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Online Verification of Automated Road Vehicles

Using Reachability Analysis
Matthias Althoff and John M. Dolan, Member, IEEE

Abstract—An approach for formally verifying the safety of
automated vehicles is proposed. Due to the uniqueness of each
traffic situation, we verify safety online, i.e., during the operation
of the vehicle. The verification is performed by predicting the set
of all possible occupancies of the automated vehicle and other
traffic participants on the road. In order to capture all possible
future scenarios, we apply reachability analysis to consider all
possible behaviors of mathematical models considering uncertain
inputs (e.g. sensor noise, disturbances) and partially unknown
initial states. Safety is guaranteed with respect to the modeled
uncertainties and behaviors if the occupancy of the automated
vehicle does not intersect that of other traffic participants for
all times. The applicability of the approach is demonstrated by
test drives with an automated vehicle of the Robotics Institute
at Carnegie Mellon University.

Index Terms—Formal verification, reachability analysis, auto-
mated vehicles, autonomous cars, set-based computation.

I. INTRODUCTION

Automated driving will unquestionably provide a variety of

benefits. Among them are the reduction of traffic injuries and

fatalities, time savings when working in the vehicle, reduction

of traffic jams, and mobility for people that previously could

not drive. This vision can only be realized if the designers can

guarantee that the vehicle will never cause an avoidable crash.

In order to meet these high safety requirements, we propose

to use formal methods to verify the safety of automated cars.

The verification is based on dynamic models that describe

possible behaviors of the considered vehicle (ego vehicle)

and other surrounding traffic participants. We assume that

the uncertainties acting on those models can be chosen large

enough to capture all possible behaviors of the real world.

If the obtained results are too conservative, one can also

provide models that only capture the real behavior up to a

user-defined probability. In this work, reachability analysis is

used to guarantee the legal safety of planned maneuvers given

the aforementioned assumptions, meaning that we guarantee

not to cause a collision [1]. Note that it is generally impossible

to avoid a collision caused by other traffic participants, e.g.,

one cannot avoid a collision from behind when one is captured

in a traffic jam.

Reachability analysis computes the set of all states reachable

when the sets of initial states, sensor measurements, and

disturbances are uncertain. Reachable sets of the ego vehicle

and other traffic participants make it possible to compute the

set of occupied road sections over time. If the occupancy of
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the ego vehicle does not intersect that of all other relevant

traffic participants for all times, safety can be guaranteed.

Simulation techniques cannot guarantee safety, since infinitely

many possible future scenarios of a traffic scene exist and one

can only perform a finite number of simulations.

Simulation techniques can be extended for formal analysis

by guaranteeing that simulations starting in a δ-region of

the initial state stay in an ǫ-region of the simulation so that

a reachable set can be represented by a finite number of

simulations, see [2]. All simulation-based approaches have

the disadvantage that an exponential number of simulations is

required. Considering only the extreme cases requires 2n+m+o

simulations, where n is the number of state variables, m is the

number of inputs, and o is the number of parameters. Note that

time-varying inputs (which may cause resonance) are not even

considered by looking only at the extreme cases.

Since every traffic situation is unique, it is necessary that

planned maneuvers be constantly verified during the operation

of the vehicle, which we call online verification. Parts of

this computation process can be precomputed and stored in a

database, such as time-critical evasive maneuvers. However, it

is not possible to store verification results of all possible traffic

situations. In order to meet computation time requirements,

most previous work in mobile robotics assumes knowledge of

the future behavior of other objects in the traffic scene or uses

simple models to predict their possible behaviors. The simplest

model for unknown holonomic behavior assumes intervals on

possible velocities in all directions (e.g. in [3]); more advanced

models assume intervals on the acceleration (e.g. in [4]), or

both (e.g. in [5]). More complicated non-holonomic models

are based on Dubin’s car [6], or a tricycle model [7].

All these works assume that the future motion of the ego

vehicle is perfectly known, which is a good assumption for

slow-moving indoor robots. However, fast maneuvers of auto-

mated cars on terrain of varying quality and in varying weather

conditions, influence of sensor errors, and the like, require

consideration of uncertainties in tracking planned trajectories.

It is especially important to consider these uncertainties when

systems require certification [8]. Most previous work avoids

considering uncertainties in trajectory following due to the

inherent challenges in verifying nonlinear dynamic systems

with several continuous state variables, as summarized in [9].

Most approaches for nonlinear reachability analysis abstract

the nonlinear dynamics to differential inclusions of simpler

dynamics, either by simplifying the dynamics within regions

of a fixed state space partition [10], [11], resulting in a hybrid

(mixed discrete/continuous) system, or by simplification in the

vicinity of the reachable set [12]–[14]. The latter approach

generally outperforms fixed state space partitions, since it
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does not require the consideration of hybrid dynamics. Ap-

proaches which do not use abstraction are mostly based on

computationally demanding optimization techniques [15] or

on a reformulation of the reachability problem as Hamilton-

Jacobi equations, whose solution procedure has exponential

complexity in the number of continuous state variables [15]–

[17]. When the nonlinear system is monotonic, upper and

lower bounds on the reachable set can be easily computed

using simulations of corner cases [18], which is used for the

model of other traffic participants in the current work. For

chemical reaction equations, those upper and lower bounds

of the nonlinear system can also be computed efficiently,

but a special structure of the dynamics is required [19].

This procedure can still be applied when one can bound the

dynamics by monotone systems [20], which is also applied for

guaranteed parameter estimation [21].

An alternative to reachability analysis is automated theorem

proving, which has been applied to automated cruise control

[22]. In that work, it is assumed that all vehicles on the

road have to be automated. Additionally, automated theorem

proving requires human interaction, see [23, p. 3577], such

that it cannot be applied to online verification. The number

of required interactions, however, is expected to decrease in

coming years.

Constraints for safe vehicle movement, such as avoiding

other traffic participants and road boundaries, can also be

formulated in a robust model predictive control framework

[24]. In model predictive control, an optimal input is computed

based on solving an optimal control problem for a finite

time horizon, where only the first section of the optimal

input trajectory is executed. This procedure is repeated so

that the solution adapts to the current situation. In tube-based

model predictive control (tube-based MPC), concepts from

reachability analysis are mixed with model predictive control.

Most of the work on tube-based MPC considers linear systems

[25], [26], but concepts for nonlinear systems also exist [27].

However, nonlinear tube-based MPC approaches are compu-

tationally too expensive to be used for an online application

involving fast dynamics with several state variables, such as

the vehicle dynamics of this work.

Another line of work provides formal methods to synthesize

trajectories based on temporal logic specifications that are

provably correct. In [28] temporal logic specifications are used

to specify requirements on missions for unmanned aerial vehi-

cles. Trajectories for automated vehicles in static environments

are synthesized in [29] within a discretized environment. A

discrete environment is also used in [30] to synthesize plans

for teams of robots. Another work synthesizes robotic motion

for a point mass (double integrator) by bounding the error to

an abstract kinematic model and using the abstraction for the

planning task [31].

A completely different paradigm is to analyze planned paths

using stochastic methods. Most approaches of this category use

Monte-Carlo simulation [32], [33]. A disadvantage of Monte-

Carlo simulation is that the computed result differs for the

same situation depending on the sampling of possible future

scenarios. This is avoided by approaches that compute the

stochastic prediction deterministically [34]. Some approaches

combine set-based computations as presented in this work with

stochastic approaches, such that computationally expensive

stochastic dynamics can be restricted to traffic participants for

which the occupancy intersects with that of the ego vehicle

[35]. However, the set-based computations in [35] are heuristic

and thus not applicable to a formal analysis.

The reviewed literature shows that nonlinear continuous

systems are usually verified offline due to the complexity of the

problem. However, previous work of the authors [36] shows

that online verification is theoretically possible when applying

the efficient approach first published in [13]. In this work, we

present the following innovations compared to [36]:

• The approach is tested on a real vehicle (Cadillac SRX

research vehicle of Carnegie Mellon University);

• The vehicle model is validated by real world experiments;

• Instead of only considering the reachable set of the

ego vehicle, we also consider the computation of the

occupancy of other traffic participants on the road;

• The interaction of the maneuver planner with the verifi-

cation module is sketched;

• The vehicle controls are modified to fit the interface of

the Cadillac SRX;

• The reachability analysis is improved and presented in

more detail. Specifically, the computation of the lineariza-

tion error assumption is now automatically adapted.

The paper is organized as follows: The basic idea of our

verification concept is described in Sec. II. Mathematical

models of the ego vehicle and other traffic participants are

derived in Sec. III. The reachable set computation of the ego

vehicle is presented in Sec. IV and the occupancy computation

of other traffic participants is described in Sec. V. Results of

the test drive are summarized in Sec. VI.

II. BASIC IDEA AND ASSUMPTIONS

The safety concept presented in this paper is based on

the principle that plans are only executed when they are

verified for all times. This is achieved by first planning a

multidimensional trajectory ζ(·) the vehicle should follow,

where ζ(tf ) is the reference vector at the final time tf of the

intended plan1. Note that the term trajectory is used since the

reference values are specified over time. In other applications,

it is sufficient to follow a set of points, referred to as a

path. However, paths are not sufficient for many automated

maneuvers, such as intersection crossing (one could traverse

the intersection arbitrarily slowly), making it necessary to use

trajectories [37]. The state of the vehicle x(tf ) might be an

inevitable collision state, i.e., a state for which there exists

no control action that can possibly avoid a future collision

[5], [38], [39]. We prevent inevitable collision states by only

accepting intended plans with a subsequent maneuver that

brings the vehicle to a stop at a safe location, such that it

cannot cause a collision for all future times, see [40, Sec.

IV.E]. To focus on the verification aspect, it is assumed that a

reference trajectory is already planned by a standard approach

(e.g. [40]). Note that any kind of trajectory planner can be

combined with the proposed verification scheme.

1We use reference trajectory, plan, and planned maneuver interchangeably.



JOURNAL OF XX, VOL. X, NO. X, JANUARY XXXX 3

The used trajectory planner should be adapted such that

new reference trajectories branch off previous ones at points

x(tver) that are reached by the ego vehicle when the verifica-

tion of the new reference trajectory is completed, as illustrated

in Fig. 1. When the verification result is safe, the new reference

trajectory is chosen, and when it is unsafe, the vehicle stays

on the previous one. Thus, the braking maneuver leading to

the safe stop is only executed if the vehicle repeatedly is not

able to find a new safe trajectory. An upper bound of the time

for which the new reference trajectory should branch off is

easily obtained, since the worst-case verification time is linear

in the time required to follow the new reference trajectory

texec, so that tver = ν texec, where ν is a constant describing

the efficiency of the implementation.

ego vehicle
occupancy at

t = [tf−1, tf ]

occupancy at

t = [t0, t1]
position at

tver = ν texec

old ref.
trajectory

new ref.
trajectory

braking

obstacle

other
vehicle

Fig. 1: Verification by checking occupancy intersection.

The verification of each reference trajectory is performed

by computing the reachable set of states of the ego vehicle

and other traffic participants based on a dynamic model and

uncertainties specified by bounded sets. The occupancy of the

ego vehicle on the road is determined by considering the size

of the vehicle and the projection of reachable sets on position

variables and orientation. If, for all times, the occupancy of

the ego vehicle does not intersect that of all other traffic

participants, and if the drivable area is not exited, the reference

trajectory is safe.

An alternative to computing the reachable set of the ego

vehicle based on the vehicle dynamics (under consideration

of a set of initial states, input trajectories, and a set of param-

eters), is to simply add a fixed deviation from the reference

trajectory. By doing so, one would not distinguish between

situations in which a vehicle has to slowly pass through a gap

versus those in which a vehicle has to perform an aggressive

evasive maneuver. For evasive maneuvers, the deviation from

the reference trajectory can easily become more than a meter,

as demonstrated in [41]. Even if we increase the occupancy

by less than one meter in each direction for the gap scenario

in Fig. 2, the safe maneuver will be classified as unsafe,

so that the vehicle cannot pass through the gap. Another

alternative is to use heuristics to model the dependency of

the reachable set on velocity, angular velocity, slip angle,

friction coefficient, shape of the reference trajectory, and so

on. However, considering all influences is difficult and the

result would not be overapproximative and thus not qualify

for formal verification and certification.

In order to conclude whether a planned trajectory is safe,

several assumptions are made in this work:

1) The vehicle sensors detect all traffic participants rel-

evant for the safety analysis. However, depending on

parked

vehicles

circular
deviation

enlarged
occupancy

vehicle
occupancy

Fig. 2: The ego vehicle intends to pass a narrow gap, which

cannot be passed when adding a fixed circular deviation.

the accuracy of the sensors, one can specify possible

uncertainties of measured data.

2) The models that predict the movement of the ego vehicle

and other traffic participants enclose all possible real

behaviors required to ensure that the ego vehicle does

not cause a crash (legal safety [1]). This is achieved

by considering bounded, but uncertain, values of sensor

noise, disturbances, driver inputs, and uncertain initial

states. Note that the time-varying behavior of inputs such

as sensor noise and disturbances is arbitrary, as long as

the values are within bounded sets.

3) It is assumed that either bounding uncertainties of the

sets are chosen large enough to capture all possible

values, or that the bounds capture all possible values

by a probability bound pb, e.g. pb = 99.999%. In the

latter case, the verification can only guarantee safety by

a certain probability, which depends on the choice of pb.
4) In order to obtain practical results, we assume that other

traffic participants respect traffic rules, as long as no

traffic rule violation is detected – corresponding traffic

rules are no longer considered once they are violated.

Based on this assumption we can guarantee that the ego

vehicle does not cause a crash (legal safety [1]).

Given the above assumptions, all possible behaviors are cap-

tured by the presented approach, which makes it possible to

prove that no collision can occur under the given assumptions.

For that reason, we qualify the approach as formal to em-

phasize the rigorousness within the mathematical framework

provided by the models.

If reachability analysis or another formal technique was

not applied, one would at least require a stability analysis

of the trajectory tracker. This, however, is challenging, since

the stability analysis depends on the reference trajectory and

typically requires finding a Lyapunov function for each refer-

ence trajectory (which are infinitely many). Only for special

control concepts, such as flatness-based control design, can

the dependence on the trajectory be ignored, as long as the

model perfectly matches the real behavior. Unfortunately, this

is rarely the case due to uncertain parameters (loading of

the vehicle, tire-road friction, etc.) and disturbances (road

imperfections, wind, slope, etc.) so that the stability analysis

of the undisturbed model becomes inconclusive.

III. MATHEMATICAL MODELING

This section introduces the dynamic models used for the

reachability analysis of the ego vehicle and the occupancy

prediction of other traffic participants.
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A. Ego Vehicle Model

The vehicle model consists of equations representing the

lateral dynamics, the longitudinal dynamics, and the position

on the road. All variables of the vehicle are related to the

so-called bicycle model, which is the standard model for the

control design of yaw stabilization systems [42]. The model

ignores roll and pitch, such that it suffices to consider only

one front and one rear wheel as for a bicycle (see Fig. 3).

The authors have shown that effects of high-order models can

be captured by the presented low-order model when adding

uncertainty [43].

[

sx
sy

]

Ψ

βlr

lf
δ

x

y

v

Fig. 3: Bicycle model.

For describing the vehicle dynamics, the cornering stiff-

nesses Cf , Cr and the distances lf , lr form the center of

gravity to the axes are introduced, where the indices f and

r refer to the front and rear axis. Further, we require the

vehicle mass m and the rotational inertia of the yaw axis Iz .

The parameter values of the Cadillac SRX are obtained as

described in [44] and are listed in Tab. I. The state variables of

the bicycle model are the slip angle at the center of mass β, the

heading angle Ψ, the yaw rate Ψ̇, the velocity v, the x-position

sx, the y-position sy , and the angle of the front wheel δ, see

Fig. 3. Additionally, additive disturbance values y, where the

subscript denotes the disturbed variable, are introduced. Those

variables model rough roads, wind gusts, and the like. The

inputs to the system are the longitudinal acceleration ax and

the rotational speed of the steering angle vw. The differential

equations of the vehicle model are

β̇ =
(Crlr − Cf lf

mv2
− 1

)

Ψ̇ +
Cf

mv
δ − Cf + Cr

mv
β + yβ

Ψ̈ =
lrCr − lfCf

Iz
β −

l2fCf + l2rCr

Iz

Ψ̇

v
+

lfCf

Iz
δ + yΨ̇

v̇ =ax + yv

ṡx =v cos(β +Ψ) + ysx

ṡy =v sin(β +Ψ) + ysy

δ̇ =vw + yδ

(1)

The first two equations describe the lateral dynamics origi-

nating from force and moment equilibria due to the lateral

tire forces (see [42]). The third equation simply describes the

longitudinal dynamics by integrating the commanded longitu-

dinal acceleration to obtain the velocity of the vehicle. Using

the kinematics of the vehicle, the derivative of the positions in

x- and y-coordinates are obtained by the direction (β+Ψ) and

absolute value of the velocity v in the fourth and fifth equation.

Finally, the front wheel angle is obtained by integration of the

commanded steering wheel velocity.

B. Tracking Controller of the Ego Vehicle

The tracking controller in this work provides the com-

manded steering wheel velocity vw and the commanded lon-

gitudinal acceleration ax. We use a simple controller with

sufficient performance for the driving experiments. The pro-

posed controller is not designed for high performance, but

to demonstrate the verification approach. By replacing the

equations of the tracking controller, any other control can

potentially be considered, as long as the dynamics of the

controlled vehicle can be described by ordinary differential

equations.

For the tracking controller, we consider a frame that moves

along the reference trajectory, such that the x-axis is always

tangential and the y-axis is always perpendicular to the refer-

ence trajectory, see Fig. 4. Desired values provided by the

reference trajectory are denoted by the subscript d. For a

concise notation, we introduce the lateral and longitudinal

tracking error ǫx and ǫy:

ǫx =cos(Ψd)(sx,d − sx) + sin(Ψd)(sy,d − sy),

ǫy =− sin(Ψd)(sx,d − sx) + cos(Ψd)(sy,d − sy).

A desired front wheel angle is generated by weighting the

lateral tracking error and the errors of the yaw angle and rate:

δd = k̃1ǫy + k̃2(Ψd −Ψ) + k̃3(Ψ̇d − Ψ̇).

The commanded angular velocity of the front wheel is ob-

tained by the proportional control vw = k4(δd−δ). Weighting

the longitudinal tracking error and the velocity error results in

the commanded longitudinal acceleration:

ax = k5ǫx + k6(vd − v).

After introducing the gains ki = k4 · k̃i for i ∈ {1, 2, 3} and

adding sensor noise, which we denote by w and the subscripted

disturbed variable, the final control equations are:

vw =k1

(

cos(Ψd)(sy,d − sy − wy)− sin(Ψd)(sx,d − sx − wx)
)

+ k2(Ψd −Ψ−wΨ) + k3(Ψ̇d − Ψ̇− w
Ψ̇
)− k4(δ −wδ),

ax =k5

(

cos(Ψd)(sx,d − sx −wx) + sin(Ψd)(sy,d − sy − wy)
)

+ k6(vd − v −wv).

x

y

[sx,d, sy,d]
T

Ψd

[sx, sy]
Tǫy

ǫx

Fig. 4: Moving frame for the used trajectory tracker.

C. Validation of the Ego Vehicle Model

Combining the equations of the vehicle model with those of

the tracking controller results in the model of the controlled

vehicle. The degree of conformity with real world behavior
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TABLE I: Vehicle parameters.

vehicle parameters

m Iz Cf = Cr lf lr
2273 kg 4423 kg m2 10.8e4 N/rad 1.292 m 1.515 m

control parameters

k1 k2 k3 k4 k5 k6
2 12 4 2 1 10

is shown in Fig. 5 for a double-lane-change maneuver that is

formally verified in Sec. VI. It is worth mentioning that double

lane change maneuvers are successfully used for validating

the lateral dynamics of vehicles, see e.g. [45]–[47]. The plots

in Fig. 5 compare the behavior for the yaw angle, the yaw

rate, the x- and y-position and the front wheel angle. It can

be seen that especially the yaw angle and the position are

very well modeled, while the yaw rate and the front wheel

angle (which are closely related) show a small deviation due to

unmodeled effects such as actuator dynamics and time delay.

However, this is no problem for the formal verification, as

model mismatches are considered by adding uncertainty.

2 4 6

2.5

2.6

2.7

2.8

2.9

3

Ψ

t

2 4 6

−0.2

0

0.2

0.4

Ψ̇

t

60 80 100 120

5

10

15

20

25

30

sx

s y

2 4 6

−0.1

−0.05

0

0.05

0.1

0.15

δ

t

Fig. 5: Comparison of the controlled vehicle model with the

data obtained from the double-lane-change driving experiment.

The gray line shows the simulation result and the black line

the measured data.

D. Model of Other Traffic Participants

The model for other traffic participants is simpler compared

to models used for designing trajectory tracking controllers.

One reason is that parameters of other traffic participants are

typically unknown (unless transmitted via vehicle-to-vehicle

communication), so that complicated models requiring iden-

tified parameters are useless. The other reason is that the

main source of uncertainty is the model input (changing lane,

accelerating/decelerating) and not a potential inaccuracy of

the dynamic model. We propose a model that satisfies the

following constraints:

C1: positive longitudinal acceleration is stopped when a pa-

rameterized speed ṽmax is reached (ṽmax could be set to

a certain percentage above the official speed limit).

C2: driving backwards in a lane is not allowed.

C3: positive longitudinal acceleration is inversely proportional

to speed above a parameterized speed vS (modeling a

maximum engine power).

C4: maximum absolute acceleration is limited by ãmax.

C5: actions that cause leaving the road/lane/sidewalk/cross-

walk boundary are forbidden. Crossing lanes for traffic

in the same direction is allowed.

Constraints C3 and C4 are physical constraints, while the

other constraints originate from traffic rules as listed in

the Vienna Convention on Road Traffic [48]. The above

constraints are considered to be the most important ones

describing the uncertain behavior of traffic participants. It

should be mentioned that the absence of constraint results

in a larger occupancy of other traffic participants and thus

only verifies more conservative behaviors of the ego vehicle.

Thus, neglecting certain constraints does not result in an

unsound verification procedure. This is especially useful since

there are many traffic rules and many of them are specific to

specific countries. Further rules can be added without requiring

changing the basic principles of the presented approach. For

other road vehicles, all of the above constraints are potentially

active, while e.g. for pedestrians, only constraints C1 and C2
are enforced and C5 is applied to sidewalks and crosswalks

instead of road and lane boundaries. When it is sensed that

a constraint is violated, it is no longer considered for that

particular traffic participant. E.g. when a pedestrian crosses a

street where no crosswalk is present, constraint C5 is removed

and only constraints C1 and C2 are active. Another example

is that when it is sensed that the reversing lights of a vehicle

are on, e.g. to start a parallel parking maneuver, constraint C2
on driving backwards is removed. The removal of constraints

is presented for the considered examples in Sec. VI-B. To

describe the system dynamics, we use the same variable

symbols as for the ego vehicle, but add a tilde for distinction.

The dynamics of other traffic participants are modeled by a

point mass:

¨̃sx(t) = ãx(t), ¨̃sy(t) = ãy(t). (2)

In order to restrict ãx(t) and ãy(t) according to the constraints

C1-C5, we introduce unit vectors that point along the lon-

gitudinal and lateral directions of the vehicle: Φlong(t) =
1
ṽ
[ṽx(t), ṽy(t)]

T , Φlat(t) = 1
ṽ
[−ṽy(t), ṽx(t)]T , where ṽ =

‖[ṽx, ṽy]T ‖2. This makes it possible to formulate ãx, ãy by the

longitudinal acceleration ãlong(t) and the lateral acceleration

ãlat(t): [
ãx
ãy

]

= Φlongãlong +Φlatãlat

The lateral acceleration is determined by the maximum ab-

solute acceleration ãmax and a normalized steering input u1,
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where u1 = ±1 represents steering to the left or right using

the full tire friction potential:

ãlat = ãmaxũ1.

In order to consider constraint C4, the remaining acceleration

potential in the longitudinal direction is limited to

ãc1,long =
√

ã2max − ã2lat.

We further introduce vS as the speed above which the ac-

celeration is limited by the engine power and no longer by

the tire friction so that the acceleration potential becomes

inversely proportional to the vehicle speed (see e.g. [33, Sec.

II.B.1]). Similarly to the lateral acceleration, we introduce a

normalized control input ũ2 for the longitudinal acceleration,

where ũ2 = ±1 represents full braking/acceleration within the

acceleration potential. Limited engine power, the restriction to

forward driving, and the maximum speed (constraints C1-C3)

are considered by limiting the acceleration to

ãc2,long =







ãmax
ṽS
ṽ
, ṽS < ṽ < ṽmax ∧ ũ2 > 0

ãmax, (0 < ṽ ≤ ṽS ∨ (ṽ > ṽS ∧ ũ2 ≤ 0))

∧ṽ < ṽmax

0, ṽ ≤ 0 ∨ ṽ ≥ ṽmax

Combining ãc1,long and ãc2,long results in the longitudinal

acceleration complying with constraints C1-C4 (C5 for road

departure is considered later):

ãlong =

{

ãc2,long ũ2, |ãc2,long ũ2| ≤ ãc1,long

ãc1,long sgn(ũ2), |ãc2,long ũ2| > ãc1,long,

where sgn() is the sign function. The method for computing

the occupancy sets based on this model is presented in Sec. V.

IV. REACHABILITY ANALYSIS OF THE EGO VEHICLE

The behavior of the ego vehicle is uncertain due to sensor

noise, disturbances, uncertain initial states and varying param-

eters. In Fig. 5 it is seen that the model of the controlled

vehicle only approximates the real behavior when uncertain-

ties are not considered. To obtain the more general form

ẋ = f(x, ζ, y, w) of the controlled vehicle dynamics, the state

vector x, the reference vector ζ, the disturbance vector y, and

the sensor noise vector w are introduced:

x =[β, Ψ, Ψ̇, v, sx, sy, δ]
T

ζ =[sx,d, sy,d, Ψd, Ψ̇d, vd]
T

y =[yβ , yΨ, yΨ̇, yv, ysx , ysy , yδ]
T

w =[wx, wy , wΨ, wΨ̇, wv, wδ]
T

We denote the set of uncertain bounded initial states as R(0),
the set of bounded sensor noise values as W , and the set of

uncertain bounded disturbances as Y . The solution to ẋ =
f(x, ζ, y, w) for x(0) = x0, t ∈ [0, tf ], and trajectories ζ(·),
y(·), and w(·) is denoted by χ(t, x0, ζ(·), y(·), w(·)). Note that

ζ(·) refers to a trajectory, whereas ζ(t) refers to the value of

the trajectory at time t. The exact reachable set for a reference

trajectory ζ∗(·) and uncertain sets R(0), Y , and W is

Re([0, tf ]) =
{

χ(t, x0, ζ(·), y(·), w(·))
∣
∣
∣t ∈ [0, tf ],

x0 ∈ R(0), ζ(t) = ζ∗(t), y(t) ∈ Y, w(t) ∈ W
}

.

In general, the set of reachable states cannot be computed

exactly [49], so that one has to compute overapproximations

R([0, tf ]) ⊇ Re([0, tf ]). Since reachable sets can be com-

puted efficiently for linear systems (see Sec. IV-B), the given

nonlinear equations are linearized in a conservative fashion,

i.e., all possible linearization errors are considered, resulting

in an overapproximative computation of the reachable set.

A. Conservative Linearization

The reachable set is computed for consecutive time intervals

τk = [tk, tk+1], where tk+1 − tk = r is constant in this work.

The advantages of a fixed step size are that the results can

be synchronized with the occupancy computations of other

vehicles using the same time intervals τk and that linearization

points can be computed in advance making it possible to

parallelize computations as discussed in Sec. IV-D. In order

to obtain a concise notation, we introduce the vectors ũ =
[yT , wT ]T and z = [xT , ûT ]T as well as the set Ũ = Y ×W .

The linearization point is denoted by z∗ =
[
x∗, ũ∗

]
, where

x∗ and ũ∗ are the linearization points of the state and the

combined input (disturbance and sensor noise), respectively.

Note that the reference trajectory ζ(tk) is realized by a zero-

order hold such that ζ(tk) is constant in the time interval

τk. For the subsequent derivations, set-based addition and

multiplication have to be defined:

C ⊕ D :={c+ d|c ∈ C, d ∈ D},
C ⊗ D :={c d|c ∈ C, d ∈ D},

where c and d are matrices or vectors of proper dimension

such that addition and multiplication are defined. Note that

the symbol for set-based multiplication is often omitted for

simplicity of notation, and that one or both operands can be

singletons. In order to avoid parentheses, it is agreed that

operations of fixed values have precedence over corresponding

set-based operations: a+ b ⊕ C = (a+ b)⊕ C. This does not

apply to different operations, e.g. a+ b⊗ C 6= (a+ b)⊗ C.

Using a first-order Taylor expansion around the linearization

point z∗, the original differential equation of the ith coordinate

is enclosed by the differential inclusion

∀t ∈ τk :

ẋi ∈ fi(z
∗, ζ(tk)) +

∂fi(z, ζ(tk))

∂z

∣
∣
∣
z=z∗

(z − z∗)
︸ ︷︷ ︸

=[A(x−x∗)+B(û−û∗)]i

⊕Li(τk),

(3)

where L is the set of Lagrange remainders

Li(τk) =
{
1

2
(z − z∗)T

∂2fi(z, ζ(tk))

∂z2

∣
∣
∣
z=ξ

(z − z∗)

∣
∣
∣
∣
ξ ∈ R(τk)× Ũ , z ∈ R(τk)× Ũ

} (4)
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The Lagrange remainder covers all possible linearization errors

when ξ may vary arbitrarily in the set of possible values of

x and û given by the Cartesian product R(τk)× Ũ , see [50].

In this work, we overapproximate L(τk) in (4) using interval

arithmetic [51], which requires the variables z and ξ to be

bounded by multidimensional intervals. This is achieved by

enclosing the sets R(τk) and Ũ by axis-aligned boxes.

The set of linearization errors L in (4) requires the set

of reachable states R(τk), which in turn requires the set of

linearization errors to be computed. This mutual dependence

is resolved by assuming a set of linearization errors L(τk)
which should be a superset of the exact set of linearization

errors L(τk). In order to obtain tight overapproximations, we

use the set of Lagrange remainders L(τk−1) of the previously

computed time interval τk−1, which have been obtained by

applying interval arithmetic to (4). The new assumption on

an overapproximative set of linearization errors of the current

time interval τk is heuristically obtained by enlarging L(τk−1)
by a user-defined factor λ:

L(τk) =ĉ⊕ λ(L(τk−1)⊕ (−ĉ)), (5)

where ĉ is the volumetric center of L(τk−1), which corre-

sponds to the center of mass of a homogeneous solid body.

Note that λ is the only ad-hoc assumption that has to be

made by the user to obtain the linearization error. In the

previous work [36] the assumption L(τk) was fixed for all

times, resulting in a larger reachable set. If the assumption

does not hold (L(τk) + L(τk)), the verification is aborted

and the trajectory is returned as unsafe. Alternatively, one

could split the reachable set or enlarge the assumption, but

this would result in a non-deterministic time duration of the

algorithm, which is in conflict with the proposed framework in

Sec. II. When a reference trajectory is returned as unsafe, the

previously verified trajectory is executed. Note that the size

of L(τk) does not grow constantly, but stabilizes around a

certain size since the property L(τk) ⊇ L(τk) has a shrinking

effect and (5) has an enlarging effect. The value of λ can

be selected as follows: λ has to be decreased when the

reachable set is rapidly overapproximated, and increased when

L(τk) + L(τk).

B. Reachable Set Computation of Linear Systems

Based on the set of linearization errors L(τk), we compute

the reachable set of the linearized system ẋ(t) = Ax(t)+ û(t)
in (3), where ∀t ∈ τk : û(t) ∈ Û(tk) and

Û(tk) =f(z∗(tk), ζ(tk))−Ax∗(tk)

⊕B
(
Ũ ⊕ (−û∗(tk))

)
⊕ L(τk).

(6)

As a preparation, we split the effect of Û(tk) into its center

ûc and the translated set Û∆ = Û(tk)⊕ (−ûc). The following

algorithm takes advantage of the superposition principle for

linear dynamics, see Fig. 6:

1) Starting from R(tk), compute the set of all solutions

Rh(tk+1) for the affine dynamics ẋ = Ax(t) + ûc at

time tk+1.

2) Obtain the convex hull of R(tk) and Rh(tk+1). This

encloses all solutions for the current time interval as-

suming that trajectories from R(tk) to Rh(tk+1) are

straight lines and that the input is certain (Û∆ = 0).

3) Compute R(τk) by enlarging the convex hull of 2)

to account for the error made by the assumption that

trajectories are straight lines and account for the set of

uncertain inputs Û∆ 6= 0 (details are explained later).

R(tk)

Rh(tk+1)

convex hull of

R(tk),

Rh(tk+1)

R(τk)

➀ ➁ ➂

enlargement

Fig. 6: Steps for the computation of an overapproximation of

the reachable set for a linear system.

Using r = tk+1 − tk, the solution of Rh(tk+1) is based on

the well-known solution of linear time-invariant systems:

Rd
h(tk+1) = eArR(tk) +

∫ r

0

eA(r−t) dt ûc

︸ ︷︷ ︸

=:xp(r)

.

If A is invertible, xp(r) can be computed as A−1(eAr− I)ûc,

where I is the identity matrix. However, since A is not always

invertible, we compute xp(r) by integrating the Taylor series

of eAr =
∑∞

i=0(Ar)
i/(i!) for up to η Taylor terms, where η

can be set by the user. In order to account for higher order

Taylor terms, an interval matrix Ep(r) := [−W (r) r,W (r) r]
is introduced, whose symmetric bounds −W (r) r and W (r) r
are computed according to [52], so that the particular solution

xp(r) is bounded by

xp(r) ∈
( η
∑

i=0

Airi+1

(i + 1)!
⊕ Ep(r)

)

︸ ︷︷ ︸

=:Γ(r)

⊗ûc.
(7)

The reachable set due to the uncertain and convex input Û∆
is obtained as derived in [52]:

Rp(r) =

η
⊕

i=0

(
Ai ri+1

(i+ 1)!
⊗ Û∆

)

⊕
(
[−W (r) r,W (r) r]⊗|Û∆|

)
,

(8)

where the absolute value of a set of vectors M is defined el-

ementwise as |M|i := sup
{
|mi|

∣
∣m ∈ M

}
. The enlargement

required to bound all affine solutions within τk is denoted by

Rǫ and is computed as in [53, Chap. 3.2]. The reachable set

for the next point in time and time interval is obtained by

combining all previous results and using the operator co(·)
for the convex hull:

R(tk+1) =eArR(tk)⊕ Γ(r)ûc ⊕Rp(r),

R(τk) =co
(
R(tk), eArR(tk)⊕ Γ(r)ûc

)
⊕Rǫ ⊕Rp(r)

(9)
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C. Set of Occupied Positions

The reachable set makes it possible to compute the set of

positions OC(τk) occupied by the vehicle on the road for each

time interval τk. In a first step, the reachable set R(τk) is

projected onto the set of possible positionsRs (2-dimensional)

and orientations RΨ (1-dimensional). Next, we enclose the

position set by a rectangle Rs oriented in the direction of the

reference trajectory, i.e., it is rotated by Ψd(tk) from the x-axis

(see Fig. 7). The enclosing rectangle has length ls and width

ws. In a next step, the width and length of the rectangle are

enlarged by the dimensions of the vehicle, which has length

lv and width wv . Finally, the width and length of the rectangle

enclosing the occupation have to be enlarged by lΨ and wΨ

due to the uncertain orientation RΨ (see Fig. 7). Using ∆Ψ =
maxΨ∗∈RΨ

(|Ψ∗ −Ψd|), the enlargement is

lΨ = 0.5|(1− cos(∆Ψ))lv − sin(∆Ψ)wv|,
wΨ = 0.5|(1− cos(∆Ψ))wv − sin(∆Ψ)lv|.

The final dimensions of the enclosing rectangle are:

l = ls + lv + lΨ, w = ws + wv + wΨ.

ws

ls Ψd(tk)

Rs

(a) Uncertain center of mass.

0.5 lv

0.5wv
∆Ψ

wΨ

lΨ
(b) Uncertain orientation.

Fig. 7: Enlargement of the vehicle occupation due to uncertain

orientation and position.

D. Parallelization

In order to decrease the computation time of the reachability

analysis, we attempt to parallelize as many computations as

possible. In this work, a fixed step size is chosen to compute

the required linearizations in advance. The linearization points

are selected along the solution χ(t, x0,c, ζ(·), yc, wc) starting

at the center of the initial set x0,c subject to the constant

disturbance yc and constant sensor noise wc, which are the

centers of the sets Y and W , respectively. The linearization

points are pre-selected for constant time steps as z∗(tk) =
[χT (tk, x0,c, ζ(·), yc, wc), y

T
c , w

T
c ], which makes it possible

to linearize the system dynamics and also pre-compute eAr

(r = tk+1 − tk), Ep(r), Γ(r), and Rǫ. Thus, for each

time interval, only the computations remain that require the

reachable set of the previous time step.

An alternative is to use an adaptive step size. The potentially

variable step size is chosen such that the error Rǫ in between

the linear interpolation of two points in time ti and ti+1 has a

constant ratio to the size of the reachable set. In other works,

the relative error rather than the absolute error is controlled

[54], [55]. Given the computation of Rǫ, a variable time

increment r(tk) = ‖A2(tk)‖−0.5
∞ approximately keeps the

ratio of the size of Rǫ(τk) to R(τk) constant, see e.g. [56].

The time increment for the scenario considered in Sec. VI-A

(including the attached braking maneuver) varies from 0.0071
to 0.0189 seconds. The performance gain from this small

variation does not exceed that from pre-computing required

operations. Another advantage of fixed step size is that the

occupancies can be more easily synchronized with other traffic

participants when a common time step is used, which is the

main argument for choosing a fixed time step.

The required operations for the reachable set computation

of the ego vehicle are summarized in Alg. 1, where ParFor

loops can be executed in parallel, i.e., each loop can be

computed independently. Additionally, the following loops can

be computed in separate threads: Loop α (line 5-8), loop β
(line 9-17), and loop γ (line 18-20). Note that loop β can only

compute the time step k if the preceding loop α has already

returned results for this time step or a higher one. The same

argument holds for loop γ and β.

Algorithm 1 occupancyEgo(R(0), tf , ...)
Require: System dynamics f(x, ζ, y, w), initial set R(0),

disturbance set Y , sensor noise setW , reference trajectory

ζ(·), time horizon tf , time step r, factor λ
Ensure: OC(τk)

1: N = tf/r
2: for k = 1 . . .N do

3: compute z∗(tk) = [χT (tk, x0,c, ζ(·), yc, wc), y
T
c , w

T
c ]

4: end for

5: parfor k = 1 . . .N do

6: Ak, Bk, Ûk ← linearize(f(x, ζ, y, w), z∗(tk))
7: compute eAkr, Ep(r), Γk(r) (see (7)), Rk,ǫ (see [53])

8: end parfor

9: for k = 1 . . .N do

10: L(τk) = ĉ⊕ λ(L(τk−1)⊕ (−ĉ)) (see (5))

11: Û(tk) = f(z∗(tk), ζ(tk))−Akx
∗(tk)

⊕Bk

(
Ũ ⊕ (−û∗(tk))

)
⊕ L(τk) (see (6))

12: compute Rp(r) (see (8))

13: R(tk+1) = eAkrR(tk)⊕ Γk(r)ûc ⊕Rp(r) (see (9))

14: R(τk) = co
(
R(tk), eAkrR(tk)⊕ Γk(r)ûc

)

⊕Rk,ǫ ⊕Rp(r) (see (9))

15: compute L(τk) (see (4)); abort if L(τk) * L(τk)
16: reduce set representation of R(tk+1) (see [2])

17: end for

18: parfor k = 1 . . .N do

19: compute OC(τk) based on R(τk) (see Sec. IV-C)

20: end parfor

V. OCCUPANCY OF OTHER TRAFFIC PARTICIPANTS

The occupancy of other traffic participants based on all

possible modeled behaviors is computed differently compared

to the ego vehicle. In theory, one could also apply reachability

analysis and project onto the position and orientation vari-

ables to obtain the occupancy. However, the dynamics of the

model for other traffic participants is monotone under certain

conditions and the occupancy can be exactly computed by

constraining only the absolute acceleration. Due to these two

properties, we propose a new method that directly computes



JOURNAL OF XX, VOL. X, NO. X, JANUARY XXXX 9

initial occupancy

left bound

right bound

front
bound

rear
bound

Fig. 8: Initial occupancy and boundaries of the occupancy set

for a long time interval.

the occupancy without the need to compute reachable sets

of auxiliary variables. The resulting algorithm is much faster

than for the ego car, which is important, since one typically

has to consider several other traffic participants and only one

ego vehicle. The consecutive time intervals τk used for the

prediction of the ego vehicle are identically used for other

traffic participants.

In order to obtain fast and accurate occupancy predictions,

we compute different occupancy sets for different abstractions

of the dynamic model. We show that intersecting those sets

returns an overapproximation of the exact occupancy, which

is formalized by introducing the projection operator proj() of

a set and an operator reach() returning the reachable set of a

model Mi.

Proposition V.1 (Overapproximative Occupancy) Given

are models Mi, i = 1 . . .m which are abstractions of model

M0, i.e., reach(M0) ⊆ reach(Mi). The occupancy of the

model M0 can be overapproximated by

proj
(
reach(M0)

)
⊆

m⋂

i=1

proj
(
reach(Mi)

)
. �

Proof: Since reach(M0) ⊆ reach(Mi), we have that

reach(M0) ⊆
m⋂

i=1

reach(Mi)

→ proj
(
reach(M0)

)
⊆ proj

(
m⋂

i=1

reach(Mi)
)

Further, it is shown in [56, Prop. 1] that

proj
(

m⋂

i=1

reach(Mi)
)
⊆

m⋂

i=1

proj
(
reach(Mi)

)
.

We propose two abstractions: The first abstraction allows

the vehicle to move arbitrarily in the lateral direction, but

considers the longitudinal dynamics along a path (see Sec.

V-A). This abstraction provides the rear and front bound of the

occupancy set in the driving direction, see Fig. 8. The second

abstraction provides the left and right bound in Fig. 8 by

considering limited absolute acceleration and by not allowing

behavior that results in leaving the drivable area (see Sec.

V-B).

A. Occupancy Along Road Boundaries

In this subsection, we use the abstraction that vehicles

move along paths while considering constraints C1-C4, where

the lateral positions are arbitrary within lane boundaries (see

Fig. 9). The goal of this abstraction is to obtain the rear and

front bound, as shown in Fig. 8. The considered paths are

initially assumed as centers of lanes, where the position along

a path is specified by a function [s̃x, s̃y]
T = p(s̃lon) of the

path coordinate s̃lon. The effect of cutting corners is not yet

considered in this work. Because of the restricted movement

along a path, the normalized steering input ũ1 is no longer a

control input to the vehicle. The state vector for the movement

along a path reduces to x̃ = [s̃lon, ṽ]
T . Due to this abstraction,

the longitudinal dynamics are monotone:

Definition V.1 (Monotone dynamics; see [57]) A system is

monotone with respect to the initial state x(0) ∈ R(0) and

inputs u(t) ∈ U when the following property holds for the

solution χ(t, x(0), u(·)):
if ∀i, j, t ≥ 0 : xi(0) ≤ x̄i(0), uj(t) ≤ ūj(t) then

∀i, t ≥ 0 : χi(t, x(0), u(·)) ≤ χi(t, x̄(0), ū(·)). �

A constructive method to prove monotonicity is presented in

[57], which returns monotonicity with respect to x̃ and ũ2

(ũ1 is no longer an input). Thus, the front bound on the path

coordinate can be computed as follows: Start at the maximum

initial position and velocity (within the set of possible initial

states) and apply full possible acceleration. Obtaining the front

bound on the acceleration along a curved path considering

C4 requires solving an optimization problem for which a fast

semi-analytical method exists [58]. The optimal solution is a

bang-bang control, i.e., ũ2 takes only the values −1 or 1 since

the input is already normalized. The rear bound is obtained by

applying the full deceleration potential
√

ã2max − ã2lat.

sx

sy

path

occupancy set

for some time interval

s

Fig. 9: Occupancy along road boundaries.

B. Occupancy Towards Road Boundaries

Computing the occupancy when the movement is not re-

stricted along a path is much more challenging, since there

does not exist a single trajectory that defines the boundary for

all times. This is demonstrated in Fig. 10, where simulations

for different orientations of the vehicle-fixed acceleration

vector are plotted while the absolute value is always ãmax.

The angle φ = 90◦ corresponds to a left turn without

longitudinal acceleration, whereas φ = 180◦ corresponds

to full braking without steering. It can be seen that for

different times, solutions of different acceleration orientations

(φ ∈ {90◦, 110◦, 130◦}) define the border of these 3 solutions.

Note that even the union of positions for all acceleration

directions is only a subset of the occupancy set, because the

acceleration direction is allowed to be time-varying.

To simplify the analysis for the movement on the plane, we

restrict ourselves to constraints C4 and C5 in this setting. This
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(φ = 90◦)
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(φ = 130◦)
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w

Fig. 10: Occupancy boundary for changing to the left lane.

makes it possible to apply the road-fixed acceleration inputs

ãx(t) and ãy(t) as shown in (2), resulting in monotone dy-

namics, whereas the dynamics of the vehicle-fixed acceleration

inputs ãlat(t) and ãlong(t) are not monotone. We first consider

straight roads with uncertain initial states, where each state

variable is bounded by an interval and the x-axis is aligned

with the road direction. Due to monotonicity of (2), the left

(l) and right (r) occupancy boundary is obviously obtained by

starting at

x̃l(0) =
[
s̃x(0), s̃y(0), ṽx(0), ṽy(0)

]T
,

x̃r(0) =
[
s̃x(0), s̃y(0), ṽx(0), ṽy(0)

]T
,

where under- and overlines represent respectively the lower

and upper limits of initial states. This is indicated for uncertain

initial positions in Fig. 8. Based on the worst-case initial

states, we first compute the occupancy when only the absolute

acceleration is limited (constraint C4), which we refer to

as method A. Note that other constraints, which e.g. forbid

leaving the road/lane boundary, are not yet considered. Further

constraints are separately considered according to Prop. V.1

so that e.g. in a post-processing step the occupancies beyond

road/lane boundaries are cut off. In this setting, the occupancy

of the vehicle can be described by circles with center c̃(t) and

radius r̃(t) when the initial position and velocity are known

[4]:

c̃(t) =

[
s̃x(0)
s̃y(0)

]

+

[
ṽx(0)
ṽy(0)

]

t, r̃(t) =
1

2
ãmaxt

2.

For computing the occupancy we are interested in the bound-

ary that encloses all possible circles:

Proposition V.2 (Boundary of Occupancy) Without loss of

generality, we choose s̃x(0) = 0, s̃y(0) = 0, ṽx(0) = v0, and

ṽy(0) = 0. The x- and y-coordinate of the boundary are:

b̃x(t) = v0t−
ã2maxt

3

2v0
, b̃y(t) =

√

1

4
ã2maxt

4 −
(
ã2maxt

3

2v0

)2

.

�

Proof: To simplify the proof we introduce the new

variable b̂x(t) = b̃x(t)− v0 t. The possible x- and y-positions

of the two circles with radius r̃(·) at time t and t+∆t are:

b̂2x + b̃2y = r̃2(t), (10)

(b̂x − v0∆t)2 + b̃2y = r̃2(t+∆t). (11)

Inserting b̃2y = r̃2(t) − b̂2x from (10) into (11) and some

rewriting results in the x-coordinate of their intersection:

b̂x =
r̃2(t)− r̃2(t+∆t)

2v0∆t
+

1

2
v0∆t. (12)

Using r̃(t) = 1
2 ãmaxt

2, we obtain after some calculations

r̃2(t)− r̃2(t+∆t) = (−ã2maxt
3 +O(∆t))∆t,

where O(∆t) includes linear and higher-order terms of ∆t.
Inserting the above result into (12) and computing the limit

for ∆t→ 0 results in b̂x(t) and thus in b̃y(t) using (10).

The occupancyOC(tk) for specific points in time tk as well as

the left and right boundary are plotted in Fig. 11 for the initial

velocity v0 = 20 m/s and amax = 10 m/s2. It is obvious that

the result allows behaviors that result in driving backwards,

which is resolved by setting bx(t) = bx(t
∗) after time t∗ =

v0/amax, for which it is no longer ensured that the vehicle

has not come to a stop.

sx

s
y

4

0

−4

0 10 20

[bx(t), by(t)]T

[bx(t), −by(t)]T

OC([tk , tk+1])

OC(tk−2) r(tk+1)

c(tk+1)

Fig. 11: Occupancy sets according to method A.

It is not yet considered that the lateral acceleration of other

vehicles has to change direction when approaching the road

boundary to avoid crossing it (constraint C5), which results

in an unnecessary overapproximation; see the dash-dotted line

in Fig. 10. A simple solution that exactly considers constraint

C4 and C5 is yet unknown, but we can propose a solution that

overapproximatively considers C4 and C5, which we refer to

as method B. When one neglects the longitudinal dynamics,

one obtains the time for switching the acceleration direction

to avoid a straight road boundary from a lateral distance w
(see Fig. 10) and a lateral initial velocity v0,lat as

ts =

√

ãmaxw + 1
2v

2
0,lat − v0,lat

ãmax
(13)

for
√

ãmaxw + 1
2v

2
0,lat − v0,lat ≥ 0, otherwise leaving the

road cannot be prevented. The proof is straightforward and

omitted due to space limitations. For curved roads the time ts
is obtained by constructing an artificial straight road boundary

close to where the occupancy boundary hits the road boundary

(see Fig. 12) between the points P1 and P2. Prop. V.2 is used to

obtain P1 and P2 is obtained by computing a feasible solution

that touches the road boundary, thus the overapproximation

has to lie in between the overapproximation P1 and the

underapproximation P2. The artificial straight road boundary

is obtained by connecting P1 and P2 and pushing the line

outside using binary search.
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Kamm’s circle

Kamm’s circle
(radius ãmax)

Fig. 12: Right boundary of the occupancy on a curved road.

The first part of the occupancy boundary of method B until

time ts is computed as for method A (see Prop. V.2). For

the second part of method B, we use a coordinate system

where the x-axis is aligned with the artificial straight road

boundary. In addition we abstract the original model such that

accelerations can take values within a box aligned by the new

coordinate system, which encloses all accelerations bounded

by the absolute acceleration ãmax, see Fig. 12. This makes

it possible to obtain a worst-case initial state x̂(ts) for the

second phase:

x̂(ts) =
[

b̃x(ts), b̃y(ts), v0,x − ãmaxts, v0,y ± ãmaxts
]T

.

The initial position is obviously the final position of the first

phase and the initial velocity is based on monotonicity: v0,x−
ãmaxts is the lowest possible velocity in the x-direction and

v0,y ± ãmaxts is the highest/lowest possible velocity in the

y-direction for the left/right bound. Note that the initial state

x̂(ts) is not reachable, but provides a worst-case initial state for

the second phase of method B. Once the road/lane boundary

is reached, the left/right occupancy bound coincides with the

corresponding road/lane boundary. The results of method A

and B are compared in Fig. 10, where method B performs

better close to reaching the road boundary.

The overall algorithm as described in Alg. 2 works as

depicted in Fig. 8. First, the left and right bounds are computed

independently using method A or B for the entire time

horizon. Note that the bounds continue along the road/lane

boundaries once those boundaries are reached. Next, the set

in between the left and right bound, denoted by OCcompl,

is chopped for each time interval τk to extract the occupan-

cies for the current time interval, see Fig. 8. The chopping

operation is performed separately for longitudinal, left, and

right direction. The operation in longitudinal direction is de-

noted by choplong(OCcompl, s̃lon(tk), s̃lon(tk), path), where

s̃lon(tk), s̃lon(tk) are the combinations of lower and upper

bounds along the path denoted by path. The chopping for

the left border is denoted by choplat(OCcompl, s̃l(tk),Hl),
where s̃l(tk) is the orthogonal distances to the halfspace

Hl = {x|nT
l x ≤ dl}, where nl is the normal and dl the

distance to the origin. The operation moves Hl in normal

direction by the distance s̃l(tk) and computes a set difference

with OCcompl. The chopping operation for the right side is

analogous. Note that the chopping in the lateral direction is

not required in Fig. 8 since the lane boundaries are already

reached. The distances s̃l(tk), s̃r(tk) are obtained by comput-

ing the analytical solution of the double integrator model (see

(2)). Note that as an overaproximation for the lateral chopping

it is assumed that the vehicle can accelerate in the direction

of the corresponding halfspace normal with ãmax regardless

of the acceleration in perpendicular direction as illustrated by

the boxed acceleration circle in Fig. 12.

Algorithm 2 occupancyOther(R(0), tf , ...)
Require: Initial set R(0), time horizon tf , time step r,

parameters ãmax, ṽmax, vS , halfspaces Hl, Hr, path
Ensure: OCother(τk)

1: N = tf/r
2: Set s̃lon(t0), s̃lon(t0), s̃l(tk), s̃r(tk) from R(0)
3: Compute left/right halfspaces Hl,Hr (see Fig. 12)

4: Compute ts,l, ts,r for left/right bound (see (13))

5: Compute OCcompl using method A or B
6: for k = 1 . . .N do

7: Compute s̃lon(tk), s̃lon(tk) according to [58]

8: OCother(τk) = choplong(OCcompl, s̃lon(tk), s̃lon(tk))
9: if s̃l(tk) < 0 then

10: ũr = −1 for t < ts,r, ũr = 1 otherwise

11: ṽlat(tk) = ṽlat(tk−1) + ãmaxũr

12: s̃lat(tk) = s̃lat(tk−1) + ṽlat(tk−1)r + ãmaxũr
r2

2
13: OCother(τk) = choplat(OCother(τk), s̃l(tk),Hl)
14: end if

15: if s̃r(tk) < 0 then

16: ũl = 1 for t < ts,l, ũl = −1 otherwise

17: ṽlat(tk) = ṽlat(tk−1) + ãmaxũl

18: s̃lat(tk) = s̃lat(tk−1) + ṽlat(tk−1)r + ãmaxũl
r2

2
19: OCother(τk) = choplat(OCother(τk), s̃r(tk),Hr)
20: end if

21: end for

VI. EXPERIMENTAL RESULTS

The approach for formally verifying the safety of automated

vehicles is applied to a Cadillac SRX which has been modified

by the Robotics Institute at Carnegie Mellon University for

automated driving. The vehicle is the successor of Boss, the

vehicle that won the DARPA Urban Challenge in 2007. The

hardware design of the new vehicle differs from the previous

one by hiding sensors and computing devices, which results

in a more production-ready vehicle, see [59] and Fig. 13.

Fig. 13: Cadillac SRX performing lane change maneuver B.
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The sensing of the position
[
sx sy

]
, velocity v, and yaw

angle Ψ is performed by the Applanix POS LV platform,

which uses the GPS signal and an inertial measurement unit.

The yaw rate Ψ̇ is measured by the built-in sensor required for

the yaw-stabilization of the vehicle. We use the rotary position

sensor in the steering wheel motor to obtain the angle δ of the

front wheel, which is given by a constant ratio.

Interfaces to the actuation of the vehicle are the steering

wheel velocity, which corresponds to δ̇ by the steering-wheel-

to-front-wheel ratio, and the desired velocity, which is realized

by the built-in automatic cruise control (ACC) system. In the

future, it will be possible to command the acceleration as

proposed by the used mathematical model (1). Since this is

not yet possible and we do not have access to the internal

ACC system for modeling its dynamics, we restrict ourselves

in the experiment to driving with constant velocity.

In order to repeatedly test a maneuver, we performed the test

drives in Robot City, which is a former steel production site

in Pittsburgh that is now dedicated to testing field robots. The

driven maneuver is a double-lane-change maneuver, as shown

in Fig. 14. This maneuver is integrated into a closed-loop path,

such that after each round, two identical double-lane-change

maneuvers are performed. Although the reference trajectory

is the same for both maneuvers, the result differs, since lane

change maneuver A is performed at a spot which has pot holes

and loose tarmac, while the road conditions for lane change

maneuver B are much better (see Fig. 14). Maneuver A was

performed 14 times and maneuver B 13 times. The maneuvers

were driven with 7.5 m/s and the maximal lateral acceleration

is 2 m/s2.

lane change

maneuver B

lane change

maneuver A

Fig. 14: Test site at Robot City with maneuvers A and B.

The vehicle control is implemented in MATLAB Simulink

and runs on a dSPACE AutoBox. The code for computing the

reachable sets is implemented in C++ and runs on a separate

laptop connected to the software framework for sensing and

path planning, which is maintained and extended from the

DARPA Challenges (Grand Challenges and Urban Challenge).

The C++ code for the reachable set computation can be

downloaded from the current website of the first author or

by requesting it via email.

A. Reachable Set of the Ego Vehicle

The reachable set of the ego vehicle for the double-lane-

change maneuver is plotted in Fig. 15 for selected projections

onto the two-dimensional state space. Measurement uncertain-

tiesW are based on the 3σ confidence interval of the specified

sensor noise from the manufacturer for wx, wy , wΨ, which

are modeled by a normal distribution. Assuming a normal

distribution, the probability that a measurement is captured

by the 3σ confidence interval is given by the error function

as erf(3/
√
2) = 0.997. Other measurement uncertainties are

estimated from sensor data. The disturbance set Y is chosen

as 0 for all dimensions, except for the dimensions adding

uncertainty to β̇ and Ψ̈, which are altered when the tire contact

forces vary due to damaged tarmac. The set values are listed

in Tab. II. Other than the measurement uncertainties provided

by the manufacturers of those devices, disturbance sets have

to be obtained from disturbance observers [60]. To obtain a

disturbance set validated by extensive test drives is part of

future work. In those test drives, each time a disturbance

ycrit is estimated that is not within the axis-aligned box

of disturbances Y , each interval of Y has to be enlarged

appropriately such that ycrit is contained in Y .

TABLE II: Measurement uncertainties and disturbances.

measurement uncertainty, ρ = [−1, 1]

wx, wy wΨ w
Ψ̇

wv wδ

0.06ρ m 0.15π
180

ρ rad 0.43π
180

ρ rad/s 0.06ρ m/s 0.02π
180

ρ rad

disturbances, ρ = [−1, 1]

yβ y
Ψ̇

yΨ, yv , ysx , ysy , yδ

0.2ρ rad/s 0.2ρ rad/s2 0

The initial set is composed by addition of two sets. The

first one is the enclosing box I of all recorded states at the

beginning of the maneuver, while states that are not measured

have the pseudo-interval [0, 0]. The second set Iunc contains

uncertainties not captured by I, and contains measurement

uncertainties for measurable states and worst-case assumptions

for states that are not measured. Thus, we have that R(0) =
I⊕Iunc. The uncertain intervals of Iunc for sx, sy , Ψ, Ψ̇, and

δ are as for the measurement uncertainty W . Since the slip

angle β is not measured, a worst-case interval of [−1, 1]0.02
rad is assumed for Iunc.

It can be seen in the plots of the vehicle measurements

for Ψ/Ψ̇ and δ/Ψ̇ in Fig. 15 that there exist two bundles of

recordings, one representing lane change maneuver A (lc A),

the other one representing lane change maneuver B (lc B),

see Fig. 14. It is expected that we would see more variation

in the recorded data, if the same test is performed in more

locations and under different weather conditions.

We use a time step size of r = 0.01 s and the expansion

factor λ = 1.8 for the reachable set computation. The

reachable sets are represented by zonotopes of order 200,

where an introduction to zonotopes can be found in [13]. The

computation time on a laptop with an Intel i7 Processor with

1.6 GHz and 6 GB memory is 4.2 sec, while the maneuver

takes 7.5 sec so that the computation is ν = 1.79 times faster

than the maneuver time. It is expected that the computation

time will be improved by code optimization and better future

processors.
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Fig. 15: Reachable set of the double-lane-change for selected

projections. The light gray area shows the reachable set for

the intended maneuver and the dark gray set the one for the

transition to a safe stop. The white box shows the set of initial

states. For plots with measurable states, black lines represent

the measured values.

B. Safety Verification of the Maneuver

Based on the reachable set computation, the following tasks

are verified:

• A standstill in a safe position at the end of the planned

maneuver is realized.

• Road boundaries are never violated.

• Collisions with static obstacles are avoided.

• Collisions with other traffic participants are avoided.

We assume that the double-lane-change is in an urban or

rural setting with traffic in both directions caused by a static

obstacle on the road. Further, there are two vehicles driving

in the lane with oncoming traffic, as depicted in Fig. 16 for

snapshots of the occupancy sets. Note that the coordinates are

rotated so that the road is horizontal in Fig. 17(a) for better

use of space instead of diagonal as shown in the sx/sy plot of

Fig. 15. The static obstacle and the other traffic participants are

not present during the test drive, but realized as virtual objects

in the traffic scene. Otherwise, a real crash might occur if a

failure happens.

0
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ego vehicle reference trajectory

t ∈ [1.70, 1.71] s:

t ∈ [3.40, 3.41] s:

t ∈ [5.10, 5.11] s:

t ∈ [6.80, 6.81] s:

Fig. 16: Snapshots of the occupancy of traffic participants for

selected short time intervals.

Three different scenarios are considered: In the first sce-

nario, vehicle II is far enough away that the static obstacle is

safely passed by the ego vehicle. Throughout the considered

time horizon the other vehicles obey the traffic rules for

the considered time horizon, i.e., they restrict their lateral

movement to their own lane and respect the virtual speed limit

of 7 m/s. However, for the occupancy prediction according to

Sec. V we allow a penalization of 20% so that other traffic

participants travel with up to 1.2 · 7 = 8.4 m/s. A violation

of traffic rules is presented in the third scenario. In Fig. 16

snapshots of the occupancies of the ego vehicle and other

vehicles are plotted every 1.7 s, which illustrates that the

maneuver is safe. The unions of occupancy sets for all times

are shown in Fig. 17(a). The uncertain initial position and

velocity of vehicles I and II with respect to the coordinate

system of Fig. 17(a) are sI,x(0) ∈ [−5, 5] m, sI,y(0) ∈
[2.5, 4.5] m, vI,x(0) ∈ [6, 8] m/s, vI,y(0) ∈ [−0.2, 0.2] m/s,

sII,x(0) ∈ [110, 120] m, sII,y(0) ∈ [2, 4] m, vII,x(0) ∈ [6, 8]
m/s, vII,y(0) ∈ [−0.2, 0.2] m/s. The body size of the ego

vehicle is lv = 4.5 m , wv = 1.8 m, the maximum absolute

acceleration is amax = 7 m/s2, and the velocity at which the

engine power is insufficient to produce forces that exceed the

maximal tire force is vS = 7.3 m/s.

The computation time for the other traffic participants (a

few hundredths of a second) is negligible compared to that

of the ego vehicle. In addition, the occupancy of each traffic

participant can be computed in separate processes. Checking

the intersection of occupancies is not negligible, but can be

started in a separate process, once the reachable set for the first
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(a) The evasive maneuver is safe and the ego vehicle can complete the planned maneuver. White lines show the recorded positions of the ego vehicle.
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(b) The evasive maneuver is not safe since vehicle II is too close. The ego vehicle has to follow the previously verified path ending behind the static
obstacle.

−20 0 20 40 60 80 100 120
−5

0

5

reference
trajectory

vehicle II

ego vehicle

intended part

initial occupancy

(white dashed border)

final occupancy

(black solid border)

static obstacle

aligned x-position [m]

al
ig

n
ed

y
-p

o
si

ti
o
n

[m
]

(c) At time t = 5.9 s the initially safe situation in Fig. 17(a) becomes unsafe since it is detected that vehicle II has left the road boundary. It is assumed
that this vehicle does no longer repect the road boundary, forcing the ego vehicle to brake. The occupancy of the ego vehicle only consists of an intended
part since the intention is to stop so that the braking part is not required.

Fig. 17: Occupancy sets for all times in different situations of the double-lane-change maneuver. The light gray regions show

the occupancies of the ego vehicle of the intended trajectory section and the dark gray regions of the trajectory to a safe stop.

The medium gray tone indicates the occupancy of the other traffic participants.

time interval is obtained. Since the reachable set computation

of the ego vehicle takes considerably more time than the

collision check, the overall duration is solely determined by

the reachable set computation of the ego vehicle when the

collision check is performed separately. Thus, with today’s

computer hardware, we can verify maneuvers ν = 1.79 times

faster than the time it takes to execute the maneuver (see Sec.

VI-A), which is a prerequisite for the online application. In

situations where an immediate danger is sensed, e.g. a child is

stepping into the street, verification results have to be obtained

within about 0.1 s, which is not yet possible. For this reason,

we plan to store verification results for a small number of

typical evasive maneuvers in a database, such that results are

immediately obtained.

In the second scenario, vehicle II is not far enough away

to guarantee that the ego vehicle can safely pass the static

obstacle. This scenario has exactly the same setting, except

that sII,x(0) ∈ [85, 95] m. The unions of occupancy sets for

all times are shown in Fig. 17(b). The same figure also shows

the occupancy of a verified maneuver of the vehicle, which

stops the vehicle behind the static obstacle. The verification

of that maneuver took place during the movement of the

vehicle, but before the verification process of the current

reference trajectory, which was returned as unsafe. Since the

new maneuver is not safe, the vehicle follows the previously

verified plan to stop behind the static obstacle. Once the traffic
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has cleared, a new plan for passing the static obstacle will

become safe.

The third scenario originates from the first scenario, but

after some time, vehicle II enters the designated lane of the ego

vehicle such that a traffic rule is violated. According to the 4th

assumption in Sec. II we assume that other traffic participants

respect traffic rules. When a traffic rule violation is detected,

the model of the corresponding traffic participant is adapted

such that the violated traffic rule is no longer considered. Due

to this new situation, the ego vehicle plans a braking maneuver

to mitigate a potential impact of vehicle II if it does not return

to its own lane. The verification shows that the ego vehicle

comes to a safe stop before vehicle II might hit the ego vehicle,

as shown in Fig. 17(c). It also shows that the restriction of

vehicle II staying in its own lane is no longer considered and

that vehicle II can potentially reach large portions of the lane

dedicated to the ego vehicle (note the different scaling of the

x- and y-position).

VII. CONCLUSIONS

To the best knowledge of the authors, we have performed

for the first time a non-trivial formal verification during the

operation of an automated vehicle. Not only uncertainty in the

movement of other traffic participants is considered, but also

in the movement of the ego vehicle. Although uncertainties in

the movement of the ego vehicle are considerably smaller than

the ones of other traffic participants, neglecting uncertainties

in the movement of the ego vehicle could cause the vehicle to

lose track of the reference trajectory or hit the road boundary,

for which a deviation of a few centimeters can be crucial in

some situations.

The results show that reachability analysis can be performed

efficiently when performing conservative linearization and

using zonotopes as a set representation. Specific emergency

maneuvers, such as braking or evasion under the use of

available tire forces, can be stored in a database, such that in

emergency situations a faster verification is possible. Storing

results for all other situations is impossible, but the presented

approach is already feasible for those (standard) situations. In

the future, we plan to propose a general-purpose model for the

set-based prediction of other traffic participants considering a

wider range of traffic rules.
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