partition containing 

 clusters, =  { , … , }, the overall within-cluster dissimilarity ( ) and the overall dissimilarity  can 

be defined as:  

( ) =
1
2

( )( )

 (8) 

=
1
2

 (9) 

in which the between-cluster dissimilarity is given by the subtraction ( ) = − ( ). Here,  is the total 

number of features and ( ) is a many-to-one allocation rule that assigns feature  to cluster , based on a 

dissimilarity measure  defined between each pair of features  and  [41]. The best-known clustering algorithm 

is iterative and called k-means [42]. The k-means requires that the number of <  clusters be initially defined 

along with a randomly defined set of  clusters’ prototypes. This task is called initialization. Afterwards, each 

iteration starts by allocating the features to the clusters according to an allocation rule, ( ), that assigns each 

feature to the least dissimilar (closest) cluster prototype. The second step of each k-means’ iteration is called 

representation and consists of defining the centroids of the  clusters as their prototypes and assuming that each 

feature belongs to the cluster whose prototype is closest. These two steps, allocation and representation, are 

subsequently repeated until an objective function, which depends on the compactness and separation of the 

cluster, reaches its global minimum value. The k-means considers the squared within-cluster dissimilarity 

measured across the  clusters as an objective function [42]. Clusters’ dissimilarities are generally defined as 

distance metrics. Among these, the Euclidean (square root of the sum-of-squares) is used here.  

Using the features shown in Figure 19 for all sensor clusters, the dissimilarities between undamaged and 

damaged conditions can be computed and represented in distance matrices. Figure 21a presents the matrix for 

baseline conditions, while Figure 21b shows the matrix considering baseline and damaged structural conditions, 

where dark blue represents the null distance (identical features) and yellow represents the most dissimilar features 

of the analysed sample set (maximum distance). A straightforward observation of Figure 21b allows conclusions 

to be drawn regarding the existence of two compact groups of samples: darker regions within the matrix separated 

by lighter regions of the same matrix. These two groups correspond unmistakably to the two distinct structural 

conditions simulated: damaged and undamaged (baseline). It can also be observed that the baseline group of 

features is much more compact than the set of damage-related features, since the first consists of a darker blue 

colour, while the second exhibits greener areas since it is composed of numerous distinct structural conditions. 

Conversely, Figure 21a reveals a uniform distribution of colours throughout the entire sample set, suggesting that 

no changes occurred in the structure during those train crossings.  
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Figure 21. Dissimilarity matrices obtained from: a) baseline conditions, b) undamaged and damaged conditions (dark 

blue=identical features, yellow=most dissimilar ones). 

As previously mentioned, the k-means clustering method requires that the number of clusters be defined in 

advance and provided as input (in the initialization phase). For damage detection, there is no way of knowing this 

number in advance [43], which requires that multiple partitions, comprising different numbers of clusters, be 

tested and their outcomes analysed using cluster validity indices [42]. Numerous validity indices have been 

proposed and tested, not only in specific literature but also in SHM applications. Herein, the global silhouette 

index (SIL) is used, since it revealed a superior performance in previous studies [12,43], in which its formulation 

is carefully described. The application of the k-means along with the SIL index is exemplified here using the 

features (Figure 19) extracted from the sample time-series. For the present paper, it is important to note that, 

among the  tested, the partition that generates the highest SIL value is the one that best describes the analysed 

features set [39], and should, therefore, be considered for SHM purposes. Using the features shown in Figure 19, 

the SIL indices extracted from five cluster partitions, shown with ‘o’ marks in Figure 22a, exhibit a maximum for 

= 2 clusters. The corresponding features’ allocations were automatically generated by the k-means method and 

are shown in Figure 22b and Figure 22c. These plots demonstrate that the clustering method is capable of dividing 

the features without any human interaction or input. Figure 22b shows the dissimilarity between the two centroids, 

while in Figure 22c it can be observed that the two clusters found are compact over time and separated when the 

simulated damages start. This result undeniably shows that the k-means method is capable of analysing the 

features set and, in a fully automated manner, separating it according to the structural conditions observed on site. 
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Figure 22. Allocation of damage-sensitive features into clusters: a) silhouette index (SIL), b) clusters centroids, c) clusters 

defined for all structural conditions. 
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4. Online procedure for damage-detection 

4.1 Proposed methodology 

In the previous section, it was demonstrated that the combination of the ARX model, PCA, and data fusion is 

effective in extract and modelling features and detecting damage under a variety of confounding EOV conditions. 

It was also observed that the cluster analysis is capable of automatically distinguishing between baseline and 

damaged conditions. However, the output of cluster analysis requires user intervention to assess whether clusters 

are compact or dispersed over time, and therefore difficult to apply in automated online SHM. To circumvent this 

limitation, instead of relying on the allocation of features to clusters over time, the average dissimilarity between 

clusters, , is computed [12]:    

=
1

( − 1)
 (10) 

where  is the number of clusters belonging to the partition with the highest SIL,  and  are two of the K clusters, 

and  is the dissimilarity measured between their centroids. If no damage occurs and the structural behaviour 

remains unchanged (as in Figure 21a), the clusters generated by the k-means are similar and will generate small 

DC values. Conversely, if damage is observed, the k-means generates dissimilar and separate clusters (as in Figure 

21b) and, consequently, large DC values. 

The procedure proposed aims to provide continuous binary information of the type TRUE/FALSE regarding 

the existence of damage. It consists in successively extracting parameters from time series, statistically modelling 

the features, and classifying the structural response, using the algorithms described in section 3, within moving 

windows of SHM data to obtain a set of DC values. These windows are defined with a fixed number of train 

crossings. Due to the fact that the DC value does not provide TRUE/FALSE information on its own, the proposed 

methodology requires an additional step. It consists of statistically testing the DC values obtained within each 

window’s length. The statistical testing of each set of DC values results in the definition of a confidence boundary 

(CB), which is exceeded only if the target structural system exhibits changes. The CBs are defined by statistically 

testing the DC distribution, under the premise that residual errors obtained from unchanged structures are only 

influenced by random effects. This premise is commonly used in SHM works addressing damage detection 

[36,37]. Generally, the literature refers that the Mahalanobis squared distance can be approximated by a 

chi-squared distribution in n-dimensional space. Thus, since the chi-squared distribution models the sum of 

squares of independent random variables (gaussians), it can be considered that the Mahalanobis distance can also 

be approximated by a Gaussian statistical distribution [12,43,46,47]. Under this hypothesis, a confidence 

boundary ( ) to detect a DC that constitutes an outlier can be estimated by the Gaussian inverse cumulative 

distribution function considering a mean  and standard deviation  of the baseline DC vector, and for a level of 

significance . The selection of  carries a trade-off between the Type I error (false-positive indication of damage) 

and the Type II error (false-negative indication of damage) [2]. The inverse function can be defined in terms of 

the Gaussian cumulative distribution function as follows: 

= (1 − ) (11) 

where 
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( | , ) =
1

√2 ∝
,  ℝ (12) 

The moving windows procedure proposed is detailed in the flowchart of Figure 23 and is divided into two 

main stages: a) the baseline and CB build and b) the online damage detection.  
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Figure 23. Flowchart of online damage detection procedure based on moving windows. 

After the initialization, which consists of defining the total number of trains crossings, , that compose the 

baseline, as well as the number of trains crossings within each window, the machine learning strategy described 

in section 3 is applied to the responses measured during the passage of the trains within each window . During 

the first stage, the coefficients of PCA and the covariance and mean matrices of the baseline features are 

computed. At the end of this stage, the baseline DC vector is achieved and used to estimate the CB. During the 

second stage, the moving windows process is implemented in real time, and the machine learning strategy 

previously detailed is implemented in each window . Here, after extracting the ARX parameters from the 

window’s time series, the baseline PCA transformation is obtained, and the baseline covariance and mean 
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matrices are used for MD-based feature fusion. The corresponding damage-sensitive distances are used as inputs 

for clustering. The outcome of the windowing process consists of one DC value per window , and the detection 

is based on comparing each of these values with the CB. An average distance between clusters DC lower than CB 

suggests that the changes measured during the corresponding window  were generated by EOVs and, 

consequently that the structure may be assumed to be unchanged during that window. Conversely, a DC higher 

than the CB suggests the occurrence of damage during the same period. In the case of damage detection, after  

train crossings a new baseline may be defined, which will allow to identify when a new type of damage occur.    

The DC series obtained for unchanged structural conditions and for four type of damages, D1 located in pier 

P4, D2 located in the first mid-span of the concrete slab (m1), D3 located in the diaphragm at 1/6 north of the 

third span (s3n) and D4 located in the arch at 1/3 south of the second span (t2s), are shown in Figure 24 as 

examples. These were achieved considering the responses of all sensors installed on site, = 100 trains for the 

baseline, moving windows with 15 trains and the CB was defined with a significance level of 5%. Figure 24 

proves the efficiency of the online procedure to detect different types of damage with different severities, since 

for each type of damage, each symbol represents a different severity, increasing from left to right (μ=1.8%, 

μ=2.4%, μ=3.0%, μ=full restrain for D1; 5%, 10% and 20% for D2, D3 and D4). It is interesting to observe that, 

with the exception of damage D2, the value of DC increases with the severity. Bearing in mind the small severity 

of the damages simulated and the realistic character of the numerical simulations conducted (Section 2.2), which 

include the effects of noise, temperature, and train loading measured on site, it can be concluded that the proposed 

methodology is highly sensitive to damage because it allows detecting stiffness reductions as small as 5%. 
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Figure 24. DC values obtained considering four types of damages with different severities: a) D1-P4: μ=1.8%, μ=2.4%, 

μ=3.0%, μ=full restrain, b) D2-m1: 5%, 10%, 20%, c) D3-s3n: 5%, 10%, 20% and d) D4-t2s: 5%, 10%, 20%. 
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4.2 Sensitivity to different damage locations  

To evaluate whether the results achieved so far may be generalized to different damage states, a more extensive 

sample of structural conditions (described in section 2.2) was tested and applied to the same damage detection 

methodology. The 114 online analyses conducted herein comprised 10146 windows, each with 15 trains. Several 

unchanged structural conditions were already evaluated in Figure 24, and no false positive was obtained; only the 

sensitivity to new damage scenarios was evaluated using the same window size and the DC values extracted 

immediately after a damage incidence. These DC values are presented in Figure 25, as well as the corresponding 

CB, and show that, even if the single-valued DC represents the responses acquired from multiple sensors, it is 

sufficiently sensitive to highlight small magnitude damage with local character and in different structural 

elements. Only five false negatives were verified in a total span of 114 very different damage scenarios, namely, 

two in the concrete slab, one in the diaphragm and two in the arches, all with a stiffness reduction of only 5%. 

These results strongly suggest that the proposed methodology is, in fact, robust and may be used for damage 

detection throughout the entire structural system. 

 
Figure 25. DC values obtained considering four types of damage (D1, D2, D3 and D4) with different severities 

(D1: μ=1.8%, μ=2.4%, μ=3.0%, μ=full restrain, D2 to D4: 5%, 10%, 20%) in all the locations shown in Figure 6b. 

4.3 Assessing the most robust window lengths  

The example presented in section 4.2 showed that the proposed methodology was capable of detecting a 5% 

to 20% stiffness reduction, as well as different bearing restraints, in four types of damage (D1, D2, D3, D4) and 

in different locations, with a low number of false detections. This performance is, however, affected by the 

number of trains per window. The trade-off between detection rapidity and robustness is next studied by applying 

the damage detection procedure using windows with different lengths, i.e., with a varying number of trains per 

window between six and twenty. As in Figure 25, the simulated responses of all accelerometers deployed on site 

were considered and a total of 1710 DC vectors (114 different damages and 15 different windows lengths) were 

obtained from 155610 independent windows. The results achieved with this analysis are summarized in Figure 

26, where the percentage of false detections, taken as the incidence of false positives (false damage alerts) and 

bl
oc

ke
d0

500

1000

1500

2000

D
C

P2 P3 P4

µ=
1.

8%
µ=

2.
4%

µ=
3.

0%

bl
oc

ke
d

µ=
1.

8%
µ=

2.
4%

µ=
3.

0%

bl
oc

ke
d

µ=
1.

8%
µ=

2.
4%

µ=
3.

0%

CB D1 D2 D3 D4

0

500

1000

1500

2000

D
C

5% 10
%

20
% 5% 10
%

20
% 5% 10
%

20
% 5% 10
%

20
% 5% 10
%

20
% 5% 10
%

20
% 5% 10
%

20
% 5% 10
%

20
% 5% 10
%

20
% 5% 10
%

20
% 5% 10
%

20
% 5% 10
%

20
% 5% 10
%

20
%

e1 e2 e3 e4 m
1

m
2

m
3

q1
n

q1
s

q2
n

q2
s

q3
n

q3
s

0

500

1000

1500

2000

D
C

5% 10
%

20
% 5% 10
%

20
% 5% 10
%

20
% 5% 10
%

20
% 5% 10
%

20
% 5% 10
%

20
% 5% 10
%

20
% 5% 10
%

20
% 5% 10
%

20
%

m
1

m
2

m
3

s1
n

s1
s

s2
s

s3
n

s3
s

s2
n

0

500

1000

1500

2000

D
C

5% 10
%

20
% 5% 10
%

20
% 5% 10
%

20
% 5% 10
%

20
% 5% 10
%

20
% 5% 10
%

20
% 5% 10
%

20
% 5% 10
%

20
% 5% 10
%

20
% 5% 10
%

20
% 5% 10
%

20
% 5% 10
%

20
%

e1 e2
n

e2
s

e3
n

e3
s

e4 t1
n

t1
s

t2
n

t2
s

t3
n

t3
s



30 

false negative occurrences (true damage states that were not detected by the method), depending on the length of 

the window, is presented. The bars in this chart show that important amounts of false detections are obtained for 

window lengths between 6 and 13 trains, both for undamaged and damaged scenarios. Also, it is shown that most 

of the false detections are related to damage in the concrete slab (D2) and in the arch (D4). This can be associated 

with the sensor locations, since no sensor has been installed in the arches, and the concrete slab has only one 

sensor located in the second mid-span. With a window length of 14 trains, false detection reduces to 6%, but it is 

with a window of 15 trains that only 2% of false detections are reached, which corresponds to a most robust 

detection process. As presented in Figure 25, these 2% are associated with damages with a severity of only 5%. 

The analysis was also performed for windows including 16 to 20 trains, but the improvement in terms of false 

detections was residual, if not null, which suggests that a substantial number of additional trains would be needed 

to achieve a 0% of false detections.  
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Figure 26. Percentage of false detection incidences depending on the window length. 

4.4 Studying the effectiveness of smaller sensor networks  

To assess whether the number of sensors used to detect different types of damage may be optimized, a study 

of the false detection incidences as a function of the monitoring system configuration is considered. The main 

goal is to analyse the trade-off between the optimization of the sensing system (which leads to a cost reduction in 

terms of the monitoring system installation) and the effectiveness of the damage detection procedure. For all 

structural conditions mentioned in the previous sections, the online damage detection procedure was applied with 

a window length of 15 trains, but considering the responses obtained with four possible configurations of an SHM 

system progressively adjusted for smaller numbers of sensors than those installed on site. Figure 27 shows the 

percentage of false detections got for each configuration, with the lowest value (2%) achieved with the 23 

accelerometers currently installed on site. If the vertical accelerometers installed on the downstream side of the 

steel box-girder were removed, there would be a 2% increase in false detections. The third SHM system 

configuration also excludes the vertical accelerometers located at 1/3 of the first and third spans and leads to an 

increase of 1% in the false detections. Finally, if only seven sensors remained, namely, the longitudinal 

accelerometers on the four piers, the vertical accelerometer on the second mid-span of the concrete slab, and the 

vertical accelerometers in the steel box girder at each mid-span, 7% false detections would be observed. It is 

worth noticing that among the four configurations, the increment of false detections with the reduction of the 

number of sensors only happens for damage cases with a 5% severity. Moreover, in the event of sensor 

malfunction or maintenance, even with a reduction of the number of sensors in 30% there is only an increase of 

5% in false detections.    
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Figure 27. Percentage of false detection incidences depending on the number of sensors. 

 

4.5 Defining an adaptive confidence boundary 

 Thus far, the proposed online damage detection strategy was applied considering a single CB build based on 

responses from unchanged structural conditions. However, in case a specific type of damage occurs, it is desirable 

for the CB to adapt in order to detect future damage that may arise over time. Figure 28 shows an application of 

CB progression, where additional damage scenarios (types D1, D2, D3 and D4) were simulated to apply this 

procedure.  
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Figure 28. Adaptive CB for different types of damage: a) undamaged vs D1, b) D1 vs D2, c) D2 vs D3 and d) D3 vs D4. 

In Figure 28a, the CB1 was defined, as in the previous sections, for the baseline (undamaged) condition using 

50 trains crossings and a time window of 15 trains. The application of the damage detection online procedure 

proposed lead to the substantially increase of the DC values and exceedance of the CB1, when a train crosses the 

bridge with a damage in the bearing of pier P4 (D1). The DC values progressively decrease as the windows 

contain more trains from a damaged structure than for a baseline condition. In Figure 28b, a new baseline and 

confidence boundary (CB2) were defined using the bridge response from the 50 train crossings while the damage 

in the bearing of pier P4 (D1) was active. This new baseline containing PCA coefficients and Mahalanobis 

distances with the new covariance and mean matrices from the bridge responses with the damage D1 allowed 

defining a new confidence boundary (CB2) and detecting the new type of damage that occurred in the concrete 

slab (D2). Afterwards, the CB3 was built considering the new 50 trains crossings with the structure damaged on 
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the concrete slab (D2), and a damage on the diaphragm (D3) was later detected (Figure 28c). The same strategy 

was applied to detect a damage on the arch (D4) after a damage on the diaphragm (D3) has occurred (Figure 28d). 

This analysis proves the efficiency of the adaptive CB in automatically detecting new types of damage.       

5. Discussion 

Civil structures tend to be one-of-a-kind, large capital assets, that are generally kept in good condition by the 

managers with appropriate inspection and maintenance actions. Consequently, bridge data acquired under 

damaged conditions is generally scarce. Therefore, the effectiveness of the strategies similar to the one proposed 

herein tend to be validated using digital twins, such as the one developed for the Sado bowstring-arch railway 

bridge, with a highly reliable description of the structure’s stiffness, mass, and boundary conditions, as well as its 

response to environmental and operational actions. Therefore, the online procedure and its performance in 

detecting early-damage was tested based on a comprehensive dataset of baseline and damaged scenarios simulated 

using only experimentally obtained actions as input, namely temperature, train loadings and speeds.  

In this study, it was found that ARX (30, 30) outperform AR (30) models as feature extractors, by taking 

advantage of cross information between two sensors (the input and the output). This could be observed when the 

30 output ARX parameters showed to be more influenced by EOVs than the 30 input ARX parameters. Although 

linear, these time series models proved to be sufficiently robust to extract features from responses that result of 

slightly nonlinear systems, such as the train-bridge system.     

The supremacy of the EOVs, which leads to the suppression of the damage influence in the features, was 

demonstrated. To overcome the challenge of EOV events corrupting the raw data obtained in operational 

conditions, PCA was successfully applied to the features.  

However, the ability to identify early damage, imperceptible in the original signals, while avoiding observable 

changes induced by variations in train speed or temperature, was only achieved by carefully defining the 

modelling and fusion sequence of the information. In this sense, a Mahalanobis distance was implemented to 

provide an additional layer of feature modelling. A performance enhancement was reached by fusing the features 

from each sensor into a single metric (a distance in the feature space), which displays higher values for distinct 

structural conditions and nominally null values for identical structural scenarios. This choice allowed the cluster 

algorithm to effectively separate the features according to the structural conditions observed on site.  

Nevertheless, the output of cluster analysis requires user intervention to assess whether clusters are compact 

or dispersed over time, and therefore it is difficult to apply in automated online SHM. To circumvent this 

limitation, a moving window procedure comprising 15 trains, based on the average dissimilarity between clusters 

(DC) and a confidence boundary (CB), was implemented. 

To assess whether the proposed procedure was reliable for different damage scenarios, it was applied to a 

representative set of simulated stiffness reductions (5%, 10% and 20%) in the concrete slab, diaphragm and 

arches, as well as friction increases in the movements of the bearing devices. This analysis allowed observing that 

changes as small as 5% of stiffness reduction may be detected in the vast majority of scenarios, using a simple 

system composed of a few sensors installed on a long-span bridge, while all the remaining severities and friction 

increments can be detected without false detections. It was also observed that the damage scenarios of the bearing 

devices are the ones with highest DC values, which leads to the conclusion that the features are most sensitive to 
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this type of damage. On the other hand, the damages in the concrete (D2) and in the steel-box (D3) present higher 

DC values when located in the mid-span. In general, damage in the arch (D4) presents higher DC values when 

located in thirds of the second and third arches. As expected, the lowest severity considered (5% of stiffness 

reduction) is the most difficult to detect, presenting the lower DC values. 

In short, the damage detection strategy has been shown to perform very well on test data with multiple 

damaged and undamaged states. The procedure requires little user input and updates online. The main 

disadvantage or limitation that can be pointed out it is not being baseline free. Nevertheless, with the proposed 

procedure the baseline and the CB can be promptly established during one day for several types of trains with 

different loads crossing the bridge and increases in robustness as more data are added online. The environmental 

effects can also be considered since the weather (temperature and wind) varies according to the time of day. After 

the baseline being built, the detection can be achieved once the first train crosses the bridge after the damage 

occurrence. Moreover, even with an SHM system not capable of measuring environmental and operational effects, 

it is possible to successfully detect different types of damage using the bridge’s responses to train crossings. This 

achievement renders the procedure the ability to be less dependent on spatial actions very difficult to characterize, 

thus contributing for the normalization of SHM procedures. This damage detection strategy also has the 

advantages of minimizing the number of sensors that need to be installed and, consequently, the cost of the SHM 

system, as well as allowing for a more automatic and straightforward implementation. 

6. Conclusions 

This paper presents a comprehensive SHM procedure for conducting continuous online damage detection, 

using train-induced responses, integrating several algorithms that address detection, EOVs, and online, 

autonomous classification. The unsupervised machine learning strategy proposed includes the sequential 

application of ARX models, PCA transformation, and clustering algorithms to the observed data, using a moving 

window procedure. This strategy also includes an innovative approach to define an adaptive confidence boundary, 

which can be automatically updated to detect new damage that would progressively occur.     

The following conclusions can be drawn from the research work herein presented: 

 ARX models showed substantively improved sensitivity when compared with AR models. 

 The performed time-series analysis showed to be able of accurately generalize the information present 

in data, while performing significant compressive fusion. 

 The importance of feature modelling was demonstrated, when the effects of EOVs were considerably 

reduced without the features losing sensitivity to damage.  

 EOVs can be more effectively normalized using ARX models rather than AR models. 

 Changes as small as 5% of stiffness reduction may be detected in a vast majority of scenarios, with 

negligible false detection incidences of 2% or less, if the moving window comprises 15 or more trains. 

Smaller windows lead to larger false detection rates. 

 The effectiveness and performance of the proposed procedure for damage detection with a smaller 

number of sensors than the ones installed on site was also investigated. The results demonstrate that 

if the number of sensors were reduced from twenty-three to just seven, on a 480 m long bridge, the 

proposed methodology could be effectively used, but an increase of 5% in false detections would be 
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observed. Nonetheless, it should be noted that the damage cases that would not be detected are only 

those with the lowest severity (5% of stiffness reduction).  

 Finally, using several train-induced responses from the bridge comprising progressively different 

types of damage, the effectiveness of an original adaptive CB in detecting new structural changes that 

may occur in a structure already damaged was successfully demonstrated. Also, the procedure proved 

to be robust in avowing false damage alerts.  
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