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Abstract

We present statistical methods for big data arising from online analytical processing, where large
amounts of data arrive in streams and require fast analysis without storage/access to the historical
data. In particular, we develop iterative estimating algorithms and statistical inferences for linear
models and estimating equations that update as new data arrive. These algorithms are
computationally efficient, minimally storage-intensive, and allow for possible rank deficiencies in
the subset design matrices due to rare-event covariates. Within the linear model setting, the
proposed online-updating framework leads to predictive residual tests that can be used to assess
the goodness-of-fit of the hypothesized model. We also propose a new online-updating estimator
under the estimating equation setting. Theoretical properties of the goodness-of-fit tests and
proposed estimators are examined in detail. In simulation studies and real data applications, our
estimator compares favorably with competing approaches under the estimating equation setting.
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SUPPLEMENTARY MATERIAL

The supplementary material (pdf file) contains additional details about the Bayesian motivation for the linear model online-updating
formulae, online-updated inference in the linear model setting, proofs of Propositions 2.4, 3.5 and Theorem 3.2 along with Conditions
(C1)-(C6), I computation for the asymptotic Ftest, and additional simulation results. A zip file is also provided which contains R code
and related information for the data example.
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1 Introduction

The advancement and prevalence of computer technology in nearly every realm of science
and daily life has enabled the collection of “big data”. While access to such wealth of
information opens the door towards new discoveries, it also poses challenges to the current
statistical and computational theory and methodology, as well as challenges for data storage
and computational efficiency.

Recent methodological developments in statistics that address the big data challenges have
largely focused on subsampling-based (e.g., Kleiner et al., 2014; Liang et al., 2013; Ma et
al., 2013) and divide and conquer (e.g., Lin and Xi, 2011; Guha et al., 2012; Chen and Xie,
2014) techniques; see Wang et al. (2015) for a review. “Divide and conquer” (or “divide and
recombine” or ‘split and conquer”, etc.), in particular, has become a popular approach for
the analysis of large complex data. The approach is appealing because the data are first
divided into subsets and then numeric and visualization methods are applied to each of the
subsets separately. The divide and conquer approach culminates by aggregating the results
from each subset to produce a final solution. To date, most of the focus in the final
aggregation step is in estimating the unknown quantity of interest, with little to no attention
devoted to standard error estimation and inference.

In some applications, data arrive in streams or in large chunks, and an online, sequentially
updated analysis is desirable without storage requirements. As far as we are aware, we are
the first to examine inference in the online-updating setting. Even with big data, inference
remains an important issue, particularly in the presence of rare-event covariates. In this
work, we provide standard error formulae for divide-and-conquer estimators in the linear
model (LM) and estimating equation (EE) framework. We further develop iterative
estimating algorithms and statistical inferences for the LM and EE frameworks for online-
updating, which update as new data arrive. These algorithms are computationally efficient,
minimally storage-intensive, and allow for possible rank deficiencies in the subset design
matrices due to rare-event covariates. Within the online-updating setting for linear models,
we propose tests for outlier detection based on predictive residuals and derive the exact
distribution and the asymptotic distribution of the test statistics for the normal and non-
normal cases, respectively. In addition, within the online-updating setting for estimating
equations, we propose a new estimator and show that it is asymptotically consistent. We
further establish new uniqueness results for the resulting cumulative EE estimators in the
presence of rank-deficient subset design matrices. Our simulation study and real data
analysis demonstrate that the proposed estimator outperforms other divide-and-conquer or
online-updated estimators in terms of bias and mean squared error.

The manuscript is organized as follows. In Section 2, we first briefly review the divide-and-
conquer approach for linear regression models and introduce formulae to compute the mean
squared error. We then present the linear model online-updating algorithm, address possible
rank deficiencies within subsets, and propose predictive residual diagnostic tests. In Section
3, we review the divide-and-conquer approach of Lin and Xi (2011) for estimating equations
and introduce corresponding variance formulae for the estimators. We then derive our
online-updating algorithm and new online-updated estimator. We further provide theoretical
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results for the new online-updated estimator and address possible rank deficiencies within
subsets. Section 4 contains our numerical simulation results for both the LM and EE
settings, while Section 5 contains results from the analysis of real data regarding airline on-
time statistics. We conclude with a brief discussion.

2 Normal Linear Regression Model

2.1 Notation and Preliminaries

Suppose there are Nindependent observations {(y; X,), 7=1, 2, ..., N} of interest and we

wish to fit a normal linear regression model ; a:X;5+6i where &; ~ MO, ¢%) independently
fori=1,2,..., N, and Bis a p-dimensional vector of regression coefficients corresponding
to covariates X; (px 1). Write y = (y1, V2. . . ., ya)’ and X = (X1, Xo, . . ., Xp) | where we
assume the design matrix X is of full rank p <. The least squares (LS) estimate of B and
the corresponding residual mean square, or mean squared error (MSE), are given by

N PR
B= (X X) X yand \fSE= .\.+Y{ (I, —H)y respectively, where Iis the Nx N
identity matrix and H = X(X'X)~!X".

In the online-updating setting, we suppose that the /Vobservations are not available all at
once, but rather arrive in chunks from a large data stream. Suppose at each accumulation
point k& we observe y; and Xy, the ng-dimensional vector of responses and the ;. x p matrix

1]
il

of covariates, respectively, for k=1, ..., Ksuch that Y= (Y1~ y;-. s YK) and

’

X= (Xl 2y X;() . Provided X is of full rank, the LS estimate of Bbased on the kh
N p —1_
subset is given by By = (XA:Xk) X1.¥k and the MSE is given by

’ _J- ’
MSEp, g==15yy (T, — Hy) yj, where Hy=X5 (kak) Xy, fork=1,2,..., K
As in the divide-and-conquer approach (e.g., Lin and Xi, 2011), we can write B as

1K

.
B= (ZX}CX#) S X X8, e
k=1 k=1 (D)

We provide a similar divide-and-conquer expression for the residual sum of squares, or sum
of squared errors (SSE), given by

K K K -1, K
SSE=>"yuyi — (Z.X-kxﬁ'ﬁm.‘_k) (Zxkxk) (Z.kakﬁﬂk\k) :
k=1 k=1 k=1

k=1

@)

and MSE = SSE/(N - p). Expression (2) is quite useful if one is interested in performing

inference in the divide-and-conquer setting, as var (ﬁ ) may be estimated by
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-1
K '

MSE (Zk:] Xfka) . We will see in Section 2.2 that both expressions (1) and (2) may

be expressed in sequential form that is more advantageous from the online-updating

perspective.

2.2 Online Updating

While equations (1) and (2) are quite amenable to parallel processing for each subset, the
online-updating approach for data streams is inherently sequential in nature. Equations (1)
and (2) can certainly be used for estimation and inference for regression coefficients
resulting at some terminal point K from a data stream, provided quantities

(X;Xﬁc! B gk Yl; Yk) are available for all accumulation points k=1, . . ., K. However, such
data storage may not always be possible or desirable. Furthermore, it may also be of interest
to perform inference at a given accumulation step &, using the & subsets of data observed to
that point. Thus, our objective is to formulate a computationally efficient and minimally
storage-intensive procedure that will allow for online-updating of estimation and inference.

2.2.1 Online Updating of LS Estimates—While our ultimate estimation and inferential
procedures are frequentist in nature, a Bayesian perspective provides some insight into how
we may construct our online-updating estimators. Under a Bayesian framework, using the
previous & — 1 subsets of data to construct a prior distribution for the current data in subset 4,
we immediate identify the appropriate online updating formulae for estimating the
regression coefficients Band the error variance o2 with each new incoming dataset (yz, Xp).
The Bayesian paradigm and accompanying formulae are provided in the Supplementary
Material.

Let 5’ . and MSE denote the LS estimate of Band the corresponding MSE based on the

cumulative data Dy = {(y¢z X)), ~=1,2,...,k).The online-updated estimator of Bbased on
cumulative data Dy is given by

Bk:(X;XkJrVk—l)_l (X;X;{ﬁm;ﬁr\@,lﬁkil) 3

- k i
where 80=0, Vk:Zﬁ:1 XXifork=1,2,...,and Vo=0,is a p x p matrix of zeros.
Although motivated through Bayesian arguments, (3) may also be found in a (non-Bayesian)
recursive linear model framework (e.g., Stengel, 1994, p313).

The online-updated estimator of the SSE based on cumulative data Dy is given by

SSEw=SSE_1+5SE, 4+BiVio1Bi_ +Bnk._kX;<;Xan.k.k: ~BViB, 4)

where SSE,;,  is the residual sum of squares from the k' dataset, with corresponding
residual mean square MSE,;,  =SSE,, ;A1 — p). The MSE based on the data Dy is then
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_ k N
MSE = SSE ANy — p) where i\"k:ZF:] ne(=ng+Ni—1)for k=1, 2, . ... Note that for &

= K, equations (3) and (4) are identical to those in (1) and (2), respectively.

Notice that, in addition to quantities only involving the current data (yz Xp) (i.e.,
3“5.‘,‘;, SSE.. k X;X;{, and ny), we only used quantities (Bk_], SSEx1, Vi1, Ni—1)

from the previous accumulation point to compute B , and MSE;. Based on these online-
updated estimates, one can easily obtain online-updated t-tests for the regression parameters.
Online-updated ANOVA tables require storage of two additional scalar quantities from the
previous accumulation point; details are provided in the Supplementary Material.

2.2.2 Rank Deficiencies in X,—When dealing with subsets of data, either in the divide-
and-conquer or the online-updating setting, it is quite possible (e.g., in the presence of rare
event covariates) that some of the design matrix subsets X will not be of full rank, even if
the design matrix X for the entire dataset is of full rank. For a given subset &, note that if the
columns of X are not linearly independent, but lie in a space of dimension g < p, the
estimate

ﬁnk...fr:(xjﬁ:xk)ixlyk- (3)

where (kak) is a generalized inverse of (kak) for subset 4, will not be unique.

However, both 3 and MSE will be unique, which leads us to introduce the following
proposition.

Propeosition 2.1: Suppose X is of full rank p < N. If the columns of Xy are not linearly
independent, but lie in a space of dimension qx <p forany k=1, ..., K, 8 in(1) and SSE
(2) using an i as in (5) will be invariant to the choice of generalized inverse (X;cxk) _.

To see this, recall that a generalized inverse of a matrix B, denoted by B™, is a matrix such
that BB™B = B. Note that for (XLX;‘.) 7, a generalized inverse of (XLX;‘. ), ém-‘ r given in (5)
is a solution to the linear system (XLX;{) ﬂg::X;\ ¥k It is well known that if (XLX};)7 isa
generalized inverse of (X:'('.Xk ) then X (Xx Xk) _X;. is invariant to the choice of
(X;gxk)_ (e.g., Searle, 1971, p20). Both (1) and (2) rely on ank only through product

X;Xkﬁnk:kzx;;:xk (X;XP) _Xl:Yk:XLqu which is invariant to the choice of (XLX;;)_.

Remark 2.2: 7he online-updating formulae (3) and (4) do not require X:X . for all k to be

3 i
invertible. In particular, the online-updating scheme only requires V= 1 XX to be
invertible. This fact can be made more explicit by rewriting (3) and (4), respectively, as
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Be=(XiXitVir) (Rt Wiet) =Vit (Kyt Wi ) )

SSEy=SSEr_1+yyitBe ViciBi_1 — B ViBr (1)

Ir‘Q I
where W =0 andwkzz Xeyefork=1,2,. ...

=1
Remark 2.3: Following Remark 2.2 and using the Bayesian motivation discussed in the
Supplementary Material, if X is not of full rank (e.g., due to a rare event covariate), we may
consider a regularized least squares estimator by setting Vo #0,,. For example, setting V=
ALy A >0, with py =0 would correspond to a ridge estimator and could be used at the
beginning of the online estimation process until enough data has accumulated; once enough
data has accumulated, the biasing term V( = AL, may be removed such that the remaining

sequence of updated estimators B .. and MSEy. are unbiased for B and o2, respectively.
Further details are provided in the Supplementary Material.

2.3 Model Fit Diagnostics

While the advantages of saving only lower-dimensional summaries are clear, a potential
disadvantage arises in terms of difficulty performing classical residual-based model
diagnostics. Since we have not saved the individual observations from the previous (k —1)
datasets, we can only compute residuals based upon the current observations (yz, Xz). For
example, one may compute the residuals ey; = yxj — Vi where i=1, ..., nyand

Upe f-_:x;d B, i OF even the externally studentized residuals given by

Chi { ng —p—1 } i
r - =Cki - G 1
\I,-"'I_-"lISE?Jk‘k(.;,:) (]. - ka!];ﬂ'} ’ 58 Fa"n.k.k (] - hk.-.r'i) - ﬁﬁé

tri=

®)

. ! _1 ’
hk,i.,-:Dmg(Hk},.:Dz:ag(XR(kak) Xk)

where ;and MSE,, 4 is the MSE computed

from the &7 subset with the / observation removed, i=1, ..., .

However, for model fit diagnostics in the online-update setting, it would arguably be more

useful to consider the predictive residuals, based on 3 . from data Dj_; with predicted

values S’k=(§’m= s ?jknk_) =XuBr 1, as &= Vij — Vi i= 1, . .., ng Define the

. .. . 2 v A e 5
standardized predictive residuals as ty;=C;/ |/ var (Bre)s T=diensa s

Technometrics. Author manuscript; available in PMC 2017 July 08.
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2.3.1 Distribution of standardized predictive residuals—To derive the distribution

of {,,, we introduce new notation. Denote ¥k—1= (Y;: e ay;c 1) ,and @7, and € the
corresponding N;_| x p design matrix of stacked Xy /=1, ..., k—1, and Nj_; x 1 random
errors, respectively. For new observations yg, Xy, we assume y; = X8+ &, where the
elements of &; are independent with mean 0 and variance o® independently of the elements
of €4 which also have mean 0 and variance o®. Thus, A&, = 0,

s\ 2 St e YL
var (Cg ) =0 (1+1k-i.(2' k 1'-'&&:—1) 'M.:i/, fori=1,..., nand

. N -1 .,
o (&) — 2 I 3
var (&) =o (Im:"'x-k('?'k 1334) Xk) where &= (&q. . . .. &) -

If we assume that both &z and €;_; are normally distributed, then it is easy to show that

é';{-z;a'r( ér) ey ~ X%;- Thus, estimating o with MSE_; and noting that

.N-r-, —n 2 . v"’ v — v ~
-‘-g; EMSE, 1~ Xy i n independently of & var(éy) lek, we find that T~ Nt 1-p and

: s .
g (1.,.%+XL. (212 ) xk) &5
Py = ~F .
i F’l-;‘-;ﬂfSElir,1 neNg_1-p (9)

If we are not willing to assume normality of the errors, we introduce the following
proposition. The proof of the proposition is given in the Supplementary Material.

Proposition 2.4: Assume that (i) e, i=1, . . ., ny, are independent and identically

distributed with E(e)) = 0 and £ (F?) =0 Q,' (ii) the elements of the design matrix -, are
uniformly bounded, i.e., |X,j| <G, % i, j, where C < ©0 s constant; (iif)

. .)J kS
o k-1 __ . .. . .
N lim . —5——=Q, where Q is a positive definite matrix. Let &r=T"1g, where
Njp1—+
-1 ‘
[N a o ! T s ! ww ! wik -
I'T =1, +Xg (_j?,k_l -»?'k—l) Xy Write €, = (ek-.L TR . ), where ez,t_ s an ny; %X 1

i—1 T
vector consisting of the (Zgzln e +1) th component through the (Zgzln ’“L‘) th

e e “
component of &, and Zi,] "y, ="y, We further assume that (iv) nﬂ'lmx %::C;;, where (O < C;
: = T
< oojsconstant fori=1, ..., m. Letting 1, be an ny;x 1 vector of all ones, then at
accumulation point k, we have

| . )
- = Xo,  as np, Np_| — o0
MSE; Xm: @5 Tk Ny 10

2.3.2 Tests for Outliers—Under normality of the random errors, we may use the
standardized predictive residuals §, and 15]( in (9) to test individually or globally if there are

any outliers in the A dataset. Notice that 5 and 151( can be re-expressed equivalently as

Technometrics. Author manuscript; available in PMC 2017 July 08.
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' ) py 1
- — _ L e (T X (Ve ) TIXL) e
ik::éki,f \."II ﬂ-j\_fSEk_l (l—l—’l’k; (Vk—l)_lxki) and -Fk: ( ke f\) y

nkﬂL-IS'E;r, 1

1)

respectively, and thus can both be computed with the lower-dimensional stored summary
statistics from the previous accumulation point.

We may identify as outlying yj; observations those cases whose standardized predicted 7,
are large in magnitude. If the regression model is appropriate, so that no case is outlying

because of a change in the model, then each {, will follow the ¢distribution with Nj_; — p

degrees of freedom. Let pr; = P(|tn;_—pl > [f,,]) be the unadjusted p-value and let fy; be the
corresponding adjusted p-value for multiple testing (e.g., Benjamini and Hochberg, 1995;
Benjamini and Yekutieli, 2001). We will declare yy;an outlier if py; < a for a prespecified a
level. Note that while the Benjamini-Hochberg (BH) procedure assumes the multiple tests to
be independent or positively correlated, the predictive residuals will be approximately
independent as the sample size increases. Thus, we would expect the false discovery rate to
be controlled with the BH p-value adjustment for large Ng_;.

To test if there is at least one outlying value based upon null hypothesis Hy : E(éz) = 0, we
will use statistic ﬁk. Values of the test statistic larger than A1 — a, ny, N1 — p) would
indicate at least one outlying y;;exists among 7= 1, . . ., g at the corresponding a level.

If we are unwilling to assume normality of the random errors, we may still perform a global
outlier test under the assumptions of Proposition 2.4. Using Proposition 2.4 and following
the calibration proposed in Muirhead (1982) (Muirhead, 1982, page 218), we obtain an
asymptotic F statistic

2
T 1 L
1 — (1, é AT
N i=1 . ( ks L:,‘) ‘\'kf] — TH+1 d ) )
e : s Fim, Ny —m+1)., as np. Np_; — oo
* MSE,_, Nowaoitt ( k-1 +1), as np. Ny
(12)

Values of the test statistic ﬁ‘f larger than A1 — a, m, Nj_; — m+ 1) would indicate at least
one outlying observation exists among y at the corresponding a level.

= (Lo +Xi (25,25 -)_IX’ o? £ IT o2 .
ny k\Lgp—15k-1 k , whereT is

Remark 2.5: Recall that V" (¢k)
an ny x ny invertible matrix. For large ny, it may be challenging to compute the Cholesky
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decomposition of var(€z). One possible solution that avoids the large ny issue is given in the
Supplementary Material.

3 Online Updating for Estimating Equations
A nice property in the normal linear regression model setting is that regardless of whether

one “divides and conquers” or performs online updating, the final solution BF‘, will be the

same as it would have been if one could fit all of the data simultaneously and obtained 3
directly. However, with generalized linear models and estimating equations, this is typically
not the case, as the score or estimating functions are often nonlinear in . Consequently,
divide and conquer strategies in these settings often rely on some form of linear
approximation to attempt to convert the estimating equation problem into a least square-type
problem. For example, following Lin and Xi (2011), suppose N independent observations
{z;,i=1,2,..., N}. For generalized linear models, z; will be (y;, x,) pairs, i=1,..., N

with £ (1:) =g (Xr.eﬁ ) for some known function g. Suppose there exists 3, < * such that

N Mal . . . A .
Z-;.:] E [ (2:.84)] =0 for some score or estimating function y. Let BN_ denote the solution

N N
to the estimating equation (EE) M () ZZ;:=1 ¥ (2, 8) =0and let V ybe its corresponding
estimate of covariance, often of sandwich form.

Let {zy; i=1, ..., ng} be the observations in the th subset. The estimating function for

subset kis My, i (8) :Z:] 1" (21 B). Denote the solution to M, (P =0as B
define

ke 1 WE

v 00 (201 B i)
A-:z;c,-:: - —h
’ ; o (13)

a Taylor expansion of —M,, () at Bm”k is given by

~M,, k B) =A, (5 - ﬁnk:k) +R, 5 as Mo, & (5;J,k,k:) =0 and Rnk,k is the remainder
term. As in the linear model case, we do not require A, x to be invertible for each subset £,

k
but do require that Z y A, ¢ is invertible. Note that for the asymptotic theory in Section
3.3, we assume that A,  is invertible for large n. For ease of notation, we will assume for
now that each A, 1 is invertible, and we will address rank deficient A ; 4 in Section 3.4
below.

The aggregated estimating equation (AEE) estimator of Lin and Xi (2011) combines the
subset estimators through

. K LK X
'6_-\'}( - (ZAILR :L:) ZAra.k.k.Snk_.k

k=1 k=1 (14)

Technometrics. Author manuscript; available in PMC 2017 July 08.
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K -
which is the solution to ZkzlAm:,k (3 - ﬁuk,k) =0, Lin and Xi (2011) did not discuss a
variance formula, but a natural variance estimator is given by

T

R K . [ K -1
V,\.'K = (ZA?’Q J{) ZARE: ‘kvﬂg; .kAIk__‘k. [ (Z‘An;ﬂk)
k=1 k=1

k=1 (15)

where V ng.k 18 the variance estimator of Eu_;‘.,.fz from the subset £. If \7,1](, % 1s of sandwich

form, it can be expressed as A;_:_ i Qm:‘;{A;:‘ j» Where Qp, ¢ is an estimate of Q,, =
var(My, 1(B))- Then, the variance estimator is still of sandwich form as

K 1K K -7
vnu( = (ZA?’%J{) Zan,ﬂ: (Z Aﬂ.r.nfx‘)
k=1 k=1 k=1

(16)

3.1 Online Updating

Now consider the online-updating perspective in which we would like to update the
estimates of fand its variance as new data arrives. For this purpose, we introduce the
cumulative estimating equation (CEE) estimator for the regression coefficient vector at
accumulation point k as

p:';‘::(Ak_] +An,g _‘k)_l (Ak:—lﬁ}.;_l +A—nk:klén.k.ﬂ:) V)

for k=1, 2,...where ﬁn:u, A= Op, and A= }_::] Ay, r=Ar 1 +A,, 1 With \70 = 0p
and A = 0, the variance estimator at the &% update is given by

-~ N - T
Vi (A 1+ A0, 00 " (A Vi AT A VAT ) [(A 1A, 0™

gk

(18)

By induction, it can be shown that (17) is equivalent to the AEE combination (14) when k=
K, and likewise (18) is equivalent to (16) (i.e., AEE=CEE). However, the AEE estimators,

and consequently the CEE estimators, are not identical to the EE estimators B\ and V N
based on all /NVobservations. It should be noted, however, that Lin and Xi (2011) did prove

asymptotic consistency of AEE estimator B\ . under certain regularity conditions. Since the
CEE estimators are not identical to the EE estimators in finite sample sizes, there is room for
improvement.

Towards this end, consider the Taylor expansion of —M,,, () around some vector B“ ko 1O
be defined later. Then

Technometrics. Author manuscript; available in PMC 2017 July 08.
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_ﬂ"irn.;,:k (B} - - ﬂi{rak.k (Bnk‘k:) + {Ank\k (‘8”‘“5')} (18 - Bnk.k) +Rrek.f\:

with R, 1.k denoting the remainder. Denote f?f . as the solution of

K .

S Mk (Bos) s (A (Bar)] (B = Bagr) =0.

k=1 k=1 (19)

Define A-m...k: [Aﬂk,k (ﬂnk,kﬂ and assume A gk refers to A, & (ﬁnk:k]. Then we have

—1

_ K . Iy ~ . I3y .
ﬂj{ _{ ZAH.R,RI} {ZA'”-R:L'JBH,",.IJ+Z‘n"ir'n-;,--k (,Bnh ,k) } .
k=1 k=1 k=1

(20)

If we choose Bm” i =8 then A3 . in (20) reduces to the AEE estimator of Lin and Xi

ﬂ,j;;.k’
K - n
(2011) in (14), as (19) reduces to D, Anei (B — By i) =0 because Mo i (B, i) =0

forall k=1, ..., K However, one does not need to choose Bm” i =B ns.4 In the online-
updating setting, at each accumulation point &, we have access to the summaries from the
previous accumulation point £ — 1, so we may use this information to our advantage when

defining ,ém” i~ Consider the intermediary estimator given by

b—1
- ~ -1 ~ - ~
13'.'1;'.,3“: (Afi'fl +An;‘. k’) (ZAR( .J.‘frsu_g: _£'+A?J.k_,k‘-ﬁuk,.f;)
21

£=1

_ . - ko
for k=1.2,.... Ap=0,,8,, =0and A= o A, . Estimator (21) combines the

iy

previous intermediary estimators B”&_.f, f=1,....k — 1and the current subset estimator

B.,, 1 and arises as the solution to the estimating equation

Zi.:llfim.f (/3 - )én,._f) +A Lk (5 - ﬁnk,k) =0 where A, k (ﬁ - Bnk,k) serves as a bias

v

-1
correction term due to the omission of —Z o1 My, 1 (18 m,.k) from the equation.

With the choice of Bm” i as given in (21), we introduce the cumulatively updated estimating

equation (CUEE) estimator B L as

Bk:(Ak—l"_Angﬁk)_l (ak—1+Ank1kém..k+hk—l +My, & (ﬁnk)) 22)
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with ap= A?IJ;;.kﬁ'rek.k:An,u, .kﬁ-;;.k.k‘f'ak—l and

£=1
ke - v -

be=>, M, (Buy) =Mk (B i) +bi 1 where ag = by =0, Ag = 0,, and k= 1,

2, . ... Note that for a terminal k= K, (22) is equivalent to (20).

For the variance of B ,» observe that

0=—- M, x (ﬁnk\k) ~ —Mp, x (énk,k) +An, x (Bnk.k - Bnk.k). Thus, we have

A, e,:._kﬂn ke +M,, i (5-;LR:L:) =z Auk._.frﬁnk_k. Using the above approximation, the variance
formula is given by

Vi= (AkflJFA-n.,‘..k) . (Akflkalgz_j JFA-rr.g:,kv-n.;.:,I\:AL_.,L;) { (Akfl +A?1k.k) 71} ! 23)

fork=1,2,...and Ag= V=0,
Remark 3.1—Under the normal linear regression model, all of the estimating equation

. P ..
estimators become “exact”, in the sense that 8, = (X X) Xy=8,,=8,=8..

3.2 Online Updating for Wald Tests

Wald tests may be used to test individual coefficients or nested hypotheses based upon either

. . (ﬁk_ (-‘8&:1.‘ , -"3k.p) ) Vk)
the CEE or CUEE estimators from the cumulative data. Let
refer to either the CEE regression coefficient estimator and corresponding variance in
equations (17) and (18), or the CUEE regression coefficient estimator and corresponding
variance in equations (22) and (23).

To test Hy : B;=0 at the kfupdate (=1, ..., p), we may take the Wald statistic
2

*2 f)> ! i * s ; s
215=0 i fvar | B ) zp =0 se | 81
kg Tk ( }"J), or equivalently, kg ! '} where the standard error

se | 3=, |var |3, ar j .
(J M) ( A'J) and v ( ki ) is the /% diagonal element of V. The

corresponding p-value is £’ (|Z | = |3;;|) =P (\% > 3:%) where Zand 4 are standard
normal and 1 degree-of-freedom chi-squared random variables, respectively.

The Wald test statistic may also be used for assessing the difference between a full model
M1 relative to a nested submodel M2. If B is the parameter of model M1 and the nested
submodel M2 is obtained from M1 by setting CB = 0, where C is a rank g contrast matrix

and V is a consistent estimate of the covariance matrix of estimator B the test statistic is

! . —1
BC (C v e ) Ch , which is distributed as XE under the null hypothesis that C8= 0. As
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an example, if M1 represents the full model containing all p regression coefficients at the k!
update, where the first coefficient B is an intercept, we may test the global null hypothesis

w't -1 ”
Hy: po=...=B,=0with “i=BirC (CWC ) CBi where Cis (p— 1) x pmatrix C =

[0, I, 1] and the corresponding p-value is P (\?H = 'mi:).

3.3 Asymptotic Results

In this section, we show consistency of the CUEE estimator. Specifically, Theorem 3.2

shows that, under regularity, if the EE estimator based on the all /N observations 5’\ isa
consistent estimator and the partition number K goes to infinity, but not too fast, then the

CUEE estimator j3 . 1s also a consistent estimator. The technical regularity conditions are
provided in the Supplementary Material. We use the same conditions, (C1)-(C6), as Lin and
Xi (2011) with the exception of condition (C4). Instead, we use a slightly modified version
which focuses on the behavior of A, ((B) for all Bin the neighborhood of A (as in (C5)),

rather than just at the subset estimate 5'“‘ - (C4’) In a neighborhood of ), there exists two
positive definite matrices A; and A, such that A; <z ! A ni(B) <Ajforall Bin the
neighborhood of ) and for all k=1, ..., K.

We assume for simplicity of notation that ny= nforall k=1, 2, ..., K The proof of the
theorem can be found in the Supplementary Material.

Theorem 3.2—Ler 3 ., be the EE estimator based on entire data. Then under (C1)-(C2),
(C4°)-(Co), if the partition number K satisfies K = (n?) for some 0 < y < min{1 —2a, 4a —

1}, we have I’ ( VN |,éK - B, ||>5) =o(1) forany 6 >0.
Remark 3.3—If ni #n for all k, Theorem 3.2 will still hold, provided for each k, ”37:1 s
bounded, where ny_; and ny are the respective sample sizes for subsets k — 1 and k. '

Remark 3.4—Suppose N independent observations (y; X)), i=1, ..., N, where y is a
scalar response and X is a p-dimensional vector of predictor variables. Further suppose

E(yi)=g (Xrﬁ ) fori=1, ..., N for g a continuously differentiable function. Under mild

regularity conditions, Lin and Xi (2011) show in their Theorem 5.1 that condition (C6) is
satisfied for a simplified version of the quasi-likelihood estimator of f (Chen et al., 1999),

N ‘
given as the solution to the estimating equation & (8) :ij=1 [?Ji -4 (X-gﬁ)] x;=0,

3.4 Rank Deficiencies in Xy

Suppose Nindependent observations (y;, X;), 7=1, ..., N, where yis a scalar response and
x is a p-dimensional vector of predictor variables. Using the same notation from the linear
model setting, let (v, X)), 7= 1, . . ., my, be the observations from the 4% subset where y =
(Vkts Yi2s - - -+ Yinp) and Xg= (Xg1, X2, - - . » Xgp) - For subsets & in which Xy is not of full

rank, we may have difficulty in solving the subset EE to obtain B“ ..k» Which is used to
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compute both the AEE/CEE and CUEE estimators for Bin (14) and (20), respectively.
However, just as in the linear model case, we can show under certain conditions that if

X= (Xl z cees X;() has full column rank p, then the estimators B“, in (14) and 5’ L in
(20) for some terminal K will be unique.

Specifically, consider observations (Y4 Xz) such that E(yy,) = uxi= g(nx;) with TFk-z:X;;-; B for
some known function g. The estimating function y for the % dataset is of the form y(zy;,
B = XxiSkiWik Vi — Hii)» 1= 1, . . ., g, where Sg;= 0, /0y, and Wy;is a positive and
possibly data dependent weight. Specifically, Wy; may depend on S only through 7. In
matrix form, the estimating equation becomes

XS Wi (v — ) =0, (24)

where Sy = Diag(Sk1, - - - » Skup)» Wi=Diag(Wyq, ..., W), and ppe= (upa - - -, ,uk,,k)/.

With Sy, Wy, and g evaluated at some initial value ﬁ(o), the standard Newton—Raphson
method for the iterative solution of (24) solves the linear equations

XS WiSiXy (8- 8Y) =X\ SiWi (v — i) (5

for an updated B. Rewrite equation (25) as X, S, WS X ,8=X .S W v} Where v =y —
HitSX IQG(O); this can be recognized as the normal equation of a weighted least squares
regression with response v, design matrix S;Xy, and weight W . Therefore the iterative
reweighted least squares approach (IRLS) can be used to implement the Newton—Raphson
method for an iterative solution to (24) (e.g., Green, 1984).

Rank deficiency in X calls for a generalized inverse of X;'_SL\;V 81X, In order to show

uniqueness of estimators Bw\_ in (14) and ,é . in (20) for some terminal K, we must first
establish that the IRLS algorithm will work and converge for subset & given the same initial
value £ when X is not of full rank. Upon convergence of IRLS at subset & with solution

B ny.k» We must then verify that the CEE and CUEE estimators that rely on B ny.k Are unique.
The following proposition summarizes the result; the proof is provided in the Supplementary
Material.

Proposition 3.5—Under the above formulation, assuming that conditions (C1)-(C3) hold
for a full-rank sub-column matrix of X, estimators B\ . in(14) and B . 11 (20) for some

terminal K will be unique providedX is of full rank.

The simulations in Section 4.2 and Supplementary Material consider rank deficiencies in
binary logistic regression and Poisson regression. Note that for these models, the variance of
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—1 —1
K P K -
N . —1_ _
the estimators 3_and 3, are given by Ay *( 'k:lA”’\"k) or A= (Z&:1A”k~*’) .
For robust sandwich estimators, for those subsets & in which A, ¢ is not invertible, we

replace A-n;c..kvn;mkAl;,.,k and A'??;c-,kvﬂk‘kli;r“k in the “meat” of equations (18) and (23),
respectively, with an estimate of Q ;, 4 from (16). In particular, we use

Qq:k,k:Z-nk] s (Z!\:é«Bk:) W (ZL:-J.-. Bk)T for the CEE variance and

=

- ny - S AT
Q?J_.k..fc:z?::] w (Zﬂ:é-sﬁk:) Y (Zm:-. 3&) for the CUEE variance. We use these modifications
in the robust Poisson regression simulations in Section 4.2.2 for the CEE and CUEE
estimators, as by design, we include binary covariates with somewhat low success
probabilities. Consequently, not all subsets & will observe both successes and failures,
particularly for covariates with success probabilities of 0.1 or 0.01, and the corresponding
design matrices X will not always be of full rank. Thus A, ; will not always be invertible
for finite n, but will be invertible for large enough n;. We also present results of a proof-of-
concept simulation for binary logistic regression in the Supplementary Material, where we

compare CUEE estimators under different choices of generalized inverses.

4 Simulations

4.1 Normal Linear Regression: Residual Diagnostic Performance

In this section we evaluate the performance of the outlier tests discussed in Section 2.3.2.
Let £*denote the index of the single subset of data containing any outliers. We generated the

data according to the model yk;:X;mB‘i‘f-ki_Fbde?ki’ i=1,..., n, where by =0if k #k*
and by ~ Bernoulli(0.05) otherwise. Notice that the first two terms on the right-hand-side
correspond to the usual linear model with 8= (1,2, 3, 4, 5)’, Xpi2:5) ~ M0, 1y)
independently, xg;11] = 1, and &, are the independent errors, while the final term is
responsible for generating the outliers. Here, 7;; ~ Exp(1) independently and & is the scale
parameter controlling magnitude or strength of the outliers. We set § € {0, 2, 4, 6}

EEINT3

corresponding to “no”, “small”, “medium”, and “large” outliers.

To evaluate the performance of the individual outlier t-test in (11), we generated the random
errors as eg; ~ N(0, 1). To evaluate the performance of the global outlier F-tests in (11) and
(12), we additionally considered &; as independent skew-t variates with degrees of freedom
v =3 and skewing parameter y = 1.5, standardized to have mean 0 and variance 1. To be
precise, we use the skew £ density, 7 () :ﬁf (Y% for x <0 and 9 (%) :ﬁf (TI) for x >
0, where f(x) is the density of the ¢ distribution with vdegrees of freedom. :

For all outlier simulations, we varied &% the location along the data stream in which the
outliers occur. We also varied nyg = g+ € {100, 500} which additionally controls the number
of outliers in dataset k* For each subset /= 1, . . ., k*—1 and for 95% of observations in
subset &£* the data did not contain any other outliers.

To evaluate the global outlier F-tests (11) and (12) with m = 2, we estimated power using B
= 500 simulated data sets with significance level a = 0.05, where power was estimated as the
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proportion of 500 datasets in which Fk* >F0.95, ng# Ng#_; —5) or

F : > F(0.95,2, N.«_; — 1. The power estimates for the various subset sample sizes ;.
locations of outliers k% and outlier strengths & appear in Table 1. When the errors were
normally distributed, notice that the Type I error rate was controlled in all scenarios for both
the Ftest and asymptotic F'test. As expected, power tends to increase as outlier strength
and/or the number of outliers increase. Furthermore, larger values of &* and hence greater
proportions of “good” outlier-free data, also tend to have higher power; however, the
magnitude of improvement decreases once the denominator degrees of freedom (Ng+_1—p
or Nyx_1— m+ 1) become large enough, and the Ftests essentially reduce to X2 tests. Also
as expected, the Ftest given by (11) is more powerful than the asymptotic Ftest given in
(12) when, in fact, the errors were normally distributed. When the errors were not normally
distributed, the empirical type I error rates of the Ftest given by (11) are severely inflated
and hence, its empirical power in the presence of outliers cannot be trusted. The asymptotic
Ftest, however, maintains the appropriate size.

For the outlier #test in (11), we examined the average number of false negatives (FN) and
average number of false positives (FP) across the B = 500 simulations. False negatives and
false positives were declared based on a BH adjusted p-value threshold of 0.10. These values
were plotted in solid lines against outlier strength in Figure 1 for ng+= 500 for various
values of k*and &; the corresponding plot for nz+= 100 is given in the Supplementary
Material. Within each plot the FN decreases as outlier strength increases, and also tends to
decrease slightly across the plots as k*increases. FP increases slightly as outlier strength
increases, but decreases as k*increases. As with the outlier Ftest, once the degrees of
freedom Ng»_ | — p get large enough, the #test behaves more like a ztest based on the
standard normal distribution. For comparison, we also considered FN and FP for an outlier
test based upon the externally studentized residuals #+ from subset &*only. Specifically,
under the assumed linear model, -+ as given by (8) follow a ¢distribution with mg«— p—1
degrees of freedom. Again, false negatives and false positives were declared based on a BH
adjusted p-value threshold of 0.10, and the FN and FP for the externally studentized residual
(ESR) test are plotted in dashed lines in Figure 1 for nz+= 500; the plot for nz+= 100 may
be found in the Supplementary Materials. This ESR test tends to have a lower FP, but higher
FN than the predictive residual test that uses the previous data. Also, the FN and FP for the
ESR test are essentially constant across &* for fixed n1;+ as the ESR test relies on only the
current dataset of size ng+and not the amount of previous data controlled by k*.
Consequently, the predictive residual test has improved power over the ESR test, while still
maintaining a low number of FP.

4.2 Simulations for Estimating Equations

4.2.1 Logistic Regression—To examine the effect of the total number of blocks K on
the performance of the CEE and CUEE estimators, we generated y; ~ Bernoulli(z;),
independently for /=1, ..., 100000, With},oggg (125) :x:ﬁ where B=(1,1,1,1, 1, ',
X;2:41 ~ Bernoulli(0.5) independently, x;5.6] ~ M0, I,) independently, and xz;;1; = 1. The
total sample size was fixed at V= 100000, but in computing the CEE and CUEE estimates,

the number of blocks K varied from 10 to 1000 where N could be divided evenly by K. At
each value of K, the root-mean squared error (RMSE) of both the CEE and CUEE estimators
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i - 2 =

were calculated as \ m where 7, represents the / coefficient in either the
CEE or CUEE terminal estimate. The averaged RMSEs are obtained with 200 replicates.
Figure 2 shows the plot of averaged RMSEs versus the number of blocks K. It is clear that as
the number of blocks increases (block size decreases), RMSE from CEE method increases

very fast while RMSE from the CUEE method remains relatively stable.

4.2.2 Robust Poisson Regression—In these simulations, we compared the
performance of the (terminal) CEE and CUEE estimators with the EE estimator based on all
of the data. We generated B = 500 datasets of y; ~ Poisson(y;), independently for i=1, ...,

Nwith log [:'Ju,,;i] :X;‘B where ,3= (0.3, -0.3, 0.3, -0.3, 0.3)/, Xki1] = 1, Xi2:3] ~ MO, I,)
independently, x;4; ~ Bernoulli(0.25) independently, and x;;57 ~ Bernoull(0.1)
independently. We fixed K= 100, but varied ng = n € {100, 500}.

Figure 3 shows boxplots of the biases in the 3 types of estimators (CEE, CUEE, EE) of §;, j
=1,...,5, for varying n. The CEE estimator tends to be the most biased, particularly in
the intercept, but also in the coefficients corresponding to binary covariates. The CUEE
estimator also suffers from slight bias, while the EE estimator performs quite well, as
expected. Also as expected, as g increases, bias decreases. The corresponding robust
(sandwich-based) standard errors are shown in Figure 4, but the results were very similar for

. . _ ~ 1 .
variances estimated by A F\_l and A« . In the plot, as n1g increases, the standard errors become
quite similar for the three methods.

Table 2 shows the RMSE ratios, RMSE(CEE)/RMSE(EE) and RMSE(CUEE)/RMSE(EE),
for each coefficient. The RMSE ratios for CEE and CUEE estimators confirm the boxplot
results as the intercept and the coefficients corresponding to binary covariates (84, B5) tend
to be the most problematic for both estimators, but more so for the CEE estimator.

For this particular simulation, it appears ;. = 500 is sufficient to adequately reduce the bias.
However, the appropriate subset size 1, if given the choice, is relative to the data at hand.
For example, if we alter the data generation of the simulation to instead have x;5; ~
Bernoulli(0.01) independently, but keep all other simulation parameters the same, the bias,
particularly for Bs, still exists at nz = 500 (see Figure 5) but diminishes substantially with ny
= 5000.

5 Data Analysis

We examined the airline on-time statistics, available at http://stat-computing.org/dataexpo/
2009/the-data.html. The data consists of flight arrival and departure details for all
commercial flights within the USA, from October 1987 to April 2008. This involves N=
123, 534, 969 observations and 29 variables (~ 11 GB).

We first used logistic regression to model the probability of late arrival (binary; 1 if late by
more than 15 minutes, 0 otherwise) as a function of departure time (continuous); distance
(continuous, in thousands of miles), day/night flight status (binary; 1 if departure between
8pm and 5am, 0 otherwise); weekend/weekday status (binary; 1 if departure occurred during
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the weekend, O otherwise), and distance type (categorical; ‘typical distance’ for distances
less than 4200 miles, the reference level ‘large distance’ for distances between 4200 and
4300 miles, and ‘extreme distance’ for distances greater than 4300 miles) for N= 120, 748,
239 observations with complete data.

For CEE and CUEE, we used a subset size of n; =50, 000 for k=1,..., K—1, and ng=
48239 to estimate the data in the online-updating framework. However, to avoid potential
data separation problems due to rare events (extreme distance; 0.021% of the data with
26,021 observations), a detection mechanism has been introduced at each block. If such a
problem exists, the next block of data will be combined until the problem disappears. We
also computed EE estimates and standard errors using the commercial software Revolution
R.

All three methods agree that all covariates except extreme distance are highly associated
with late flight arrival (p <0.00001), with later departure times and longer distances
corresponding to a higher likelihood for late arrival, and night-time and weekend flights
corresponding to a lower likelihood for late flight arrival (see Table 3). However, extreme
distance is not associated with the late flight arrival (p = 0.613). The large p value also
indicates that even if number of observations is huge, there is no guarantee that all covariates
must be significant. As we do not know the truth in this real data example, we compare the
estimates and standard errors of CEE and CUEE with those from Revolution R, which
computes the EE estimates, but notably not in an online-updating framework. In Table 3, the
CUEE and Revolution R regression coefficients tend to be the most similar. The regression
coefficient estimates and standard errors for CEE are also close to those from Revolution R,
with the most discrepancy in the regression coefficients again appearing in the intercept and
coefficients corresponding to binary covariates.

We finally considered arrival delay (ArrDelay) as a continuous variable by modeling
log(ArrDelay — min(ArrDelay) + 1) as a function of departure time, distance, day/night
flight status, and weekend/weekday flight status for United Airline flights (N =13, 299,
817), and applied the global predictive residual outlier tests discussed in Section 2.3.2.
Using only complete observations and setting 723 = 1000, m = 3, and a = 0.05, we found that
the normality-based Ftest in (11) and asymptotic Ftest in (12) overwhelmingly agreed upon
whether or not there was at least one outlier in a given subset of data (96% agreement across
K= 12803 subsets). As in the simulations, the normality-based Ftest rejects more often than
the asymptotic Ftest: in the 4% of subsets in which the two tests did not agree, the
normality-based F'test alone identified 488 additional subsets with at least one outlier, while
the asymptotic Ftest alone identified 23 additional subsets with at least one outlier.

6 Discussion

We developed online-updating algorithms and inferences applicable for linear models and
estimating equations. We used the divide and conquer approach to motivate our online-
updated estimators for the regression coefficients, and similarly introduced online-updated
estimators for the variances of the regression coefficients. The variance estimation allows for
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online-updated inferences. We note that if one wishes to perform sequential testing, this
would require an adjustment of the a level to account for multiple testing.

In the linear model setting, we provided a method for outlier detection using predictive
residuals. Our simulations suggested that the predictive residual tests are more powerful than
a test that uses only the current dataset in the stream. In the EE setting, we may similarly
consider outlier tests also based on standardized predictive residuals. For example in
generalized linear models, one may consider the sum of squared predictive Pearson or
Deviance residuals, computed using the coefficient estimate from the cumulative data (i.e.,

Ek_] or 5';-__1)' It remains an open question in both settings, however, regarding how to
handle such outliers when they are detected. This is an area of future research.

In the estimating equation setting, we also proposed a new online-updated estimator of the
regression coefficients that borrows information from previous datasets in the data stream.
The simulations indicated that in finite samples, the proposed CUEE estimator is less biased
than the AEE/CEE estimator of Lin and Xi (2011). However, both estimators were shown to
be asymptotically consistent.

The methods in this paper were designed for small to moderate covariate dimensionality p,
but large N. The use of penalization in the large p setting is an interesting consideration, and
has been explored in the divide-and-conquer context in Chen and Xie (2014) with popular
sparsity inducing penalty functions. In our online-updating framework, inference for
penalized parameters would be challenging, however, as the computation of their variance
estimates is quite complicated and is also an area of future work.

The proposed methods are particularly useful for data that is obtained sequentially and
without access to historical data. Notably, under the normal linear regression model, the
proposed scheme does not lead to any information loss for inferences involving B, as when

the design matrix is of full rank, B“Rl‘ i and MSE,,  are sufficient and complete statistics for
Band 2. However, under the estimating equation setting, some information will be lost.
Precisely how much information needs to be retained at each subset for specific types of
inferences is an open question, and an area devoted for future research.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Outliers in Subset k*=100

o
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T 1
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Average numbers of False Positives and False Negatives for outlier t-tests for ng+= 500.

Solid lines correspond to the predictive residual test while dotted lines correspond to the

externally studentized residuals test using only data from subset k*
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Figure 2.
RMSE of CEE and CUEE estimators for different numbers of blocks.
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Figure 3.
Boxplots of biases for CEE, CUEE, EE estimators of ,Bj(estimated ,Bj- true ﬂj), Jj=1,...,5,

for varying ny.
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Figure 4.

Boxplots of standard errors for CEE, CUEE, EE estimators of ,Bj, Jj=1,...,5, for varying
;. Standard errors have been multiplied by . /iy, — /' for comparability.
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ny, when x;57 ~ Bernoulli(0.01).
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Table 1

Page 26

Power of the outlier tests for various locations of outliers (£#), subset sample sizes (11 = 1z, and outlier

strengths (no, small, medium, large). Within each cell, the top entry corresponds to the normal-based Ftest

and the bottom entry corresponds to the asymptotic F'test that does not rely on normality of the errors.

Outlier Strength

k*=5

ny = 100 (5 true outliers)

k*=10

k*=25

k* =100

ny = 500 (25 true outliers)

k*=5

k* =10

k*=25

k* =100

F Test/Asymptotic F Test(m=2)

F Test/Asymptotic F Test(m=2)

Standard Normal Errors

no 0.0626  0.0596  0.0524 0.0438  0.0580 0.0442  0.0508 0.0538
0.0526  0.0526  0.0492 0.0528  0.0490 0.0450  0.0488 0.0552
small 0.5500  0.5690  0.5798 0.5718  0.9510 0.9630  0.9726 0.9710
0.2162  0.2404  0.2650 0.2578  0.6904 0.7484  0.7756 0.7726
medium 0.9000 0.8982  0.9094 09152  1.0000  1.0000  1.0000 1.0000
0.5812  0.6048  0.6152 0.6304  0.9904 0.9952  0.9930 0.9964
large 0.9680 0.9746 09764 0.9726  1.0000  1.0000  1.0000 1.0000
0.5812  0.6048  0.6152 0.6304  0.9998  1.0000  1.0000 1.0000
Standardized Skew t Errors
no 0.2400 0.2040  0.1922 0.1656  0.2830 0.2552  0.2454 0.2058
0.0702  0.0630  0.0566 0.0580  0.0644 0.0580  0.0556 0.0500
small 05252 0.4996  0.4766 0.4520  0.7678 0.7598  0.7664 0.7598
0.2418 0.2552  0.2416 0.2520  0.6962 0.7400  0.7720 0.7716
medium 0.8302  0.8280  0.8232 0.8232 09816 0.9866  0.9928 0.9932
0.5746 05922  0.6102 0.6134 09860 0.9946  0.9966 0.9960
large 0.9296 09362  0.9362 0.9376  0.9972  0.9970  0.9978 0.9990
0.7838  0.8176  0.8316 0.8222  0.9988 0.9992  0.9998 1.0000

Power with “outlier strength = no” are Type I errors.
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RMSE Ratios of CEE and CUEE with EE

Br B2 B3z Bs Bs

=100 CEE 2414 1.029 1.036 1299 1.810
CUEE 1.172 1.092 1.088 1.118 1.205

=500 CEE 1.225 1.002 1.002 1.060 1.146
CUEE 0999 1.010 1.016 0.993 1.057

Technometrics. Author manuscript; available in PMC 2017 July 08.

Table 2



1duosnuey Joyiny 1duosnuen Joyiny 1duosnuey Joyiny

1duosnuen Joyiny

Schifano et al.

Table 3

Page 28

Estimates and standard errors (x10%) from the Airline On-Time data for EE (computed by Revolution R),

CEE, and CUEE estimators.

EE CEE CUEE

Buj selBy;)  Brj selbr;)  Bay o sefBy)
Intercept  —3.8680 1395.65 -3.7060 1434.60 -3.8801 1403.49
Depart 0.1040 6.01 0.1024 6.02 0.1017 5.70
Distance 0.2409 40.89 0.2374 41.44 0.2526 38.98
Night —0.4484 81.74 -0.4318 82.15 -0.4335 80.72
Weekend -0.1769 54.13 -0.1694 54.62 -0.1779 53.95
TypDist 0.8785 1389.11 0.7676 1428.26 0.9231 1397.46
ExDist -0.0103 2045.71  —0.0405 2114.17 —0.0093 2073.99
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