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Online Updating Belief-Rule-Base
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Abstract—In order to determine the parameters of belief-
rule-base (BRB) accurately, several optimization methods have
been proposed for training BRB, on the basis of a generic rule-base
inference methodology using the evidential reasoning (RIMER)
approach. These optimization methods are implemented offline,
and such are not suitable for training BRB in a dynamic fashion.
In this paper, two recursive algorithms are proposed to update
BRB online that can simulate dynamic systems. The main feature
of the proposed algorithms is that only partial input and output
information is required, which can be incomplete or vague, nu-
merical or judgmental, or mixed. If the internal structure of a
BRB is initially decided using expert judgments, domain-specific
knowledge and/or commonsense rules, the proposed algorithms
can be used to fine-tune the initial BRB online, once input and
output datasets become available. Using the proposed algorithms,
there is no need to collect a complete set of data before a BRB
can be trained, which is necessary if the BRB is used to simulate
a dynamic system. A numerical example and a case study are
reported to demonstrate the potential of the algorithms for online
fault diagnosis.

Index Terms—Belief-rule-base (BRB), evidential reasoning
(ER), inference, recursive algorithms, uncertainty.

I. INTRODUCTION

FOR A dynamically changing engineering system, it is dif-

ficult to obtain a complete set of historical data for devel-

oping a mathematical model for reliable system simulation and

consistent decision support [1], [2]. Conventional methods such

as time-series analysis and Kalman filter [3]–[5] require accu-

rate and complete data. On the other hand, decision making is
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a basic human activity and relies on the decision maker’s judg-

ments and preferences. It is therefore important to model and

analyze decision problems using both numerical data and hu-

man judgments that are incomplete and inaccurate in nature [6].

Several methods have been developed to support deci-

sion making using human judgments, including IF-THEN

rule-based methods [7], fuzzy IF-THEN rule-based methods

[8]–[10], and rule-based expert systems [11], [12]. In these

methods, human judgments and domain-specific knowledge

can be represented in forms of IF-THEN rules. However, these

methods cannot deal with ignorance caused by incomplete data

or due to human inability to provide accurate judgments. In or-

der to handle ignorance in knowledge-based systems [13], [14],

Yang et al. proposed a generic rule-base inference methodology

using the evidential reasoning (ER) (RIMER) approach to

establish a nonlinear relationship between antecedent attributes

and an associated consequent [15], [16]. RIMER is based on

the ER approach [17]–[21] and can capture the dynamic nature

of decision-making problems. The RIMER approach extends

traditional IF-THEN rule-based systems for knowledge repre-

sentation and is capable of capturing vagueness, ignorance, and

nonlinear causal relationships. Equipped with the Windows-

based and graphically designed intelligent decision system [22],

RIMER has already been applied to the safety analysis of off-

shore systems and the leak detection of oil pipelines [23]–[25].

In RIMER, a basic element is a so-called belief-rule-base

(BRB). In BRB, there are several types of parameters including

rule weights, attribute weights, and belief degrees. It is difficult

to accurately determine the values of these parameters by

experts, in particular for a large-scale BRB which has hundreds

of rules. A change in a rule weight or an attribute weight may

lead to changes in performance of BRB [6]. If system input and

output datasets are available, optimization methods can be used

to adjust the parameters to improve the performance of BRB.

Based on RIMER, Yang et al. proposed several optimization

methods for training the parameters of BRB, although these

methods are implemented in an offline fashion [6].

For a dynamic system, such offline optimization can become

expensive and even impractical. There is a need to develop new

optimal training methods for updating the parameters of BRB

in such a way that the parameters can be updated recursively

once new information becomes available. Such a trained BRB

can then be used to perform step forward inference for system

outputs from given system inputs with improved quality and

robustness.

In this paper, two recursive algorithms are proposed for

updating BRB online with distributed assessment output and

numerical output, respectively. In the development of the
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algorithms, it is recognized that belief is represented as prob-

ability in the ER approach [26]–[32], and it is assumed that the

outputs of a BRB will be independent if its inputs are inde-

pendent. The independence assumption allows the use of the

recursive expectation maximization (EM) algorithm [33]–[37]

for the development of the recursive algorithms.

This paper is organized as follows. The RIMER approach is

briefly reviewed in Section II. In Section III the two algorithms

for updating BRB online are proposed. A numerical example

and a case study for pipeline oil leak detection are presented to

illustrate the proposed algorithms in Section IV. The paper is

concluded in Section V.

II. BRB INFERENCE USING THE ER APPROACH

A. BRB

In order to capture the dynamics of a system, a BRB consist-

ing of a collection of belief rules is defined as follows [16]:

Rk : If Ak
1 ∧ . . . ∧Ak

Mk
,Then {(D1, β1,k), . . . , (DN , βN,k)}

With a rule weight θk and attribute weight δ1,k, . . . , δMk,k

(1)

where Ak
i (i = 1, . . . ,Mk, k = 1, . . . , L) is the referential value

of the ith antecedent attribute in the kth rule; and Ak
i ∈ Ai.

Ai = {Ai,j , j = 1, . . . , Ji} is a set of referential values for the

ith antecedent attribute, and Ji is the number of the referential

values. θk(k = 1, . . . , L) is the relative weight of the kth rule,

and δ1,k, . . . , δMk,k are the relative weights of the Mk an-

tecedent attributes used in the kth rule. βj,k(j = 1, . . . , N, k =
1, . . . , L) is the belief degree assessed to Dj which denotes

the jth consequent. If
∑N

j=1 βj,k = 1, the kth rule is said to

be complete; otherwise, it is incomplete. Note that “∧” is a

logical connective to represent the “AND” operator. In addition,

suppose that M is the total number of antecedent attributes used

in BRB.

Assume that [x̂1, . . . , x̂M ] represents the antecedent attribute

vector in the kth rule. Then, the kth rule can also be written as

Rk : If x̂1 is Ak
1 ∧ . . . ∧ x̂M is Ak

M ,

Then {(D1, β1,k), . . . , (DN , βN,k)}
With a rule weight θk and attribute weight δ1,k, . . . , δM,k.

(2)

A BRB given in (2) represents a relationship between an-

tecedents and consequents. It allows uncertainty in the relation-

ship to be explicitly modeled and therefore is a more versatile

scheme than a simple IF-THEN rule-base for knowledge repre-

sentation. Note that the weights and the belief degrees can be

assigned initially by experts and then trained or updated using

dedicated learning algorithms.

B. Belief Rule Inference Using the ER Approach

The RIMER approach can provide an analytical description

of relationships between BRB inputs and outputs that could

be discrete or continuous, complete or incomplete, linear, non-

linear, or nonsmooth, or their mixture [6], [16]. As shown in

Fig. 1. Block diagram of belief rule inference using ER approach.

Fig. 1, RIMER mainly consists of two main steps, where ωk(n)
is calculated by (3), θk(∈ R+, k = 1, . . . , L) is the relative

weight of the kth rule, and δi(∈ R+, i = 1, . . . ,M) is the

relative weight of the ith antecedent attribute that is used in

the kth rule. Because ωk(n) will be eventually normalized so

that ωk(n) ∈ [0, 1] using (3), θk and δi can be assigned to any

value in R+. Without loss of generality, however, it is assumed

that θk ∈ [0, 1] and δi ∈ [0, 1]. αk
i,j(n)(i = 1, . . . ,M), which is

called the individual matching degree, is the belief degree to its

jth referential value Ak
i,j in the kth rule at nth step. αk(n) =

∏M
i=1(α

k
i,j(n))

δi is called the normalized combined matching

degree. αk
i,j(n) can be generated in various ways, depending

on the nature of an antecedent attribute and data available

[6], [15], [16]. βj(n) denotes the belief degree in Dj at time

instant n. Note that βj(n) is the function of the rule weights

θk, the attribute weights δi(i = 1, . . . ,M), the belief degrees

βi,k(i = 1, . . . , N, k = 1, . . . , L), and the input vector x̂(n).

III. RECURSIVE ALGORITHMS FOR ONLINE

UPDATING BRB SYSTEMS

In this section, based on the recursive EM algorithm which

is a maximum likelihood (ML) algorithm in nature, the RIMER
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approach is extended by developing two recursive algorithms

to update BRB online. The EM algorithm was proposed by

Dempster et al. [33]. Titterington et al. suggested the recursive

EM algorithm and proved its weak consistency [34].

In the proposed algorithms, datasets of system inputs and

outputs are required. Similar to [6], we assume that a set of data

pairs (x̂, ŷ) is available, where x̂ is a given input vector, ŷ is the

corresponding given output vector, either assessed by experts

or measured using instruments, and y is the simulated output

that is generated by BRB. x̂ and ŷ can be either judgmental or

numerical. We shall conduct case studies using both judgmental

and numerical information.

A. Independence Assumption on Input and Output

of the BRB System

In order to use the recursive EM algorithm to develop re-

cursive BRB updating algorithms, we first discuss the indepen-

dence assumption for belief distributions.

In the ER approach, evidence is represented by belief degrees

assigned to mutually exclusive grades, and then all pieces of

evidence are aggregated. Halpern et al. [32] proposed two

useful but quite different ways of interpreting belief functions.

The first is that a belief function is interpreted as a generalized

probability function [26], [29]–[32]. In other words, it is an

inner measure induced by a probability function. The second is

that a belief function is used as a way for representing evidence

[30], [32]. In the ER approach, it is recognized that belief

in a proposition increases with the accumulation of evidence

supporting the proposition [32].

In the proposed algorithms, we assume that if the inputs of a

BRB (pieces of evidence) are independent and are represented

as belief distributions or generalized probability distributions,

the outputs of the BRB (the results of the ER algorithm) are

also represented as belief distributions and are independent.

This assumption provides a basis to use the ML algorithm to

update BRB.

B. Recursive Parameter Estimation Algorithm Based

on Distributed Output

In this case, ŷ(n) is judgmental and represented using a

distributed assessment with belief degrees as follows:

ŷ(n) =
{(

Dj , β̂j(n)
)

, j = 1, . . . , N
}

(7)

where Dj is a referential (linguistic) term in the consequent part

of a rule; and β̂j(n) is the belief degree to which Dj is assessed

for the observed data at time instant n. This is indeed the default

output format of RIMER, which provides a panoramic view

about output. This format is useful to describe the distributed

assessment of BRB output given by experts [6]. For simplicity,

we use “the distributed output” to represent “the distributed

assessment of BRB output” in the following study.

Let B̂(n) = [β̂1(n), . . . , β̂N (n)]T . It is assumed that β̂j(j =
1, . . . , N) is a random variable. Furthermore, assume that

the conditional probability density function (pdf) of B̂ is

f(B̂|x,Q), and Q is the unknown parameter vector. According

to the assumption given in Section III-A, if the inputs of a

BRB (x̂(1), . . . , x̂(n)) are independent, its distributed outputs

(B̂(1), . . . , B̂(n)) are also independent. Then, there is

f
(

B̂(1), . . . , B̂(n)|x̂(1), . . . , x̂(n),Q
)

=

n∏

τ=1

f
(

B̂(τ)|x̂(τ),Q
)

(8)

According to (8), the expectation of the log-likelihood at time

instant n can be defined as

Ln+1(Q)

∆
= E

{

log

n∏

τ=1

f
(

B̂(τ)|x̂(τ),Q
)

|x̂(1), . . . , x̂(n),Q(n)

}

= E

{
n∑

τ=1

log f
(

B̂(τ)|x̂(τ),Q
)

|x̂(1), . . . , x̂(n),Q(n)

}

(9)

where E{•|•} denotes the conditional expectation at Q =
Q(n).

Now consider the recursive formulation. The expectation of

the log-likelihood in (9) can be written as

Ln+1(Q)=Ln(Q)+E
{

log f
(

B̂(n)|x̂(n),Q
)

|x̂(n),Q(n)
}

.

(10)

Define

Γ1(Q(n))
∆
=∇Q log f

(

B̂(n)|x̂(n),Q(n)
)

(11)

Ξ1 (Q(n))
∆
=E

{

−∇Q∇T
Q log f

(

B̂(n)|x̂(n),Q
)

|x̂(n),Q(n)
}

(12)

where ∇Q is a column gradient operator with respect to Q.

Based on (10)–(12), the following recursive algorithm for esti-

mating the parameter vector Q can be obtained:

Q(n+ 1) = Q(n) +
1

n
[Ξ1 (Q(n))]−1 Γ1 (Q(n)) (13)

where Q consists of the rule weights, attribute weights, belief

degrees, and other possible parameters as given later. The

detailed processes for generating the recursive algorithm in (13)

are given in Appendix A.

The rule weights, attribute weights, and belief degrees

must satisfy the following equality and inequality constraints

[6], [16]:

1) A rule weight is normalized, so that it is between zero and

one, i.e.,

0 ≤ θk ≤ 1, k = 1, . . . , L. (13a)

2) An attribute weight is normalized, so that it is between

zero and one, i.e.,

0 ≤ δm ≤ 1, m = 1, . . . ,M. (13b)
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3) A belief degree (subjective probability) must not be less

than zeros or more than one, i.e.,

0 ≤ βj.k ≤ 1, j = 1, . . . , N, k = 1, . . . , L. (13c)

4) If the kth belief rule is complete, its total belief degree in

the consequent will be equal to one; otherwise, the total

belief degree is less than one, i.e.,

N∑

j=1

βj,k ≤ 1, k = 1, . . . , L. (13d)

Hence, the algorithm (13) should be revised as follows:

Q(n+ 1) =
∏

H1

{

Q(n) +
1

n
[Ξ1 (Q(n))]−1 Γ1 (Q(n))

}

(14)

where
∏

H1
{•} is the projection onto the constraint set H1

which is composed of constraints (13a)–(13d).

C. Recursive Parameter Estimation Algorithm Based

on Numerical Output

In this case, ŷ(n) is a numerical value. If the inputs of a BRB

are independent, its true outputs, ŷ(1), . . . , ŷ(n), can also be

assumed to be independent, so there is

f (ŷ(1), . . . , ŷ(n)|x̂(1), . . . , x̂(n),Q)=
n∏

τ=1

f (ŷ(τ)|x̂(τ),Q)

(15)

where f(ŷ(τ)|x̂(τ),Q) is the pdf of ŷ(τ) at time instant τ .

Similar to the deducing process in Section III-B and

Appendix A, the following recursive algorithm can be obtained:

Q(n+ 1)=
∏

H2

{

Q(n)+
1

n
[Ξ2 (Q(n))]−1 Γ2 (Q(n))

}

(16)

where Q also consists of the rule weights, attribute weights,

belief degrees, and other possible parameters. H2 represents the

constraint set which is composed of constraints (13a)–(13d) and

other possible constraints as given later. We also have

Γ2(Q(n))
∆
=∇Q log f(ŷ(n)|x̂(n),Q(n)) (16a)

Ξ2 (Q(n))
∆
=E

{
−∇Q∇T

Q log f (ŷ(n)|x̂(n),Q) |x̂(n),Q(n)
}

(16b)

D. Recursive Algorithms Under Normal Distribution

In the recursive algorithms (14) and (16), the pdfs of B̂ and

ŷ need to be known. In this aection, we assume that B̂ and ŷ

are random variables and follow normal distribution. Based on

our experience, the rationality of this assumption can be given

as follows:

(a) If BRB output is represented by a distributed assessment,

according to Section III-B, the proposed recursive algo-

rithm under distributed output is indeed a ML approach,

and normal distribution is usually assumed in a ML

approach.

(b) If BRB output is numerical, in this paper, numerical

output is mainly referred to the observation of a system

obtained using a sensor, and it is random. Therefore, it is

reasonable to assume normal distribution in this case.

Of course, we can assume that BRB output may obey other

distributions in specific situations.

1) Recursive Algorithm Under Distributed Output and Nor-

mal Distribution: A subjective conclusion generated by aggre-

gating the activated rules can also be represented using the same

referential terms as for the observed output ŷ(n) as follows:

y(n) = {(Dj , βj(n)) , j = 1, . . . , N} (17)

where βj(n) is generated by BRB using (5) for a given input.

In this case, there is y(n) = O(Y(n)).
It is desirable that for a given input x̂(n), a BRB can

generate an output, represented by (17), which can be as close

to ŷ(n) as possible. In other words, for the given data pairs

(x̂(n), ŷ(n)) at time instant n, the parameters of a BRB are

updated to minimize the difference between the observed belief

degree β̂j(n) and the belief degree βj(n) generated by BRB

for each referential term. Here, β̂j(n) can be considered as a

random variable and βj(n) as its expectation. Define B̂(n)
∆
=

[β̂1(n), . . . , β̂N (n)]T . Suppose that B̂(n) follows the following

complex normal distribution:

f
(

B̂(n)|x(n),Q
)

= (2π)
−N
2 |Σ|−1

2

× exp

{

−1

2

(

B̂(n)−B(n)
)T

Σ−1
(

B̂(n)−B(n)
)}

(18)

where B̂(n) is the given distributed output; and B(n) =
[β1(n), . . . , βN (n)]T is generated by BRB using (5) for a

given input. Q is a parameter vector and is composed of the

parameter vector V = [θk, δm, βj,k]
T and the entries of the

covariance matrix
∑

which is symmetrically positive definite.

V is included in B(n) and k = 1, . . . , L, m = 1, . . . ,M , and

j = 1, . . . , N .

Due to independence between the elements of V and

the entries of
∑

, Γ1(Q(n)), and Ξ1(Q(n)) in (13) can be

written as

Γ1 (Q(n)) =
[

Γ′
1 (Q(n))T ,Γ′′

1 (Q(n))T
]T

(19)

Ξ1 (Q(n)) =

[
Ξ′
1 (Q(n)) 0

0 Ξ′′
1 (Q(n))

]

(20)

where Γ′
1(Q(n)) and Ξ′

1(Q(n)) are the derivatives with respect

to V. Γ′′
1(Q(n)) and Ξ′′

1(Q(n)) are the derivatives with respect

to the entries of
∑

. Obviously, there is

[Ξ1 (Q(n))]−1 =

[
[Ξ′

1 (Q(n))]−1
0

0 [Ξ′′
1 (Q(n))]−1

]

. (20a)

When we consider parameter vector V only, according to

(19) and (20a), the recursive algorithm (13) changes to the

following form:

V(n+ 1) = V(n) +
1

n
[Ξ′

1 (Q(n))]
−1

Γ′
1 (Q(n)) (21)
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In (21), V(n) is known. By definitions (11) and (12), the

ath element of the gradient vector Γ′
1(Q(n)) and the entries of

Ξ′
1(Q(n)) at time instant n are given by

[Γ′
1 (Q(n))]a=

∂B(n)T

∂Va

∑

(n)−1
(

B̂(n)−B(n)
)∣
∣
∣
V=V(n)

(21a)

[Ξ′
1 (Q(n))]a,b=E

{
∂B(n)T

∂Va

∑

(n)−1 ∂B(n)

∂Vb

− ∂2B(n)T

∂Va∂Vb

×
∑

(n)−1
(

B̂(n)−B(n)
)

|Q(n)
}

=
∂B(n)T

∂Va

∑

(n)−1 ∂B(n)

∂Vb

∣
∣
∣
∣
V=V(n)

(21b)

where a = 1, . . . , L+M + L×N and b = 1, . . . , L+M +
L×N . The derivatives in (21a) and (21b) are given

in Appendix B.

In (21a) and (21b), the covariance matrix
∑

(n) is required.

Because the belief degrees β̂1(n), . . . , β̂N (n) should satisfy

the constraint
∑N

j=1 β̂j(n) ≤ 1, they are not independent. In

order to simplify the calculation, without loss of generality, we

suppose that
∑

= (ai,j)N×N satisfies
{
ai,j = σ1, i = j
ai,j = σ2, i �= j.

(22)

Therefore, under this assumption, there is Q = [VT ,
σ1, σ2]

T .

When the parameter vector V(n) is available, σi(n) can be

estimated as follows:

σi(n) = argmax
σi

log f
(

B̂(n)|x(n),Q
)∣
∣
∣
V=V(n)

(23)

where i = 1, 2. The details of the algorithm to estimate σi(n)
are given in Appendix C.

Because V should satisfy constraints (13a)–(13d), the re-

cursive algorithm with the constraints given in (14) should be

adopted. First, let V = [V1, . . . , VU1
]T , where U1 = L+M +

L×N . Constraints (13a)–(13c) can be represented as

h1
i (V) = −Vi ≤ 0, i = 1, . . . , S1, S1 = U1 (24)

h2
i (V) =Vi − 1 ≤ 0, i = 1, . . . , S2, S2 = U1. (25)

Constraint (13d) can be represented as

h3
k(V)=h3

k

(
VL+M+(k−1)×N+1, . . . , VL+M+(k−1)×N+N

)
≤0,

k = 1, . . . , S3, S3 = L (26)

where

h3
k

(
VL+M+(k−1)×N+1, . . . , VL+M+(k−1)×N+N

)
=

N∑

j=1

βj,k−1.

(27)

Define

h̃j
sj
(V)

∆
= max

[

0, hj
sj
(V)

]

and

Ψj(V) =

Sj∑

sj=1

[

h̃j
sj
(V)

]2

(28)

φj(V) =

[
∂Ψj(V)

∂V1
, . . . ,

∂Ψj(V)

∂VU1

]

(29)

where j = 1, 2, 3.

Suppose Iu is an identity matrix whose dimension is u.

The recursive algorithm (21) is revised and the following al-

gorithm for dealing with constraints (24)–(26) can be obtained

[35], [36]:

V(n+ 1) = V(n) +
α1

n

{

π1 (V(n)) [Ξ′
1 (Q(n)) + γ1IU1

]
−1

× Γ′
1 (Q(n))− K1

2
φ (V(n))

}

(30)

where φ(V(n)) =
∑3

j=1 φj(V(n)). α1 ≥ 1 is the step factor

and can change the convergence speed. Because only some

rules in BRB may be activated and the matrix Ξ′
1(Q(n)) may

be singular at time instant n, Ξ′
1(Q(n)) is amended using γ1IU1

so that it becomes positive definite and γ1 > 0. K1 denotes a

positive real number, and its value may change from case to

case. There is

π1 (V(n)) = IU1
−H1 (V(n))T

×
(

H1 (V(n))H1 (V(n))T
)−1

H1 (V(n)) (31)

where H1(V(n)) denotes the Jacobian matrix of h1(V(n))
that denotes the value of h1(V) at V = V(n). h1(V) is

defined as

h1(V)
∆
=

[
h1
1(V), . . . , h1

S1
(V), h2

1(V), . . . , h2
S2
(V),

h3
1(V), . . . , h3

S3
(V)

]T
. (32)

As a result of the aforementioned discussion, the procedure

of the proposed recursive algorithms for online updating the

BRB parameters based on the distributed output and the normal

distribution assumption is summarized as the following steps:

Step 1) Give the initial values of the parameter vector V(0)
and the covariance matrix

∑
(0). V(0) must satisfy

constraints (13a)–(13d).

Step 2) When the data x̂(0) and ŷ(0) are given, the recursive

algorithm (30) is used to estimate V(1). Then,
∑

(1)
is estimated using (23).

Step 3) When x̂(n), ŷ(n), V(n), and
∑

(n) are available

at time instant n. Step 2 is reused to estimate

V(n+ 1).
Step 4) Once BRB is updated, it can be used to perform

inference from given inputs.

2) Recursive Algorithm Under Numerical Output and Nor-

mal Distribution: The output O(Y(n)), as shown in (4), is

represented as a distribution, and its average score is calculated

by [15], [16], [21]

y(n) =
N∑

j=1

µj(n)βj(n) (33)

where µj(n) denotes the utility (or score) of an individual

consequent Dj which can be either given using a scale or

estimated using the decision maker’s preferences.
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It is desirable that for a given input, x̂(n), a BRB can gener-

ate an output, represented as (33), which can be as close to ŷ(n)
as possible. Here, ŷ(n) is considered as a random variable, and

y(n) can be considered as its expectation. We assume that the

pdf of ŷ(n) obey the following normal distribution:

f (ŷ(n)|x(n),Q) =
1√
2πσ

exp

{

− (ŷ(n)− y(n))2

2σ

}

(34)

where Q = [WT , σ]T denotes the parameter vector. W =
[VT , µ1, . . . , µN ]T and σ denotes the variance.

Similar to (19)–(21), due to independence between the ele-

ments of W and σ, the recursive algorithm (16) can also be

changed into the following form when we consider only W:

W(n+ 1) =
∏

H2

{

W(n) +
1

n
[Ξ′

2 (Q(n))]
−1

Γ′
2 (Q(n))

}

(35)

where Γ′
2(Q(n)) and Ξ′

2(Q(n)) are the derivatives with respect

to W.

Let W = [W1, . . . ,WU2
] and U2 = L+M + L×N +N .

In (35), according to definitions (16a) and (16b), Γ′
2(Q(n)) and

Ξ′
2(Q(n)) have the following forms:

1) If a, b = 1, . . . , U1 and U1 = L+M + L×N , the ath

element of the gradient vector Γ′
2(Q(n)) and the entries

of Ξ′
2(Q(n)) at time instant n are given by

[Γ′
2 (Q(n))]a =

(ŷ(n)− y(n))

σ(n)

×
N∑

j=1

µj(n)
∂βj(n)

∂Wa

∣
∣
∣
∣
W=W(n)

(35a)

[Ξ′
2 (Q(n))]a,b =E

{
1

σ

∂y(n)

∂Wa

∂y(n)

∂Wb

− 1

σ

∂2y(n)

∂Wa∂Wb

× (ŷ(n)− y(n)) |Q(n)

}

=
1

σ(n)





N∑

j=1

µj(n)
∂βj(n)

∂Wa





×





N∑

j=1

µj(n)
∂βj(n)

∂Wb





∣
∣
∣
∣
∣
∣
W=W(n)

(35b)

where the derivatives are also given in Appendix A.

2) If a, b = U1 + 1, . . . , U2, there are

[Γ′
2 (Q(n))]a =

βa−U1
(n) (ŷ(n)− y(n))

σ(n)

∣
∣
∣
∣
W=W(n)

(35c)

[Ξ′
2 (Q(n))]a,b =

βa−U1
(n)βb−U1

(n)

σ(n)

∣
∣
∣
∣
W=W(n)

(35d)

Moreover, σ(n) is required in (35a)–(35d). If x̂(n), ŷ(n),
and W(n) are available, it can be estimated by

σ(n) = argmax
σ

log f (ŷ(n)|x̂(n),Q)|W=W(n)

= (ŷ(n)− y(n))2
∣
∣
∣
W=W(n)

(36)

In (35), the constraint set H2 is composed of constraints

(24)–(26) and the following two constraints:

1) The more preferred a consequent is, the higher its

score, i.e.,

µi < µj if i < j; i, j = 1, . . . , N. (37)

2) For qualitative output, the score (utility) of a consequent

can be normalized so that it is between zero and one, i.e.,

0 ≤ µj ≤ 1; j = 1, . . . , N. (38)

Now we will consider the following two cases.

Case 1. If output is not qualitative, the constraint set H2 is

composed of constraints (24)–(26) and (37).

Similarly, constraints (24)–(26) can also be written as

h1
i (W)=−Wi ≤ 0, i = 1, . . . , S1, S1 = U1 (39)

h2
i (W)=Wi − 1 ≤ 0, i = 1, . . . , S2, S2 = U1 (40)

h3
k(W)=h3

k

(
WL+M+(k−1)×N+1, . . . ,WL+M+(k−1)×N+N

)

=
N∑

j=1

βj,k − 1 ≤ 0, k=1, . . . , S3, S3=L. (41)

The inequality constraints (37) can be represented as

h4
g(W) = h4

g (WU1+i,WU1+j) = µi − µj < 0 (42)

where g = (i− 1)(N − 1) + j − i−
∑i−2

k=1(i− k − 1), i =
1, . . . , N − 1, and j = i+ 1, . . . , N .

Let S4 = (N − 2)(N − 1) + 1−∑N−3
k=1 (N − 2− k). Also

define

h̃j
sj
(W)

∆
= max

[

0, hj
sj
(W)

]

and

Ψj(W) =

Sj∑

sj=1

[

h̃j
sj
(W)

]2

(43)

φj(W) =

[
∂Ψj(W)

∂W1
, . . . ,

∂Ψj(W)

∂WU2

]

(44)

where j = 1, . . . , 4.

The recursive algorithm (35) is revised, and the following

algorithm for dealing with constraints (39)–(42) is obtained:

W(n+1)=W(n)+
α2

n

{

π2 (W(n)) [Ξ′
2 (Q(n))+γ2IU2

]
−1

× Γ′
2 (Q(n))−K2

2
φ′ (W(n))

}

(45)

where φ′(W(n)) =
∑4

j=1 φj(W(n)). α2 ≥ 1 is the step fac-

tor. Ξ′
2(Q(n)) is amended using γ2IU2

so that it becomes pos-

itive definite, and γ2 > 0. K2 denotes a positive real number,

and its value may change from case to case. There is

π2 (W(n)) = IU2
−H2 (W(n))T

×
(

H2 (W(n))H2 (W(n))T
)−1

H2 (W(n)) (46)
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where H2(W(n)) denotes the Jacobian matrix of h2(W(n))
that is defined as

h2(W)
∆
=
[
h1
1(W), . . . , h1

S1
(W), . . . , h4

1(W), . . . , h4
S4
(W)

]T

(47)

Case 2. If output is qualitative, the constraint set H2 is

composed of constraints (38)–(42).

Constraints (38)–(40) can be represented as

h5
i (W) = −Wi ≤ 0, i = 1, . . . , S5, S5 = U2 (48)

h6
i (W) =Wi − 1 ≤ 0, i = 1, . . . , S6, S6 = U2. (49)

Then, the constraint set H2 is composed of constraints (41),

(42), (48), and (49). Also define

h̃j
sj
(W)

∆
= max

[

0, hj
sj
(W)

]

and

Ψj(W) =

Sj∑

sj=1

[

h̃j
sj
(W)

]2

(50)

φj(W) =

[
∂Ψj(W)

∂W1
, . . . ,

∂Ψj(W)

∂WU2

]

(51)

where j = 3, . . . , 6.

Similarly, the recursive algorithm (35) is revised, and the

following algorithm for dealing with constraints (41), (42),

(48), and (49) can be obtained as follows [35], [36]:

W(n+1)=W(n)+
α2

n

{

π3 (W(n)) [Ξ′
2 (Q(n))+γ2IU2

]
−1

× Γ′
2 (Q(n))−K2

2
φ′′ (W(n))

}

(52)

where φ′′(W(n)) =
∑6

j=3 φj(W(n)), and there is

π3 (W(n)) = IU2
−H3 (W(n))T

×
(

H3 (W(n))H3 (W(n))T
)−1

H3 (W(n)) (53)

where H3(W(n)) denotes the Jacobian matrix of h3(W(n))
that is defined as

h3(W)
∆
=
[
h3
1(W), . . . , h3

S3
(W), . . . , h6

1(W), . . . , h6
S6
(W)

]T
.

(54)

As a result of the aforementioned discussion, the procedure

of the proposed recursive algorithm for online updating BRB

parameters based on numerical output and normal distribution

assumption may be summarized as the following steps:

Step 1) Give the initial values of the parameter vector

W(0) and the variance σ(0). W(0) must sat-

isfy constraints (13a)–(13d) and (37), or constraints

(13a)–(13d), (37) and (38).

Step 2) When the data x̂(0) and ŷ(0) are given, the recursive

algorithm (45) or (52) is used to estimate W(1).
Then, σ(1) is estimated using (36).

Step 3) When x̂(n), ŷ(n), W(n), and σ(n) are available

at time instant n. Step 2 is reused to estimate

W(n+ 1).
Step 4) Once BRB is updated, it can be used to perform

inference from given inputs.

Fig. 2. Layout of two tanks.

Remark: The proposed recursive algorithms for updating

BRB parameters online, based on distributed output or numer-

ical output, are stochastic approximation algorithms under the

equality and inequality constraints. The convergence theorem

of the stochastic approximation algorithm has been proved in

the literature [33] and [34]. Therefore, we can prove the con-

vergence of the recursive algorithms in the same way, if the ap-

propriate initial values of the parameters are chosen [37], [38].

IV. NUMERICAL EXAMPLE AND A CASE STUDY

A numerical example is studied in this section to show

the implementation of the proposed algorithms. Furthermore,

a case study for pipeline oil leak detection is examined to

illustrate the algorithms to show that it can be widely applied

in engineering.

A. Numerical Example

1) Problem Formulation: A system with two tanks is ana-

lyzed, as shown in Fig. 2. Water flows into the first tank at

the rate Q1 (m3/s), then flows to the second tank at the rate

Q12 (m
3/s), and finally flows out of the second tank at the rate

Q20 (m
3/s). Suppose that a slow jam fault occurs at the output

of tank 2.

The dynamic model of the two tanks is given as follows:
{

Aḣ1 = Q1 −Q12

Aḣ2 = Q12 −Q20
(55)

with
{

Q12 = a1s sgn(h1 − h2)
√

2g|h1 − h2|
Q20 = a2s

√
2gh2

(56)

where ai and hi (i = 1, 2) are the outflow coefficients and the

liquid level (meters) of the two tanks; sgn(z) is the sign of the

argument z; s is the section area of the connection pipe (m2);
A is the section area of the two tanks (m2) which are of the

same size; and Ts is the sampling period. The values of the

parameters used in (56) are shown in Table I.

Suppose that a2 decreases along the time as follows:

φ(n) = a2 − 0.001n (57)

where φ(n) is the outflow coefficient of the second tank when

the system is in the slow jam fault.

The levels of the two tanks during the slow jam fault are

given in Fig. 3. In order to verify the proposed recursive

algorithms, we use Level 1 and Level 2 as the inputs of a

BRB, and the outflow coefficient a2 which is denoted by OC
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TABLE I
VALUES OF THE PARAMETERS OF THE DOUBLE TANKS

Fig. 3. Levels of the two tanks during the slow jam fault.

TABLE II
REFERENTIAL POINTS OF Level 1

as the output. In other words, two levels are considered as

the antecedent attributes, and the outflow coefficient is the

consequent in BRB.

2) Referential Points of the Antecedent Attributes and Con-

sequent: The antecedent attributes and consequent should be

given some referential points. For Level 1 and Level 2, the

same referential points are used, and they are very small (VS),

small (S), medium (M), and large (L), i.e.,

Ak
i ∈ {V S, S,M,L} (58)

where i = 1, 2.

For OC, two referential points are used, and they are normal

(N) and fault (F), i.e.,

D = (D1, D2) = (N,F ). (59)

The referential points defined earlier for the antecedent at-

tributes and the consequent are in linguistic terms and need to

be quantified. The quantified results are listed in Tables II–IV,

respectively.

TABLE III
REFERENTIAL POINTS OF Level 2

TABLE IV
REFERENTIAL POINTS OF OC

3) Rules: For estimating the fault of the two tanks, a belief

rule can be represented as

Rk : If Level 1 is Ak
1 ∧ Level 2 is Ak

2 ,

Then OC is {(normal, β1,k), (fault, β2,k)}
With a rule weight θk and attribute weight δ1,k, δ2,k (60)

where Ak
1 and Ak

2 (k = 1, . . . , 4) are the referential values as

defined in Tables II and III, respectively.

4) Simulation Results Based on Distributed Output: In

order to validate the proposed recursive algorithm under dis-

tributed output and normal distribution assumption, the fol-

lowing simulation is conducted. In this case, the output is

transformed into the following distributed output format:

OC = {(normal, β1), (fault, β2)} (61)

where β1 and β2 are generated using the quantitative data

transformation technique [15].

Three BRBs are constructed for this validation analysis. The

first BRB is directly constructed from the given relationship

between the system output OC and the two inputs Level 1 and

Level 2, as defined by the slow jam fault model (57) and the

dynamic model given in (55) and (56). The second BRB is

given by an expert. Finally, the initial BRB model given by the

expert is trained using the proposed recursive algorithms and

the data generated for constructing the first BRB, leading to the

third optimally trained BRB.

Step 1—Directly construct a benchmark BRB using the

system model given in (55)–(57): For given values of Level 1

and Level 2, the values of OC can be generated from (55)–(57).

For example, if at time n = 1 s, Level 1 is VS (very small

or 0.25), and Level 2 is S (small or 0.2), then the value

of OC at n = 1 s is given by 0.499. This value can be

transformed into the following equivalent distribution: OC =
{(normal, 0.9969), (fault, 0.0031)}. By equivalent, we mean

that the average score of this distribution is equal to 0.449.

Therefore, the first belief rule can be constructed as follows:

If Level 1 is VS and Level 2 is S, Then OC is

{(N, 0.9969), (F, 0.0031)} (62)

which is shown in the second row in Table V. In other words,

we have β̂1,1 = 0.9969 and β̂2,1 = 0.0031.

Similarly, other belief rules can be generated from (57) and

Fig. 3. In Table V, the four belief rules constitute a BRB where
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TABLE V
BELIEF DEGREES IN THE BENCHMARK BRB

TABLE VI
INITIAL BELIEF DEGREES PROVIDED BY AN EXPERT

all the belief degrees are generated in the same way as shown

earlier, and the values of θk and δj are all set to 1, where

k = 1, . . . , 4 and j = 1, 2. This BRB can precisely represent

the relationship of the outflow coefficient OC with respect to

Level 1 and Level 2, at the four discrete points shown in the

antecedent conditions of the four belief rules listed in Table V.

This BRB is used as a benchmark to check how closely a BRB,

which is initialized either randomly or using expert knowledge,

can be trained using the proposed recursive training algorithm

to simulate the true relationship. Therefore, the BRB shown in

Table V is referred to as benchmark BRB for short.

To apply the benchmark BRB to simulate the output OC
based on the values of Level 1 and Level 2, the input values

[Level 1(n), Level 2(n)] also need to be transformed and

represented in terms of the referential values as defined in (58),

[6], [16], [25]. Then, (5) is used to generate the distributed

outputs of the benchmark BRB as defined in Table V. The

generated distributed outputs are then used to simulate the

output OC of the slow jam fault model defined in (57). In

order to use the proposed recursive algorithm, it is assumed that

the distributed output is a random variable and obeys normal

distribution.

Step 2—Set the parameters of the initial BRB: The belief

degrees in the initial BRB are given by an expert and listed

in Table VI. The initial values of θk and δj are all set at 1,

where k = 1, . . . , 4 and j = 1, 2. The initial belief degrees in

Table VI are determined by the expert according to the running

patterns and historical data of the two tanks and the change of

the OC values over time. For example, according to historical

information, if Level 1 is S and Level 2 is VS, the expert judges

that the possibility of the system in the normal (N) state is larger

than in the fault (F) state. Therefore, the expert assesses that

the belief degree to N is 0.6, and the belief degree to F is 0.4.

Thus, the initial belief rule can be obtained as the third row of

Table VI. The expert had good knowledge about the dynamics

of the two tank system, as well as the RIMER methodology.

However, he did not use any optimal training methods to fine-

tune the initially given weights and belief degrees.

Fig. 4 shows that the belief degrees to the consequents

calculated by (5) using the initial BRB do not well match the

distributed outputs generated by the benchmark BRB as defined

Fig. 4. Distributed outputs generated by the benchmark, initial, and updated
BRBs.

TABLE VII
UPDATED RULE WEIGHTS AND BELIEF DEGREES

UNDER DISTRIBUTE OUTPUT

in Table V. This means that the initial BRB provided by the

expert is not good enough. Therefore, it is necessary to use the

available information to update the initial BRB online.

Step 3—Update the BRB constructed initially using the

expert judgments in Step 2: Based on the data generated for

constructing the benchmark BRB as shown in Step 1 and the

initial BRB given by the expert in Step 2, the recursive algo-

rithm (30) is used to update the initial BRB, in order to examine

how closely the initial BRB can be trained to simulate the

benchmark BRB. The updated rule weights and belief degrees

are listed in Table VII. As shown in Fig. 4, it is obvious that the

distributed outputs generated by the updated BRB can match

the benchmark BRB more closely than the initial BRB.

Step 4—Quantitative analysis: In order to further demon-

strate the proposed recursive algorithms, the mean absolute

percentage error (MAPE) [41] is used. The MAPE between the

benchmark BRB and the initial BRB in terms of belief degrees

to the linguistic term “fault” is 21.04%. On the other hand,

the MAPE between the benchmark BRB and the updated BRB

in terms of the belief degrees to “fault” is 1.76%. Obviously,

the trained BRB can replicate the relationship among Level 1,

Level 2, and the output OC more accurately than the

initial BRB.

Step 5—Convergence analysis of the proposed recursive

algorithm: In order to study the performance of the recur-

sive algorithm, we choose the mean squared error (MSE)

[41], which is defined as ‖βj,k(n)− β̂j,k‖2 to measure the

estimation accuracy, where ‖ • ‖ denotes Euclidean norm. As
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Fig. 5. MSE between the distributed outputs generated by the benchmark and
updated BRBs.

Fig. 6. Observed OC values and the estimated OC values generated by the
initial and updated BRBs.

shown in Fig. 5, if the appropriate initial parameters are chosen,

the estimates generated by the proposed recursive algorithm

converge to the parameters in the benchmark BRB as defined

in Table V quickly.

5) Simulation Results Based on Numerical Output: In order

to validate the proposed recursive algorithm under numerical

output and normal distribution assumption, we will give the

following simulation.

Step 1—Set initial parameters: The initial rule weights,

attribute weights, and belief degrees are the same as for the

initial BRB constructed in Step 2 of the previous section. As

shown in Fig. 6, it is obvious that the estimated values of OC
generated by the initial BRB do not match the observed values.

This means that the initial BRB provided by an expert is indeed

rather bad. Therefore, it is necessary to update the initial BRB

online.

Step 2—Update the initial BRB: After the input values

[Level 1(n), Level 2(n)] are transformed and represented in

TABLE VIII
UPDATED RULE WEIGHTS AND BELIEF DEGREES UNDER NUMERICAL

OUTPUT AND PROPOSED ALGORITHM

TABLE IX
UPDATED RULE WEIGHTS AND BELIEF DEGREES UNDER

NUMERICAL OUTPUT AND EKF

terms of the referential values, the recursive algorithm (45) is

used to update the initial BRB. The updated rule weights and

belief degrees are given in Table VIII. Fig. 6 shows that the

updated BRB can replicate the relationship among Level 1,

Level 2, and OC much more closely than the initial one after

the algorithm converged at about time 50 s.

Step 3—Comparative studies: Some other methods, such

as extended Kalman filter (EKF) [42], interactive multiple

model [43], multiple model adaptive estimation [44], and mul-

tiple model reference control [45], can be used for model learn-

ing. In order to validate the efficiency of the proposed recursive

algorithm, we choose one of the aforementioned methods, EKF,

to update the initial BRB. The updated rule weights and belief

degrees are given in Table IX. In Fig. 6, it can be seen that EKF

can update the initial BRB and converges at about time 280 s.

Therefore, the learning speed of EKF is much slower than the

proposed recursive algorithm.

Step 4—Quantitative analysis: In order to further demon-

strate the accuracy of the proposed algorithm, the MAPE is also

used. The MAPE between the observed OC values and the OC
values generated by the initial BRB is 5.92%, and the MAPE

between the observed OC values and the OC values generated

by the EKF updated BRB is 4.86%. On the other hand, the

MAPE between the observed OC values and the OC values

generated by the recursively updated BRB is 1%. It is obvious

that the recursively updated BRB can replicate the relationship

among Level 1, Level 2, and OC much more accurately than the

initial one and the EKF updated one.

6) Concluding Remarks: From the aforementioned numeri-

cal study, we have seen that the initial BRB given by an expert

are not accurate, and the proposed recursive algorithms can be

used to update the initial BRB whether the output of BRB is

single numerical values or 2-D distributions. Moreover, if an

appropriate initial BRB is given by an expert, the proposed

algorithms can converge fairly fast.

Moreover, RIMER allows direct expert intervention, which

differentiates it from other methods. The expert intervention

can be used to determine the initial values of the unknown
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TABLE X
REFERENTIAL POINTS OF FlowDiff

TABLE XI
REFERENTIAL POINTS OF PressureDiff

parameters, which is very useful to improve the model learning

speed.

B. Case Study

In order to demonstrate the potential application of the

proposed recursive algorithms in engineering, we will apply the

scheme to build an expert system for pipeline oil leak detection,

with data taken from an operational long distance oil pipeline

installed in Great Britain.

1) Problem Formulation: Similar to [25], the leak data in-

cludes the difference between inlet flow and outlet flow, the

average pipeline pressure change over time and the leak rate,

denoted by FlowDiff, PressureDiff, and LeakSize, respectively.

FlowDiff and PressureDiff are the two very important factors

in detecting whether there is leak in the pipeline, and they can

be treated as the antecedent attributes of a rule base, and their

calculation equations are given in [25]. Obviously, LeakSize is

the consequent of the rule base.

We will use the data to update a BRB expert system for

detecting leaks and estimate leak sizes without generating false

alarms.

2) Referential Points of Antecedent Attributes and Conse-

quent: The antecedent attributes and consequent in the rule

base should be given some referential points. Similar to [25],

we choose these points as follows:

For FlowDiff, eight referential points are used, and they

are negative large (NL), negative medium (NM), negative

small (NS), negative very small (NVS), zero (Z), posi-

tive small (PS), positive medium (PM), and positive large

(PL), i.e.,

Ak
1 ∈ {NL,NM,NS,NV S,Z, PS, PM,PL}. (63)

For PressureDiff, seven referential points are used and they

are NL, NM, NS, Z, PS, PM, PL, i.e.,

Ak
2 ∈ {NL,NM,NS,Z, PS, PM,PL}. (64)

For LeakSize, five referential points are used: Z, very small

(VS), medium (M), high (H), and very high (VH), i.e.,

D = (D1, D2, D3, D4, D5) = (Z, V S,M,H, V H). (65)

The referential points defined earlier for the antecedent at-

tributes and consequent are in linguistic terms and need to be

quantified. The quantified results are given in Tables X–XII,

respectively.

TABLE XII
REFERENTIAL POINTS OF LeakSize

Fig. 7. FlowDiff of the pipeline.

3) Rules: In the BRB for the pipeline leak detection, a belief

rule can be represented as

Rk : If FlowDiff is Ak
1 ∧ PressureDiff is Ak

2

Then LeakSize is

{(Z, β1,k), (V S, β2,k), (M,β3,k), (H,β4,k), (V H, β5,k)}

With a rule weight θk and attribute weight δ1,k, δ2,k (66)

where Ak
1 and Ak

2 (k = 1, . . . , 56) are the referential

values as defined in Tables X and XI, respectively.

Because FlowDiff and PressureDiff are divided into eight and

seven terms, respectively, there are 56 combinations of the two

antecedent attributes leading to 56 belief rules in total. The

initial belief degrees of the BRB are given by an expert, as

shown in Table XIII of Appendix D. However, the initially

given belief degrees for LeakSize may not be accurate. It is

necessary to update the belief degrees so that the performance

of the expert system can be improved or optimized in a sense.

4) Updating and Testing of BRB: Similar to [25], during

the leak trial, 2008 samples of 4, 16, and 25% leak data were

collected at the rate of 10 s per sample, respectively. Figs. 7

and 8 give the FlowDiff and PressureDiff, respectively, when

there is no leak and 25% leak. In order to update the BRB,

800 datasets are selected, which include 200 from no leak, 200

from 25% leak, 200 from 16% leak, and 200 from 4% leak.

Then, these data are used to update the BRB using the proposed

recursive algorithms. The process of updating and testing the

BRB is implemented using MATLAB.

Step 1—Set initial parameters: The initial belief degrees

are given by an expert and listed in Table XIII of Appendix D.

θk and δj are all assumed to be 1, where k = 1, . . . , 56 and

j = 1, 2. As shown in Fig. 9, it is obvious that the values of the

estimated LeakSize calculated by the initial BRB do not match

the observed values when the leak is 25%. This means that the

initial BRB provided by an expert is not accurate. Hence, it is

necessary to update the BRB online.

Step 2—Update the initial BRB: After the input values

[FlowDiff(n), P ressureDiff(n)] are transformed and
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Fig. 8. PressureDiff of the pipeline.

Fig. 9. Testing data of no leak and 25% leak and outputs generated by the
initial BRB.

Fig. 10. Training data and outputs generated by the updated BRB.

represented in terms of the referential values as defined in (63)

and (64) at time instant n, the recursive algorithm (45) is used

to update the initial BRB. The updated rule weights and belief

degrees are listed in Table XIV of Appendix D. Figs. 10 and

11 on the time scale show that the updated BRB can closely

replicate the relationship among FlowDiff, PressureDiff, and

LeakSize in the training data. Moreover, the calculation speed

of the recursive algorithm is very high.

Fig. 11. Training data and outputs generated by the updated BRB on the time
scale.

Fig. 12. Testing data of no leak and 25% leak and outputs generated by the
updated BRB.

From Fig. 11, we can see that there is noise in the 25%

leak detected, which may be due to noise in data recorded

from instruments. Therefore, in a real leak detection system,

some kind of noise reduction process to smooth data should be

included.

Step 3—Test the updated BRB: For testing the updated

BRB, all the 2008 data shown in Figs. 7 and 8 are used. Fig. 12

shows the observed LeakSize and the estimated LeakSize for the

same antecedent values [FlowDiff(n), P ressureDiff(n)].
It demonstrates that the estimated LeakSize matches the ob-

served one very closely. Fig. 13 shows the observed and esti-

mated LeakSize on the time scale. It shows that the rule base

can detect the leak which happened at around 9:34 A.M. and

ended at around 10:50 A.M.

5) Concluding Remarks: When 16 and 4% leak data have

been used, the similar results are obtained using the updated

BRB. In summary, the initial BRB for pipeline leak detection
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Fig. 13. Testing data of no leak and 25% leak and outputs generated by the
updated BRB.

given by an expert are not accurate. When the new information

becomes available, the proposed recursive algorithm can update

the BRB quickly. Once the BRB is updated, it can be used to

forecast future leak.

From this case study, it can also be concluded that the

proposed algorithms can be widely applied in engineering.

V. CONCLUSION

This paper has been concerned with developing the recursive

algorithms for extending the recently developed belief rule

inference methodology (RIMER) for online updating BRB. The

two proposed recursive algorithms provide an innovative way to

enhance the capability of RIMER to simulate dynamic systems

where both expert knowledge and partial input–output data

are available. A numerical example and a case study for the

pipeline oil leak detection are examined to demonstrate how

the proposed algorithms can be implemented, which shows that

the approach may be widely applied in engineering.

There are three features in the proposed approach. First, the

proposed algorithms are recursive and analytic in nature. This

ensures that different from the other optimization models used

for training BRB, the proposed algorithms can be used to train

a BRB to simulate a dynamic system without having to reply

on the availability of complete training information. Second,

the proposed algorithms can be used to process incomplete or

vague information, which inherits from RIMER. Finally, since

RIMER allows the direct expert intervention, the proposed

algorithms can also take into account expert knowledge to

determine the initial values of BRB structures and parameters,

which is helpful to improve learning speed. The aforementioned

features equip the proposed algorithms with the capability

of online updating BRB models to simulate a range of real

systems, especially when there is a requirement for real-time

analysis and updating.

However, if there are too many belief rules in an initial

rule base for a complex real-world problem, there will also

be a lot of parameters to be updated, which will have impact

on the calculation speed of the recursive algorithms, or may

result in overfitting. On the other hand, if there are too few

rules in an initial rule base, it may lead to underfitting. More-

over, there may be conflicting rules which are qualitatively

incorrect. In fact, these problems may stem from the irrational

structure of BRB constructed using limited or incorrect expert

knowledge. In addition, the proposed recursive algorithms are

locally optimal. Consequently, an updated BRB may not be

able to achieve overall optimal performances. Therefore, there

is a need to develop appropriate principles to check conflicting

rules and adjust the structure of a BRB. Such principles may be

transformed into constraints to develop new global optimization

training models to achieve overall optimal performances. These

requirements pose challenges for future research.

APPENDIX A

CALCULATION OF THE DERIVATIVES

In this Appendix, the detailed processes to obtain the recur-

sive algorithm as shown in (13) are given.

To obtain a proper approximation of Ln+1(Q), we will

consider the Taylor expansion of the first terms on the right-

hand side of (10). Approximately

Ln(Q) ≈ Ln (Q(n)) + [∇QLn (Q(n))] (Q−Q(n))

+
1

2
(Q−Q(n))T

[
∇Q∇T

QLn (Q(n))
]
(Q−Q(n)) (A.1)

where ∇Q is a column gradient operator with respect to the

parameter vector Q.

By the definition of Ln(Q), ∇Q∇T
QLn(Q(n)) is approxi-

mately given by [34], [35]

∇Q∇T
QLn (Q(n)) ≈ −(n− 1)Ξ1 (Q(n)) (A.2)

where Ξ1(Q(n)) is the augmented information matrix calcu-

lated at Q(n) and

Ξ1(Q(n))
∆
=E

{

−∇Q∇T
Q log f

(

B̂(n)|x̂(n),Q
)

|x̂(n),Q(n)
}

(A.3)

Because Q = Q(n) is the maximum point of Ln(Q) in

(A.1), there is

∇QLn (Q(n)) = 0. (A.4)

Substituting (A.3) and (A.4) into (A.1), we can obtain

Ln(Q) ≈ Ln (Q(n))− 1

2
(Q−Q(n))T

× [(n− 1)Ξ1 (Q(n))] (Q−Q(n)) . (A.5)

Then by Taylor expansion, approximately

log f
(

B̂(n)|x̂(n),Q
)

≈ log f
(

B̂(n)|x̂(n),Q(n)
)

+
(

∇Q log f
(

B̂(n)|x̂(n),Q(n)
))

(Q−Q(n))

+
1

2
(Q−Q(n))T

(

∇Q∇T
Q log f

(

B̂(n)|x̂(n),Q(n)
))

× (Q−Q(n)) . (A.6)
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Define

Γ1 (Q(n))
∆
= ∇Q log f

(

B̂(n)|x̂(n),Q(n)
)

(A.7)

where ∇Q log f(B̂(n)|x̂(n),Q(n)) represents the gradient

vector at Q(n).
Hence, the conditional expectation of (A.6) can be written as

E
{

log f
(

B̂(n)|x̂(n),Q
)

|x̂(n),Q(n)
}

= E
{

log f
(

B̂(n)|x̂(n),Q(n)
)

|x̂(n),Q(n)
}

+ Γ1 (Q(n)) (Q−Q(n))

+
1

2
(Q−Q(n))T E

×
{

∇Q∇T
Q log f

(

B̂(n)|x̂(n),Q(n)
)

|x̂(n),Q(n)
}

× (Q−Q(n)) . (A.8)

According to (10), (A.5), and (A.8), the following expression

can be obtained:

Ln+1(Q) =Ln (Q(n))

+ E
{

log f
(

B̂(n)|x̂(n),Q(n)
)

|x̂(n),Q(n)
}

+ Γ1 (Q(n)) (Q−Q(n))− n

2
(Q−Q(n))T

× [Ξ1 (Q(n))] (Q−Q(n)) . (A.9)

The first and second terms of (A.9) are constants, so the

maximizing parameter Q(n+ 1) is given by

Q(n+ 1) = Q(n) +
1

n
[Ξ1 (Q(n))]−1 Γ1 (Q(n)) . (A.10)

APPENDIX B

CALCULATION OF THE DERIVATIVES

In (21a) and (21b) and (35a) and (35b), some derivatives are

used and are given in this Appendix.

When n is shaded, (18) is written as

f(B̂|x,Q)=(2π)
−N
2 |Σ|−1

2

× exp

{

−1

2
(B̂−B)TΣ−1(B̂−B)

}

(B.1)

log f(B̂|x,Q)=−N

2
log 2π − 1

2
log |Σ|

− 1

2
(B̂−B)TΣ−1(B̂−B) (B.2)

where
∑

= σ × diag{1, . . . , 1
︸ ︷︷ ︸

N

}; B̂ = [β̂1, . . . , β̂N ]T ; and B =

[β1, . . . , βN ]T .

The first derivatives of log f(B̂|x,Q) with respect to

Va (a = 1, . . . , L+M + L×N) are

∂ log f(B̂|x,Q)

∂Va

=
∂BT

∂Va

−1∑

(B̂−B) (B.3)

where ∂βj/∂Va needs to be calculated.

Assume

Bj =

L∏

k=1

(

ωkβj,k + 1− ωk

N∑

i=1

βi,k

)

−
L∏

k=1

(

1− ωk

N∑

i=1

βi,k

)

(B.4)

C =
N∑

j=1

L∏

k=1

(

ωkβj,k + 1− ωk

N∑

i=1

βi,k

)

− (N − 1)
L∏

k=1

(

1− ωk

N∑

i=1

βi,k

)

−
L∏

k=1

(1− ωk)

(B.5)

Then, there is

βj =
Bj

C
(B.6)

Define

φ(q)
∆
=

M∏

i=1

(αq
i )

δi (B.7)

ϕ
∆
=

L∑

l=1

θl

M∏

i=1

(
αl
i

)δi
(B.8)

ξ1(q)
∆
=

L∏

k=1

k �=q

(

1− ωk

N∑

i=1

βi,k

)

(B.9)

χ1(q, j)
∆
=

L∏

k=1

k �=q

(

ωkβj,k + 1− ωk

N∑

i=1

βi,k

)

. (B.10)

The first order derivatives of βj(j = 1, . . . , N) with respect

to Va(a = 1, . . . , L+M + L×N) are represented as

∂βj

∂Va

=
1

C2

(
∂Bj

∂Va

C − ∂C

∂Va

Bj

)

(B.11)

with

∂Bj

∂θs
=

L∑

q=1

∂ωq

∂θs

∂Bj

∂ωq

(B.12)

∂Bj

∂δm
=

L∑

q=1

∂ωq

∂δm

∂Bj

∂ωq

(B.13)

∂C

∂θs
=

L∑

q=1

∂ωq

∂θs

∂C

∂ωq

(B.14)

∂C

∂δm
=

L∑

q=1

∂ωq

∂δm

∂C

∂ωq

(B.15)

∂Bj

∂βz,p

=

{
−ωpχ1(p, j) + ωpξ1(p), j �= z
ωpξ1(p), j = z

(B.16)

∂C

∂βz,p

= −
N∑

j=1

j �=z

ωpχ1(p, j) + (N − 1)ωpξ1(p) (B.17)
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TABLE XIII
INITIAL BELIEF DEGREES FOR PIPELINE OIL LEAK DETECTION PROVIDED BY AN EXPERT

where

∂ωq

∂θs
=

{

−θqφ(q)φ(s)ϕ
−2, s �= q

φ(s)ϕ−1 − θsφ(s)
2ϕ−2, s = q

(B.18)

∂ωq

∂δm
= θq (lnα

q
m)φ(q)ϕ−1

− θqφ(q)ϕ
−2

L∑

l=1

θl
(
lnαl

m

)
φ(l) (B.19)

∂Bj

∂ωq

=

(

βj,q −
N∑

i=1

βi,q

)

χ1(q, j)
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TABLE XIV
UPDATED RULE WEIGHTS AND BELIEF DEGREES

+ ξ1(q)

N∑

i=1

βi,q (B.20)

∂C

∂ωq

=

N∑

j=1

(

βj,q −
N∑

i=1

βi,q

)

χ1(q, j)

+ (N − 1)ξ1(q)

N∑

i=1

βi,q +

L∏

k=1

k �=q

(1− ωk) (B.21)

where j = 1, . . . , N ; s = 1, . . . , L; p = 1, . . . , L;

z = 1, . . . , N ; q = 1, . . . , L; and m = 1, . . . ,M . �
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APPENDIX C

ALGORITHM TO ESTIMATE THE PARAMETERS

OF THE COVARIANCE MATRIX

According to (22), the determinant of
∑

can be cal-

culated by

|Σ| = σN
1 +

N∑

k=2

(−1)k−1(k − 1)Ck
NσN−k

1 σk
2 (C.1)

The inverse matrix
∑−1 = (bi,j)N×N can be determined as

follows:

{
bi,j = η1, i = j
bi,j = η2, i �= j

(C.2)

where

η1 =
σ1 + (N − 2)σ2

σ2
1 + (N − 2)σ1σ2 − (N − 1)σ2

2

(C.3)

η2 =
−σ2

σ2
1 + (N − 2)σ1σ2 − (N − 1)σ2

2

(C.4)

According to (18), we can obtain

∂ log f
(

B̂(n)|x(n),V(n)
)

∂σ1

= −1

2

∂ log |Σ|
∂σ1

− 1

2

[
∂η1
∂σ1

γ1(n) + 2
∂η2
∂σ1

γ2(n)

]

(C.5)

∂ log f
(

B̂(n)|x(n),V(n)
)

∂σ2

= −1

2

∂ log |Σ|
∂σ2

− 1

2

[
∂η1
∂σ2

γ1(n) + 2
∂η2
∂σ2

γ2(n)

]

(C.6)

where

∂ log |Σ|
∂σ1

=
1

|Σ|

[

NσN−1
1 +

N∑

k=2

(−1)k−1(k − 1)(N − k)

× Ck
NσN−k−1

1 σk
2

]

(C.7)

∂ log |Σ|
∂σ2

=
1

|Σ|

[
N∑

k=2

(−1)k−1k(k − 1)Ck
NσN−k

1 σk−1
2

]

(C.8)

γ1(n) =

N∑

i=1

(

B̂i(n)−Bi(n)
)2

(C.9)

γ2(n) =
N∑

i=1,j=1

i�=j

(

B̂i(n)−Bi(n)
)(

B̂j(n)−Bj(n)
)

(C.10)

∂η1
∂σ1

=
−σ2

1−2(N−2)σ1σ2−(N−1)σ2
2−(N−2)2σ2

2

[σ2
1+(N−2)σ1σ2−(N−1)σ2

2 ]
2

(C.11)

∂η1
∂σ2

=
(N − 1)(N − 2)σ2

2 + 2(N − 1)σ1σ2

[σ2
1 + (N − 2)σ1σ2 − (N − 1)σ2

2 ]
2 (C.12)

∂η2
∂σ1

=
2σ1σ2 + (N − 2)σ2

2

[σ2
1 + (N − 2)σ1σ2 − (N − 1)σ2

2 ]
2 (C.13)

∂η2
∂σ2

=
−σ2

1 − (N − 1)σ2
2

[σ2
1 + (N − 2)σ1σ2 − (N − 1)σ2

2 ]
2 . (C.14)

Thus, σi(n) = argmax
σi

log f(B̂(n)|x(n),V(n)) is equiva-

lent to solving the following nonlinear equations:







∂ log f(B̂(n)|x(n),V(n))
∂σ1

= 0
∂ log f(B̂(n)|x(n),V(n))

∂σ2

= 0.
(C.15)

The numerical method, such as FSOLVE function in

MATLAB, can be used to solve the aforementioned nonlinear

equations to estimate σ1 and σ2.

APPENDIX D

See Tables XIII and XIV.
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