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SUMMARY

Cyber-physical systems (CPS) are highly dynamic and large scale systems integrated with the physical
environment that they monitor and actuate on. Given the changing nature of physical environments, CPS
have to adapt on-line to new situations while preserving their correct operation. This means that the system
model may have to change or, at least, will have to be modified during its operation life, preserving
correctness. Correctness by construction relies on using formal tools, which suffer from a considerable
computational overhead. As the current system model of a CPS may adapt to the environment, the new
system model must be verified before its execution to ensure that the properties are preserved. However,
CPS development has mainly concentrated on the design-time aspects, existing only few contributions that
address their on-line adaptation.
We design a framework for managing dynamic changes of a system based on a core entity that is an
autonomic manager; we investigate the pros and cons of using formal tools within this framework to
guarantee that the system properties are met at all times and across changes. We formalize the semantics
of the adaptation logic of an autonomic manager (OLIVE) that performs on-line verification for a specific
application, a dynamic virtualized server system. The on-line verification manager services requests from
mobile clients that might require a change in both the running software components and services executed
by the server. We explore the use of formal tools based on CLTLoc to express functional and non-functional
properties of the system. In this scenario, we provide empirical results showing the temporal costs of our
approach.
Copyright c© 0000 John Wiley & Sons, Ltd.

Received . . .

1. INTRODUCTION

Cyber physical systems [14] are systems with strict timing requirements, and they are at the

confluence area among embedded, real-time, wireless sensor networks, and control systems. CPS

are new with respect to these traditional fields due to their scale and to the uncertainty created

by the surrounding environment, which can influence the system behavior both sporadically and

unexpectedly. The deviation of the external systems (interacting with the CPS) from their nominal

behavior or the occurrence of new situations in the environment might force the system to adopt

strategies for dealing with changes in a timely manner. Adapting the functionality to a new

environment allows the system to fit new needs and preserve the designed operations in contexts

that are different from the original one.
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2 M.M.BERSANI AND M. GARCÍA-VALLS

In this paper, we focus mainly on the autonomous nature of cyber-physical systems, that refers to

the capacity of making correct decisions in a timely manner with the available information (that will

be mostly local and also obtained from external subsystems through some communication media).

Some CPS are decentralized systems where each one of their constituent subsystems may have very

distinct functional requirements. This is the case of, for instance, robot squads (that are autonomous

mobile nodes) performing remote monitoring and surveillance, moving around hostile environments

with limited (or no) human presence. Mobile nodes must be efficient in the usage of resources by,

for instance, requesting heavy operations to be performed by other powerful nodes such as servers.

Such servers are part of the cyber-physical system and must operate in a timely manner.

Servers may execute a number of functions or applications that can be of different criticality

levels. To ensure the temporal and spatial isolation among the various applications, more and more

servers execute virtualized software platforms. For example, in [19], a distributed system based

on partitioned/virtualized servers is described where the communications among them are enabled

by middleware (using DDS –Data Distribution Service–) and the overall operation of the servers

respects temporal deadlines. The virtualization technology has made significant improvements also

in those domains requiring reliable and predictable execution. Although virtualization software

challenges the predictability and reliability levels required by real-time systems [16], some solutions

that start to overcome quite a few of the problems are available to (at least) provide quality of service

(QoS) guarantees to soft real-time domains. To have a flexible software organization of the server,

virtualization offers heterogeneous execution environments in the same physical machine. As real-

time virtualizers guarantee execution isolation among virtual machines, it is currently possible to

achieve the coexistence of applications with different criticality levels and requirements with respect

to timeliness, reliability, or security.

This work considers client-server applications in a cyber-physical context with a specific focus

on the adaptation problem of autonomic system managers. Adaptation in CPS can be related to

the principles of autonomic computing, a term firstly used to describe self-managing [12] systems.

An autonomic manager is a fundamental tool to implement self-managing functionalities. In the

case study that we consider, the autonomic manager is included in the server software architecture

to arbitrate the adaptation process at runtime. Specifically, it determines whether the request of a

mobile node can be serviced or not depending on the current resource availability and possibly new

requirements of the client nodes.

The implementation of adaptive software has to follow rigorous techniques, that apply

both to the initial design and to the on-line adaptation of the server. There are a number of

design methodologies, techniques, and technologies for this such as described in [22]. Automatic

verification is the formal technique that we adopt in this work and that the autonomic manager

leverages to support the decision process. Autonomic managers often represent the system behavior

by means of a behavioral model that is updated on-line upon the system changes. Given that the

server software configuration may adapt to new situations (e.g. an incoming request from a mobile

node which may require a new functionality to be executed/downloaded) and that the server model

is modified on-line to handle such changes, the autonomic manager can verify that the needed

incremental updates in the model comply with the system specification.

Formal tools are needed to carry out the above mentioned on-line verification of the properties

of the new model. This is, however, a hard task due to the inherent high overhead imposed by the

solvers. This paper recognizes that there is not a one-solution-fits-all needs of dynamic CPS and that

individual formal techniques have to be studied for each individual system (or a kind of systems) to

effectively overcome their limits.

This work provides a practical illustration of the previous claim for a kind of systems, such as

virtualized servers, that rely on the usage of spatially and temporally isolated partitions or virtual

machines. Using partitioned systems is the de facto approach in critical software systems that

are transitioning from federated architectures to integrated modular functionality. Precisely, this is

widely used in airborne software systems that are based on integrated modular avionics (IMA) [24].

We present the software structure of a virtualized server and we focus on its On-Line Verification

Entity (OLIVE). OLIVE is based on MAPE-K model [11, 12], and it is designed to operate while
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THE COST OF ON-LINE VERIFICATION OF ADAPTATION IN CYBER-PHYSICAL SYSTEMS 3

the server is in execution. OLIVE decides if a request from a mobile node can be processed by

the server providing the answer in bounded time. We experiment with the usage of temporal logic

in OLIVE to prove that the decision can be taken within the specified time. CPS require that such

a time is determined a priori. In this paper, this is achieved through a-priori verification of the

system adaptation process by solving a model-checking problem through a logical model, defined

in Constraint LTL over clocks (CLTLoc) [5], that captures the semantics of the server behavior.

In this paper, we extend our previous contribution [3] in several ways. Firstly, we detail the

software structure of the virtualized server, by focusing on the autonomic manager component:

OLIVE. We enhance the context of the work by elaborating on the utility of this component: we

describe how OLIVE is a proposal for the fast verifier component of the Oma-cy [15] architecture

for distributed cyber-physical systems; and, moreover, we describe how the fast verifier component

maps to the autonomic manager according to MAPE-K schema. Secondly, we elaborate on the

model of the virtualized server and we provide a detailed description of its design, including also

an extensive analysis of the logical model and of all its formulae. In addition, we enhance the

experiments by providing the temporal cost of the execution of OLIVE and a detailed analysis of

the results of the verification process.

Although a number of approaches exist with certain similarities to the concept of OLIVE (either

named resource managers in operating systems or autonomic managers at user and system level),

OLIVE is novel in several ways as it is designed for cyber-physical systems. Precisely, its novelties

are:

• it is integrated into the Oma-cy reference middleware architecture that is targeted to

distributed cyber-physical systems. Oma-cy requires the presence of fast verifier components

to effectively develop distributed CPS applications. In this paper, we propose OLIVE as a

solution for this;

• it uses formal models to control the evolution of a system in order to guarantee that it complies

with the functional and non-functional specification;

• it allows the system to modify its model on-line;

• it integrates the temporal aspects of the system behavior, precisely the models are expressed

in CLTLoc that allows to use clocks to reflect timing constraints;

• it is linked to actual model verification tools, precisely to CLTLoc verification;

• it has been validated in actual experiments and the timing cost has been obtained.

The paper is structured as follows. Section 2 describes related works. Section 3 describes the

virtualized server architecture and the role of OLIVE in the context of MAPE-K adaptation strategy.

Section 4 presents the formal engine executed by OLIVE; moreover, it presents the integration of

formal verification logic (as OLIVE) with a reference architecture for CPS middleware. Section 5

presents the adaptive server model. Section 6 experimentally validates the approach in a realistic

setting. Section 7 draws the conclusions and discusses the results. The appendixes complete the

exposition with extra details and experimental data.

2. RELATED WORK.

The design and development of entities that manage the dynamic execution of a system and

coordinate its transition to a different state is not a novel concept at all. Nevertheless, the

requirements of the final systems have changed over time, ranging from the fairly static distributed

environments of some decades ago to the highly dynamic and open concept of CPS that

introduce time requirements as an essential part of their behavior. In this section, we explain

different approaches to enable dynamic (on-line) adaptation using different techniques: autonomic

computing, middleware, and adaptive resource management.

Most recent work on development of cyber-physical systems focuses on the pure distributed

nature of such systems with the goal of providing reliable software infrastructures that ensure

communication timeliness. An example of ensuring communication timeliness is by using

virtualized servers [19] with schedulability of the communications to limit the time assigned to
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interactions. Other improvements for communication are also described in [20] that satisfy the

temporal properties (guaranteed service time) by using the power of the underlying multicore;

or [21] that modifies existing middleware platforms to more flexibly support larger numbers of

communicating clients. Cyber-physical systems, however, require extensive improvement on the

support to the evolution of the system model and on-line verification techniques.

As acknowledged by some authors [10], the architectural model-driven approach is one of the

most comprehensive and widely accepted strategies to develop complex systems such as CPS that

change over time. In a model driven approach, some form of model of the entire managed system

is created by the autonomic manager, usually called architectural model that expresses its behavior,

requirements, and goals. Changes are firstly planned and applied to the model to show the resulting

state of the adaptation. If the new state of the system is acceptable, the plan can then be applied

to the managed system. The architectural model can be used to verify that the system integrity

is preserved when applying an adaptation. There are few contributions on this side mostly due to

two factors. Firstly, the cost of the verification process may be too high to be suitable for most

application domains. Secondly, the number of restrictions to be considered during the interval

between the identification of the adaptation need and the adaptation transition itself can be high

and complex to model. Some approaches such as [17] verify the temporal domain exclusively using

simple utilization based schedulability analysis over distributed service based applications. Other

approaches [27] provide design contracts explicitly including the timing aspects of the components

behavior, but these only focus on the design of controllers for CPS.

MAPE-K loop [11] is among the most widely adopted schemes for adaptive systems. It stands

for monitor, analyze, plan, execute, and knowledge, that identifies the set of phases for defining

the evolution of a system’s architectural model, embedding self-managing properties. Software

reconfiguration schemes over MAPE-K for CPS using Petri nets have been initially explored

in [18] as a means to evaluate the temporal behavior of a model depending on on-line input

data. The differentiation between knowledge and planning in MAPE-K is considered fuzzy by

some authors [10] since the information that constitutes the knowledge about the system may

come from very distinct sources, e.g., logs of daily operation or human experts, among others.

There are different methods to represent knowledge in autonomic systems [13]: (1) utility that is

an indication of benefit for a system as a measure of a number of parameters; (2) reinforcement

learning used for fine tunning adaptation policies or establishing new ones by observing the results

of the management actions; it does not require a model of the system; (3) probabilistic techniques

that are used to, e.g., select between algorithms to find the best solution. The monitoring part of

MAPE-K collects data about the system behavior, that is needed to generate an informed adaptation

decision. Monitoring is handled in [23] as heartbeats, an interface-based solution for applications

to actively monitor and signal their progress levels with respect to user-defined performance goals.

The gathered information can be exposed to an autonomic manager that will decide the subsequent

adaptation actions.

Moreover, frameworks as [25] and [12] build self-adaptive distributed systems based on the

concept of multi-agents from artificial intelligence; they use utility functions to establish the desired

goals for controlling the interaction among autonomic elements that gather domain knowledge to

perform reinforcement learning. This yielded the Unity framework that was evaluated in a data

center scenario and applied in commercial products such as IBM WebSphere. The approach of [28]

designs an autonomic element, termed as the combination of an autonomic manager and a managed

element. The autonomic element adapts by applying learning adaptation policies that modify the

behavior of the system by fine tunning the running algorithms. It relies on monitoring to collect data

about the system behavior, and to fine tune the running algorithms in some way.

In large scale CPS deployments, nodes can achieve higher autonomy by including only the key

software elements at deployment time together with a supporting intelligence that enables them

to modify their software capacity/functionality once in operation. Nodes behaving in this manner

can function as server nodes of other mobile CPS nodes that communicate with the servers using

wireless networks. The benefits of virtualization technology are well known, and it directly supports

the dynamic update of functionality in hostile deployments ( [2], [31]); virtualization technology can
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be used in combination with hierarchical scheduling to assign fixed temporal partitions to virtual

machines ensuring execution isolation. Servers will use virtualization technology to dynamically

provide the required customized application to the client nodes, i.e, virtualization technology allows

the dynamic update of virtual machines images containing specific functionality/services requested

by the mobile clients. Currently, with the new technologies for image migration†, it is possible to

provide more efficient network latencies by bringing the computation close to the client.

The recent work OMA-cy [15] proposes an Overarching middleware architecture for cyber-

physical systems. It is based on the classical middleware definition where three main layers are

described: infrastructure, distribution, and domain specific. OMA-cy provides a modified domain

specific layer that includes a Fast Verifier component as one of the specific CPS functions. Although

it is acknowledged the need and mandatory location for an on-line verification logic inside CPS

middleware that provides time efficient (and possibly bounded) adaptation, Oma-cy does not

elaborate further into any specific logic for the Fast Verifier component. OLIVE autonomic manager

is a proposal for such a logic.

3. DYNAMIC EXECUTION SUPPORT ARCHITECTURE

3.1. Virtualized server: architecture and adaptation strategy

The proposed architecture (Figure 1) has a central component named OLIVE (On-LIne VErification

manager) that follows the principles of MAPE-K loop. OLIVE is an autonomic manager that

handles the adaptation process derived from client requests by internally maintaining an updated

model of the application logic. The adaptation requires the autonomic manager to build a tentative

new model of the system and verify it on-line to determine if it conforms to the modified

specification. If it does conform, the tentative model replaces the current one and becomes the

actual current system model.

The architecture of the virtualized server node requires that the autonomic manager resides in a

priviledged zone of the software stack as it arbitrates the execution of the system. OLIVE is located

in the virtual machine monitor (the virtualization layer, where the decision process runs) and in

the native operating system (the host OS, where the access to the system resources is priviledged).

At that position, it has access to the buffer of incoming requests handled by the network protocol

stack so that it can immediately run the decision process to determine the feasibility of an incoming

request.

Figure 1. Software design of an adaptive virtualized server that is integrated with OLIVE

†Examples are IBM Informix, Windows Server, etc.
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Figure 2. Mapping of OLIVE components to MAPE-K entities.

A specific realization of the MAPE-K phases into the OLIVE manager is proposed with the goal

of achieving a time-bounded decision process as required by the real-time properties of CPS. Figure

2 shows the mapping between OLIVE and MAPE-K. The names of the units are shown in italics.

The Execute module is not present as it is outside of the scope of this paper; a number of proposals

for Execute algorithms are available in the literature, consisting of protocols for transitioning to the

verified system model. Some proposed works are based on enforcing the execution of a selected

model for either low-level software reconfigurations based on services [17], components [7], or

mode change techniques [26].

The operation logic of the autonomic manager is the following. Client requests are detected

through OLIVE’s Monitor module. Upon a request, OLIVE runs the Analyze module to determine

if the request can be served or not according to the tentative system model; the system model is

contained in the Knowledge module. If the request can be served, the Plan module applies a strategy

for the change and it is enforced through the Execute module. The Analyze Module of OLIVE has a

submodule named on-line Verifier entity that has the objective of verifying the tentative future model

during execution. The Verifier entity encapsulates the specific logic for verification. Therefore, if

different formal techniques were to be used, only the Verifier and the Knowledge module will have

to be changed; the rest of the architecture remains the same. The on-line verification logic should

execute in bounded time in order to fully meet the requirements of CPS with respect to timely

execution.

The two main activities of OLIVE in relation to MAPE-K loop are further detailed below.

Creation of a tentative future model. The Request Detector component captures requests from

clients which could enforce new requirements. If so, the current software configuration of the server

has to be modified causing an incremental model modification. The Model Manager modifies the

current system model which is possibly enriched with the new properties as expressed in the request.

The resulting model is called the tentative future model. This phase corresponds, in part, to the Plan

phase of MAPE-K loop.

Execution-time verification of the tentative future model. The tentative future model undergoes

validation by means of the Verifier entity. The verification result depends on the fulfillment of

the specified utility criteria, e.g., the new restrictions introduced (or eliminated) by the request,

called incompatibilities. The resulting verification time has a direct impact on the suitability for

CPS domains given their inherent temporal requirements. This phase differs from the design-time

verification phase in that the execution-time phase must be time-bounded. This depends on the

specific tools and mechanisms employed; some may provide bounded-time results if a small set of

changes are given in the future tentative model; others may yield to unacceptably large times. This

phase maps, in part, to the Plan and Knowledge phases of MAPE-K loop. The refinement of the

creation of a tentative future model with respect to MAPE-K is that a specific satisfiability check
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Figure 3. The placement of the autonomic manager OLIVE inside the Fast Verifier component of Oma-cy
middleware architecture

is used. The tentative model may render unsatisfiable (no further action is taken) or satisfiable (the

tentative model is applied and becomes the current model).

3.2. Integration of OLIVE into a CPS middleware

In a distributed environment such as a networked virtualized server, the role of communication

middleware is essential. Middleware (in its original meaning [30]) refers to the software layer that

enables the communication of remote processes and hides the complexity and heterogeneity of the

underlying nodes’ hardware and networking details. Oma-cy [15] digs into this concept and modifies

it to suit the inherent properties of cyber-physical systems: rigorous design, timeliness, dynamic

behavior and adaptation. In summary, the domain specific layer of middleware is transformed into a

CPS domain layer that defines the needed components to suit the needs of cyber-physical systems

in a distributed/networked domain. With respect to other domains, the fundamental difference of

this layer is that it requires the presence of a Fast Verifier component. The role of the fast verifier is

to embed the logic that supports the generation of modified models and the on-line verification of

these models to ensure correctness at all times. In Oma-cy, the CPS-domain functions provide the

basic support to the execution of CPS such as managing the structure of the system (e.g., number of

nodes in the system and their interconnections), monitoring of the nodes performance and healing

to recover from faults (e.g. nodes leave unexpectedly, server capacity is close to saturation, etc.).

CPS middleware require the integration of formal logic to check the future models generated

during execution as an attempt of the system logic to adapt to the changing environment. Therefore,

components such as OLIVE (in this case, based on CLTLoc) will be embedded inside this Fast

Verifier component as shown in Figure 3.

4. FORMAL GROUND OF OLIVE

This section describes the formal modeling and validation engine of OLIVE. The formal tools

used internally by OLIVE for rigorous model representation and validation relies on satisfiability

checking of temporal logic formulae [29]. In the considered scenario, the server (system) is specified

by a (temporal logic) formula defining its execution over time, instead of an operational model
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8 M.M.BERSANI AND M. GARCÍA-VALLS

(like automata or transition systems) that is commonly adopted in the well-know model-checking

approach. Verifying the satisfiability of the formula corresponds to determining whether there

exists an execution of the server satisfying the specified behavior, i.e., find a possible allocation

of computational resources in the server to satisfy the node request with a given requirement. When

a temporal property is considered, the model-checking problem of the system with respect to the

property is equivalent to verifying the entailment between the formula modeling the system and the

formula representing the property. In this work, the manager uses CLTLoc with dense-time clocks

to model both the server (an off-line model or a tentative on-line model) and the properties.

4.1. Basic of CLTL over clocks

Constraint LTL over clocks (CLTLoc) [5] is a semantic restriction of Constraint LTL (CLTL) [9]

allowing atomic formulae over (R, {<,=}) where the arithmetical variables behave like clocks of

Timed Automata (TA) [1]. A clock x measures the time elapsed since the last time when x = 0, i.e.,

the last “reset” of x. Let V be a finite set of clock variables x over R and AP be a finite set of atomic

propositions p. CLTLoc formulae are defined as follows:

φ := p | x ∼ c | φ ∧ φ | ¬φ | ◦ (φ) | • (φ) | φUφ | φSφ

where c ∈ N and ∼∈ {<,=}, •, ◦, U and S are the usual “next”, “previous”, “until” and “since”. An

interpretation is a pair (π, σ), where σ : N× V → R is a mapping associating every variable x ∈ V

and position in N with value σ(i, x) and π : N → ℘(AP ) is a mapping associating each position

in N with subset of AP . The difference between CLTL and CLTLoc derives from the following

property. An interpretation (π, σ) is a CLTLoc interpretation if every clock progresses at the same

rate, i.e., for every position i ∈ N, there exists a “time delay” δ > 0 such that, for any x ∈ V , the

value of x in the next position i+ 1 is either determined by the clock increment of δ time units, i.e.,

σ(i+ 1, x) = σ(i, x) + δ, or by the clock reset, i.e., σ(i+ 1, x) = 0. The value σ(i, x) of clock x

at position i is the cumulative time elapsed over a finite set of positions of N, consisting of all the

consecutive adjacent positions from the last position where a reset x = 0 occurred until i. The initial

value of a clock, σ(0, x), may be any non-negative value. A clocks x might be initialized to c just

by adding a constraint of the form x = c.

The semantics of CLTLoc is defined as for LTL, except for formulae x ∼ c. At any position

i ∈ N, the truth value of x ∼ c is defined as σ(i, x) ∼ c. Table I lists the semantics of CLTLoc given

a CLTLoc interpretation (π, σ).

(π, σ), i |= p⇔ p ∈ π(i) for p ∈ AP

(π, σ), i |= x ∼ c⇔ σ(i, x) ∼ c

(π, σ), i |= ¬φ⇔ (π, σ), i 6|= φ

(π, σ), i |= φ ∧ ψ ⇔ (π, σ), i |= φ and (π, σ), i |= ψ

(π, σ), i |= ◦ (φ) ⇔ (π, σ), i+ 1 |= φ

(π, σ), i |= • (φ) ⇔ (π, σ), i− 1 |= φ ∧ i > 0

(π, σ), i |= φUψ ⇔ ∃ j ≥ i : (π, σ), j |= ψ ∧ (π, σ), n |= φ ∀ i ≤ n < j

(π, σ), i |= φSψ ⇔ ∃ j ≤ i : (π, σ), j |= ψ ∧ (π, σ), n |= φ ∀ j < n ≤ i

Table I. Semantics of CLTL

A formula φ is satisfiable if (π, σ), 0 |= φ for some (π, σ), called trace (or model).

CLTLoc is the first decidable extension of LTL that embeds the notion of dense time into explicit

clocks occurring in the formulae and for which there is an implemented decision procedure freely

available.

The standard technique to prove the satisfiability of CLTL and CLTLoc formulae is based on

the construction of Büchi automata [5, 9]. However, for practical implementation [5], Bounded

Satisfiability Checking (BSC) [29] is employed to avoid the onerous construction of automata. The
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possibly exponential growth of the size of the automaton derived from an LTL formula determines

the worst case for CLTLoc. To limit the cost of the construction, a series of contributions targeting

LTL were published to provide efficient ways to build automata from LTL formulae, like for

instance, the method in [33]. On the other side, BSC is used to solve a satisfiability problem of

LTL and CLTLoc with a different approach. Models of formulae are built in a similar way to the

witness runs in the well-known Bounded model-checking technique [32]. The outcome of a BSC

problem is either a bounded representation of infinite ultimately periodic model or unsat. Looking

for a bounded representation of the models of a formula is equivalent to verifying the existence

of looping paths in the automaton recognizing the language of the formula. [4, 5] show that BSC

for CLTLoc is complete and that is reducible to a decidable Satisfiability Modulo Theory (SMT)

problem. The results prove that any CLTLoc formula can be translated into the decidable theory

of quantifier-free formulae with equality and uninterpreted functions combined with the theory of

Reals (R, <). The translation preserves the satisfiability, i.e., the CLTLoc formula is satisfiable if,

and only if, its translation is satisfiable. The BSC problem for CLTLoc is effectively solved by the

tool ae2zot [5].

OLIVE performs BSC of a formula representing (the model or a tentative model of) the

virtualized server and the (temporal) requirements defined in the specification. Therefore, in this

work, we specifically employ ae2zot to implement the component of Fig. 2 called Verifier.

4.2. Property validation in OLIVE.

To model the server with CLTLoc, we adopt a finite set of atomic propositions that are used

to represent the relevant configurations of the server. This way, we will identify the atoms that

contribute to the definition of the possible states of the system, i.e., the server state, the external

nodes requests and the discretized values of some quantitative measures, such as, for instance,

the server load or the utility value (see Sect. 5). In propositional LTL-like formalisms, in fact,

quantitative variables over infinite sets cannot, in general, be expressed with a finite number of

formulae, unless a finite partition of the infinite domains is adopted. To this end, in Sect. 5, we

provide suitable finite abstractions for the variables, with values over an infinite domain, that affect

the adaptation process managed by OLIVE. Given a finite set D of values, abstracting a certain

infinite domain, and a measure represented with a variable l over D, e.g., the server load, each

element d ∈ D is associated with l by means of a finite set of atomic propositions pdl . We write pdl
to indicate that the value of l is d; then, when pdl holds we argue that l = d.

Descriptive specifications, such as those written in logic, are very useful in practice to model the

semantics of systems that are inherently not convenient for being expressed with an operational

formalism. Some example are, for instance, certain classes of non-functional requirements, the

constraints describing the execution of processes based on a priority level or, in a light control

system, the brightness of a lamp depending on the light intensity in a room. The presence of clocks

in CLTLoc allows for writing an effective and intuitive definition of the system behavior over a

dense time through logical formulae. As a matter of facts, CLTLoc enriches, with a metric time,

what pure LTL can express only through an ordering of events. Despite the need for abstracting

infinite domains, clock variables in CLTLoc ranging over R represent, without abstraction, physical

(dense) clocks. Clocks appear in formulae of the form x ∼ c to express a bound c on the delay

measured by clock x.

Specifying the behavior of a system requires to associate a finite set of clocks with all the system

events (e.g., the system changes state from a certain state s to s′), that are relevant for the definition

of the temporal semantics of the system. Given that a clock is reset when the associated event occurs

and, in any moment, the clock value represents the time elapsed since the previous reset, then the

value of clock x is the time elapsed since the last occurrence of the event which x is associated with.

We provide a small example to exemplify the approach we adopt in Sect. 5 to model OLIVE.

Let us assume that a system controls a lamp which is either off or it can be active for 5 time units

every time it is turned on by signal switch on. Triggering the lamp on always precedes signal

switch off which enforces the lamp to switch to the off state. To specify this simple behavior,

we can associate a clock x with signal switch on to measure the duration of the activation of the
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10 M.M.BERSANI AND M. GARCÍA-VALLS

lamp. The CLTLoc formula (x = 0 ⇔ switch on) constraints the reset x = 0 which occurs each

time switch on is triggered. To limit the duration of the lamp activation, the formula

switch on ⇒ lamp onU(x = 5 ∧ switch off)

imposes that lamp on holds until a position where (x = 5 ∧ switch off) holds, that occurs exactly

5 time units after the occurrence of signal switch on. We use similar constraints to define, for

instance, the delay for delivering a service requested by an external node to the server.

All the propositional variables (atoms) and clocks, appearing in the CLTLoc model and

specifying the virtualized server, contribute to the definition of the current configuration of the

system. They are evaluated at run-time when the on-line engine is inquired to verify properties on

the running systems. Upon a service request, OLIVE:

(1) extracts the set of predicates from the request and the current configuration of the system;

(2) generates an updated model, based on a set of CLTLoc formulae where the initial value of all

the variables is set with the current configuration of the server;

(3) verifies the model by means of ae2zot.

For instance, consider a simplified scenario where the server runs two virtual machines a and

b that can execute the services s1 and s2 on demand. Assume that a running instance of OLIVE

receives a request from node n with the following requirement: the node asks for service s2 and the

service must be completed before a certain deadline d; in addition, the execution of s2 must conform

to a specific requirement f . Moreover, assume the server configuration, at that moment, is such that

the server is running service s1 on virtual machine a and that s1 was requested 3.2 time units ago by

node n′, with requirements f ′, and that service s1 has being processed since 1 time unit. To verify

a certain property, e.g., if there exists an execution where a request can be serviced, the current

configuration is first extracted by the verification entity and then modeled through a CLTLoc formula

of the form on(n′, s1, a, f
′) ∧ rt

f ′

n′,s1
= 3.2 ∧ tn

′,s1,a,f
′

service
= 1 ∧ re(n, s2, f), where on(n′, s1, a, f

′) is

the predicate which expresses that the system is currently serving on virtual machine a the request

for a service s1 issued by node n′ with requirements f ; clock rt
f ′

n′,s1
measures the time elapsed

since the instant where the request from n′ for service s1 was received; clock t
n′,s1,a,f

′

service
measures

the actual service time for service s1 on virtual machine a; and, finally, re(n, s2, f) expresses the

fact that a request for service s2 issued by n with property f is sent to the manager. To carry out

verification, the conjunction of the CLTLoc model of the server and the formula defining the current

configuration along with the property are verified for satisfiability. The result (step (3)) is either SAT

or UNSAT. In the current example, if the model is unsatisfiable then the request can not be served

and the manager may reschedule it later, when enough resources will be available, or may adopt

a new (tentative) model. Otherwise, the CLTLoc trace is a realistic execution of the system which

satisfies the specification and that can be possibly executed at runtime.

The model used at step (3) can also be endowed with new formulae which may represent new

requirements brought by service requests. For instance, OLIVE might need to verify if the system

can deliver an already running service before a deadline that is different from the one specified

in the request as new constraints have been injected into the system because of an adaption. In a

full-logical framework, adding formulae to refine a specification is simple to integrate and it is just

a matter of conjoining formulae. Alternatively, the CLTLoc specification can be used to perform

off-line model-checking to design correct-by-construction monitors.

5. ADAPTIVE SERVER DESIGN

A virtualized server system has been designed integrating the OLIVE autonomic manager. We

present a high level description of the implemented model, that is expressed in CLTLoc and fed

to OLIVE. Later, the results of executing OLIVE component with the ae2zot tool are presented that

show the temporal cost of the on-line decision.
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5.1. Server description overview

The server runs two virtual machines (or VMs) (Vj); each VM can execute services (Sk) as per

request of mobile nodes. Requests to the server have the form (reqType,Nk, Sk, f, nf), where

reqType refers to the type of request performed (currently only newnode is considered such that it

indicates that a new node wants to request service); Nx refers to the identifier of the mobile node

making the request; Sk is the requested service; f is the set of functional parameters that includes the

incompatibilities (I); nf is the set of non functional parameters including the service response-time

deadline (dk), and the priority (pk).
An example of new constraints regarding incompatibility issues (I) expressed in an adaptation

request is: I am node x requesting service Sk, and I can only execute in the environment of a

virtualized server if there is an encryption service running (i.e., of type Crypt).

A request, (reqType, Nx, Sk, f, nf ), is expanded as shown in expression (1) in its functional

(f into Sk, I) and non-functional (nf into pk, dk) parts. Also, the service type is indicated in the

request as follows:

(reqType,Nx, Sk, pk, dk, I) (1)

where Sk refers to the specific requested service; pk is the priority of the mobile node at which

it wants to be serviced; dk is the maximum response time (deadline) for the completion of the

response; I is the set of restrictions or incompatibilities imposed by the mobile node in relation to

the server operation.

Table II shows the finite sets that represent the discretized value ranges for the model.

Table II. Boundaries and finite sets

Var Values

Service state (Presence) [Zero, Off, On]

VM no. (v) [Va, Vb]
VM state [On, Off]

Service no. (s) [Sa,1, Sa,2] [Sb,1, Sb,2]

Service types [User, Priviledged, Critical, Crypt]

Priority (pk) [Normal, High]

Deadline (dk) [DT1, DT2, DT3, DT4]

Utility (uk) [Low, Med, High]

Server load (increasing order) (l) [SL0, SL1, SL2, SL3, SL4]
VM load (li) [V L1, V L2, V L3]

The variables identified in Table II are described as follows. Service states refer to the operation

status of the services: No operation (Zero), present but not active (Off ), present and in running

(On). Number of virtual machines is v, and the specific virtual machines in the server are Va and Vb.

The possible states of a virtual machine areOn andOff . The number of services (s) is specified per

virtual machine, where Va has two services (Sa,1, Sa,2), and Vb has two services (Sb,1, Sb,2). Service

types are in accordance to their criticality level (User, Privileged, Critical, Cryt). The type of

service is used to model the incompatibilities (or restrictions) posed by the mobile CPS nodes.

Priority levels (pk) indicate the urgency of the requests; there are two priorities (Normal,High).

Service request deadlines (dk) are the maximum service time; node x expects an answer from the

server dk time units after issuing the request. The values are discretized in four ranges (DT1 through

DT4). Utility (ux) is an indication of the level of satisfaction of the mobile nodes as consequence of

the server attention. The utility value provided by the server indicates a lower bound value expected

by node x. The utility for a node is a function of the service time tk and the level of satisfaction

of its incompatibilities (represented by set Ik explained later in table VI. Three utility values are

defined (Low,Med,High). Server load (l) indicates the used capacity of the server derived from

the current services and virtual machine/s that are running. Five load value ranges are defined
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12 M.M.BERSANI AND M. GARCÍA-VALLS

(SL0, SL1, SL2, SL3, SL4). Virtual machine load (li, where i refers to a specific virtual machine

inside the server) indicates the used capacity of the server given its current execution of different

services and virtual machines. The load value ranges are defines (V L1, V L2, V L3).

Table III. Determination of the server load value (l)

Name Description

Server load maximum

(A on B on) (lj affects

dk)

If [(Va.state = On) ∧ (Vb.state = On)]∧ [(la = V L3) ∧ (lb =
V L3)] or [(la = V L3) ∧ (lb = V L2)] or [(la = V L2) ∧ (lb = V L3)]
then l = SL4)

Server load medium (A

on B on)

If [(Va.state = On) ∧ (Vb.state = On)]∧ [(la = V L3) ∧ (lb =
V L1)] or [(la = V L2) ∧ (lb = V L2)] or [(la = V L1) ∧ (lb = V L3)]
then l = SL3)

Server load medium (A

on B off)

If [(Va.state = On) ∧ (Vb.state = Off)]∧ (la = V L3)] then l =
SL2)

Server load medium (A

off B on)

If [(Va.state = Off) ∧ (Vb.state = On)]∧ (lb = V L3)] then l =
SL2)

Server load low (A on B

on)

If [(Va.state = On) ∧ (Vb.state = On)]∧ [(la = V L3) ∧ (lb =
V L3)] or [(la = V L3) ∧ (lb = V L2)] or [(la = V L2) ∧ (lb = V L3)]
then l = SL1)

Server load low (A on B

off)

If [(Va.state = On) ∧ (Vb.state = Off)]∧ [(la = V L1) ∨ (la =
V L2)]] then l = SL1)

Server load low (A off B

on)

If [(Va.state = Off) ∧ (Vb.state = On)]∧ [(lb = V L1) ∨ (lb =
V L2)]] then l = SL1)

Server idle (A off B off) If [(Va.state = Off) ∧ (Vb.state = Off)] then l = SL0)

The determination of the load of a system is shown in table III. The server load is the sum of the

partial utilizations (li) of all virtual machines of the server. In a real-time system, the utilization can

be calculated under a periodic model that is compatible with a hierarchical scheduling technique for

the virtual machines. As a result, li =
Ci

Ai
where Ci is the computation time of Vi over an activation

period Ai (named Ti in real-time scheduling). A virtual machine is assigned a temporal partition

that is a maximum utilization value that ensures temporal isolation between virtual machines; the

verification of the model checks that the overall utilization value is not above a specified threshold

[26]. Other response time analysis methods would check if tk ≤ dk holds for all nodes, where tk is

the response time.

In the current model, the service time value (stk) provided by the server that runs service k

in response to a request from node x depends on the number of currently running services. This

determines the server load (l) as a measure of resource availability. Additionally, the server load

(l) (see Table III) depends on the sum of the individual load caused by each virtual machine on the

server. Table IV models the load experimented by virtual machines (li) depending on the running

services and their expected service time.

Table V expresses the set of incompatibilities that are mandatory conditions for the execution of

the different types of services. Table VI shows the utility function to determine the benefit for the

requests. It indicates the relation between the request parameters and the obtained response times

(rtk) and the level of fulfillment of incompatibilities (I). The set of threshold values for the response

time (rt = [RT1, RT2, RT3, RT4]) allows to determine the server load values. We show the utility

type for type Critical; similar analysis is integrated for types Privileged and User.

The utility function (fu) is:

uk = fu(rtk, satLevelIk) (2)
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Table IV. Load of Va (la) in relation to the execution characteristics of the services. lb is not expressed since
the pattern is repeated

Name Description

la = V L3 when

[(Va.state = On)]
If [(Sa,1.state = On) ∧ (Sa,2.state = On)] ∧ [((Sa,1.dk =
DT2) ∨ (Sa,1.dk = DT1)) ∧ ((Sa,2.dk = DT2) ∨ (Sa,2.dk =
DT1))] then la = V L3

la = V L2 when

[(Va.state = On)]
If [(Sa,1.state = On) ∧ (Sa,2.state = On)] ∧ [(Sa,1.dk =
DT3) ∧ (Sa,2.dk = DT3)] then la = V L2

If [(Sa,1.state = On) ∧ (Sa,2.state = Off)] ∧ (Sa,1.dk =
DT1)] then la = V L2

If [(Sa,1.state = Off) ∧ (Sa,2.state = On)] ∧ (Sa,2.dk =
DT1)] then la = V L2

la = V L1 when

[(Va.state = On)]
If [(Sa,1.state = On) ∧ (Sa,2.state = Off)] ∧ (Sa,1.dk =
DT4)] then la = V L1

la = V L1 when

[(Va.state = On)]
If [(Sa,1.state = Off) ∧ (Sa,2.state = On)] ∧ (Sa,2.dk =
DT4)] then la = V L1

Table V. Incompatibility set

Incompatibilities for type Critical

If servType = Critical then there is no Privileged

service in the server (in any VM)

If servType = Critical then there is no User service

in the same VM

If servType = Critical then if there are other services

in the same VM, these are necessarily of type CRY PT

Table VI. Utility function

Name Description

Utility (uk) for type

Critical

If [(pk = High) ∧ (rtk ≤ RT1)] then [uk = High]

If [(pk = High) ∧ [(RT1 < rtk ≤ RT3)]] then [uk =
Normal]

If [(pk = High) ∧ (rtk > RT3)] then [uk = Low]

Utility (uk) for type

Priviledged

If [(pk = Normal) ∧ [(rtk ≤ RT2)] then [uk = High]

If [(pk = Normal) ∧ (RT2 < rtk < RT4)] then [uk =
Normal]

If [(pk = Normal) ∧ (rtk ≥ RT4)] then [uk = Low]

Utility (uk) for type User If [(pk = High) ∧ (rtk ≤ RT2)] then [uk = High]

If [(pk = Normal) ∧ (RT2 < rtk < RT4)] then [uk =
Normal]

If [(pk = Normal) ∧ (rtk ≥ RT4)] then [uk = Low]

where satLevellk is the degree of satisfiability of the constrains or incompatibilities (Ik). If all the

constraints brought in by the node request are satisfied, the value of satLevellk is maximum. If not,

a specific verification method is used and a true/false answer is obtained.

Copyright c© 0000 John Wiley & Sons, Ltd. J. Softw. Evol. and Proc. (0000)
Prepared using smrauth.cls DOI: 10.1002/smr



14 M.M.BERSANI AND M. GARCÍA-VALLS

The utility function determining the satisfiability of a request is directly derived from the

expression (2). The utility is discretized, in accordance to the service types, into acceptable (High

or Normal) and unacceptable (Low) levels.

The provided scenario is set up to observe the temporal cost of our OLIVE component. In an

actual scenario, the values assigned to ST in relation to D and RT are separated by a few orders

of magnitude (for a desired response time of 450 ms a typical execution would be 60 ms). The

verification time for this situation is application dependent; e.g., for the case of an object tracking

video analysis, up to one second would be acceptable; in the case of mobile nodes joining a new

system to replace existing functionality, some minutes are tolerated.

5.2. Encoding CLTLoc model into OLIVE.

Let W be set {N,H} of priorities (or weights), D be set {DT1,DT2,DT3,DT4} of deadlines and

T be set {U,P,C,Y} of service types, where U represents “User”, P represents “Priviledge”, C
represents “Critical” and Y represents “Crypt”. Let V be a finite set of virtual machines, S be a

finite set of services and N be a finite set of nodes and F ⊆W ×D × T . A non-functional property

(or simply feature) f ∈ F is a triple (w, d, t), specifying a priority, a deadline and a service type,

which labels a request of a service by a node. The definition of set F of features is application

specific.

The design of the CLTLoc model considers the following assumptions:

(i) The process of requesting and obtaining a service by a node, is unique during the time interval

along which the service is executed. In fact, we may identify a node by its name and an

information distinguishing the instance (of that node) that provides the request.

(ii) Between a request and the service delivery, there is only one virtual machine on the server

which executes the service that is required by a node. In realistic scenarios, the number of

requests of a node is finite and the value defining this bound can be assumed as a parameter

of the server.

(iii) The server always guarantees the termination of the task associated with a service request

as the system may be equipped with a scheduler and a resume-after-failure mechanism

implementing reliable computations.

In our model, variables n, d, w and f range over N,D,W and F ; and variables s and v range

over S and V , respectively. The following propositions model events in the system. re(n, s, f):
node n requests service s with feature f . de(n, s, f): service s, requested by node n with feature f ,

is delivered. on(n, s, v, f): service s, requested by node n with feature f ∈ F , is active on VM v.

The CLTLoc model captures the real-time behavior of the server from the moment when it

receives a service request to the moment of the delivery, as depicted in Figure 4. The process starts

when a node n issues a request with a request message re(n, s, f) which specifies the service s and

the requirement to execute the task on the server, through the feature f . The request is processed

immediately by the system which executes s as soon as there are enough resources for the service

to be executed, i.e., when possible, the system activates a process, running the service, on virtual

machine v. At this moment, on(n, s, v, f) becomes true and it remains true as long as the process

terminates, where on(n, s, v, f) becomes false. State on(n, s, v, f) always changes from false to

true after event re(n, s, f) as the time elapsed between the request and the start of the service

represents the overhead to initiate the process itself on the selected virtual machine and the time

needed to schedule the tasks. When the process terminates, the server starts releasing the allocated

resources and later notifies node n of the termination of the service by sending a delivery message

de(n, s, f). A service request is always associated with a specific temporal constraint defining the

maximum tolerated delay for the service delivery which is specified, at the moment of the request, in

f through a deadline d. To measure the total time elapsed between a service request and the service

delivery, the server allocates a clock rtfn,s. Although the server guarantees the termination of the

processes, possible failures and scheduling delay, that are enforced by the system to comply with

incompatibilities and availability of the computational resources, may delay the service execution.

The total time required to complete the process determines the utility for the user. The value of clock
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re(n, s, f)

rt
f
n,s = 0

de(n, s, f)

rt
f
n,s ∼ d

on(n, s, v, f) on(n, s, v, f)

Figure 4. Events for a node n, service s, virtual machine v and features f . The dashed line represents the
interval where on(n, s, v, f) holds.

rtfn,s at the service delivery determines the level of utility that the server actually provisions a node

waiting for a service.

5.2.1. Event ordering. Specific formulae model the sequences of events of Figure 4 by imposing

the following:

(i) a service request re(n, s, f) always precedes its delivery de(n, s, f) and a service delivery

de(n, s, f) always follows its request re(n, s, f);
(ii) the server initiates a thread to run the service, between the request and the delivery. Hence,

when a service request is issued, the service will eventually start on some virtual machine

v (on(n, s, v, f) becomes true, before the service delivery) and, moreover, when a service

delivery occurs, the service has been started on some virtual machine v (on(n, s, v, f) was

true in the past, after the service request);

(iii) the necessary condition for a service to be executed on v.

Formula (3) fulfills requirement (i) and states that a service request re(n, s, f) always precedes

its delivery de(n, s, f), and a service delivery de(n, s, f) always follows its request re(n, s, f). The

first formula states that, from the next position of the one where re(n, s, f) occurs, re(n, s, f) does

not hold until the occurrence of de(n, s, f). The second formula imposes that, when de(n, s, f)
occurs, at some position, then either that position is the origin or from the previous position back to

the one where re(n, s, f) occurs, de(n, s, f) does not hold. To distinguish the origin, we introduce

O as an abbreviation for formula ¬ • (true) that holds only at position 0. From now on, we intend

n, d, w and f as variables over N,D,W and F ; and variables s and v as variables over S and V ,

respectively.
∧

n,s,f

(

re(n, s, f) ⇒ ◦ (¬re(n, s, f)U de(n, s, f))
)

∧
∧

n,s,f

(

de(n, s, f) ⇒ O ∨ • (¬de(n, s, f)S (re(n, s, f) ∨ O))
)

(3)

Formula (4) states that between a request and the delivery, the server initiates a thread to run the

service, therefore meeting requirement (ii). The thread is executed by a virtual machine having

enough resources and satisfies all the incompatibilities among the tasks in execution (that are

modeled later). The first formula of (4) imposes that, when a service request is issued, the service

will eventually start on some virtual machine v (on(n, s, v, f) becomes true before the service

delivery). It states that, from the next position of the one where re(n, s, f) occurs, before the

occurrence of de(n, s, f) the service eventually starts on(n, s, v, f). The second part of the formula

states that when a service delivery occurs, the service has been started on some virtual machine

v (on(n, s, v, f) was true in the past, after the service request). It imposes that, when de(n, s, f)
occurs, at some position, then either that position is the origin or from the previous position back to

the one where on(n, s, v, f) was true, no request re(n, s, f) occurred.

∧

n,s,f

(

re(n, s, f) ⇒ ¬de(n, s, f)U
∨

v

on(n, s, v, f)
)

∧
∧

n,s,f

(

de(n, s, f) ⇒ ¬re(n, s, f)S (
∨

v

on(n, s, v, f) ∨ O)
)

(4)
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The following two formulae, (5) and (6), complete the fulfillment of requirement (iii). Formula (5)

defines the necessary condition for a service to be currently executed on a server v, i.e., only after an

event re(n, s, f) and before de(n, s, f). The formula states that if on(n, s, v, f) holds at the current

position then (i) no request re(n, s, f) nor answer de(n, s, f) may occur and (ii) no re(n, s, f) can

occur until the next event de(n, s, f) and, since the previous re(n, s, f), no de(n, s, f) can occur

while no other VMs can execute the service simultaneously. Moreover, when on(n, s, v, f) holds no

VM v′ 6= v can execute, at the same time, service s. In other words, Formula (5) impedes the system

from concurrent execution of tasks serving node n requiring service s on virtual machine v. Given

a triple (n, s, f) at most one active thread can execute the service and there is only one v such that

on(n, s, v, f) holds.

∧

n,s,v,f

(

on(n, s, v, f) ⇒







¬re(n, s, f)U (de(n, s, f) ∧ ¬on(n, s, v, f))

∧

¬de(n, s, f)S ((re(n, s, f) ∨ O) ∧ ¬on(n, s, v, f))






∧ ¬

∨

v′ 6=v

on(n, s, v′, f)
)

(5)

Formula (6) constraints the behavior of active services on the server. We assume that an active

execution can not be preempted. Therefore, when a service has been completed, i.e., the thread

computing it is terminated and on(n, s, v, f) does not hold, then the computation can not be restarted

until the delivery of the service which occur when de(n, s, f) holds.

∧

n,s,v,f

(

(¬on(n, s, v, f) ∧ • (on(n, s, v, f)) ⇒ ¬on(n, s, v, f)U de(n, s, f)
)

(6)

5.2.2. Timing constraints. To measure the time elapsed between the request re(n, s, f) and answer

de(n, s, f), we introduce a clock rtfn,s, for any triple n, s, f . The value of rtfn,s at the moment of a

service delivery, i.e., when de(n, s, f) holds, determines the level of utility for the node requesting

the service (see later the formula modeling the utility). Formula (7) imposes that clock rtfn,s is reset

when a request for a service is issued.

∧

n,s,f

(re(n, s, f) ⇔ rtfn,s = 0) (7)

To model the system elapsed time, we define how the server load affects the total duration of

the running services in the server. The speed of computation of the VMs depends on the server load

that is, in turn, influenced by the running tasks. The model captures the relation between the load

and the duration by dividing the computation into phases which are intervals over the time with

constant load. Each phase has a specific duration, determined by the load. Intuitively, the model

captures how fast, or slow, the server is in the current phase on the basis of the current load, i.e.,

the higher the load, the slower the computation of the server. The amount of time to complete a

phase is defined at design time or can be estimated by monitoring a deployed system (Table III

shows the conditions to have the maximum server load). To measure the duration of the phases, we

use a pair of clocks t0server and t1server which are alternatively reset when the server load varies. In

any position, the active clock measuring the current phase is the last one reset in the past. The fact

that we need two clocks is rather a technical aspect related to the semantics of CLTLoc logic. In

CLTLoc, in fact, a clock can not be evaluated (i.e., its value is used to evaluate the truth value of

arithmetical constraints like x ∼ c, where x is a clock and c a constant) and, at the same time, reset

to value 0. To do simultaneously a reset and the evaluation we use two clocks. One stores the value

of time which is used to verify time bounds and the other is reset. The active clock to be used in

formulae is the one with non-null evaluation. The two clocks alternately reset by means of the next

Formula (8).

t0server = 0 ⇒ ◦
(

(t1server = 0)R(t0server > 0)
)

∧ ¬(t1server = 0)

∧

t1server = 0 ⇒ ◦
(

(t0server = 0)R(t1server > 0)
)

(8)
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The initial configuration is set by t0server = 0. We use the shorthand tserver ∼ c to indicate the

formula
t0server > 0 ∧ (t1server = 0 ∨ (t1server > 0)S(t0server = 0)) ⇒ t0server ∼ c

∧

t1server > 0 ∧ (t0server = 0 ∨ (t0server > 0)S(t1server = 0)) ⇒ t1server ∼ c

defining which clock keeps the measure of the time elapsed between the current position and the

last clock reset, i.e., the valid value of time since the last reset. We use tserver = 0 to indicate the

formula (t0server = 0) ∨ (t1server = 0). Formula (9) determines the time delay which each server load

is associated with. It states that if the server load is sv l(i), then sv l(i) holds until the moment

where the amount of time required by the server to complete the current phase is expired. The

time elapsing associated with sv l(i) is defined by a specific constraint on tserver as specified in

Table XVII (third row). The first formula states that one of the two clocks tiserver is reset whenever

the server load changes.

tserver = 0 ⇔
∨

i∈{0,4}

(sv l(i) ∧ ¬ • (sv l(i)))

∧

sv l(4) ⇒ sv l(4)U(tserver ≥ ST4 ∧ ¬sv l(4))

∧

sv l(3) ⇒ sv l(3)U(ST3 ≤ tserver < ST4 ∧ ¬sv l(3))

∧

sv l(2) ⇒ sv l(2)U(ST2 ≤ tserver < ST3 ∧ ¬sv l(2))

∧

sv l(1) ⇒ sv l(1)U(ST1 ≤ tserver < ST2 ∧ ¬sv l(1))

(9)

To model the delay affecting the computation of services on the basis of the server load,

Formula (10) imposes that a running service, i.e., such that on(n, s, v, f) holds, can not terminate

before the end of a phase and also that a service can not begin after the start of a phase. Formula (10)

states that if a service is active, and the server load is sv l(i), then it has been active since the

beginning of the phase (where tiserver = 0, for some i ∈ {0, 1}) and it will be active until the end

of the phase (where ti+21
server = 0, for some i ∈ {0, 1}) including the current position and all adjacent

positions where sv l(i) holds.

∧

i∈{0,1}

∧

n,s,v,f

(

(

on(n, s, v, f) ∧







tiserver > 0

∧

ti+21
server > 0






S(tiserver = 0)

)

⇒

on(n, s, v, f)S







on(n, s, v, f)

∧

tiserver = 0






∧ on(n, s, v, f)U(ti+21

server = 0)
)

(10)

To measure the duration of the execution of a running service we introduce a set of clock t
n,s,f
service

storing the time elapsed since the position where the execution of s, requested by n, started on virtual

machine v. Formula (11) imposes that clock t
n,s,f
service is reset when the execution of the service starts,

i.e., when start(n, s, s, f) becomes true, for some v.

∧

n,s,f















t
n,s,f
service = 0 ⇒

∨

v

(on(n, s, v, f) ∧ ¬ • (on(n, s, v, f)))

∧

¬O ∧
∨

v

(on(n, s, v, f)¬ • (on(n, s, v, f))) ⇒ t
n,s,f
service = 0















(11)
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The model defines the total duration of a service in terms of the smallest computation. For each

tuple (n, s, v, f) we introduce a clock t
n,s,v,f
service which is always reset when s, requested by n, starts

the execution on some v, i.e., when on(n, s, v, f) becomes true for some v. Formula (12) constraints

the duration of on(n, s, v, f) which remains true for at least the minimum time required to complete

the service, that is, until the position where t
n,s,v,f
service is greater than or equal to k(s, v) times the

duration ST1 of the smallest phase, for some positive value k(s, v) depending on the service s and

the VM v. The minimum time k(s, v) · ST1 is the time that the server needs to run the service in

an empty machine (i.e., when it is the only service in the system). The value k(s, v) abstracts the

computational power of v and provides and estimation of the cost of executing service s on v. Its

value can be obtained by monitoring the system or by design assumptions.

on(n, s, v, f) ⇒

on(n, s, v, f)U(on(n, s, v, f) ∧ tn,s,v,fservice ≥ k(s, v)·ST 1)
(12)

5.2.3. Server load and Virtual machine load. We introduce the following propositions: user(s, v),
priviledge(s, v), and critic(s, v) for defining incompatibilities. If user(s, v) holds, then, at

that position, there is an active thread executing a service of type “User” in v. Propositions

priviledge(s, v) and critic(s, v) have a similar meaning but for “Priviledge” and “Critical”

services. “Crypt” services are modeled by proposition crypt(s), with s ∈ S. Formula (13) defines

incompatibilities among the services that are executed on the server. The first part defines when each

proposition holds based on which service is currently running in the server. For example, user(s, v)
holds for some service s and virtual machine v if, and only if, there is a running instance serving

s on v which was requested by some node n with feature f , so that on(n, s, v, f) holds. The last

formula draws a necessary condition for a service s to be “Crypt” by imposing that it is “Critical”

and there exists a virtual machine v that executes it.

∧

s,v



























(
∨

n,p,d

f=(p,d,U)

on(n, s, v, f)) ⇔ user(s, v) ∧

(
∨

n,p,d

f=(p,d,P )

on(n, s, v, f)) ⇔ priviledge(s, v) ∧

(
∨

n,p,d

f=(p,d,C)

on(n, s, v, f)) ⇔ critic(s, v)



























∧

∧

s

(crypt(s) ⇒
∨

v

critic(s, v))

(13)

We model incompatibilities of Table XVI by Formula (14). The first part states that any critical

service can not coexist with a priviledged one in the server (in any VM) and any critical service can

not execute in a VM with a user service. If critic(s, v) holds, then, in any virtual machine v′ ∈ V

and for any service s′ ∈ S, no service of type “Priviledge” can be active and, at the same time, in

the same virtual machine v and for any service s′ ∈ S, no service of type “User” can be active. The

second part imposes that critical services can coexist in the same VM only with “Crypt” services.

∧

v,s

(

critic(s, v) ⇒
∧

v′∈V,s′∈S

¬priviledge(s′, v′) ∧
∧

s′∈S

¬user(s, v)
)

∧
∧

s,s′,v

s 6=s′

(

critic(s, v) ∧ critic(s′, v) ⇒ crypt(s) ∧ crypt(s′)
)

(14)

Modeling the server load and virtual machine load requires the definition of a finite abstraction of

their value. In Table XIV, we have already defined a suitable finite set of values so that they can
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be represented through CLTLoc formulae. We introduce the following propositions that are indexed

with i defined over a finite set of values and we explain their meaning to understand the following

formulae.

• vm l(v, i): represents that virtual machine v is running with load value equal to i, where i is

in {1, 2, 3}.

• sv l(i): models server load whose value is equal to i, where i is in {0, . . . , 4}, when sv l(i)
holds.

We also introduce the following shorthand which are helpful for defining the value of sv l(i).

• vm on(s, v): abbreviates
∨

n,f on(n, s, v, f) and captures the fact that in virtual machine v

service s is running.

• vm on(v): abbreviates
∨

s vm on(s, v) and represents that there is a service running on v.

The formula defining sv l(i), for each i in the set abstracting the load value, establishes the

relation between sv l(i) and a specific condition on both vm on(s, v) and vm l(v, i) based on

the correspondent case in Table XIV. The complete encoding of each sv l(i) is provided in the

appendix B and the following Formula (15) shows, as an example, only the case for sv l(0) and

sv l(1). The condition defining sv l(0) is straightforward whereas the one for sv l(0) is more

complex as it captures many cases. The server load is 0 when both the virtual machines are idle

and it is 1 when one of the three possible situation modeled in the left hand-side of the double

implication holds. In the first two cases, one of the two virtual machine is idle while the other is

running with low load (either 1 or 2). In the third case both the virtual machines are working and at

most one load value of the two is at most 2.

¬vm on(a) ∧ ¬vm on(b) ⇔ sv l(0)

∧


























vm on(a) ∧ ¬vm on(b) ∧ (vm l(a, 1) ∨ vm l(a, 2))

∨

¬vm on(a) ∧ vm on(b) ∧ (vm l(b, 1) ∨ vm l(b, 2))

∨

vm on(a) ∧ vm on(b) ∧







vm l(a, 1) ∧ vm l(b, 1) ∨

vm l(a, 2) ∧ vm l(b, 1) ∨

vm l(a, 1) ∧ vm l(b, 2)

































⇔ sv l(1)

∧

(15)

Formula (15) employs the value of vm l(v, i), whose definition is given in Formula (16) which

translates the rules of Table XV. The definition is given on the basis of parameter v, which is

either a or b in our particular implementation of the system considering only two virtual machines.

Formula (16) consists of three cases as predicate vm l(v, 2), the one which is not shown, is derived

as a consequence of the definition of vm l(v, 0) vm l(v, 1) and vm l(v, 3) and the fact that at each

position there is at least one predicate vm l(v, l) which holds. The first conjunct imposes this

requirement, i.e., that the server load value is defined in each time position or, in other words, that

there is at least a load value l such that vm l(v, l) holds. The second disjunct is needed to restrict

the previous one and imposes the uniqueness of the server load value. It states that if vm l(v, l)
holds, for some l, then vm l(v, l′) is false for all the l′ different from l and belonging to {0, . . . , 3}.

The third part specifies the definition of vm l(v, l) for l = 0, l = 1 and l = 3. Each value vm l(v, l)
depends on the property of the service running on v which is captured by the feature f characterizing

the proposition on(n, s, v, f) which holds in that moment. We consider the following abbreviations

in the formulae: ψ2(f) := (d ≤ DT2) and ψ4(f) := (d = DT4). For example, ψ2(f) is true if, in
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the feature f , deadline d is ≤ DT2.

∨

l∈0,...,3

vm l(a, l)

∧
∧

l∈0,...,3

(

vm l(a, l) ⇒ ¬
∨

l′∈0,...,3,l 6=l′

vm l(a, l′)
)

∧
∨

n,n′∈N,f,f′∈C

ψ2(f),ψ2(f ′)

(

on(n, s1, a, f) ∧ on(n′, s2, a, f
′)
)

⇔ vm l(a, 3)

∧















(

∨

n,f

ψ4(f)

on(n, s1, a, f) ∧ ¬vm on(s2, a)
)

∨

(

¬vm on(s1, a) ∧
∨

n,f

ψ4(f)

on(n, s2, a, f)
)















⇔ vm l(a, 1)

∧

¬vm on(a) ⇔ vm l(a, 0)

(16)

5.2.4. Node utility. The utility function (Table XIX) is modeled through proposition utility(n, i),
which is defined for all n ∈ N and i ∈ {H,N,L}. It represents value uk introduced in Formula (2)

associated with node n and levels H (“high”), N (“normal”) and L (“low”). We assume that the

utility utility(n, i) for node n is defined only when node n receives the answer from the server.

Formula (17) states that utility(n, i) holds only when a service delivery de(n, s, f) occurs, for

some s and f . This is specified by means of two implications. First, if de(n, s, f) holds then node

n has utility i, for some i in {H,N,L}. Then, to avoid cases such that utility(n, i) is true even

though no delivery is done, the second conjunct imposes that if utility(n, i) holds, for some n

and i, then, at the same time, there must occur a service delivery de(n, s, f), for some service s and

feature f . Finally, the third conjunct imposes that the value of the utility is unique.

∧

n,s,f

(

de(n, s, f) ⇒
∨

i∈{H,N,L}

utility(n, i)
)

∧
∧

i∈{H,N,L},n

(

utility(n, i) ⇒
∨

s,c

de(n, s, f)
)

∧
∧

i∈{H,N,L},n

(

utility(n, i) ⇒
∧

j∈{H,N,L}\{i}

¬utility(n, j)
)

(17)

Formula (18) translates constraints in the first row of Table XIX. For brevity, we omit the formulae

for the case “Priviledge” and “User” (second and third rows), as they can easily obtained from

formulae of the case “Critical” by simply changing values for parameter c and time bounds RTi.

The first part states that answer de(n, s, f) occurs and response time rtfn,s is less, or equal to, RT1
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if the utility for node n is “high” utility(n,H). The other formulae have a similar meaning.

∧

n,s,f

f=(H,d,C)

(

utility(n,H) ⇒ rtfn,s ≤ RT1

)

∧
∧

n,s,f

f=(H,d,C)

(

utility(n,N) ⇒ RT1 < rtfn,s ≤ RT3

)

∧
∧

n,s,f

f=(H,d,C)

(

utility(n, L) ⇒ rtfn,s ≥ RT3

)

(18)

Formula (19) can be added by OLIVE to the current model when a node, requiring further

incompatibilities when it joins the systems, brings a new constraints γ to further constraint the

service execution on a virtual machine.
∨

v

(on(n, s, v, f) ⇒ γ) (19)

If a node does not requires new incompatibilities then its γ is simply true, meaning that its set of

constraints is empty.

The complete model is defined by formula 2

(

∧19
i=3(i)

)

, that is the conjunction of all the

previous formulae, globally quantified over the time. We refer later to this formula as SYSTEM.

6. EMPIRICAL RESULTS

This section presents the temporal cost of executing OLIVE with ae2zot in response to an adaptation

event. ae2zot is the arithmetical plugin of Zot toolkit [8] that implements the procedure for solving

the Bounded Satisfiability Checking (BSC) of CLTLoc formulae. It translates the CLTLoc input

formula through the reduction in [4] and [5], and it verifies the satisfiability of the outcome

by invoking an external SMT-solver (Microsoft Z3, github.com/Z3Prover/z3). Zot is written in

Common Lisp and ae2zot is the first automatic tool supporting satisfiability checking for CLTLoc

formulae over dense time. Satisfiability checking is a verification approach that is alternative to

model-checking where a logical formula defines the system behavior instead of an operational

model (like, for instance, automata or transition systems). This approach is helpful when verification

is required for system that are specified by means of descriptive specifications as claimed in [29].

Although the standard technique to prove the satisfiability of CLTL and CLTLoc formulae is based

on the construction of a Büchi automata [5,9], the evidence has turned out that it is rather expensive

in practice, even in the case of LTL (the size of the automaton is exponential with respect to the

size of the formula) and that new techniques should be investigated. BSC tackles the complexity of

checking the satisfiability for CLTL formulae by avoiding the unfeasible construction of the whole

automaton. By unrolling the semantics of the formula for a finite number of steps k > 0, BSC tries

to build a bounded representation αβ, of length k over a certain alphabet of atoms appearing in

the formula, of an infinite ultimately periodic model for the formula of the form αβω. All the tests

were carried out by feeding the solver with the CLTLoc formula defining the server (we name the

formula with SYSTEM) and an integer value k (see 4.1). The solver runs on an Ubuntu Linux machine

14.04.2, Xeon E5530 2.4GHz with 3GB Ram.

The first experiment is devised to measure the scalability and the cost of real-time verification

of the (tentative) server model. To account for different system implementations, each experiment

is run with a specific value of the following server parameters:

• number of nodes in the system and
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• number of the features (priority, deadline and type) that nodes require.

The experiment simulates tight timing requirements on the service execution: given any initial

system configuration, all service requests re(n, s, f) have to be served within 5 seconds. This

demand amounts to verifying the satisfiability of the specification SYSTEM conjoined with a formula

requiring that any on(n, s, v, f) eventually holds, within 5 seconds from the origin. Informally, the

cost for resolving the server model and the formula gives the magnitude of the time and memory cost

to foresee the evolution of the server, undergoing a specific service demand, in the next time window

5 time unit long. In this case, the prediction is related to the possibility of allocating the processes

in the server so that it executes all the service requests according to the timing constraints which

specify the server behavior. To verify this property, we introduce the following Formula (20) that

requires a new fresh clock t, reset in the origin, to guarantee that each occurrence of on(n, s, v, f)
is instantiated before 5 time unit from the origin:

t = 0 ∧
∧

n,s,v,f

♦ (on(n, s, v, f) ∧ t < 5) (20)

To obtain a significant estimation of the scalability of the approach, we have considered the

following sets of increasing values for the parameters. The number of nodes, i.e., the cardinality

of N , is chosen over the set {2, 4, 6, 8, 10} and the cardinality of F over the set {4, 6, 8, 10, 12}
(the maximum number of features in F is 24). The set of triples in F is randomly generated

accordingly with the constraints on service types, priorities and deadline presented in Section 5.

The values of the deadline (DTi), occurring in a feature defined by a triple of F , and the response

time (RTi) are set to 50, 100, 200, 400ms and the values of the service time (STi) ranges over

5, 20, 40 and 60ms. For example, when the features supported in the server are four, set F is

defined as = {(H, 50, C), (N, 200, U), (H, 200, U), (N, 50, P )}. The feature (H, 50, C) represents

the class of processes with the following properties: high (H) priority service request, deadline

50ms time units, type Critical (C)). The state space of the system is influenced by the size of the

sets N and F along with the number of services and of the virtual machines in the server. If nVMs

and nservices are the number of virtual machines and the number of services, the size of the system

model can be measured with the value |N | × nservices × nVMs × |F |. In the current adopted setting,

nservices × nVMs amounts to 4, i.e., the number of all the possible ways of executing 2 services s1
and s2 with 2 virtual machines a and b. Therefore, considering the minimum and maximum value of

|N | and |F |, the number of all possible active tasks that are executed in the server., i.e., the number

of propositions on(n, s, v, f), ranges from 32 to 480. In addition, we experimented increasing values

for k, in the set {6, 8, 10, 12, 15, 20}, to highlight the impact of the length k in the resolution of the

server specification. The value k has a key role as it determines the maximum number of relevant

time positions that can be used to represent periodic executions of the server represented by the

CLTLoc model satisfying the server specification. Based on the experimental results we obtained,

we claim that experimenting configurations with larger value for k and bigger sets N and F , has

little interest as these settings would exceed 10 hours of computation. Figure 5 shows the time

needed to carry out the satisfiability of the formula SYSTEM ∧ (20) for k = 10. Each point of the

curve plots the SMT time required for solving an instance of the server model instantiated with

a specific pair of number of nodes and number of services. The graph reports the time in all the

possible configurations generated from the sets. The full and detailed collection of data on time and

memory consumption of the experiment in Figure 5 and all the other cases with k different from 10

are provided in the Appendix A.

In the graphs of Figure 6, we show the dependency of the (SMT) solving time with the length k

of the traces and the cardinality of N and F . To show the results of the experiments for all the k’s

from 6 to 20, we restrict the sets N and F , as the case N = 10, F = 12 run out of time. The graphs

(a), (b), (c) and (d) in Figure 6, respectively, represents the solving time for a specific cardinality of

|N | in {2, 4, 6, 8}. Each one collects four curves, differentiated with a specific increasing value of

|F |. Similarly, the graphs (e), (f), (g) and (h) show the solving time for a specific cardinality of |F |
in {4, 6, 8, 10} and the four curves in each of them characterize a cardinality |N |. The graphical

evidence points out a non linear dependency of the time and the parameter k in all the cases.
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Figure 5. SMT-solver time (secs) for k = 10 w.r.t. number of nodes (N) and feature (F ).

Moreover, a simple numerical analysis on the data shows that the time to solve the verification

problem, in this experiment, grows more rapidly with respect to an increment of the number of

supported nodes than with respect to an increment of the available features that characterize the

service execution. In other words, solving the model for increasing value of |N | is harder than

solving the same model for increasing value of |F |.
The second experiment illustrates an example of on-line verification of a server with 4 nodes and

6 features, with F = {(H, 50, C), (N, 200, U), (N, 400U, ), (H, 200, U), (H, 400, U), (N, 50, P )}.

As explained in Sect. 4.2, OLIVE checks the satisfiability of formula SYSTEM specifying the system

possibly conjoined with a CLTLoc formula defining the current configuration and a property.

Grounding on the verification outcome, the monitor defines the strategy for adaptation. In this

experiment, we assume that, when the on-line engine is inquired, the system has the following

configuration: node n1 requested for a high priority service s1, with type critical and deadline 50ms,
10ms in the past and the service has been executing since 1ms time unit on virtual machine a (so, its

feature is (H, 50, C)). On server b, a normal priority service s1, requested by n2 more than 120ms
ago with type User and deadline 200ms, is starting. Node n2 is also requesting a critical service s2
with high priority and deadline 50ms (so, its feature is (H, 50, C)). Formula (21) captures the initial

configuration by constraining in a suitable way the values of proposition on, req and the value of

clocks rt and tservice .

on(n1, s1, a, (H, 50, C)) ∧ rt
(H,50,C)
n1,s1

= 10 ∧ t
s1,(H,2,C)
service = 1 ∧ re(n2, s2, (N, 50, U)) ∧

on(n2, s1, b, (N, 200, U)) ∧ rt(N,200,U)
n2,s1

≥ 120 ∧ t
s1,(N,200,U)
service = 0

(21)

Given the initial configuration, we verify the feasibility of the service delivery associated with the

request re(n2, s2, (H, 50, C)) with some specific requirements. The first one is the level of utility for

n2 when de(n2, s2, (H, 50, C)) is delivered, which we choose either to be high (H) or normal (N ).

The second one concerns the running environment of server when the service request is executed.

For the experiment, we assume it to be on a “high demand” state situation that occurs when the

server load is either sv l(2) or sv l(3) or sv l(4) and corresponds to the case where the server is

active and one (or both) VM is running with the maximum VM level 3 or both VMs are running

with level 2. Formula (22)

¬de(n2, s2, (H, 50, C))U(de(n2, s2, (H, 50, C)) ∧ utility(n2, u)) (22)

defines the reachability of the desired utility level u, with u = H or u = N . When u = H , the

outcome (UNSAT) of the satisfiability checking for the formula SYSTEM ∧ (22), obtained in 94 secs.

(82 secs. SMT time), proves that the system cannot serve the incoming request according to the

timing constraints conforming to the server specification (the delivery must be provided before

100ms from the request to have high utility). However, when u = N , the system has enough time to

deliver the service with normal utility, between 100ms and 400ms from the request. The outcome of

the solver, obtained in 202 secs. (190 secs. SMT time), is SAT and the model of the formula shows

the allocation of resources on the server (the tentative model is correct).
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Figure 6. Solving time (SMT) for fixed |N | in (a), (b), (c) and (d); and for fixed |F | in (e), (f), (g) and (h).

In the second experiment, we verify if the following statement, symbolized with (∗), is a property

for the system: if the system delivers the service for request re(n2, s2, (H, 50, C)) with high utility

before delivering the service for node n2 and n1, then it is not possible to service the latter with
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high utility. The property is captured by Formula (23),

(de(n2, s1, (N, 200, U)) ∨ de(n1, s1, (H, 50, C)))R

(







de(n2, s2, (H, 50, C))

∧

utility(n2, H)






⇒ ¬



























¬de(n2, s1, (N, 200, U))U







de(n2, s1, (N, 200, U))

∧

utility(n2, H)







∧

¬de(n1, s1, (H, 50, C))U







de(n1, s1, (H, 50, C))

∧

utility(n1, H)

































(23)

Formula (23) uses the temporal modality R to impose that the implication, occurring in the right

hand-side of R, holds from the origin until the position (included) where (de(n2, s1, (N, 200, U)) ∨
de(n1, s1, (H, 50, C))) holds, i.e., when one service delivery is completed. The implication

expresses property (∗). To prove (∗), the negated formula ¬(23) translating the statement is

conjoined with the specification. The outcome (SAT) of the satisfiability checking for SYSTEM ∧
(22), that is obtained in about 210 secs. (197 secs. SMT time), shows a counterexample. The delivery

de(n2, s2, (H, 50, C)) occurs before the delivery of the running tasks, that are dealt with high utility

after de(n2, s2, (H, 50, C)). However, we can show that the statement (∗) is a property of the system

if, in the current configuration, the server is running at level equal to 3, sv l(3) is true in the origin.

In this case, the outcome is UNSAT and it is obtained in 110 secs. (88 secs. SMT time). The same

result is obtained for k = 50 in not more than 300 secs.

Finally, we show an example of off-line verification where no initial configuration is given. In

this case, if a formula is a property for the system, then the property holds for all the executions

and for all initial configurations that may occur when the on-line engine is invoked. To this end, we

verify the validity of the following statement (∗∗) in the server. If the server terminates the execution

of the critical service in machine a and, at that time, no other critical services are running in a, and

the delivery is provided with high utility, then the service level is either 1 or 2 or 3. The statement is

captured by Formula (24).

2





































∧

n,s

¬on(n, s, a, (H, 50, C))

∧

on(n1, s2, a, (H, 50, C)) ∧ ◦ (¬on(n1, s2, s, (H, 50, C)))

∧

◦ (¬de(n1, s2, (H, 50, C))U(de(n1, s2, (H, 50, C)) ∧ utility(n1, H)))



















⇒
∨

i∈{1,2,3}

sv l(i)



















.

(24)

Checking the satisfiability of SYSTEM ∧ (24) proves that statement (∗∗) is a property for the system

as the solver returns UNSAT, in no more than 110 secs. (98 secs. SMT time) and the same test

with k = 50 provides the same result, in almost 900 secs. To conclude the experiment, we slightly

modify Formula (24) to show that the property it captures, is not a straightforward consequence

of the formulae defining the server behavior and opposite veredicts can be obtained. In fact, the

verification provides different outcomes from the previous one, which do not follow trivially from

the server specification. The first formula is similar to Formula (24), except for the consequent

which is replaced by
∨

i∈{1,2} sv l(i). This way, the statement (∗∗) is changed in the conclusion

and the modified property now requires that the service level is either 1 or 2, when the critical

service terminates. The second formula is defined by removing from (24) the third conjunct in

the antecedent of the implication to capture a weaker statement than (∗∗), where “the delivery is

provided with high utility” of (∗∗) is ruled out. In both the cases, the outcome of the verification is

SAT and the solver provides two counterexample which disprove the new formulae originated from

Formula (24).
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7. DISCUSSIONS AND CONCLUSION

We presented a practical approach to research the limits of formal tools based on full CLTLoc to

support the practical design of dynamic CPS, with particular interest on the design and logic of an

autonomic manager for on-line verification of the tentative models of adaptive systems. We designed

a specific open virtualized server containing the on-line verification manager (OLIVE) which is

based on MAPE-K and employs a logic view and reasoning about the architectural model. We

demonstrated experimentally that the use of formal verification, provisioning temporal boundaries

for the decisions over the server operation, is possible but suitable for on-line verification when

small systems and k values are considered. Precisely, by applying CLTLoc, it is ensured that

the critical system properties (functional and timeliness) are preserved. We validate the manager

design by implementing the model on ae2zot tool. We point out the cost of solving complex

CLTLoc specifications, whose theoretical complexity may, in general, yield to unfeasible on-line

verification processes. In fact, for modeling real-time executions of the server, the relation among the

computation delay, the server load, and the temporal relation among events matter greatly; therefore,

this requires a model that is affected by a combinatorial blow-up. This drawback is unavoidable in

the current setting; it is also a characteristic of the approaches based on Timed automata which

can be considered as an alternative to CLTLoc with the same expressiveness [6]. In addition, their

inherent operational nature is not suitable to model logical constraints on quantitative measures,

such as the servers load, the incompatibilities and the utility function, resulting in an elaborated

representation which, on the other hand, is very natural in a logical language.

Our approach is the first developed attempt, based on a dense time temporal logic, that

experiments on the support of adaptation of CPS exemplified for a virtualized server design, taking a

practical step to research the applicability of pure logical models in practice, for correct construction

of dynamic CPS and on-line verification. It also points out the need of ad-hoc approaches and

abstraction techniques to perform on-line verification and discourages the use of general formalisms,

like full LTL/CLTLoc and TA.
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A. EXTENDED EXPERIMENTAL RESULTS

The following tables collect all data related to the first experiment shown in Section 6 where we

try to solve the model with the constraint requiring that all the services are eventually run on the

server. These experiments show the impact of the value of length k on the SMT resolution. The

tests are instrumented with different values of k and by varying the cardinality of sets N and F ,

respectively, of nodes and features. For k equals to 6,8 and 10 we consider the cardinality of N in

{2, 4, 6, 8, 10} and the cardinality of F in {4, 6, 8, 10, 12}. Results are shown in Tables VII, VIII and

IX, respectively.

The first line of each row shows the total processing time (i.e., parsing and solving) and the time

taken by the SMT-solver. The second line reports the heap size (in Mbytes) required by Z3‡. The

top line of the table shows the number of nodes N in the system and the left column the number of

elements in F defining the requirements associated with requests. Graphs are plotted with the same

scale on vertical z axis to allow an immediate comparison among the experiments.

All the data reported hereafter can be found at http://home.deib.polimi.it/bersani/.

Table VII. Experimental results with k = 6, reporting Time (secs) and heap size (MB).

N=2 N=4 N=6 N=8 N=10

|F |=4
12.18s/15.25s 43.26s/49.31s 91.97s/100.85s 181.83s/203.25s 303.63s/319.1s

51.8 99.4 154.2 197.1 282.9

|F |=6
19.1s/23.5s 87.05s/95.67s 221.8s/234.24s 383.23s/401.36s 685.25s/708.53s

75.8 149.7 211.1 294.8 368.3

|F |=8
27.8s/33.62s 156.66s/168.47s 382.01s/398.37s 773.29s/796.25s 1179.28s/1208.0s

95.5 182.8 290.0 374.5 462.4

|F |=10
100.96s/111.7s 286.16s/299.82 654.44s/674.9s 1219.72s/1249.33s 1919.69s/1957.1s

112.6 222.1 343.3 446.2 592.0

|F |=12
139.82s/154.0s 393.92s/409.44s 874.04s/899.39s 1872.47s/1905.1s 2715.21s/2757.39s

142.8 284.1 396.5 572.4 662.9
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Figure 7. SMT time (secs) w.r.t. number of nodes (N) and features f (F). k = 6

‡http://research.microsoft.com/en-us/um/redmond/projects/z3/
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Table VIII. Experimental results with k = 8, reporting Time (min) and heap size (MB).

N=2 N=4 N=6 N=8 N=10

|F |=4
16.88s/20.61s 61.79s/69.27s 173.73s/184.95s 327.35s/342.4s 442.99s/463.13s

72.1 137.76 184.46 278.9 329.0

|F |=6
41.04s/46.54s 168.21s/178.76s 367.83s/383.58s 841.98s/863.51s 1510.49s/1538.30s

91.96 180.0 284.51 375.22 451.04

|F |=8
93.38s/100.25s 343.24s/357.69s 754.99s/776.17s 1771.14s/1818.33s 2520.01s/2571.1s

113.91 227.8 345.77 463.25 598.41

|F |=10
119.58s/128.47s 579.83s/596.98s 1216.60s/1243.52s 2681.78s/2719.09s 4483.51s/4528.03s

150.92 292.12 431.74 588.87 802.02

|F |=12
128.69s/138.48s 735.58s/755.03s 1702.08s/1731.77s 3985.78s/4027.39s 6208.69s/6262.55s

167.8 332.7 553.7 674.5 935.42
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Figure 8. SMT time (secs) w.r.t. number of nodes (N) and features f (F). k = 8

Table IX. Experimental results with k = 10, reporting Time (min) and heap size (MB).

N=2 N=4 N=6 N=8 N=10

|F |=4
23.21s/28.03s 94.8s/109.48s 215.93s/241.03s 652.97s/672.31s 890.94s/914.12s

79.2 152.7 218.7 303.0 396.0

|F |=6
39.02s/45.77s 277.05s/293.07s 544.77s/563.74s 1285.56s/1311.7s 2864.6s/2898.26s

107.0 210.3 323.0 435.2 579.3

|F |=8
87.10s/99.09s 652.02s/668.79s 1164.75s/1190.25s 2911.91s/2948.35s 4655.56s/4700.2s

149.3 288.8 433.5 585.6 795.5

|F |=10
168.46s/179.1s 1213.62s/1234.17s 2207.97s/2239.44s 4366.73s/4410.21s 9732.69s/9787.41s

171.9 339.1 560.3 558.2 996.9

|F |=12
249.89s/262.85s 1137.71s/1163.53s 3658.55s/3697.27s 6634.5s/6684.09s 11334.68s/11400.76s

201.4 416.7 622.4 921.6 1152.1
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Figure 9. SMT time (secs) w.r.t. number of nodes (N) and features f (F). k = 10
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For k equals to 12,15 and 20 we consider the cardinality of N in {2, 4, 6, 8} and the cardinality

of F in {4, 6, 8, 10}. Results are shown in Tables X, XI and XII, respectively.

Table X. Experimental results with k = 12, reporting Time (sec) and heap size (MB).

N=2 N=4 N=6 N=8

|F |=4
28.0s/33.21s 171.87s/181.94s 396.70s/412.93s 865.25s/886.13s

90.4 171.7 282.2 351.2

|F |=6
69.92s/77.18s 263.19s/277.48s 852.66s/874.27s 2489.38s/2521s

139.1 239.3 395.5 558.0

|F |=8
160.47s/169.88s 615.71s/635.55s 2134.96s/2164.37s 4154.18s/4192.99s

164.9 324.3 499.5 669.5

|F |=10
223.41s/235.12s 1059.59s/1083.1s 3726.38s/3765.78s 7033.32s/7085.17s

201.8 420.3 637.3 942.3
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Figure 10. SMT time (secs) w.r.t. number of nodes (N) and features f (F). k = 12

Table XI. Experimental results with k = 15, reporting Time (sec) and heap size (MB).

N=2 N=4 N=6 N=8

|F |=4
54.55s/61.1s 396.22s/419.33s 673.98s/692.88s 1460.53s/1487.1s

107.57 299.4 314.96 431.9

|F |=6
190.37s/201.33s 777.57s/803.87s 1521.18s/1564.32 3787.84s/3824.21s

157.0 239.3 462.7 635.8

|F |=8
213.57s/229.86s 1270.65s/1294.45s 3694.58s/3731.93s 6645.21s/6693.45s

196.6 415.4 624.9 908.0

|F |=10
652.4s/667.7s 1858.14s/1903.18s 6001.18s/6044.54s 13034.9s/13099.51s

241.9 494.5 842.9 1134.9
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Figure 11. SMT time (secs) w.r.t. number of nodes (N) and features f (F). k = 15

Table XII. Experimental results with k = 20, reporting Time (sec) and heap size (MB).

N=2 N=4 N=6 N=8

|F |=4
104.77s/115.52s 441.46s/458.63s 1113.65s/1137.94s 2171.8s/2204.86s

150.0 287.1 429.9 584.1

|F |=6
110.58s/120.41s 1264.96s/1299.37s 3291.27s/3325.76s 8412.52s/8461.12s

157.0 416.4 629.8 914.s

|F |=8
406.09s/432.78s 2258.58s/2289.21s 6363.28s/6408.2s 15860.32s/15942.6s

280.1 557.6 889.8 1209.5

|F |=10
622.6s/641.22s 3518.46s/3557.85s 11984.42s/12042.89s 32100.97s/32189.58s

315.8 669.9 1117.7 1656.1
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Figure 12. SMT time (secs) w.r.t. number of nodes (N) and features f (F). k = 20
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B. SPECIFICATION FORMULAE

Following Formulae (25) translates rules in Table XIV. The explanation is straightforward as each

rule translates the correspondent row in the order. The first formula imposes that, at each position,

the server load is defined and its value ranges from 0 to 4.

¬vm on(a) ∧ ¬vm on(b) ⇔ sv l(0)

∧


























vm on(a) ∧ ¬vm on(b) ∧ (vm l(a, 1) ∨ vm l(a, 2))

∨

¬vm on(a) ∧ vm on(b) ∧ (vm l(b, 1) ∨ vm l(b, 2))

∨

vm on(a) ∧ vm on(b) ∧







vm l(a, 1) ∧ vm l(b, 1) ∨

vm l(a, 2) ∧ vm l(b, 1) ∨

vm l(a, 1) ∧ vm l(b, 2)

































⇔ sv l(1)

∧






vm on(a) ∧ ¬vm on(b) ∧ vm l(a, 3)

∨

¬vm on(a) ∧ vm on(b) ∧ vm l(b, 3)






⇔ sv l(2)

∧

(25)

vm on(a) ∧ vm on(b) ∧







vm l(a, 3) ∧ vm l(b, 3) ∨

vm l(a, 3) ∧ vm l(b, 2) ∨

vm l(a, 2) ∧ vm l(b, 3)






⇔ sv l(4)

∧

vm on(a) ∧ vm on(b) ∧







vm l(a, 3) ∧ vm l(b, 1) ∨

vm l(a, 2) ∧ vm l(b, 2) ∨

vm l(a, 1) ∧ vm l(b, 3)






⇔ sv l(3)
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C. HIGH LEVEL SERVER SYSTEM MODEL

This appendix compiles the comprehensive description of the model of the server software.

Table XIII. Boundaries and finite sets

Var Values

Service state (Pres-

ence)

[Zero, Off, On]

Server state (On

mode)

[Normal, SpecialAct, Critical]

VM no. (v) [Va, Vb]
VM state [On, Off]

Service no. (s) [Sa,1, Sa,2] [Sb,1, Sb,2]

Service types [User, Priviledged, Critica,

Crypt]

Priority (pk) [Normal, High]

Deadline (dk) [DT1, DT2, DT3, DT4]

Utility (uk) [Low, Med, High]

Server load (increas-

ing order) (l)
[SL0, SL1, SL2, SL3, SL4]

VM load (li) [V L1, V L2, V L3]

The determination of the load of a system is shown in table XIV. The server load is the sum of the

partial utilizations (li) of all virtual machines of the server. In a real-time system, the utilization can

be calculated under a periodic model that is compatible with a hierarchical scheduling technique for

the virtual machines. As a result, li =
Ci

Ai
where Ci is the computation time of Vi over an activation

period Ai (named Ti in real-time scheduling). A virtual machine is assigned a temporal partition

that is a maximum utilization value that ensures temporal isolation between virtual machines; the

verification of the model checks that the overall utilization value does not go beyond a specified

threshold [26]. Other mechanisms based on response time analysis would check if tk ≤ dk holds for

all nodes.

In the current model, the service time value (stk) provided by the server that runs service k

in response to a request from node x depends on the number of currently running services. This

determines the server load (l) as a measure of resource availability. Additionally, the server load (l)
(see table XIV) depends on the sum of the individual load that each virtual machine constitutes for

the server.

Table XV determines the load of the virtual machines, that depends on the number of active

services and their expected service time.

Table XVI models the specification of the server behavior with respect to the deadline values to

be fulfilled, the incompatibilities and the node utility.

Table XVII determines what must be the service time (stk) depending on the response time

deadline (dk). It models the behavior rtk ≤ dk. It also shows correlation between service time (st)

and the server load. T5 is a value that represents a large time period. It is defined a set of threshold

values for the service time (st = [ST1, ST2, ST3, ST4]) that allows to determine the server load

values.

Table XIX shows the utility function to determine the benefit for the requests. It indicates the

relation between the request parameters and the obtained response times (rtk) and the level of

fulfillment of incompatibilities (I). It is defined a set of threshold values for the response time

Copyright c© 0000 John Wiley & Sons, Ltd. J. Softw. Evol. and Proc. (0000)
Prepared using smrauth.cls DOI: 10.1002/smr



THE COST OF ON-LINE VERIFICATION OF ADAPTATION IN CYBER-PHYSICAL SYSTEMS 35

Table XIV. Determination of the server load value (l)

Name Description

Server load

maximum (A

on B off) (lj

affects dk)

If [(Va.state = On) ∧ (Vb.state =
On)]∧ [(la = V L3) ∧ (lb = V L3)]
or [(la = V L3) ∧ (lb = V L2)] or

[(la = V L2) ∧ (lb = V L3)] then

l = SL4)
Server load

medium (A

on B off)

If [(Va.state = On) ∧ (Vb.state =
On)]∧ [(la = V L3) ∧ (lb = V L1)]
or [(la = V L2) ∧ (lb = V L2)] or

[(la = V L1) ∧ (lb = V L3)] then

l = SL3)
Server load

low (A on B

off)

If [(Va.state = On) ∧ (Vb.state =
On)]∧ [(la = V L3) ∧ (lb = V L3)]
or [(la = V L3) ∧ (lb = V L2)] or

[(la = V L2) ∧ (lb = V L3)] then

l = SL1)
Server load

low (A on B

off)

If [(Va.state = On) ∧ (Vb.state =
Off)]∧ [(la = V L1) ∨ (la = V L2)]]
then l = SL1)

Server load

low (A off B

on)

If [(Va.state = Off) ∧ (Vb.state =
On)]∧ [(lb = V L1) ∨ (lb = V L2)]] then

l = SL1)
Server load

medium (A

on B off)

If [(Va.state = On) ∧ (Vb.state =
Off)]∧ (la = V L3)] then l = SL2)

Server load

medium (A

off B on)

If [(Va.state = Off) ∧ (Vb.state =
On)]∧ (lb = V L3)] then l = SL2)

Server idle

(A off B of)

If [(Va.state = Off) ∧ (Vb.state =
Off)] then l = SL0)

(rt = [RT1, RT2, RT3, RT4]) that allows to determine the server load values. We show the utility

type for type Critical.
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Table XV. Load of Va (la) in relation to the execution characteristics of the services. lb is not expressed since
the pattern is repeated

Name Description

la = V L3

when

[(Va.state =
On)]

If [(Sa,1.state = On) ∧ (Sa,2.state =
On)] ∧ [((Sa,1.dk = DT2) ∨ (Sa,1.dk =
DT1)) ∧ ((Sa,2.dk = DT2) ∨ (Sa,2.dk =
DT1))] then la = V L3

la = V L2

when

[(Va.state =
On)]

If [(Sa,1.state = On) ∧ (Sa,2.state =
On)] ∧ [(Sa,1.dk = DT3) ∧ (Sa,2.dk =
DT3)] then la = V L2

If [(Sa,1.state = On) ∧ (Sa,2.state =
Off)] ∧ (Sa,1.dk = DT1)] then

la = V L2

If [(Sa,1.state = Off) ∧ (Sa,2.state =
On)] ∧ (Sa,2.dk = DT1)] then la = V L2

la = V L1

when

[(Va.state =
On)]

If [(Sa,1.state = On) ∧ (Sa,2.state =
Off)] ∧ (Sa,1.dk = DT4)] then

la = V L1

la = V L1

when

[(Va.state =
On)]

If [(Sa,1.state = Off) ∧ (Sa,2.state =
On)] ∧ (Sa,2.dk = DT4)] then la = V L1

Table XVI. Satisfaction level of the incompatibilities (I) in relation to the service type (servType)

Name Description

Incompatibilities

for type

Critical

If servType = Critical then there is

no Priviledged service in the server (in

any VM)

If servType = Critical then there is

no User service in the same VM

If servType = Critical then if there

are other services in the same VM,

these are necessarily of type CRY PT

satLevelI per

servType

If servType = Critical then [rtk ≤
dk ∧ satLevelI is strict]

If servType = Priviledged then

[rtk ≤ dk ∧ satLevelI is permissive]

If servType = User then [rtk ≤ dk ∧
satLevel is permissive]
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Table XVII. Priorities and deadlines according to service type

Name Description

Service priority

(pk)

If [servType = Critical] then [pk =
High]
If [servType = User] then [(pk =
High) ∨ (pk = Normal)]
If [servType = Priviledged] then

[(pk = Normal]

Service deadline

(dk)

If [pk = High] then [(dk =
DT1) ∨ (dk = DT2) ∨ (dk =
DT3) ∨ (dk = DT4)]
If [pk = Normal] then [(dk =
DT3) ∨ (dk = DT4)]

Service time

(stk)

If [l = SL4] then [stk ≥ T4]

If [l = SL3] then [(ST3 ≤ stk <

ST4)]
If [l = SL2] then [(ST2 ≤ stk <

ST3)]
If [l = SL1] then [(ST1 ≤ stk <

ST2)]

Table XVIII. Utility function

Name Description

Utility (uk) for

type Critical

If [(pk = High) ∧ (rtk ≤ RT1)] then

[uk = High]

If [(pk = High) ∧ [(RT1 < rtk ≤
RT3)]] then [uk = Normal]

If [(pk = High) ∧ (rtk > RT3)] then

[uk = Low]

Utility (uk)

for type

Priviledged

If [(pk = Normal) ∧ [(rtk ≤ RT2)]
then [uk = High]

If [(pk = Normal) ∧ (RT2 < rtk <

RT4)] then [uk = Normal]

If [(pk = Normal) ∧ (rtk ≥ RT4)]
then [uk = Low]

Utility (uk) for

type User

If [(pk = High) ∧ (rtk ≤ RT2)] then

[uk = High]

If [(pk = Normal) ∧ (RT2 < rtk <

RT4)] then [uk = Normal]

If [(pk = Normal) ∧ (rtk ≥ RT4)]
then [uk = Low]
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Table XIX. Utility function

Name Description

Utility (uk) for

type Critical

If [(pk = High) ∧ (rtk ≤ RT1)] then

[uk = High]

If [(pk = High) ∧ [(RT1 < rtk ≤
RT3)]] then [uk = Normal]

If [(pk = High) ∧ (rtk > RT3)] then

[uk = Low]

Utility (uk)

for type

Priviledged

If [(pk = Normal) ∧ [(rtk ≤ RT2)]
then [uk = High]

If [(pk = Normal) ∧ (RT2 < rtk <

RT4)] then [uk = Normal]

If [(pk = Normal) ∧ (rtk ≥ RT4)]
then [uk = Low]

Utility (uk) for

type User

If [(pk = High) ∧ (rtk ≤ RT2)] then

[uk = High]

If [(pk = Normal) ∧ (RT2 < rtk <

RT4)] then [uk = Normal]

If [(pk = Normal) ∧ (rtk ≥ RT4)]
then [uk = Low]
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