
Online Web Cluster Capacity Estimation and
Its Application to Energy Conservation

Chang-Hao Tsai, Student Member, IEEE Computer Society, Kang G. Shin, Fellow, IEEE,

John Reumann, Member, IEEE, and Sharad Singhal, Member, IEEE

Abstract—Designers of data centers and Web servers aim to make on-demand allocation of resources to clients in order to lower the

deployment cost of hosted services. Moreover, they must also minimize operating costs, such as energy consumption, by matching

service-capacity demand with resource supply. However, since the term “capacity” is typically defined vaguely or inadequately, it is

difficult to assess resource needs and, hence, servers, which are several times larger than needed at runtime, are usually deployed.

The time-varying nature of the workload model further complicates the problem and necessitates an online capacity-estimation

solution. To address this overprovisioning problem, we first define the capacity of a server cluster as the sustainable throughput subject

to a request retransmission ratio constraint and then analyze different approaches to capacity estimation in a running system. Various

capacity-estimation mechanisms, such as offline benchmarking and CPU-utilization evaluation, are discussed and compared with our

queue-monitoring method. We employ several different data-collection methods (application instrumentation, user-space tools, Simple

Network Management Protocol (SNMP), and kernel modules) to compare their effects on estimation accuracy. Of these, queue

monitoring is found to provide a good and stable estimate of server capacity. To validate this finding, we propose a simple cluster-

resizing mechanism and evaluate the energy-conservation performance. A good combination of data collection and online capacity

estimation is found to make significantly more energy savings than traditional approaches (that is, static estimation and scheduled

capacity). Our experimental results show that more than 40 percent of energy can be saved for regular daily usage patterns without

any prior knowledge of the workload and that long start-up and shutdown delays affect energy savings considerably.

Index Terms—Server cluster, Web servers and clients, service-capacity estimation and on-demand resource allocation, cluster

resizing and energy savings.

Ç

1 INTRODUCTION

CLUSTERED servers are commonly used to provide highly
available and scalable services. The capacity, or max-

imum sustainable throughput, of a server cluster is
approximately the sum of all individual servers’ capacities.
However, each server’s capacity is typically unknown,
workload dependent, and highly variable. This is due
mainly to the unpredictability of resource demands, content
change, and the nonlinear scaling within individual servers.

The capacity of a server system is determined by several
factors. First, the request arrival process and the target of
each individual request determine both instantaneous and
average resource requirements. Second, users’ performance
expectations and patience define acceptable service levels,
which, in turn, affect the meaning of the term “sustainable
throughput” and, hence, real system capacity. Third, server

hardware and software configurations directly influence
performance and resource requirements. Furthermore,
configured queuing limits on the server affect the maximal
surge that can be absorbed by the server. Depending on the
request arrival process, this can affect average client-
perceived delays because a request packet drop results in
a time-out due to slow Transmission Control Protocol (TCP)
SYN packet retransmission. All of these interrelated factors
make accurate capacity estimation a very difficult problem.
These issues have not been fully explored because servers
are often tested using relatively predictable workloads (for
example, typical Web benchmarks) or measured in terms of
long running averages that hide inaccuracies in system
capacity estimation.

For the abovementioned reasons, the current engineering
approach to capacity estimation is to conservatively under-
estimate the capacity of each server based on a coarse-
grained (weekly or monthly) utilization analysis that
describes user demands as well as server performance.
Usually, linear scaling is assumed, and then equipment is
purchased if the estimated capacity does not allow the
safety margin that practitioners value. Thus, servers are
almost always severely underutilized. While the excessive
equipment purchase may not present a major problem to
data centers, excess capacity allocation generally reduces
overall system utilization and directly reduces the profit
from a given infrastructure. The operational cost of power-
ing and cooling the excess equipment reduces the profit
margin even further. Nonetheless, reducing available
capacity to lower operational cost is not an option because

932 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 18, NO. 7, JULY 2007

. C.-H. Tsai is with the Real-Time Computing Lab, Department of Electrical
Engineering and Computer Science, The University of Michigan, 2260
Hayward Street, Room 4956 CSE, Ann Arbor, MI 48109-2121.
E-mail: chtsai@eecs.umich.edu.

. K.G. Shin is with the Department of Electrical Engineering and Computer
Science, The University of Michigan, 2260 Hayward Street, Ann Arbor,
MI 48109-2121. E-mail: kgshin@eecs.umich.edu.

. J. Reumann is with Google Inc., 1440 Broadway, 21st Floor, New York, NY
10018. E-mail: reumann@google.com.

. S. Singhal is with Hewlett-Packard Laboratories, 1501 Page Mill Road, M/
S 1125, Palo Alto, CA 94002. E-mail: sharad.singhal@hp.com.

Manuscript received 12 June 2005; revised 12 Feb. 2006; accepted 26 June
2006; published online 9 Jan. 2007.
Recommended for acceptance by A. Sivasubramaniam.
For information on obtaining reprints of this article, please send e-mail to:
tpds@computer.org, and reference IEEECS Log Number TPDS-0289-0605.
Digital Object Identifier no. 10.1109/TPDS.2007.1028.

1045-9219/07/$25.00 � 2007 IEEE Published by the IEEE Computer Society

Authorized licensed use limited to: University of Michigan Library. Downloaded on November 25, 2009 at 12:02 from IEEE Xplore. Restrictions apply.

this would not allow the system to handle peak loads.
Handling peak loads, however, is an important deployment
consideration because every lost request translates into lost
revenue, which is typically much greater than the marginal
cost of energy expenditure. Furthermore, we argue that an
application service provider (ASP) also runs the risk of
degrading customer satisfaction without appropriate online
capacity estimation and may potentially face service
outages. The economic reasons for better estimation of
capacity are therefore compelling.

We explore the realities, pitfalls, and techniques of online
or dynamic capacity estimation as it is an important
building block in capacity planning, on-demand comput-
ing, and energy conservation in server systems. After
observing the correlation between queue length and
client-perceived response time, we define “drop ratio” as
a measure of user satisfaction and the true “capacity” of
server systems. We propose a new scheme based on queue-
length monitoring to estimate server capacity and compare
it with other simpler estimation mechanisms.

To evaluate our approach, we implement and compare
several different measurement and estimation schemes. Our
estimation approach is also demonstrated by its application
to the well-known energy conservation problem [1], [2]. In
this scenario, we resize a cluster of Web servers by utilizing
a relatively simple controller to determine the cluster size
and dynamically powering them up and down to conserve
energy. Our ability to realize substantial (in excess of
40 percent) energy savings demonstrates the accuracy and
applicability of our online capacity estimation. We also
show that long start-up and shutdown delays limit the
performance of energy conservation.

This paper is organized as follows: We first discuss
previous research on server clusters and workload analysis
in Section 2. The system model and metrics we used are
defined in Sections 3 and 4, respectively. We discuss various
estimation mechanisms in Section 5, and Section 6 details
implementationwith a variety ofmeasurementmethods. The
performance of capacity estimation is evaluated in Section 7,
with energy conservation as an application. Section 8 closes
the paper with concluding remarks.

2 RELATED WORK

Server clustering is a commonly used method to build high-
performance and high-availability services [3], [4]. Optimi-
zations have been introduced in both architectural design
[5], [6], [7] and request distribution schemes [8], [9], [10].
Special-purpose clusters, such as streaming media server
clusters [11] and the Océano computing utility [12], have
also been proposed.

Significant research efforts have been made on char-
acterizing the workload presented to servers, especially
Web servers [13], [14], [15], as understanding the user
model can facilitate the use of workload generators [16], [17]
and benchmark programs [18] to study server performance
problems. Changes of the average HTTP response size over
time of day suggest that users’ browsing behavior (which
might be affected by browser’s caching) changes over time
of day [19]. Recent workload characterization of dynamic
content Web sites also indicates changes in the workload

model and parameters [20]. Both evidences suggest that
online capacity estimation is necessary as the workload
changes dynamically.

To manage cluster resources, Cluster Reserves [21]
extend Resource Containers [22] to server clusters and
achieve service isolation, while services share every server
node. However, as server blades provide many small
servers to service providers, we argue that estimating
server capacity and allocating an appropriate number of
blade servers to each single service is a better approach.

Given limited resources in single-server configurations,
control theory has also been applied to optimize server
performance by tuning system parameters such as Max-
Clients and KeepAlive in the Apache Web server [23], [24]
or throttling the request admission rate in each stage to
manage the response time [25]. In the data center scenario,
one can dynamically allocate resources to services violating
their quality constraints and can satisfy clients easily.

On the other hand, any performance requirement must
be able to relate to end-users’ perspectives. A response time
larger than 10 seconds is shown to cause users to think that
there is an error in the system [26], [27]. Several researchers
attempted to measure the client-perceived response time. In
[28], HTML document instrumentation is used to assess the
response time. However, the result does not include a TCP
connection setup time and is only applicable to HTTP
requests. Alternatively, in [29], TCP client-server interac-
tions, including packet drops, are used to infer the response
time. However, as data centers do not have control of
network delay or packet loss in the network, using the
client-perceived response time directly as a service quality
measure for the server is inappropriate and misleading.

Dynamic Voltage Scaling (DVS) [30] is a well-known
technique to reduce energy consumption. A real-time
extension [31] guarantees service timeliness while saving
energy. Using simulation, Bohrer [32] showed that DVS can
reduce CPU energy consumption in Web servers by up to
36 percent. Our cluster-resizing mechanism can be com-
bined with DVS to improve energy conservation.

Rajamani and Lefurgy [33] defined system and workload
characteristics that could affect energy savings in server
clusters and applied simple control mechanisms to demon-
strate that having knowledge of these characteristics, which
may not always be available, can improve the result of a
simple threshold control approach. Pinheiro [34] also
applied power management to cluster-based systems,
including a Web server cluster. They estimated the resource
utilizations on each server and added them up to predict
the total resource requirement. They also showed that
mismatches between the decision frequency and the work-
load-varying rate can affect service quality. However,
resource demand and utilization typically exhibit a non-
linear relationship, and performance is not directly mana-
ged in the control loop. Elnozahy et al. [35] proposed a
request batching policy to reduce energy consumption at
the cost of a longer response time. It can be combined with
DVS and our method to maximize energy savings.

Chase et al. [1] applied an economic approach, called
Muse, to manage energy and other resources in data
centers. In Muse, the value of each resource is quantified

TSAI ET AL.: ONLINE WEB CLUSTER CAPACITY ESTIMATION AND ITS APPLICATION TO ENERGY CONSERVATION 933

Authorized licensed use limited to: University of Michigan Library. Downloaded on November 25, 2009 at 12:02 from IEEE Xplore. Restrictions apply.

in utility functions and services place bids on resources.
They make control decisions by maximizing service
revenue and profit, and their results showed that 29 percent
or more energy can be saved for a typical workload.
However, we argue that resources cannot be priced easily
and that the resource price could also be highly time
varying. Since resource utilization and performance-re-
source relationships are difficult to determine, it could
make data center operation more complicated and even
infeasible. In this paper, we show that similar energy
savings can be achieved by a much simpler method.

Chen et al. [2] formulated the cost of operation, including
electricity cost and wear-and-tear due to power cycles. With
the cost model, they applied both queuing and control-
theory-based approaches to minimize the cost while meet-
ing Service Level Agreements (SLAs). Compared to this,
our work has put more focus on defining the true service
level and the capacity of each server. We presented energy
conservation only as an application of accurate capacity
estimation. Our definition of service level (that is, request
drop rate) has a greater impact on the client-perceived
response time and is also clearly defined outside the context
of energy or utility cost. Therefore, the estimated capacity
can be used in other applications as well.

3 SYSTEM MODEL

A typical server cluster consists of a load balancer and a
number of servers, as depicted in Fig. 1. Servers are usually
always on, but an operator can also take some of them offline
for maintenance or energy conservation as in [1] and [2].
Hence, the size of a cluster is defined as the number of active
servers in the cluster. The load balancer responds to a single
externally accessible Internet Protocol (IP) address and
balances the allocation of incoming requests across the
servers in the cluster by rewriting the IP addresses [6]. Each
individual server usually provides identical services so that
client requests can be dispatched to arbitrary back-end
servers.

All servers are assumed to have identical hardware and
software configurations, thus making service time (nearly)
independent of the server used. Servers of different
configurations or servers that can be partitioned, such as
the IBM Logical Partitioning for zSeries and pSeries servers
[36], Sun Dynamic System Domains [37], and HP Partition-
ing Continuum [38], would only require straightforward
extensions to the results presented in this paper and are
therefore not specifically addressed here.

The client-server request-reply traffic is assumed to be
encapsulated in TCP connections. The load balancer
forwards a connection request to one of the servers, which
will be responsible for picking up the request. After a TCP
connection is established, the client transmits its request
and one server process will be awoken to serve it.
Depending on the request, the server process may access
local files, fetch remote files via Storage Area Networks
(SANs), retrieve data from database servers, do computa-
tion, and so on. The request arrival process and the implicit
resource demand imposed by each request are assumed to
follow some probabilistic distribution that is unknown to
the server cluster’s operator.

Before each request is processed, it may be queued at
either the load balancer or one of the real servers. A request
would only be queued at the load balancer if the network
link toward the chosen real server is occupied by other
requests. Since the network traffic volume is usually
asymmetric and the network devices can forward at wire
speed with very low blocking probabilities, it is highly
unlikely that many request packets would be queued at the
load balancer unless the load balancer is configured to
operate in proxy mode. Therefore, we assume that the load
balancer does not drop any request and that its queue
length is ignored in our model.

On the other hand, a request is always queued at the
server before a process can pick it up due to the design of
TCP. The server queue is also referred to as backlog in most
UNIX systems. A server will drop a request if the queue is
full, and the request will be retransmitted after a time-out.
Ideally, as the load balancer equally distributes incoming
requests to active servers, the queue length in active servers
will have the same distributions. With actual queue-length
measurements from more than one server, one can estimate
the underlying distribution and, therefore server capacity,
with higher accuracy.

Although some servers may adapt their service quality
(for example, the richness of the content) in certain
situations as in [39], we assume that the resource demands
by incoming requests are not affected by cluster status. If
lower quality content were equally good for business, it
would be wise to always provide lower quality content.
Otherwise, buying additional equipment is generally a
cheaper and more predictable approach to dealing with
recurring capacity shortage. While there is some feedback
between request arrival and cluster performance (especially
in benchmark programs), in a large server with many
independent request sources, the effects of such client-
server synchronization feedback will be marginal.

4 METRICS

With a resizable server cluster like the one defined above, it
becomes possible to adapt the size of a cluster online to
match the demand in real time. Data center administrators
would like to optimize the allocation of resources to host as
many services as possible and, therefore, maximize their
revenue. On the other hand, they would always want to
provide a high level of service quality to their customers.

The quality of service is often defined in SLAs between
service providers and customers as the binding contracts,

934 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 18, NO. 7, JULY 2007

Fig. 1. The system model of a server cluster. In a symmetric

configuration, requests are evenly distributed to server processes and

queue length can indicate server utilization.

Authorized licensed use limited to: University of Michigan Library. Downloaded on November 25, 2009 at 12:02 from IEEE Xplore. Restrictions apply.

which typically specify rough performance numbers below
which the service is considered unavailable or unaccepta-
ble. Networking SLA requirements are typically phrased in
terms of availability, bandwidth, loss rate, latency, and jitter
constraints [40]. In a computing utility environment like
Océano [12], availability, response time, server load,
assigned resources, and output bandwidth are proposed
as requirements and goals in SLAs. Such SLAs are, in
general, not very precise with respect to server perfor-
mance. For example, it is simply too difficult to separate
network delay from server delay.

Moreover, delays depend on the service time, which, in
turn, depends on the type (for example, static or dynamic
content) of the service, size and access frequency of a
specific object, and many other factors. It is usually the
service developer’s job to optimize performance. Thus,
delay is one of the metrics that a service provider cannot
commit, except on a very basic level.

On the other hand, loss rate and failure-based metrics are
easier to validate and are much less ambiguous. Therefore,
service quality can be expressed in terms of loss-related
quantities. Since we assume that requests are encapsulated
in reliable TCP connections, the only cause of dropping a
request is encountering a full queue at a busy server.
Although one can also queue service requests in the user
space to avoid drops at kernel TCP implementation (given
the kernel can provide such resources), if users lose patience
and disconnect due to the prolonged delay in service, it
then wastes both network and server resources. Therefore,
queuing and dropping requests at the kernel is preferred.

In order to study the relationships among the average
queue length, TCP connection request dropping, and client-
perceived service quality, we injected identical static HTTP
requests with exponentially distributed interarrival times to
one server. While increasing the request rate linearly over
time, we monitor the accept queue in the Linux kernel and
measure the response time at the client side. As shown in
Fig. 2, as the request rate grows with time, the queue length
starts to increase at around 700 requests/s and continues to
grow until the queue is completely filled up with requests.
As the request rate increases independently of actual
throughput, the request drop ratio also increases with time.
Dropped requests will be retransmitted, and the amount of
time waiting for retransmission(s) is figured in the client-
perceived response time, which is plotted in Fig. 3.

Although the LAN transmission delay is negligible, as
requests are dropped by the server, the gap between the
response times of requests that experienced no drop and
one or more drops is obvious. The gaps actually map to
different TCP time-out values of 3, 6, 12, 24, and 48 seconds.
With users expecting prompt responses from the servers,
especially in Web-based services, even a 3 second delay
would deteriorate client-perceived service quality seriously
in spite of whatever service time the request may take.
Experiencing time-outs of 6 seconds or more (that is, when
servers can only respond at least 9 seconds after the request
first arrived at the server) can make users lose patience and
recede [26].

Based on the abovementioned observations, we define
the request drop ratio as the number of TCP connections
failed to be established divided by the number of connec-
tion attempts, where each retry is counted as a separate
attempt.

With this definition of request drop ratio, we then define
the capacity of a server system as the maximum number of
requests a server can process within 1 second while keeping
the request drop ratio under a certain threshold.We choose the
threshold of request drop ratio as 1 percent in this paper. We
believe that a 1 percent request drop ratio is a reasonable
choice, since, statistically, only less than 0.01 percent of
request arrivals will experience a delay of 9 seconds or more.

5 ESTIMATION MECHANISMS

Server capacity can be estimated in many different ways.
We first introduce two commonly used approaches and
propose a new queue-monitoring-based algorithm and
discuss its rationale.

5.1 Offline Static Estimation

Benchmark programs are commonly used to measure a
Web server’s ability to handle requests [16], [17], [18]. Some
of them reveal the maximum throughput, and others
generate fixed workload and report performance metrics,
such as request-acceptance ratio and response time. For the
latter type of benchmarks, users can set performance
requirements and run the program repetitively with heavier
workloads until the result violates the requirements.

Although benchmark programs can be used to estimate
server capacity, they are also designed with a specific

TSAI ET AL.: ONLINE WEB CLUSTER CAPACITY ESTIMATION AND ITS APPLICATION TO ENERGY CONSERVATION 935

Fig. 2. When the server becomes overloaded, the queue length grows,

and packets are dropped when the queue is full.

Fig. 3. Client-perceived response time distribution. As workload

increases with time and the server gets saturated, TCP handshake

packets are retransmitted, and time-out can be easily seen.

Authorized licensed use limited to: University of Michigan Library. Downloaded on November 25, 2009 at 12:02 from IEEE Xplore. Restrictions apply.

workload model in mind, such as server functions, user
access patterns, content popularity distributions, and so on.
However, with new service components introduced fre-
quently and workload shifts during the course of a day, the
fixed benchmark model and parameters cannot capture
these dynamics. Consequently, benchmark programs are
good only for comparing hardware performance in con-
trolled environments, but not for online capacity estimation.
With an inaccurate estimation by benchmark programs, one
may overestimate or underestimate the actual capacity of
the server cluster, depending on the degree of the
benchmark’s deviation from the real workload.

5.2 CPU-Utilization-Based Estimation

Another usual approach is to log system utilization and
estimate achievable maximum throughput from it. System
utilization usually includes CPU, network, and disk
utilizations. Inside a data center, network bandwidth is
abundant, so it is usually not the bottleneck. Previous
research showed that the popularity of Web objects follows
Zipf-like distributions [15]. Thus, with sufficient memory
installed, most Web objects can be cached and served from
memory, and the remaining disk accesses are made via a
high-speed SAN. Hence, CPU becomes the most probable
bottleneck in Web servers. Therefore, one may want to
estimate capacity by dividing current throughput by CPU
utilization in order to assess the number of requests a fully
utilized CPU can serve.

This method is simple and can adapt to changes in the
workload model. For example, when the proportion of
dynamic content requests increases in the incoming work-
load, estimation based on CPU utilization can capture the
change as an increase in average CPU demand and then
adjust the capacity estimation accordingly. However,
servers have only a limited queuing capacity to hold a
surge of incoming requests. This becomes a problem when
utilization approaches 100 percent because the very long
predicted queue length will not fit within the system-
imposed queuing limits. Therefore, utilization-based esti-
mation typically overestimates server capacity by an
unknown workload-dependent factor.

5.3 Queue Monitoring

As the cost of dropping requests from the queue is high and
our definition of capacity directly depends on the request
drop ratio, we propose to derive capacity estimation from
the queue itself, which is called queue monitoring. The
insight behind queue monitoring is that the queue length
grows irrespective of the type of bottleneck resource. As
long as there is a mismatch between request arrival and
service rates or a change in client access pattern or service
configuration, the queue length will reflect it immediately.

We assume that the queue can hold up to K connection
requests and is sampled every T seconds. In each sampling
period, we count the number of enqueuing attempts narr,
the number of connections accepted by server processes
nacc, and the number of connections dropped nd. (The time
index t of each sampled value and its derivatives are
omitted for clarity.) The queue length is then increased by
�‘ ¼ narr � ðnacc þ ndÞ at the end of each sampling period.
Instead of using the instantaneous queue length at the

beginning of each sampling period, we use the average
queue length ‘ seen by incoming requests during each
sampling period as it also captures the bursty arrivals and
acceptances of Web requests. We also define arrival rate
� ¼ narr=T and service rate � ¼ nacc=T . The current request
drop ratio is defined as " ¼ nd=narr, which will be used to
adapt the capacity estimate c and verify the constraint in the
definition of capacity in Section 4.

As shown experimentally in Section 4, a queue of
average length less than a certain threshold will never
cause any requests to be dropped. The value of this
threshold depends on the underlying workload character-
istics, such as the arrival rate and burstiness. Since an
accurate workload model is usually not available, we first
estimate the threshold from the results of queue monitoring.

The difference between peak arrival rate, �max, and
current capacity estimation, c, represents the maximum
mismatch between the arrival and service rates. It is also the
fastest rate that connection requests can accumulate in the
queue. The time to fill up the queue, tf , can be calculated as

tf ¼
K=ð�max � cÞ if �max > c
undefined otherwise:

�

ð1Þ

With the definition of tf , we can estimate the threshold
of the minimal average queue length, ‘th, that could lead
to queue overflow within a sampling period. If tf is
shorter than a sampling period, the queue could be
empty at the start of a sampling period and overflow
before the end; otherwise, there must be some requests
queued up at the beginning. For the first case, the
minimal average queue length is achieved by having an
arrival rate c for the first T � tf seconds in a sampling
period and arrival rate �max for the remaining tf seconds.
Hence, there are c � ðT � tfÞ requests in the first phase
facing an empty queue and �max � tf requests facing an
average queue length K=2. Therefore, the average queue
length over all requests during the sampling period can
be calculated. Similarly, if tf > T , the maximal queue
accumulation rate is �max � c, and the minimal queue
length at the beginning of a sampling period must be at
least K � ð�max � cÞ � T to have a full queue at the end of
the sampling period. The average queue length is then
simply the average of queue lengths at the beginning and
the end. If the current average queue length exceeds the
threshold, an overflow can occur. The threshold is
calculated as

‘th ¼
ðK=2Þ��max�tf

c�ðT�tf Þþ�max �tf
if tf � T

½K�ð�max�cÞT �þK
2

if tf > T:

(

ð2Þ

After determining the threshold, we predict the future
queue length by assuming the average queue length to
grow/shrink linearly with time. If the current average
queue length grows at a rate of ‘0 connections/second and a
Tc-second forecast is needed to predict the future queue
length due to a server start-up delay, then the predicted
average queue length, ‘̂, becomes

‘̂ ¼ ‘þ ‘0 � Tc: ð3Þ

With the queuemonitoringdata and the thresholdderived
above, we adapt the capacity estimate when 1) the request

936 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 18, NO. 7, JULY 2007

Authorized licensed use limited to: University of Michigan Library. Downloaded on November 25, 2009 at 12:02 from IEEE Xplore. Restrictions apply.

drop ratio constraint, "th, is violated or 2) the current estimate
is too optimistic or too pessimistic. An estimate is too
optimistic if both the current or predicted queue length is
greater than or equal to the threshold and the current
estimated capacity is greater than the service rate. Similarly,
an estimate is toopessimistic if bothqueue lengths are smaller
than the threshold and the current estimated capacity is
smaller than the service rate.Weuse avariable I to indicate an
optimistic or pessimistic estimate:

I ¼
1 if

minð‘; ‘̂Þ � ‘th ^ c > � or

maxð‘; ‘̂Þ < ‘th ^ c < �

�

0 otherwise:

8

<

:

ð4Þ

When the indicator shows a need to adapt the capacity
estimate, we derive a new capacity estimate, c0. If the service
level constraint is violated, we clamp down the capacity
estimate to current service rate �. If the current estimate is
too optimistic or pessimistic, we adjust the estimate toward
a more appropriate value with a factor � to prevent rapid
changes in estimates. We note that the threshold will also be
adjusted in the next sampling period accordingly. If none of
these conditions holds, the original estimate is retained. The
capacity adjustment equation can be expressed as

c0 ¼
� if " � "th
c � �þ � � ð1� �Þ if " < "th ^ I ¼ 1

c otherwise:

8

<

:

ð5Þ

One small addition to this mechanism is a mode bit. The
mode bit indicates any prior occurrence of downward
adaptation of the capacity estimate.When a new server starts
and joins a cluster, it can join with no knowledge of its
potential capacity if it is the first server in the cluster or in a
hybrid cluster where no other active server is of the same
configuration. In that case, the mode bit is OFF and will
trigger a “fast-start stage” byupdating the capacity estimate c
with current peak arrival rate �max if none of the downward
adaptation conditions holds. Also, the estimate is reported as
a “lower bound” of capacity as no difficulty has been
encountered. Once any downward adaptation happens, the
mode bit is set to ON, and the original adaptation behavior is
engaged, which is called “adaptation stage.” Once the mode
bit is ON, it never flips back.

The parameters in this mechanism, including K, T , "th,
and Tc, are all tunable to match system specification and the
request drop ratio constraints. After staying for a certain
period in the adaptation phase, an accurate capacity
estimate can be obtained.

6 IMPLEMENTATION

To evaluate the performance of different estimation
mechanisms and the effects of different measurement
methods, we implemented various measurement methods
from which an adaptive system can derive the needed
parameters for online capacity estimates. Due to the dual
connection queue structure in the Linux kernel adopted in
this paper, we first provide some details of the Linux kernel
before detailing the implementation of each of the measure-
ment methods.

6.1 Linux Kernel Internal

A connection is placed in a backlog before it has been
established and picked up by server processes. Although
the size of the backlog is specified when calling listen,
there are actually two different queues—SYN and accept
queues—each for a listening socket in the Linux kernel.

When the first SYN packet arrives from a network
interface, the new connection is only half-opened and placed
in the SYN queue. The size of the SYN queue depends on the
amount of physical memory available in the server. For
example, machines with 512 Mbytes of memory have a SYN
queue of size 1,024. However, if either the SYN queue or the
accept queue is full at the time of a packet arrival, the SYN
packet is dropped quietly, and no SYNþACK packet will be
returned to the client. Therefore, the client who generated the
SYNpacketwill treat it as apacket loss andwill retransmit the
SYN packet a few more times with certain time-outs in-
between. The length of each time-out is determined by the
client OS and usually increases from a few hundred
milliseconds to 1 minute. A packet dropped in this stage will
increase the Simple Network Management Protocol (SNMP)
counter TcpAttemptFails by 1.

After a SYN þ ACK packet is sent and acknowledged by
the client with an ACK packet, the connection is fully
established and moved to the accept queue. The size of the
accept queue, which is the only backlog existing in other OSs,
is specified by the server program in the listen call with an
upper boundof 128 imposedby the glibc 2.x.When the accept
queue is full, the kernel quietly drops the ACK packet as if it
had never been received. As a result, the server will consider
the SYN þ ACK packet not received by the client and will
retransmit after a server-side time-out. On our platform, the
kernel resends thepacketsup to five timeswith time-outs of 3,
6, 12, 24, and 48 seconds, respectively. The Linux kernel also
counts the number of dropped ACK packets over all accept
queues inavariablenamedListenOverflows,which isnot
standardized in SNMP.

6.1.1 Kernel-Exported Measurements

The /proc pseudo file system in Linux is an interface for
user-space programs to retrieve system information and
tweak kernel parameters. CPU utilizations in number of
jiffies are included in /proc/stat; /proc/net/snmp and
/proc/net/netstat contain SNMP-compliant and non-
SNMP-compliant network statistics, respectively. Due to the
separate queue design, the total number of queue overflows
is the sum of TcpAttemptFails (SYN queue overflows) and
ListenOverflows (accept queue overflows). With both
counter values available, we can obtain an accurate number
of TCP retransmissions caused by resource scarcity. A Perl
script is used to poll these values, and capacity is estimated
from CPU utilization. Unfortunately, this interface is not
standardized, but similar interfaces are available in other
Unix flavors.

6.1.2 Kernel Instrumentation

In spite of the rich set of information available via the Linux
/proc file system, the states of system queues, including
both SYN and accept queues, are poorly exported. To assess
the load of a system, it would be useful to access the

TSAI ET AL.: ONLINE WEB CLUSTER CAPACITY ESTIMATION AND ITS APPLICATION TO ENERGY CONSERVATION 937

Authorized licensed use limited to: University of Michigan Library. Downloaded on November 25, 2009 at 12:02 from IEEE Xplore. Restrictions apply.

number of enqueuing attempts, number of dequeuing
requests (accept system calls), number of queue over-
flows, and average queue length. By exporting more
detailed queuing state information than is traditionally
done in Unix-like OSs, online capacity management can be
done with higher accuracy. (Note that mainframes tradi-
tionally export such finer-grain queuing statistics.) Thus, we
modified Linux kernel 2.4 to measure the queue length in
kernel space and provide the measurements via the /proc

file system.
In our patched kernel, when a SYN packet is received by

the kernel and is to be placed in the SYN queue, a SYN
packet count and an accumulative queue length counter are
incremented to keep track of the total SYN queue length
seen by incoming SYN packets. By periodically polling the
values of these two counters and dividing the incremental
total queue length by the SYN packet count, we can
compute the average SYN queue length seen by SYN
packets that arrived during the current sampling period.
Similar counters are also placed in the accept queue.
Moreover, we count the number of accept system calls
as they pull connections from the accept queue.

If a queue is full and a request is about to be enqueued,
the queue size (that is, current queue length) is added to the
counter. When retransmitted packets arrive again at the
same queue, they are counted as different requests and the
current queue length will be added multiple times. The
counter values and current system time are polled atom-
ically to achieve the highest accuracy. With queue-length
measurements directly from the kernel, we can utilize the
queue monitoring introduced in Section 5 to estimate server
capacity.

Kernel measurements are accurate and consistent even
under heavy load. Furthermore, the latency for reporting
queue lengths and TCP SYN drops is reduced significantly
if monitoring is done at the kernel level. Reducing this
latency is key to achieving instantaneous capacity estimates.

6.1.3 vmstat and netstat

An OS typically implements a set of user-space programs
for basic system performance reporting and monitoring
purposes. Although vmstat can generally provide average
CPU utilization periodically across different platforms at a
1-Hz frequency, most netstat implementations only
provide a snapshot of network statistics. Therefore, we
redirect the output of the command “vmstat 1” to provide
CPU utilization measurements every second to the Perl
script, and as soon as a new sample is received, we execute
“netstat -s” to retrieve a snapshot of network statistics.
We also log the current system time with each sample so
that the actual interval between samples can be learned.

User-space tools generally retrieve measurements from
the OS kernel through a predefined proprietary interface,
such as the /proc file system in Linux, and format data
appropriately for direct inspection. The available measure-
ments are limited and vary from one system to another. In
the output of “netstat -s,” we are mainly concerned with
the number of incoming connection requests and the
number of failed connection attempts. In most cases, a
connection attempt fails if the initial TCP SYN packet is
dropped by the server due to the full accept or SYN queue.

However, if the first packet is accepted but the connection
cannot advance to the accept queue when the TCP three-
way handshake is complete, it is not counted as a failed
attempt in Linux. Moreover, the current lengths of both
queues are not available from netstat either. Although
the execution of user-space programs increases the system
overhead, the measured CPU utilization also reflects the
cycles consumed by these programs.

6.1.4 SNMP

SNMP is a standard protocol for the management of
network devices and, sometimes, servers. With the vendor’s
management information base (MIB) definitions, the load
balancer in our testbed provides many aspects of network
statistics on layer 4 (TCP) and below via SNMP queries,
although only basic measurements are standardized. The
UCD SNMP daemon on servers provides OS-specific
counters, including raw CPU usage, which are mapped to
the numbers of jiffies the Linux kernel scheduled in various
modes (user, nice, system, and idle). The counter values are
nominally the same as what we collected using typical user-
space measurements. As in the case of network devices,
nonnetwork-oriented information is mostly not standar-
dized, thus creating problems similar to those of using
platform-dependent user-space tools.

The accuracy of SNMP counters depends on the vendor’s
SNMP implementation (for example, update rate), which is
outside the control of our capacity estimation. Moreover,
nonstandardized information limits the ability to define a
standard methodology for online estimation of system
capacity. However, capacity estimates can be derived from
periodic queries to load balancers and servers’ SNMP
agents in our testbed. We collect drop counts and other
error indicators, such as queue overflow and buffer short-
age indicators from the load balancer. As expected, the load
balancer is fast enough to always forward all packets; not a
single drop occurred during our experimentation.

6.1.5 Apache

Application instrumentation is obviously the gold standard
for system monitoring. For example, in a monitoring
framework such as Tivoli [41] or Openview [42], the server
process can timestamp each incoming request and record
start and end times. Logging is standardized in the
application response time measurement (ARM) standard, which
defines the API of source-code level logging. Unfortunately,
Apache does not have an ARM module, and it is not always
possible to modify application source code. Instead of using
ARM, an Apache module, mod_status, provides server
status reports, including some performance details, through
a dynamic HTML document. With extended status turned
on, performance metrics, including but not limited to total
requests and CPU usage, are provided in the server status
report. The CPU usage is obtained by calling the times

system call and includes the time spent by HTTP daemon
(httpd) processes (and their child processes) in both user
and system modes. By periodically polling these variables,
we can calculate average throughput and CPU utilization
and, therefore, estimate throughput when the CPU is fully
utilized. However, since the CPU will never be fully utilized

938 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 18, NO. 7, JULY 2007

Authorized licensed use limited to: University of Michigan Library. Downloaded on November 25, 2009 at 12:02 from IEEE Xplore. Restrictions apply.

solely by server processes without any overhead, we expect
this method to overestimate system capacity.

7 EVALUATION

There are two common practices of evaluating server
systems: 1) using synthetic workloads and 2) replaying real
traffic traces. Synthetic workload generators, such as Surge
[16], HTTPerf [17], and Spec Web [18], are usually designed
to mimic user behavior and assess server performance.
Therefore, they can be used for evaluating the accuracy of
capacity estimation, which is the main goal of this paper.
One can also tweak parameters to reflect different scenarios.

On theotherhand,using traces suchasWebserver logscan
only lead to results specific to the traces used. Furthermore,
because TCP time-outs and packet transmission times cannot
be changed easily, replaying a trace at an accelerated speed
actually changes the client model. These effects are particu-
larly significant in stress-testinga server system.For example,
if a trace is played back at a 10x speed, a connection
experiencing a 3 second time-out resulting from an accept
queue overflow will wait 30 seconds in the trace time scale
before it retries. In contrast, by changing the number of
emulated users, a syntheticworkload generator canmaintain
the same client model while stress-testing the server.

To evaluate various estimation mechanisms and mea-
surement methods, we set up a testbed that consists of a
Foundry Server-Iron XL load balancer, five identical PC
servers with 512-Mbytes RAM each, and another five
workload-generating PCs. Servers are connected to the load
balancer via 100-megabit-per-second Ethernet links, and the
load balancer has a 1-Gbps Ethernet interface to clients. We
built a client emulation program, which is based on the
Surge user model, to generate workload with an arbitrary
time-varying number of emulated users. In Surge, each
emulated user first generates a request to an HTML
document and then fetches its embedded objects. The user
then sleeps for a period of time and repeats this sequence of
actions. We follow the distribution and parameters in [16].
The load balancer is configured to use the round-robin
algorithm. Note that, since the capacity-estimation process
is running at the server level instead of the cluster level, the
choice of a load-balancing algorithm does not affect our
results.

In this section,we first evaluate the accuracy andoverhead
of each measurement method. Second, the queuing behavior
inside a server system is presented, and three capacity-
estimation mechanisms are compared with each other under
different types of workload. Finally, we apply the capacity-
estimation schemes to realize an energy-efficient server
cluster where the percentage of energy savings under
different scenarios demonstrates the effectiveness of our
online capacity estimation and its application.

7.1 Measurement Accuracy

Before estimating server capacity, we first compare the
accuracy of the five measurement implementations in
Section 6. This is required as a low overhead yet accurate
measurement implementation can help improve capacity
estimation as well. We set up all of them to simultaneously
measure one running server at a 1-Hz sampling frequency

and compare the thus obtained results. The server is fed
with increasing loads, which are based on the Surge
workload model with an increasing number of users so as
to assess the accuracy of measuring both a normal server
and an overloaded server. Although running multiple
measurement methods simultaneously increases the over-
head of the server under test, this is the only way to make a
direct comparison of all of them.

To estimate capacity, one of the most important para-
meters to measure is the total number of connections, which
is also the total number of requests in our model. Before the
server became saturated, all five methods yielded exactly
the same result. However, as the server became saturated, it
took more than 1 second, which is our sampling period, to
retrieve the sample. We will discuss the cause of this later.
Also, the total number of connections reported by Apache
has some jumps, causing the zigzags in Fig. 4.

Moreover, the total number of connections obtained by
SNMP grows faster than others after the server is saturated.
This inconsistency is due to the interpretation of SNMP
specification in the Linux kernel. In Linux 2.4, the kernel
responds to SYN packets by sending SYN þ ACK packets
without guaranteeing that the connection will be queued in
the accept queue when it is fully opened. The load balancer
regards each three-way handshake as the creation of a
connection and, hence, increases the SNMP TotalCon-

nections counter by one as soon as the client responds
with an ACK packet. However, the Linux kernel increases
the tcpPassiveOpens counter only after the ACK packet
is received and there is room in the accept queue. Therefore,
as the accept queue is full for a nonnegligible period of time,
many connections may not be able to move to the accept
queue even after a few retries, and the inconsistency
between counters arises. The way the Linux kernel handles
the counter is less accurate according to the definition in
RFC 1213 (also as STD 17) [43]: the number of times TCP
connections have made direct transitions to the SYN-RCVD
state from the LISTEN state.

We also compare the CPU utilization, which is defined as
the fraction of time the CPU is not idle, measured by four of
the five methods, with the exception of kernel instrumenta-
tion that is built for queue monitoring only. The user-space
program vmstat represents CPU utilization in percentages,
whereas all other methods express CPU utilization in total
number of jiffies (of 10 ms each) spent in each mode. With

TSAI ET AL.: ONLINE WEB CLUSTER CAPACITY ESTIMATION AND ITS APPLICATION TO ENERGY CONSERVATION 939

Fig. 4. Measuring the total number of connections obtained by different

methods. As the server gets saturated, SNMP counts more connections

than others, and Apache has big jumps in increments.

Authorized licensed use limited to: University of Michigan Library. Downloaded on November 25, 2009 at 12:02 from IEEE Xplore. Restrictions apply.

the actual sampling time of each point, we convert all CPU
performance counters to percentages.

The CPU utilizations obtained by using different
methods are plotted in Fig. 5. At first, it was even
impossible to retrieve CPU performance counters via SNMP
when the server was saturated because the SNMP agent
had too little CPU time; this problem was solved by raising
the SNMP agent’s priority. The result shows that CPU
utilization grows with the request rate (which increases
linearly with time). Compared with the other three
approaches, Apache consistently underestimates CPU
utilization as it only counts the CPU time used by itself.

As the server under test becomes saturated, we also
noticed that some of the measurement methods cannot keep
upwith the 1-Hz sampling frequency.Theunpredictability of
the sampling interval is due to the OS scheduler. We tagged
each samplewith the current system timewhen the sample is
taken. Comparedwith the “before-sampling” time,we found
that the “after-sampling” time is closer to the time when
remote measurement entities (Apache and SNMP agent)
actually processed the counter-retrieval request. The inter-
sample intervals of these measurement methods are plotted
in Fig. 6.

Similar to the SNMP agent, we also raise the priority of
other measurement-related processes. As retrieving mea-
surement results from the /proc file system does not create
any new process, once the measurement-retrieval process is
scheduled, the result collection can be done immediately. If
we did not adjust the priority, there would be a fluctuating

delay between 0.8 and 1.2 seconds. For latter experiments,
all measurement processes are running at a higher priority.
The only method that suffered from frequent deviations
around a fixed sampling delay is Apache status retrieving,
as it must be scheduled with other Apache processes.

With these results, we conclude that reading from the
/proc file system with the reader process staying in the
memory and priority promoted can provide the most
stable measurements of a running system. Although the
interfaces provided by SNMP and Apache are more
generic, they are not designed for frequent retrieval,
especially under overload situation.

7.2 Measurement Overhead

Using the same evaluation setup as above, we also compare
the overheads of the measurement methods. Instead of
periodically sampling the server, we execute one method at
a time and measure the system continuously. The max-
imum sampling frequency of each method is plotted in
Fig. 7.

As the figure shows, when there is little load on the
server, four of the five measurement methods can acquire
samples at a rate of 50 Hz or much higher, with the
exception of user-space measurement tool vmstat, which
has a limit of 1-Hz sampling frequency by design. However,
as the request rate increases linearly with time, the
maximum achievable sampling frequency drops exponen-
tially. A high-overhead measurement method like Apache
can only achieve a sampling rate of 5 Hz. On the other
hand, we can still retrieve queue-length measurement
results at 500 Hz. Although we do not require a high
sampling frequency to estimate capacity, it shows that
kernel instrumentation is a low-overhead measurement
method.

7.3 Queuing Behavior

Before applying capacity estimation using the queue-length
monitoring proposed in Section 5, we first examine how
various queues in a server system interact with each other
and when incoming packets are dropped.

As Fig. 8 shows, as the request rate increases, the run
queue length first reflects the increasing workload. After we
reached the limit of the allowable number (256) of httpd
processes, incoming requests start to be accumulated in the

940 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 18, NO. 7, JULY 2007

Fig. 5. Measuring CPU utilization using different methods. Apache only

counts CPU time used by itself and, therefore, underestimates CPU

utilization.

Fig. 6. Although we retrieve measurements every second, the actual

intersample interval ranges between 0 and 2 seconds.

Fig. 7. The maximum sampling frequency of each method. The
overhead of each measurement method differs from the others by two
orders of magnitude. Thus, the achievable sampling frequency ranges
from a few hertz to a few hundred hertz when the server becomes
overloaded.

Authorized licensed use limited to: University of Michigan Library. Downloaded on November 25, 2009 at 12:02 from IEEE Xplore. Restrictions apply.

accept queue. No request will be dropped because of the
httpd processes count limit. As the accept queue length
grew, we observed that SYN packets were dropped even
without any queue filled up. This was due to the queue size
limit of an outgoing packet scheduler. Although the packet
scheduler normally does not drop any packet, the SYN þ
ACK packet is an exception in Linux. If the SYN þ ACK
packet cannot be scheduled to send, the Linux kernel does
not retry before dropping it. As the default packet scheduler
has a queue of only 100 packets, bursty traffic can easily fill
up the queue before the device driver has a chance to drain
some of the packets. With the limit increased to 1,000, no
more SYN packets were dropped at this stage.

Before the average accept queue length approaches its
limit (128), the instantaneous accept queue length, which is
highly fluctuating and which we choose not to plot in the
figure for clarity, has reached the limit every now and then.
Not only does a full accept queue block establishing TCP
connections out of the queue (when the ACK packet is
received from the client), but also the first SYN packet from
the client will be dropped. Therefore, we can see that both
the accept queue and SYN queue drop ratios increase
dramatically; almost 10 percent of new connections cannot
be established if the accept queue is full for a few minutes.
Since many SYN packets are rejected, the SYN queue length
grows at a very moderate pace and is far from its limit
(1,024). From this result, we can see that the accept queue
does reflect server load.

7.4 Capacity Estimation

Using the measurement results, we apply all three capacity-
estimation mechanisms to the server under test. To
determine the actual capacity of the server, we feed a
linearly increasing Surge workload to the server and
monitor the request drop ratio over a 1 minute window.
Once the service level is violated, we call the average
throughput the capacity of the server. The process is
repeated 10 times and determines that the server has a
capacity of 595 requests/second under this workload.

Instead of using the simple linearly increasing workload,
we create a sinusoid-like workload, where the number of
Surge user-emulated changes like a sine wave, to evaluate
the capacity-estimation mechanisms under fluctuating
workloads. When the workload is CPU bound, simple
estimation like the CPU-utilization-based mechanism we
discussed in Section 5 can effectively approximate system

capacity. Although this method is simple, the quality of its
inputs (that is, measured data) can seriously affect its
prediction. To this end, we compare the accuracy of four
measurement mechanisms that can be used as input to any
capacity-estimation method, including the simple one
mentioned above. The result of capacity estimation by
queue monitoring is also included for the purpose of
comparison.

Fig. 9 shows how these mechanisms perform relative to
each other. Use of Apache’s status yields a poor estimate of
server capacity. It typically overestimates load when the
workload is low. This is due mainly to various layers of
indirection and inaccuracies introduced by each of them; for
example, the CPU time used by background processes is not
taken into account. Estimates by using the output of
vmstat and netstat commands using SNMP counters
and measurements in the Linux’s /proc file system are all
very close to each other. They all produce a reasonable
estimate when there is a medium-level load on the server,
for example, during 200 and 400 seconds in this experiment.
Once the server is overloaded, the estimate essentially
equals the current throughput while a large number of
incoming packets are dropped.

The capacity estimated by the queue-monitoring scheme
grows at first with the request rate (the fast-start stage). As
soon as the server gets overloaded, it actually estimates a
capacity lower than the current throughput, and the
estimate, 586 reqs/second, is actually very close to the one
we obtained by static estimation, 595 reqs/second. After the
overloaded situation disappears, it yields an estimate of
614 reqs/second as the queue length drops to a safe region.
Most importantly, in between the two overloaded periods
(from 1,200 to 1,800 seconds), since there are no new
triggers to adapt capacity estimation, it keeps the current
estimate. As a stable estimate is very important for making
control decisions, this queue-monitoring scheme can pro-
vide better estimates than the other schemes.

The CPU is not the only potential bottleneck of a system,
albeit the easiest to measure. Estimating server capacity
when a resource other than CPU is the bottleneck is much
more difficult because I/O utilization is fuzzier than CPU
utilization. To simulate an I/O-bound workload, before the
completion of each request, we artificially inserted a
0.5 second sleep to simulate an I/O wait, such as the time
a front-end Web server waiting for back-end database
committing transactions, which is common in multitier
server design. This design moves the bottleneck from CPU
to the configured maximum number of server processes in

TSAI ET AL.: ONLINE WEB CLUSTER CAPACITY ESTIMATION AND ITS APPLICATION TO ENERGY CONSERVATION 941

Fig. 8. As the request rate increases, the average run queue length first

reflects the increased resource demand, and then the accept queue
grows until it becomes full. Packets are dropped when the queue is full

and, therefore, SYN packets seldom build up in the SYN queue.

Fig. 9. Capacity estimates using five different measurement methods.

Authorized licensed use limited to: University of Michigan Library. Downloaded on November 25, 2009 at 12:02 from IEEE Xplore. Restrictions apply.

Apache or maximum number of processes in OS, whichever
is smaller. Although a fixed I/O time is unrealistic, it
reflects that a batch of requests causing some I/O delay can
easily change the workload from CPU bound to I/O bound.

Estimates of server capacity when an I/O-bound work-
load is present are plotted in Fig. 10. Obviously, all
estimates based on CPU utilizations are overly optimistic
by a large margin. Only our queue-monitoring scheme
provides a stable output irrespective of the bottleneck shift.
That is, the server capacity estimation based on the
proposed queue monitoring is adaptive and can handle a
wide variety of workloads.

7.5 Application: Energy Conservation

With an accurate capacity estimate, adapting the size of a
server cluster to match its workload becomes straightfor-
ward. Traditionally, sizing a server cluster is either basedona
fixed schedule or static capacity estimation by executing
benchmark programs. A utility-function-based mechanism
was proposed in [1], but it requires prior knowledge of both
the underlying workload and pricing models. A fixed
schedule is usually derived by observing typical daily
demand fluctuations from the past utilization log. A constant
numberof servers areactivated toprovide services regardless
of current utilization or service quality. The time granularity
of a schedule depends on how fast theworkload changes and
is usually in the order of an hour. Although this scheme is
simple, it doesnotprovideanyservice-quality guarantee, and
the cluster is usually underutilized.

Another commonly used practice is to benchmark each
server’s capacity and then use controllers to adjust the
number of active servers accordingly. We call controllers
based on static capacity estimation static controllers. The
static controller turns on a new server when the current
aggregated arrival rate is higher than the current aggre-
gated capacity and turns off if a server can be spared. After
a newly turned-on server starts accepting requests, we also
enforce a 10 second warm-up time before the next capacity
adjustment. Safety margins are also frequently used to
avoid capacity overestimation. However, as good capacity
estimation is available for our static controller, we did not
apply such margins.

With online server capacity estimation, a cluster-sized
controller as simple as a static controller can still be utilized
and will be more effective. We call these controllers dynamic
controllers. The only difference is that it uses the online
capacity estimate instead of the fixed capacity setting. With

more accurate capacity estimation, the timing to adjust
cluster size can be more precise and, thus, more energy can
be saved without sacrificing service quality.

We measured the power consumption of each server
under boot, idle, and fully loaded conditions and of the load
balancer. Since our platform does not support sophisticated
energy-management approaches (for example, PowerNow),
the power usage does not vary widely from idle (� 60 W) to
fully loaded (� 65 W). According to the actual turn-on/
turn-off time that we measured, we estimated the total
power consumption for the entire cluster. In what follows,
percentage energy savings are compared with always-on
server clusters. Although much energy is wasted for very
little productivity (if any), “always-on” is still the most
common practice today.

7.5.1 “Standard” Workload

We first compare static controllers with dynamic controllers
by using the same workload model that was used to
determine server capacity statically. To predict real-world
energy savings, we construct an average daily server load
curve using the ClarkNet-HTTP Web server log from the
Internet Traffic Archive [44] and scale it to fit our testbed. Its
sinusoid-like appearance is merely a coincidence. Each
emulated user still follows the Surge workload model. We
also compress the time scale by a factor of six to accelerate
experiments.

Since the workload is the same as the one that the static
controller used to benchmark server capacity, and the
dynamic controller has an accurate estimate as well, both
controllers perform almost the same in executing this
workload. Both controllers achieve 38 percent of energy
savings and merely 0.001 percent of total requests experi-
enced accept-queue overflows and penalties of TCP time-
outs. Although the performance is similar, the dynamic
controller does not require any prior knowledge of the
workload and is therefore easier to deploy as it eliminates
the need for benchmarking. In addition, since a benchmark
workload usually differs from the actual workload and the
workload itself also changes during the course of a day,
static controllers cannot achieve the highest utilization in
reality. For comparison with fixed-schedule controllers, we
have also built a capacity schedule based on the average
daily load curve. If the schedule has a time slice of
30 minutes, 31 percent of energy can be saved. If the size
of the time slice increases to 2 hours, energy savings are
reduced to 25 percent.

7.5.2 Decreased Resource Demand

When per-request resource demand is reduced, we expect
that each server can handle more requests in a fixed amount
of time and fewer servers are needed to handle the same
workload. To lower the resource demand, we half the object
size created by Surge and keep the other parameters
unchanged. The throughput and the number of servers
activated by both controllers are plotted in Fig. 11. The static
controller still turns on new servers when the throughput
reaches 595 reqs/second for each server. However, active
servers did not reach full utilization at that moment and,
hence, turning on new servers would consume extra
energy. On the other hand, the dynamic controller
estimated each server to be able to handle about 750 reqs/
second, so it turned on servers later and turned off servers
earlier. At the end of the experiment, the server cluster with

942 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 18, NO. 7, JULY 2007

Fig. 10. Capacity estimation by five different methods. Only the

proposed queue-monitoring scheme can estimate the server capacity

under an I/O-bound workload.

Authorized licensed use limited to: University of Michigan Library. Downloaded on November 25, 2009 at 12:02 from IEEE Xplore. Restrictions apply.

the static controller is found to save 35 percent of energy,
whereas the one using the dynamic controller saves
44 percent of energy. The service quality is well maintained
as less than 0.001 percent of the total requests experienced
accept-queue overflows. This demonstrates the ability of
capacity estimation to correctly recognize the decreased
resource demand in each request, thus saving more energy.

7.5.3 Increased Resource Demand

As per-request resource demand increases, more servers
would be needed to handle the increased workload. To
simulate the demand increase, we replace each static
document with a Server-Side Include (SSI) dynamic docu-
ment. Since Web servers are required to parse the content of
the document before sending it out, dynamic content will
increase the resource demand of processing each request.

When the static controller is applied to this scenario, the
result becomes totally unacceptable as the server saturated
before reaching its outdated estimated capacity. Therefore,
no new server is turned on to shed the workload from the
already overloaded server. A large number of requests
failed to go through. On the other hand, the dynamic
controller does not suffer from the same problem. As the
active server gets saturated, new servers are activated, and
the quality of service is maintained. The result shows that
31 percent of energy is saved in this experiment, and only
0.002 percent of total requests experienced queue overflows.

7.5.4 Start-Up and Shutdown Delay

Since current server systems need a nonnegligible amount
of time to boot up and start serving clients, we use Tc in our
queue-monitoring scheme to compensate for such a delay.
A long start-up delay essentially requires a larger prediction
window and, therefore, lowers the capacity of each server
since we have to spare some queue space for the predicted
increase of workload. This effect is similar to the qualitative
analysis given in [33]. Long shutdown delays also decrease
the agility of server cluster resizing since a server that is
currently being powered down cannot be turned on until it
is completely shut down.

To study the effect of start-up and shutdown delays, we
keep all servers up and simulate the delays in the controller.
The controller includes the powering-on server in the load
balancer’s configuration only after the simulated start-up
delay has elapsed. Similarly, when a server is turned off, it is
removed from the configuration and changed into a soft
shutdown state, which is maintained by the controller. The
effects of start-up and shutdown delays are plotted in Fig. 12.

While keeping the shutdown delay at 60 seconds, we
simulate various start-updelays between 15 and 180 seconds.
As the result shows, a delay longer than 60 seconds starts
affecting the energy conservation. The percentage of energy
conservationdrops from43 to 36percent. This result suggests
that a fast-reacting server platform can save considerably
more energy. Similarly, while keeping the start-up delay at
60 seconds, long shutdown delays also reduce the energy-
savings benefit, but to a lesser extent. We expect that a fast-
oscillating workload can benefit short shutdown-delay
configurations, although such a workload is not commonly
seen.

8 CONCLUSIONS

In this paper, with a symmetric server cluster model and
empirical evidences showing the impact of dropping TCP
handshake packets, we defined the capacity of Internet
servers as sustainable throughput with a low (for example,
1percent) SYNrequestdrop ratio.Thisdefinitionensures that
the client-perceived performance remains acceptable as long
as enough capacity is allocated. To estimate capacity, we
proposed a new mechanism based on listen-queue monitor-
ing and demonstrated that it is superior to utilization-based
estimation. Also, several differentmeans of collecting system
performancemeasurements are all implemented, tested, and
evaluated. We found pitfalls in different measurement
methods, such as the priority of measurement-collection
processes and theactualmeaningof each counter value.More
importantly, our queue-monitoring mechanism can obtain a
good estimate of server capacity irrespective of whether
workload is CPU bound or I/O bound.

We applied the proposed capacity estimation to adapt
the size of a Web server cluster. By turning on and off server
machines to match the actual workload, energy consump-
tion can be reduced significantly, and the utilization (and,
therefore, the profit) of a data center can be maximized.
Without requiring prior knowledge of workload or cost, we
achieved 31 to 44 percent of energy savings under various
workloads, thus confirming the value of a good capacity-
estimation mechanism.

ACKNOWLEDGMENTS

The work reported in this paper was supported in part by
the US National Science Foundation under Grant CCR
0216977 and by the Hewlett Packard Laboratories. An
earlier version of this paper was presented in slide format at
Integrated Network Management 2005 (IM05).

TSAI ET AL.: ONLINE WEB CLUSTER CAPACITY ESTIMATION AND ITS APPLICATION TO ENERGY CONSERVATION 943

Fig. 11. When the object size is halved, server capacity increases. The

dynamic controller activates fewer servers, saving more energy than the

static controller.

Fig. 12. The percentage of energy conservation depends more on start-

up delays than shutdown delays.

Authorized licensed use limited to: University of Michigan Library. Downloaded on November 25, 2009 at 12:02 from IEEE Xplore. Restrictions apply.

REFERENCES

[1] J.S. Chase, D.C. Anderson, P.N. Thakar, A.M. Vahdat, and R.P.
Doyle, “Managing Energy and Server Resources in Hosting
Centers,” Proc. 18th ACM Symp. Operating Systems Principles
(SOSP ’01), pp. 103-116, 2001.

[2] Y. Chen, A. Das, W. Qin, A. Sivasubramaniam, Q. Wang, and N.
Gautam, “Managing Server Energy and Operational Costs in
Hosting Centers,” Proc. Int’l Conf. Measurement and Modeling of
Computer Systems (SIGMETRICS ’05), pp. 303-314, 2005.

[3] A. Fox, S.D. Gribble, Y. Chawathe, E.A. Brewer, and P. Gauthier,
“Cluster-Based Scalable Network Services,” Proc. 16th ACM Symp.
Operating Systems Principles (SOSP ’97), pp. 78-91, 1997.

[4] A. Iyengar, J. Challenger, D. Dias, and P. Dantzig, “High-
Performance Web Site Design Techniques,” IEEE Internet Comput-
ing, vol. 4, no. 2, pp. 17-26, 2000.

[5] T.P. Brisco, DNS Support for Load Balancing, IETF RFC 1794, Apr.
1995.

[6] D.M. Dias, W. Kish, R. Mukherjee, and R. Tewari, “A Scalable and
Highly Available Web Server,” Proc. IEEE CS Int’l Conf.
(COMPCON ’96), pp. 85-92, 1996.

[7] W. Zhang, “Linux Virtual Server for Scalable Network Services,”
Proc. Ottawa Linux Symp., 2000.

[8] X. Zhang, M. Barrientos, J.B. Chen, and M. Seltzer, “HACC: An
Architecture for Cluster-Based Web Servers,” Proc. Third USENIX
Windows NT Symp., pp. 155-164, 1999.

[9] L. Cherkasova and M. Karlsson, “Scalable Web Server Cluster
Design with Workload-Aware Request Distribution Strategy,”
Proc. Third Int’l Workshop Advanced Issues of E-Commerce and Web-
Based Information Systems (WECWIS ’01), pp. 212-221, 2001.

[10] V.S. Pai, M. Aron, G. Banga, M. Svendsen, P. Druschel, W.
Zwaenepoel, and E.M. Nahum, “Locality-Aware Request Dis-
tribution in Cluster-Based Network Servers,” Proc. Eighth Int’l
Conf. Architectural Support for Programming Languages and Operating
Systems (ASPLOS-VIII), pp. 205-216, 1998.

[11] Z. Ge, P. Ji, and P. Shenoy, “A Demand Adaptive and Locality
Aware (DALA) Streaming Media Server Cluster Architecture,”
Proc. 12th Int’l Workshop Network and Operating Systems Support for
Digital Audio and Video, pp. 139-146, 2002.

[12] K. Appleby, S. Fakhouri, L. Fong, G. Goldszmidt, M. Kalantar, S.
Krishnakumar, D. Pazel, J. Pershing, and B. Rochwerger,
“Océano—SLA Based Management of a Computing Utility,” Proc.
Int’l Federation for Information Processing (IFIP)/IEEE Int’l Symp.
Integrated Network Management, pp. 855-868, 2001.

[13] M.E. Crovella and A. Bestavros, “Self-Similarity in World Wide
Web Traffic: Evidence and Possible Causes,” IEEE/ACM Trans.
Networking, vol. 5, no. 6, pp. 835-846, 1997.

[14] M. Arlitt and T. Jin, “Workload Characterization of the 1998
World Cup Web Site,” Technical Report HPL-1999-35(R.1),
Hewlett-Packard Laboratories, 1999.

[15] L. Breslau, P. Cao, L. Fan, G. Philips, and S. Shenker, “Web
Caching and Zipf-Like Distributions: Evidence and Implications,”
Proc. IEEE INFOCOM ’99, pp. 126-134, 1999.

[16] P. Barford and M.E. Crovella, “Generating Representative Web
Workloads for Network and Server Performance Evaluation,”
Proc. Int’l Conf. Measurement and Modeling of Computer Systems
(SIGMETRICS ’98), pp. 151-160, 1998.

[17] D. Mosberger and T. Jin, “httperf: A Tool for Measuring Web
Server Performance,” Proc. First Workshop Internet Server Perfor-
mance, pp. 59-67, June 1998.

[18] Standard Performance Evaluation Corporation (SPEC), “SPEC-
web99 Benchmark,” 1999, http://www.spec.org/osg/web99/.

[19] J. Judge, H.W.P. Beadle, and J. Chicharo, “Sampling HTTP
Response Packets for Prediction of Web Traffic Volume Statistics,”
Proc. IEEE Globecom, 1998.

[20] W. Shi, R. Wright, E. Collins, and V. Karamcheti, “Workload
Characterization of a Personalized Web Site and Its Implications
for Dynamic Content Caching,” Proc. Seventh Int’l Workshop Web
Caching and Content Distribution (WCW ’02), pp. 1-16, 2002.

[21] M. Aron, P. Druschel, and W. Zwaenepoel, “Cluster Reserves: A
Mechanism for Resource Management in Cluster-Based Network
Servers,” Proc. Int’l Conf. Measurement and Modeling of Computer
Systems (SIGMETRICS ’00), pp. 90-101, 2000.

[22] G. Banga, P. Druschel, and J.C. Mogul, “Resource Containers: A
New Facility for Resource Management in Server Systems,” Proc.
Third Symp. Operating Systems Design and Implementation (OSDI
’99), pp. 45-58, 1999.

[23] Y. Diao, N. Gandhi, J.L. Hellerstein, S. Parekh, and D.M. Tilbury,
“Using Mimo Feedback Control to Enforce Policies for Inter-
related Metrics with Application to the Apache Web Server,” Proc.
Eighth IEEE/IFIP Network Operations and Management Symp.
(NOMS ’02), pp. 219-234, 2002.

[24] S. Parekh, N. Gandhi, J. Hellerstein, D. Tilbury, T. Jayram, and J.
Bigus, “Using Control Theory to Achieve Service Level Objectives
in Performance Management,” Proc. IFIP/IEEE Int’l Symp. Inte-
grated Network Management, 2001.

[25] M. Welsh and D. Culler, “Adaptive Overload Control for Busy
Internet Servers,” Proc. Fourth USENIX Symp. Internet Technologies
and Systems (USITS ’03), 2003.

[26] A. Bouch, A. Kuchinsky, and N. Bhatti, “Quality is in the Eye of
the Beholder: Meeting Users’ Requirements for Internet Quality of
Service,” Technical Report HPL-2000-4, Hewlett-Packard Labora-
tories, 2000.

[27] J. Nielson, Usability Engineering. Academic Press, 1993.
[28] R. Rajamony and M. Elnozahy, “Measuring Client-Perceived

Response Times on the WWW,” Proc. Third USENIX Symp. Internet
Technologies and Systems (USITS ’01), 2001.

[29] D.P. Olshefski, J. Nieh, and D. Agrawal, “Inferring Client
Response Time at the Web Server,” Proc. Int’l Conf. Measurement
and Modeling of Computer Systems (SIGMETRICS ’02), pp. 160-171,
2002.

[30] M. Weiser, B. Welch, A.J. Demers, and S. Shenker, “Scheduling for
Reduced CPU Energy,” Proc. First Symp. Operating Systems Design
and Implementation (OSDI ’94), pp. 13-23, 1994.

[31] P. Pillai and K.G. Shin, “Real-Time Dynamic Voltage Scaling for
Low-Power Embedded Operating Systems,” Proc. 18th ACM
Symp. Operating Systems Principles (SOSP ’01), pp. 89-102, 2001.

[32] P. Bohrer, E.N. Elnozahy, T. Keller, M. Kistler, C. Lefurgy, and R.
Rajamony, “The Case for Power Management in Web Servers,”
Power-Aware Computing, R. Graybill and R. Melhem, eds., Kluwer/
Plenum Series in Computer Science, Jan. 2002.

[33] K. Rajamani and C. Lefurgy, “On Evaluating Request-Distribution
Schemes for Saving Energy in Server Clusters,” Proc. 2003 IEEE
Int’l Symp. Performance Analysis of Systems and Software (ISPASS
’03), pp. 111-122, 2003.

[34] E. Pinheiro, “Load Balancing and Unbalancing for Power and
Performance in Cluster-Based Systems,” Technical Report DCS-
TR-440, Dept. of Computer Science, Rutgers Univ., 2001.

[35] M. Elnozahy, M. Kistler, and R. Rajamony, “Energy Conservation
Policies for Web Servers,” Proc. Fourth USENIX Symp. Internet
Technologies and Systems (USITS ’03), 2003.

[36] P. Nuutinen, G. Hope, H. Arhippainen, L. Cuypers, W. Mila-
nowski, R. Reesen, and G. Shannon, “Capacity Planning for
Logical Partitioning,” 2001, http://www.redbooks.ibm.com/
redbooks/pdfs/sg246209.pdf.

[37] Sun Microsystems, “Sun Dynamic System Domains,” http://
www.sun.com/servers/whitepapers/domains.htm, 2005.

[38] Hewlett-Packard, “The HP Partitioning Continuun for HP
Integrity and HP 9000,” Aug. 2005, http://h71028.www7.
hp.com/ERC/downloads/4AA0-1469ENW.pdf.

[39] T.F. Abdelzaher and N. Bhatti, “Web Server QoS Management by
Adaptive Content Delivery,” Proc. Seventh Int’l Workshop Quality of
Service (IWQoS ’99), 1999.

[40] J. Martin and A. Nilsson, “On Service Level Agreements for IP
Networks,” Proc. IEEE INFOCOM ’02, pp. 855-863, 2002.

[41] IBM, “IBM Tiovli Monitoring,” http://www.tivoli.com/, 2005.
[42] Hewlett-Packard, “HP OpenView,” http://www.openview.hp.

com/, 2005.
[43] K. McCloghrie and M.T. Rose, Management Information Base for

Network Management of TCP/IP-Based Internets: MIB-II, IETF RFC
1213, Mar. 1991.

[44] “The Internet Traffic Archive,” http://ita.ee.lbl.gov/, 2005.

944 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 18, NO. 7, JULY 2007

Authorized licensed use limited to: University of Michigan Library. Downloaded on November 25, 2009 at 12:02 from IEEE Xplore. Restrictions apply.

Chang-Hao Tsai received the MS degree from
the University of Michigan in 2003, where he is
currently a PhD student in the Real-Time
Computing Laboratory (RTCL) at the Electrical
Engineering and Computer Science (EECS)
Department. His current research interests
include Internet services, cluster computing,
distributed systems, virtual execution environ-
ments, and computer networks. He is a student
member of the IEEE Computer Society.

Kang G. Shin received the BS degree in
electronics engineering from Seoul National
University in 1970 and both the MS and PhD
degrees in electrical engineering from Cornell
University, Ithaca, New York, in 1976 and 1978,
respectively. He is the Kevin and Nancy O’Con-
nor professor of computer science and the
founding director of the Real-Time Computing
Laboratory in the Department of Electrical En-
gineering and Computer Science, University of

Michigan, Ann Arbor, Michigan. He has held visiting positions at the US
Airforce Flight Dynamics Laboratory; AT&T Bell Laboratories; Computer
Science Division within the Department of Electrical Engineering and
Computer Science at the University of California, Berkeley; International
Computer Science Institute, Berkeley, California; IBM T.J. Watson
Research Center; Software Engineering Institute at Carnegie Mellon
University; and Hewlett-Packard Research Laboratories. He was general
chair of the 2000 IEEE Real-Time Technology and Applications
Symposium; and general chair of the Third ACM/USENIX International
Conference onMobile Systems Applications and Services (MobiSys ’05).
He also served in numerous technical programcommittees. Hewasalso a
distinguished visitor of the IEEE Computer Society, an editor of IEEE
Transactions on Parallel andDistributedComputing, and an area editor of
International Journal of Time-Critical Computing Systems, Computer
Networks, and ACM Transactions on Embedded Systems. His current
research focuses onQoS-sensitive networking and computing, as well as
on embedded real-time OS, middleware, and applications, all with
emphasis on timeliness and dependability. He has supervised the
completion of 56 PhD theses and authored/coauthored more than
650 technical papers (more than 230 of which are in archival journals)
and numerous book chapters in the areas of distributed real-time
computing and control, computer networking, fault-tolerant computing,
and intelligent manufacturing. He has coauthored (jointly with C.M.
Krishna) the textbook Real-Time Systems (McGraw Hill, 1997). He has
received a number of best paper awards, including the IEEE Commu-
nications Society William R. Bennett Prize Paper Award in 2003, and the
Best Paper Award from the IWQoS in 2003. He has also received several
institutional awards, including the Outstanding Achievement Award in
1999, Service Excellence Award in 2000, Distinguished Faculty Achieve-
ment Award in 2001, Stephen Attwood Award in 2004 from the University
of Michigan, a Distinguished Alumni Award from the College of
Engineering, Seoul National University, in 2002, 2003 IEEE RTC
Technical Achievement Award, and 2006 Ho-Am Prize in Engineering.
He is a fellow of the IEEE, the IEEE Computer Society, and the ACM, and
a member of the Korean Academy of Engineering.

John Reumann received the PhD degree in
computer science from the University of Michi-
gan at Ann Arbor in 2003. Since then, he has
worked for the IBM T.J. Watson Research
Center and for Google’s New York engineering
group. He continues his work in distributed
system software infrastructure at Google and
serves in the Operating Systems and Distributed
Systems Research Community. He has pub-
lished several papers on distributed server

control systems. He is a member of the IEEE.

Sharad Singhal received the BTech degree
from the Indian Institute of Technology, Kanpur,
India, and the MS and PhD degrees from Yale
University. He is currently a distinguished
technologist at Hewlett-Packard Laboratories.
He has been involved in industrial research for
more than 22 years, including two years at Bell
Laboratories where he worked on speech coding
and 12 years at Bellcore (now Telecordia) where
he conducted and managed research in a

number of areas including speech and video processing, neural
networks, and middleware and personal communications services.
Since 1997, he has been at HP Laboratories, where he has led teams
that have developed techniques for monitoring and managing service
level agreements; methods for controlling service quality in multitier
applications, resource allocation, and assignment algorithms; and
architectures for management of large-scale data centers. His current
research interests include the application of control theory to systems
management, policy-based system management, and large-scale
management architectures. He holds 10 patents and has published
more than 50 papers in a variety of refereed journals and conferences.
He is a member of the IEEE and the Acoustical Society of America.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

TSAI ET AL.: ONLINE WEB CLUSTER CAPACITY ESTIMATION AND ITS APPLICATION TO ENERGY CONSERVATION 945

Authorized licensed use limited to: University of Michigan Library. Downloaded on November 25, 2009 at 12:02 from IEEE Xplore. Restrictions apply.

