
Online-Updating Regularized Kernel Matrix Factorization
Models for Large-Scale Recommender Systems

Steffen Rendle, Lars Schmidt-Thieme
Machine Learning Lab

Institute for Computer Science
University of Hildesheim, Germany

{srendle, schmidt-thieme}@ismll.uni-hildesheim.de

ABSTRACT
Regularized matrix factorization models are known to gen-
erate high quality rating predictions for recommender sys-
tems. One of the major drawbacks of matrix factorization
is that once computed, the model is static. For real-world
applications dynamic updating a model is one of the most
important tasks. Especially when ratings on new users or
new items come in, updating the feature matrices is crucial.

In this paper, we generalize regularized matrix factoriza-
tion (RMF) to regularized kernel matrix factorization
(RKMF). Kernels provide a flexible method for deriving
new matrix factorization methods. Furthermore with ker-
nels nonlinear interactions between feature vectors are pos-
sible. We propose a generic method for learning RKMF
models. From this method we derive an online-update algo-
rithm for RKMF models that allows to solve the new-user/
new-item problem. Our evaluation indicates that our pro-
posed online-update methods are accurate in approximat-
ing a full retrain of a RKMF model while the runtime of
online-updating is in the range of milliseconds even for huge
datasets like Netflix.

Categories and Subject Descriptors
I.2.6 [Learning]: Parameter learning

General Terms
Algorithms, Experimentation, Measurement, Performance

1. INTRODUCTION
Regularized matrix factorization is known to be one of

the most successful methods for rating prediction outper-
forming other methods like pearson-correlation based kNN
or co-clustering [1, 14, 3]. One drawback is that the model
(the factorization) is learned in batch mode. After having
learned the model, it is applied for prediction. For lab eval-
uation this works fine. But in real-world scenarios like an
online shop or a video rental service there is not such a dis-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
RecSys’08, October 23–25, 2008, Lausanne, Switzerland.
Copyright 2008 ACM 978-1-60558-093-7/08/10 ...$5.00.

tinction between training and prediction. In fact after the
training phase visitors will generate new feedback (e.g. rate
items). For users that have already rated a lot the user’s pro-
file will not change much, but for a new user each feedback
that he gives will result in much change in his inferable taste.
Therefore adding ratings to a user with a small rating profile
should result in a much better model and thus to better pre-
dictions for this user. We will refer to this as the ‘new-user
problem’. Symmetrically for items, the ‘new-item problem’
is formulated. The scenario of new items and new users is
important in almost any real-world recommender and is es-
pecially crucial in domains with changing content e.g. on
a news website, TV program, etc. The new-user problem
occurs in almost every application from online shopping to
personalized websites.

In this work, first we generalize regularized matrix fac-
torization (RMF) to regularized kernel matrix factorization
(RKMF). A kernel function allows to transform the prod-
uct of the factor matrices. Kernels like the s-shaped logistic
function allow to impose bounds on the prediction (e.g. one
to five stars) while still being differentiable. We will pro-
pose a gradient descent based algorithm for learning RKMF
models. We will show that best k-rank SVD approximations
are different from RKMF models and that for recommender
systems RKMF clearly outperforms SVD as RKMF models
do not need imputation and have a regularization term.

Secondly, we show how online-updates can be applied
on a learned RKMF model without having to retrain the
whole model. Our online-update methods especially tar-
gets the new-user and new-item problem. The proposed
update methods are generic and applicable for all RKMF
models. They are derived directly from the gradient de-
scent method that we propose for learning RKMF models.
In the evaluation we will see that the online-updates for
new-user/new-item problems approximate the prediction of
retraining the whole model very well. Both theoretical and
empirical results show that the learning complexity of our
online-updates is low. That makes RKMF models an ideal
choice for real-world applications both in terms of runtime
complexity and prediction quality.

In all, our contributions are as follows: (i) We introduce
the model class of regularized kernel based matrix factor-
ization for rating prediction in recommender systems. We
provide a generic learning method and present three con-
crete instances of this class. (ii) We show how the major
problem of updating features of new users and new items
can be solved efficiently for the whole model class of regu-
larized KMF. An extensive evaluation substantiates the ef-

fectiveness of our generic online-update-rules both in terms
of prediction quality and runtime.

2. RECOMMENDER SYSTEMS
The central task in recommender systems is to predict the

taste of a user. In this paper, we deal with the rating pre-
diction problem that tries to predict how much a user likes
a particular item. The estimated ratings can be used to rec-
ommend items to the user, e.g. what movies he might want
to watch. The prediction is based on the user’s feedback
and feedback of other users in the past. Both feedback and
prediction are supposed to be numerical values, e.g. one to
five stars.

2.1 Rating Prediction
The problem of rating prediction can be seen as a matrix

completion task, where a rating matrix R should be com-
pleted. The rows of R correspond to the users U and the
columns to the items I. Thus the matrix has dimension
|U | × |I|. The entry ru,i of the matrix R contains the rating
value of user u for item i. R is sparse, that means many
values are unobserved (missing) values. We denote the set
of observed ratings by S which contains triples (u, i, v) or
ru,i of feedback from the user. The task of rating prediction

is to complete R with an estimation R̂.

2.2 New-User Problem / New-Item Problem
Typically, applications of recommender systems are dy-

namic. That means that new users sign in, new items are
added and new ratings are given. On the other hand, many
large-scale recommender models are static, e.g. correlation
coefficients or nearest neighbors often are precomputed for
collaborative filtering or factor matrices have been computed
for matrix factorization. If after training these models, a
new user signs in and gives some ratings, the recommender
system has not adapted and gives poor recommendations.
That means from the perspective of the user, the recom-
mendations do not improve when he gives additional rat-
ings. This is especially disappointing at the beginning when
one expects large improvements from giving ratings. In this
paper we deal with this problem both for new items and new
users.

We define the ‘new-user problem’ as follows: The profile
C(u, ·) of a user u grows from 0 ratings to k ratings. Where
C is defined as:

C(u, i) := {ru′,i′ ∈ S|u′ = u ∧ i′ = i} (1)

Symmetrically, we define the ‘new-item problem’ as follow-
ing: The profile C(·, i) of a item i grows from 0 ratings to k
ratings.

3. RELATED WORK
There are many approaches for rating prediction. Long-

established is collaborative filtering based on the k-nearest-
neighbor method (kNN) [4, 11, 1]. Other approaches use la-
tent semantic models [6], classifiers [13], etc. Another class
of models is based on matrix factorization (MF). MF tech-
niques have shown to be very effective on several datasets
including Netflix [15, 14, 1].

There is already research in kernels for matrix factoriza-
tion. Zhang et al. [16] present non-negative MF on ker-
nels. Their motivation is to approximate a matrix where

the rows specify objects and the columns specify attributes.
They map the entries within the attribute dimension in a
higher dimension and use kernels to perform multiplications
between two attribute vectors (columns). Our approach dif-
fers as we use the kernel between user and item vectors (row
and column). Furthermore we use regularization to learn
the model. In [14] Takacs et al. propose to apply a round-
ing function on parts of the output of MF. If their rounding
function is applied to the whole output, i.e. the dot prod-
uct, this can be seen as a special case of a kernel. Similarly
Salakhutdinov and Mnih [9] suggest to use the logistic func-
tion to bound the output of the dot product. The kernel
approach that we suggest is more general.

Updating k-rank SVD models has already been studied in
the field of recommender systems [2, 10]. As we will see,
best k-rank SVD and regularized MF are different. For the
task of rating prediction where there is a huge number of
missing values, SVD suffers from imputation and overfitting.
A detailed discussion on the differences between SVD and
regularized (K)MF can be found in section 4.5.

Online updates for kernel methods like SVMs or kernel
regression have been studied e.g. by Kivinen et al. [7]. In
contrast to this work we present online updates for regular-
ized kernel matrix factorization.

If there are attributes on users (e.g. demographic data) or
attributes on items (e.g. genre, actors) this information can
be used for recommendation. Especially when little rating
information on a specific user or item is present like in the
new-user and new-item problem (aka ‘cold start problem’),
attribute information can improve the prediction quality [12,
5]. In this paper we deal with problems without any at-
tribute information.

4. REGULARIZED KERNEL MATRIX FAC-
TORIZATION

In this section, we first introduce matrix factorization and
then we generalize this to kernel matrix factorization. As
MF models have a huge number of parameters, for opti-
mizing a regularization term is added to prevent overfitting.
We propose a stochastic gradient descent approach to learn
RKMF models in general and provide update rules for three
models, i.e. linear, logistic and linear with non-negative con-
straints. At the end of this section we compare RKMF to
best k-rank SVD. Sometimes people refer to RMF as regu-
larized SVD which is not accurate as this is not a singular
value decomposition. In this paper we use the term of SVD
for real singular value decomposition and MF for matrix fac-
torization in two matrices. We will see that our proposed
RKMF models are better suited and provide better results
for rating prediction than best k-rank SVD. The reasons are
that (1) SVD tends to overfit because of missing regulariza-
tion and (2) SVD needs imputation of missing values.

4.1 Matrix Factorization (MF)
Matrix factorization is the task of approximating the true

unobserved ratings-matrix R by R̂ : |U |× |I|. With R̂ being
the product of two feature matrices W : |U | × k and H :
|I| × k, where the u-th row wu of W contains the k features
that describe the u-th user and the i-th row hi of H contains
k corresponding features for the i-th item.

R̂ = W ·Ht (2)

Or equivalently:

r̂u,i = 〈wu, hu〉 =

k∑
f=1

wu,fhi,f (3)

Often bias terms are added which are equivalent to center-
ing the approximization, so that only residuals have to be
learned:

r̂u,i = bu,i +

k∑
f=1

wu,fhi,f (4)

Normally the bias term bu,i is something like the global av-
erage, user average or item average, but also could be the
result of another prediction algorithm. In our experiments
we set bu,i to the global average rating, i.e. avg

ru,i∈S
ru,i.

4.2 Kernel Matrix Factorization (KMF)
Like matrix factorization, kernel matrix factorization (KMF)

uses two feature matrices that contain the features for users
and items, respectively. But the interactions between the
feature vector wu of a user and the feature vector hi of an
item are kernelized:

r̂u,i = a+ c ·K(wu, hi) (5)

The terms a and c are introduced to allow rescaling the
predictions. For the kernel K : Rk × Rk → R one can use
one of the following well-known kernels:

Kl(wu, hi) = 〈wu, hu〉 linear (6)

Kp(wu, hi) = (1 + 〈wu, hu〉)d polynomial (7)

Kr(wu, hi) = exp

(
−||wu − hu||2

2σ2

)
RBF (8)

Ks(wu, hi) = φs(bu,i + 〈wu, hu〉) logistic (9)

with φs(x) :=
1

1 + e−x

It is obvious that normal matrix factorization like in equa-
tion (4) can be expressed with a = bu,i and c = 1 and the
linear kernel Kl.

One benefit from using a kernel like the logistic one is that
values are naturally bound to the application domain and do
not have to be cut, e.g. a prediction of 6.2 stars in a sce-
nario with at most 5 stars is not possible with the proposed
logistic kernel. Secondly, kernels can provide non-linear in-
teractions between user and item vectors. Finally, another
benefit is that kernels lead to different models that can be
combined in an ensemble. The Netflix challenge has shown
that ensembling (e.g. blending) many models achieves the
best prediction quality [1, 15, 14].

4.3 Non-negative Matrix Factorization
Non-negative matrix factorization is similar to matrix fac-

torization but poses additional constraints on the feature
matrices W and H. It is required that all elements of both
matrices are non-negative. The motivation is to eliminate in-
teractions between negative correlations which has been suc-
cessfully applied in some collaborative filtering algorithms.
With the linear kernel reasonable meta parameters are:

a := rmin, c := rmax − rmin (10)

0 50 100 150 200

0.
75

0.
85

0.
95

1.
05

Netflix: RMSE

Iterations

R
M

S
E

Train
Test

Figure 1: Fit on training and evaluation set (‘probe’)
of regularized linear MF on Netflix.

4.4 Learning Matrix Factorization Models
The most important part for learning MF models is deal-

ing with overfitting. Factorization models have a huge num-
ber of parameters, i.e. O(k · (|U |+ |I|)), that should approx-
imate a matrix with lots of missing values. An illustrative
example is the Netflix datasets with about 480, 000 users and
17, 000 items which leads to about 50 million free parame-
ters for MF with k = 100. For Netflix the number of given
ratings is about 100 million, that means R has about 8, 060
million missing values. It is obvious that learning 50 million
parameters from 100 million ratings will lead to overfitting.
So strategies for overfitting play a central role for learning
algorithms. For MF usually two strategies are proposed: (1)
regularization and (2) early stopping. A second problem is
the high number of missing values. Thus the optimization of
model parameters is done only with respect to the observed
values S of R. For optimizing wrt RMSE, the task is:

argmin
W,H

E(S,W,H) (11)

with

E(S, R̂) := E(S,W,H) :=
∑

ru,i∈S

(ru,i − r̂u,i)
2 (12)

4.4.1 Regularization
Instead of learning the optimal fit of W · Ht on the ob-

served values, a regularization term is added to the opti-
mization task. Usually Tikhonov regularization aka ridge
regression is used where a parameter λ controls the regular-
ization. Hence, the optimization task is:

argmin
W,H

Opt(S,W,H) (13)

with

Opt(S,W,H) := E(S,W,H) + λ
(
||W ||2F + ||H||2F

)
(14)

4.4.2 Optimization by Gradient Descent
For optimizing formula (14) different techniques might be

used. For normal matrix factorization often stochastic gradi-
ent descent is used. We propose to use this also for KMF, so
for optimizing only the partial derivative of K has to calcu-
lated. Also minimizing another (differentiable, monotonic)
loss function than RMSE is easy, because only E(S,W,H)

1: procedure Optimize(S,W,H)
2: initialize W , H
3: repeat
4: for ru,i ∈ S do
5: for f ← 1, . . . , k do
6: wu,f ← wu,f − α ∂

∂wu,f
Opt({ru,i},W,H)

7: hi,f ← hi,f − α ∂
∂hi,f

Opt({ru,i},W,H)

8: end for
9: end for

10: until Stopping criteria met
11: return (W,H)
12: end procedure

Figure 2: Learning KMF by gradient descent.

has to be differentiated. In all, the generic learning algo-
rithm is outlined in Figure 2. The parameter α is called
the learning rate or step size. With the regularization term,
avoiding overfitting by early stopping becomes less impor-
tant. Nevertheless, early stopping can be applied to speed
up the training process. In the simple case, the stopping cri-
terion is a fixed number of iterations that could be optimized
by a holdout method on the training set.

In the following, we give detailed optimization rules for
three variants of RKMF, i.e. a linear kernel, a logistic kernel
and a linear kernel with non-negative constraints. In the
derivation, we will discard all positive constants that can
be integrated in the learning rate α or the regularization λ.
The partial derivations of Opt({ru,i},W,H) are:

∂Opt({ru,i},W,H)

∂wu,f
∝ (r̂u,i − ru,i) ·

∂

∂wu,f
K(wu, hi) + λwu,f

(15)

∂Opt({ru,i},W,H)

∂hi,f
∝ (r̂u,i − ru,i) ·

∂

∂hi,f
K(wu, hi) + λhi,f

(16)

In all, only the partial derivative of K(wu, hi) is kernel spe-
cific.

4.4.3 Linear kernel
Optimizing formula (14) with gradient descent (figure 2)

for a KMF with a linear kernel corresponds to normal regu-
larized matrix factorization. For the complete update rules
(15) and (16) we need the partial derivation of Kl(wu, hi):

∂

∂wu,f
K(wu, hi) = hi,f ,

∂

∂hi,f
K(wu, hi) = wu,f (17)

For initialization of both feature matrices wu,f and hi,f ,
small random values around 0 should be used. This way,
in the beginning r̂u,i is near the bias term.

4.4.4 Logistic kernel
For the logistic kernel (9), the update rules require to

differentiate Ks(wu, hi) which includes the logistic function:

∂

∂wu,f
K(wu, hi) ∝ hi,f · φ2

s(bu,i + 〈wu, hu〉) · e−bu,i−〈wu,hu〉

(18)

∂

∂hi,f
K(wu, hi) ∝ wu,f · φ2

s(bu,i + 〈wu, hu〉) · e−bu,i−〈wu,hu〉

(19)

Again, the features can be initialized with small random
values around 0 when the following bias term is used:

bu,i = − ln

(
c

g − a

)
(20)

The other hyper-parameters for the logistic kernel are a =
rmin and c = rmax − rmin.

4.4.5 Non-Negative constraints
With a linear kernel and non-negative constraints on both

W and H, the update rules can use a projection step to
ensure non-negative elements:

wu,f ← max

(
0, wu,f − α

∂

∂wu,f
Opt({ru,i},W,H)

)
(21)

hi,f ← max

(
0, hi,f − α

∂

∂hi,f
Opt({ru,i},W,H)

)
(22)

The derivations are the same as in formula (15), (16) and
(17). In contrast to unconstrained KMF, when dealing with
non-negative constraints, the non-negative model cannot be
centered around the global average with a bias term because
otherwise no rating below the average would be possible.
Thus, a initialization around 0 would lead to predictions
around rmin. A better initialization for non-negative ma-
trix factorization is to set the values of both W and H s.t.
the predictions are near the global average, which leads to

wu,f = hi,f =
√

g−rmin
k·(rmax−rmin)

+ noise

4.5 SVD versus Regularized KMF
Singular Value Decomposition (SVD) is a technique for

decomposing a matrix into three matrices. With our no-
tation that would be R = W ′ΣH ′ with W ′ : |U | × |U |,
Σ : |U | × |I| and H ′ : |I| × |I| where Σ is a diagonal ma-
trix containing the singular values. One can show, that the
best k-rank approximation R̂ of R is given by using only the
k largest singular values and setting the remaining singular
values to zero. This means that one could reduce the number
of columns of W ′ and H ′ to k and obtaining two matrices
W : |U |×k and H : |I|×k that give the best approximation
of W ·Ht to R. As SVD is a well-studied technique in many
fields, e.g. image analysis or numerics, the question arises
why not to use it in recommender systems. As we indicated
before the task of matrix approximation in recommender
systems differs from other fields like image analysis.

First of all, in recommender systems we deal with a huge
amount of missing/ unobserved values. E.g. for Netflix
the sparsity factor is about 99%. Take care that sparsity
in recommender systems means missing/ unobserved values
whereas in SVD literature often zero values are meant. Be-
fore an SVD can be calculated, the missing values have to be
estimated (‘imputation’). Choosing 0 as missing value is ob-
viously not a good idea because then most of the predicted
ratings in R̂ would be around 0 as well. A better idea is
to use another prediction algorithm to estimate the missing
values. In a simple case that could be the column or row
mean. The SVD can then be calculated on this full matrix.
An efficient implementation should recenter the matrix (e.g.
around the column mean) before applying a standard SVD
algorithm. A second problem for both MF and SVD is over-
fitting. As indicated before, in regularized MF usually regu-
larization and early stopping is applied to avoid overfitting.

SVD Regularized MF
linear logistic lin. non-neg.

Netflix RMSE 0.946 [8] 0.915 0.918 0.914

Table 1: RMSE results on Netflix probe for RKMF
and k-rank SVD.

In contrast to this, choosing the best k-rank approximation
of an SVD will lead to overfitting of R̂.

As we have seen, in the domain of recommender systems
SVD has several drawbacks in contrast to RMF. First of all
the high number of missing values that have to be estimated
and the lack of regularization leads to overfitting. Table 1
shows a comparison of SVD to several regularized matrix
factorization methods. The evaluation has been done on
the Netflix dataset, where Netflix ‘probe’ was used as test
dataset. We compare the RKMF prediction quality to the
best SVD results reported by [8]. Their best SVD model uses
the Lanczos algorithm with imputation by EM. This SVD
model has best quality on the ‘probe’ set with 10 dimensions
– for more dimensions they report overfitting. Our regular-
ized KMF methods use 40 dimensions (k = 40) and we do
not observe overfitting (see fig. 1 for the linear case). In
fact, even if we enlarge the number of dimensions in RKMF
(e.g. k = 100) the quality still increases. This evaluation
has shown, that regularization is important for successfully
learning a model and avoiding overfitting. In the rest of this
paper we will not deal with SVD any more, as regularized
matrix factorization is obviously the better method for the
task of recommender systems.

5. ONLINE UPDATES
In this section we provide methods for solving the new-

user and new-item problem. That means it is assumed that
an existing factorization, i.e. (W,H), is given and then a
new rating comes in. We provide methods for updating the
factorization (W,H) both in case for a user with a small rat-
ing profile and an item with a small profile. These methods
will use the same update rules as in the last section, that
means the derivations for training the model can be reused
for online-updates. We will describe all methods in terms of
the new-user problem. Of course everything can be applied
to the new-item problem as well because KMF models are
symmetric.

5.1 Training KMF models
Obviously, retraining the whole KMF model with the al-

gorithm in fig. 2 after a new rating comes in is not applicable
at all as it has complexity O(|S| ·k · i) where i is the number
of iterations before early stopping is applied. In the Net-
flix use-case with k = 40, i = 120 and |S| = 100, 000, 000
this would lead to about 480 billion feature updates. In this
paper, we propose an approximization method that updates
the matrices of an existing model and that has complexity
O(|C(u, ·)| · k · i) where C(u, ·) is the current profile of the
user.

5.2 Approximating Updates
Let R̂S denote the factorization calculated from the ob-

served values S of R by the algorithm in fig. 2. Afterwards
a new rating ru,i comes in. First of all, an exact recon-

struction of R̂S∪{ru,i} from R̂S cannot be calculated as (1)

1: procedure UserUpdate(S,W,H, ru,i)
2: S ← S ∪ {ru,i}
3: return UserRetrain(S,W,H, u)
4: end procedure

5: procedure UserRetrain(S,W,H, u∗)
6: initialize u∗-th row in W
7: repeat
8: for ru,i ∈ C(u∗, ·) do
9: for f ← 1, . . . , f do

10: wu,f ← wu,f − α ∂
∂wu,f

Opt(S,W,H)

11: end for
12: end for
13: until Stopping criteria met
14: return (W,H)
15: end procedure

Figure 3: Online updates for new-user problem.

in stochastic gradient descent the sequence of how ratings
in S are visited is important and (2) information between
iterations propagates through the matrices. The best that
can be done is to approximate R̂S∪{ru,i} from R̂S .

We propose the algorithm UserUpdate (see fig. 3) for
solving the new-user problem. This algorithm retrains the
whole feature vector for this user and keeps all other entries
in the matrix fixed. The motivation for this algorithm is the
assumption that the model build from S and the model build
from S∪{ru,i} is mostly the same from a global perspective.
But if user u is a new-user, his (local) features might change
a lot from the new rating ru,i. That is why we fully retrain
this user and keep the other features fixed, as we assume
them to be already the best guess.

The time complexity of UserRetrain is O(|C(u, ·)| ·k ·i).
In our evaluation we will see, that retraining users for each
incoming rating becomes less important when the user pro-
file increases. That is why |C(u, ·)| usually is small. Besides
time complexity and good quality (see evaluation), one of
the major advantages of UserUpdate is that it is generic
and applicable to any RKMF model. That means that no
kernel specific algorithm or additional update formulas have
to be designed.

5.3 Further Speedup
We have argued that retraining a user u on a new in-

coming rating ru,i is very important for a user with a small
profile. With growing profiles, the update is less important
(see fig. 5). In cases where an additional speedup is needed,
one can apply several rules that determine if user-retrain
can be skipped. We will present approaches that define a
probability whether online-updates are performed or not.
Depending on this probability the recommender can skip
some online-update steps.

5.3.1 Profile Size
A reasonable assumption is that the larger the profile of a

specific user is, the less important is retraining his profile on
each new rating. Thus, the probability of retraining a user

1: procedure AddRating(S,W,H, ru,i)
2: S ← S ∪ {ru,i}
3: return UpdateRating(S,W,H, ru,i)
4: end procedure

5: procedure RemoveRating(S,W,H, ru,i)
6: S ← S \ {ru,i}
7: return UpdateRating(S,W,H, ru,i)
8: end procedure

9: procedure UpdateRating(S,W,H, ru,i)
10: if Pu(train

∣∣ru,i) > random then
11: (W,H)← UserRetrain(S, W, H, u)
12: end if
13: if Pi(train

∣∣ru,i) > random then
14: (W,H)← ItemRetrain(S, W, H, i)
15: end if
16: return (W,H)
17: end procedure

Figure 4: General algorithm for online-updates.

could decay with increasing profile size:

Pu (train|ru,i) = γ|C(u,·)|, γ ∈ (0, 1) (23)

Pu (train|ru,i) = max

(
1,

m

|C(u, ·)|

)
, m ∈ N+ (24)

With (24) the average/expected runtime complexity is O(m·
k · i) and thus independent of the profile size.

5.3.2 Expected Impact
Another approach would be retraining if the new rating

ru,i is expected to change the features. To measure the
expected impact of the new rating on a user’s profile one
could use the error between the prediction of this rating and
the true value. The larger this error is the more the rating
is expected to change the features. To map the error to
the interval [0, 1] we propose to use a smooth monotonically
increasing function like tanh:

P (train|ru,i) = tanh
(
(r̂u,i − ru,i)

2) (25)

5.4 General Update Problem
In the previous part of this section the algorithms and

methods have been described from the perspective of the
new-user problem. However, all methods and algorithms
can be directly transfered to the new-item problem by ex-
changing users with items.

In general, a new rating ru,i might influence the features of
both user u and item i. If both profiles are small, one could
update both feature vectors. The outcome of this is a gen-
eral update algorithm (fig. 4) that first performs an online
update of the user’s features and then an online update of
the item’s features. Both online updates are only executed if
they are not pruned by one of the rules P (train|ru,i). This
way, it is more likely to perform an update on a small profile
than on a large one.

The proposed algorithm UpdateRating is not limited to
new ratings, but can also be applied for removing ratings or
changing a rating. A sketch for this task is found in fig. 4.

6. EVALUATION
In the evaluation we want to examine how our proposed

online-update methods perform on real world problems. The
goal of the update methods is (1) to approximate the quality
of fully retraining as good as possible and (2) to have low
runtime.

6.1 Evaluation Protocol
We simulate the new-user problem the following way:

1. Create a new-user-scenario:

(a) Pick n% of the users and put them in Ut.

(b) for each unknown user u ∈ Ut do

i. Split the ratings in C(u, ·) in two disjoint sets

Tu and Vu. The size of Tu is min{m, |C(u,·)|
2
}

and so Vu = C(u, ·) \ Tu.

ii. Remove all of the ratings C(u, ·) from the set
of known ratings S: S ← S \ C(u, ·)

2. Train the model on S: (W,H)← Optimize(S,W,H)

3. Evaluate the new-user-scenario:
for j = 1, . . . ,m do

(a) for each unknown user u ∈ Ut do

i. add one rating ru,i ∈ Tu to S

ii. update the model:
(W,H)← UserUpdate(S,W,H, ru,i)

iii. calculate error sej
u := E(Vu,W,H) on Vu

(b) calculate rmsej :=

√√√√√ 1∑
u:|Tu|≥j

|Vu|
·
∑

u:|Tu|≥j

sej
u

With this protocol, one can examine how well a model can
adapt to a user’s taste with an increasing size of the user’s
rating profile. It is obvious that the protocol simulates a
true online scenario where the rating profile of several new
users increase from one up to m ratings. Please note that
we update and evaluate the models after adding each single
rating and not only after having added one rating for all
users. Thus we can see the quality of the immediate response
on a user’s recommendations. The evaluation protocol for
the new-item problem is symmetric to the protocol of new-
users.

6.2 Datasets
In our experiments we evaluate on two movie recommen-

dation datasets, i.e. Netflix1 and Movielens2. Netflix is
the state-of-the-art evaluation dataset for recommender sys-
tems with over 100 million ratings of about 480,000 users
and 17,000 items. There are two Movielens datasets, we
choose the larger one which contains about 1 million ratings
by 6040 users and 3706 items.

6.3 Methodology
We run the proposed evaluation protocol (see section 6.1)

for both the new-user problem and the new-item problem on
Netflix and Movielens. For Movielens we choose n = 10%
and for Netflix n = 1%. The profile size for each user and

1http://www.netflixprize.com
2http://www.grouplens.org

item resp. is grown from 0 to m = 50 ratings as indicated
in the evaluation protocol. Each Movielens experiment is
run 10 times where the evaluation folds (the unknown users
and items resp.) do not overlap (cv-style). For the Netflix
dataset we rerun the experiment four times on non over-
lapping user/ item sets. We report the mean of the RMSE
results as described in the evaluation protocol. For each ex-
periment we run three types of RKMF, i.e. a linear kernel,
a logistic kernel and a linear kernel with non-negative con-
straints. For Netflix each RKMF model has k = 40 features
and for Movielens k = 10 (see table 2).

As we want to examine how good online-updates approx-
imate a full retrain, we train and evaluate a second model
(W ∗, H∗) at the end of the j-loop (3.). This model (W ∗, H∗)
is generated by a full retrain, i.e. by Optimize(S,W ∗, H∗),
on all ratings S. Thus (W ∗, H∗) is the model that the
online-updates try to approximate. To measure how good
the approximation is in terms of prediction quality, we cal-
culate the RMSE on the same evaluation set as the online
updates, i.e. on

⋃
u:|Tu|≥j Vu. For Netflix we measure the

quality of a full retrain only for j = {10, 25, 50} because
for Netflix fully retraining a second model in each itera-
tion (m=50), for each kernel (3), each run (4) and both
new-user and new-item problem (2) would have cost about
50·4·3·2·10 hours = 500 days of CPU runtime. Nevertheless,
our evaluation is computationally expensive. In total all ex-
periments took 54 days of CPU runtime. All experiments
were run on machines of the same type (CPU, RAM).

6.4 Quality
Figure 5 shows the evaluation of the new-user- and the

new-item-problem on both Netflix and Movielens. As one
can see, the error curves of the full retrain and the online
updates of all three kernel methods are quite similar. Espe-
cially for non-negative RMF the online-updates are almost
the same as the full retrain. For linear and logistic RMF
the difference between online-update and full retrain are
about 1% in the worst case. This shows that the proposed
online-updates approximate the quality of fully retraining
the model very well.

Secondly, all three factorization methods show promising
quality results on the datasets. E.g. with non-negative RMF
a user profile size of 7 ratings is enough to obtain a RMSE
of below 95% which means beating the overall RMSE of
Netflix’s Cinematch system. With a user-profile size of 22
ratings, a mean RMSE of bellow 90% is achieved. For new
items the prediction task on Netflix is harder as there are
much more users than items. But also in this case 18 ratings
on a new item’s profile would beat the overall RMSE of
Cinematch. And about 50 ratings are sufficient to break the
90% barrier.

Furthermore, the evaluation shows that for the new-user/
new-item problem it is important that models use new rat-
ing information. A static model without updates would not
improve with new ratings and thus the error for all profile
sizes would be as worse as at the beginning.

6.5 Speedup
As we have already seen, the quality of the approximation

with online-updates is almost as good as a full retrain of
the model. Now we compare the runtimes between online-
updates and full retrains. Table 2 shows an overview of
training times of several RKMF methods and the online-

Dataset Training Regularized MF
linear logistic non-neg.

Movielens Online Update 0-1 ms 0-10 ms 0-1 ms
Retrain 18 s 3.5 min 25 s

Features k 10 10 10
Iterations 30 270 50

Netflix Online Update 0-15 ms 0-15 ms 0-18 ms
Retrain 11.6 h 10.2 h 13.8 h

Features k 40 40 40
Iterations 120 120 120

Table 2: Runtime of full retrain and runtime of pro-
posed online updates wrt to profile size C(u, ·) (for
‘new-user’ problem).

update costs. It is obvious, that online-updates are clearly
faster than retraining the whole model. E.g. with linear
RKMF on Netflix, retraining costs about 12 hours whereas
an update as described in algorithm (3) takes only 0 to 15 ms
depending on the profile size |C(u, ·)| of the user/ the item.
These empirical results match to the theoretical complexity
that is O(|C(u, ·)|·k·i) for online-updates instead of O(|S|·k·
i) for full retraining, where S is the set of all ratings whereas
C(u, ·) are the ratings of a specific user.

7. CONCLUSION
In this paper we have proposed the class of regularized

kernel matrix factorization (RKMF) and a generic learn-
ing algorithm based on gradient descent. We have provided
generic online-update methods for RKMF models that are
based on the same gradient descent step that are also used
for training the model. For static rating prediction, RMF
are known to be one of the best models with regard to pre-
diction quality. The drawback of RMF models is that once
the factorization is computed, they cannot handle updates.
Our online-updates make RMF and the more general RKMF
class applicable for dynamic real-world scenarios where new
users sign in and item catalogs are extended. We have shown
that the proposed online-updates approximate the quality
of fully retraining the model very well. On the other hand,
both empirical and theoretical results for runtime complex-
ity of online-updates make RKMF models feasible for huge
datasets like Netflix and other dynamic real-world applica-
tions.

Acknowledgements
The authors gratefully acknowledge the partial co-funding of
their work through the European Commission FP7 project
MyMedia (www.mymediaproject.org) under the grant agree-
ment no. 215006. For your inquiries please contact
info@mymediaproject.org.

8. REFERENCES
[1] R. M. Bell and Y. Koren. Scalable collaborative

filtering with jointly derived neighborhood
interpolation weights. In ICDM, pages 43–52. IEEE
Computer Society, 2007.

[2] M. Brand. Fast online svd revisions for lightweight
recommender systems. In SIAM International
Conference on Data Mining, 2003.

[3] T. George and S. Merugu. A scalable collaborative
filtering framework based on co-clustering. In ICDM

0 10 20 30 40 50

0.
88

0.
90

0.
92

0.
94

0.
96

0.
98

1.
00

Netflix: new user

Profile size

R
M

S
E

●

●

●

●

Linear update
Logistic update
Non−neg. update
Linear retrain
Logistic retrain
Non−neg. retrain

0 10 20 30 40 50

0.
90

0.
92

0.
94

0.
96

0.
98

1.
00

Netflix: new item

Profile size

R
M

S
E

●

●

●

●

Linear update
Logistic update
Non−neg. update
Linear retrain
Logistic retrain
Non−neg. retrain

0 10 20 30 40 50

0.
88

0.
90

0.
92

0.
94

0.
96

0.
98

1.
00

Movielens: new user

Profile size

R
M

S
E

Linear update
Logistic update
Non−neg. update
Linear retrain
Logistic retrain
Non−neg. retrain

0 10 20 30 40 50

0.
88

0.
90

0.
92

0.
94

0.
96

0.
98

1.
00

Movielens: new item

Profile size

R
M

S
E

Linear update
Logistic update
Non−neg. update
Linear retrain
Logistic retrain
Non−neg. retrain

Figure 5: New-user/ new-item problem on Movielens and Netflix. Curves show the RMSE of online-updates
(see protocol) compared to a full retrain.

’05: Proceedings of the Fifth IEEE International
Conference on Data Mining, pages 625–628,
Washington, DC, USA, 2005. IEEE Computer Society.

[4] D. Goldberg, D. Nichols, B. M. Oki, and D. Terry.
Using collaborative filtering to weave an information
tapestry. Communications of the ACM, 35(12):61–70,
1992.

[5] S. Hauger, K. Tso, and L. Schmidt-Thieme.
Comparison of recommender system algorithms
focusing on the new-item and user-bias problem. In
Proceedings of 31th Annual Conference of the
Gesellschaft fuer Klassifikation (GfKl), Freiburg, 2007.

[6] T. Hofmann. Latent semantic models for collaborative
filtering. ACM Trans. Inf. Syst., 22(1):89–115, 2004.

[7] J. Kivinen, A. Smola, and R. Williamson. Online
learning with kernels. Signal Processing, IEEE
Transactions on, 52(8):2165–2176, Aug. 2004.

[8] M. Kurucz, A. A. Benczúr, and B. Torma. Methods
for large scale svd with missing values. In KDDCup
2007, 2007.

[9] R. Salakhutdinov and A. Mnih. Probabilistic matrix
factorization. In Advances in Neural Information
Processing Systems, volume 20, 2008.

[10] B. Sarwar, G. Karypis, J. Konstan, and J. Riedl.
Incremental singular value decomposition algorithms

for highly scalable recommender systems. In
Proceedings of the 5th International Conference in
Computers and Information Technology, 2002.

[11] B. M. Sarwar, G. Karypis, J. A. Konstan, and
J. Reidl. Item-based collaborative filtering
recommendation algorithms. In World Wide Web,
pages 285–295, 2001.

[12] A. Schein, A. Popescul, L. Ungar, and D. Pennock.
Generative models for cold-start recommendations. In
Proceedings of the 2001 SIGIR Workshop on
Recommender Systems, 2001.

[13] L. Schmidt-Thieme. Compound classification models
for recommender systems. In Proceedings of the Fifth
IEEE International Conference on Data Mining
(ICDM 2005), pages 378–385, 2005.

[14] G. Takacs, I. Pilaszy, B. Nemeth, and D. Tikk. On the
gravity recommendation system. In KDDCup 2007,
2007.

[15] M. Wu. Collaborative filtering via ensembles of matrix
factorization. In KDDCup 2007, pages 43–47, 2007.

[16] D. Zhang, Z.-H. Zhou, and S. Chen. Non-negative
matrix factorization on kernels. In Q. Yang and G. I.
Webb, editors, PRICAI, volume 4099 of Lecture Notes
in Computer Science, pages 404–412. Springer, 2006.

