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Abstract 
Summary: In many areas of biological research, hypotheses are tested in a sequential manner, with-

out having access to future p-values or even the number of hypotheses to be tested. A key setting 

where this online hypothesis testing occurs is in the context of publicly available data repositories, 

where the family of hypotheses to be tested is continually growing as new data is accumulated over 

time. Recently, Javanmard and Montanari (Ann. Stat. 46:526-554, 2018) proposed the first proce-

dures that control the FDR for online hypothesis testing. We present an R package, onlineFDR, which 

implements these procedures and provides wrapper functions to apply them to a historic dataset or a 

growing data repository. 

Availability: The R package is freely available through Bioconductor (http://www.bioconductor.org/ 

packages/onlineFDR). 

Contact: david.robertson@mrc-bsu.cam.ac.uk 

Supplementary information: Supplementary data are available at Bioinformatics online. 

 

1 Introduction  

Multiple hypothesis testing is a common feature of genome bioinfor-

matics and computational biology, and appropriately correcting for this 
multiplicity is crucial when it comes to making statistical inference from 

the data. Indeed, uncorrected hypothesis testing has been highlighted as 

one of the contributing factors to the reproducibility crisis in scientific 
research (Ioannidis, 2005). The false discovery rate (FDR), which was 

introduced by Benjamini and Hochberg (1995), has become the error 

criterion of choice for large-scale multiple hypothesis testing. The FDR 
is defined as the expected proportion of the discoveries (i.e. rejections) 

made that are false. To control the FDR, procedures (such as the well-

known Benjamini-Hochberg procedure) have been developed which 
require that all the p-values are available to be tested at once. 

However, modern data analysis often has a further complexity in that 

hypotheses are tested sequentially, with the family of hypotheses contin-
ually growing due to the temporal accumulation of data. This introduces 

the challenge of online hypothesis testing, where at each step the investi-

gator must decide whether to reject the current null hypothesis without 
knowing the future p-values or even the total number of hypotheses to be 

tested, but only knowing the historic decisions to date. 

This setting occurs in the context of publicly available data reposito-
ries, which are becoming increasingly common and important for biolog-

ical research. Currently, multiple testing in growing data repositories is 

managed by using a fixed conservative threshold or through the recalcu-

lation of significance as new hypotheses are tested. However, the fixed 

threshold approach fails to adapt to the data, while the recalculation 

approach can lead to the decisions for an individual hypothesis changing 
over time. 

The online FDR concept is based around hypothesis testing and deci-

sions being made in a sequential manner, with the aim being to control 
the FDR across the family of hypothesis tests considered. In some bio-

logical databases, the family of hypotheses is clearly defined, and a 

centralised analysis pipeline has been constructed upon which the online 
FDR method can be implemented. For examples, see the application 

datasets used in this manuscript. In contrast, in other databases inde-

pendent research groups may carry out multiple hypothesis testing and 
generate distinct families of hypothesis tests, and so overall FDR control 

is not necessarily appropriate. 

Javanmard and Montanari (2015, 2018) recently proposed the first 
procedures that control the FDR for online hypothesis testing, which 

were the basis for further procedures by Ramdas et al. (2017). The R 

package onlineFDR, available through Bioconductor, implements these 
procedures and provides wrapper functions to apply them to a historic 

dataset or a growing data repository. 
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2 Methods 

Consider a series of null hypotheses H1, H2, H3,… with corresponding p-

values (p1, p2, p3,…). A testing procedure provides a sequence of adjust-

ed significance thresholds αi , with corresponding decision rules 
 

 1 if   (reject )

 0 otherwise                 

i i i
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A distinction needs to be made between methods appropriate for inde-
pendent versus dependent p-values. As a brief practical example, sup-

pose p1 corresponds to testing the null hypothesis H1 that genotype X has 
no association with lean mass, using data Y collected on a group of mice. 

If p2 corresponds to testing the null hypothesis H2 that genotype X has no 

association with fat mass using the same data Y, then p1 and p2 would be 
dependent due to the association between lean and fat mass for the same 

mice. However, if instead we tested H2 using new data Y’ from a differ-

ent group of mice, or replaced genotype X with an unassociated genotype 

X’, then p1 and p2 would be independent. 

In the setting of a growing data repository, the online methods have 
the following baseline assumptions: 

 

1. There is a family of hypothesis tests for which FDR control is 
required. 

2. The hypothesis tests are performed sequentially in time. 

3. The p-values are all valid and finalised (i.e. will not be changed 
at a later stage). 

4. All of the p-values are analysed, and not just the statistically sig-

nificant p-values. An exception is if an orthogonal filter is ap-
plied to reduce the dataset size; see Bourgon et al. (2010). 

5. [For methods requiring independent p-values] A different hy-

pothesis is being tested at each step. 
6. [For methods requiring independent p-values] If the p-values 

come in batches, the ordering within a batch should be random or 

ordered using independent information. 
 

We now give a high-level overview of the online FDR methods im-

plemented in the package, with full details given in the package vignette 
(https://www.bioconductor.org/packages/devel/bioc/vignettes/onlineFDR

/inst/doc/onlineFDR-vignette.html). 

LOND: stands for ‘significance Levels based On Number of Discover-
ies’, and provably controls the FDR for independent p-values. The values 

of the adjusted significance thresholds αi are directly related to the num-

ber of discoveries (i.e. rejections) made in the first i hypotheses tested. 
The higher the number of discoveries, the larger the adjusted signifi-

cance thresholds will be. LOND can be modified to guarantee control 

FDR under dependent p-values, although this can come at the expense of 
a substantial loss in power. 

LORD: stands for ‘significance Levels based On Recent Discovery’, 

and also controls the FDR for independent p-values. The LORD proce-

dures are examples of generalized alpha-investing rules, and hence have 

an intuitive interpretation: the procedure starts with an error budget, or 
alpha-wealth, and there is a price to pay each time a hypothesis is tested. 

When a new discovery is made, some alpha-wealth is earned back (i.e. 

there is a ‘return’ on the alpha-wealth invested). The adjusted signifi-
cance thresholds αi for LORD procedures thus depend on the alpha-

wealth and the times of previous discoveries. 

Javanmard and Montanari (2018) presented three versions of LORD, 
where LORD 1 and 2 provably control the FDR for independent p-

values, with this only shown empirically for LORD 3. LORD 1 always 

has smaller significance thresholds (and hence a lower power) than both 
LORD 2 and LORD 3. The authors also presented an adjusted version of 

LORD that is valid for dependent p-values, but this can lead to a large 

loss in power. Finally, Ramdas et al. (2017) presented a modified version 
of LORD 2, called LORD++, which always has at least as large signifi-

cance thresholds (and hence will have an equal or higher power). 

Bonferroni-like procedure: this controls the FDR for a stream of p-
values using a Bonferroni-like test. Given a target significance level α, 

the adjusted significance thresholds are chosen as αi = αγi , where γi is a 

sequence of non-negative numbers that sum to one. This procedure is 
also valid for dependent p-values. Note that for independent p-values, the 

equivalent LOND procedure will always have an equal or higher power. 

3 Application examples 

In practice, using the onlineFDR package on a data repository with a 

growing family of hypotheses involves the following steps: 

 
1. A dataset is passed to an onlineFDR wrapper function. 

2. For each hypothesis test, the adjusted significance threshold αi is 

calculated. 
3. Using the p-values provided and the adjusted significance 

threshold αi, an indicator of discoveries Ri is calculated. 

4. As the dataset grows, the new larger dataset is passed to the 
wrapper function, and then αi and Ri are calculated for the new 

hypothesis tests (with the previous results remaining the same). 

 
In the supplementary material, we apply the procedures to simulated 

data where the number of false discoveries is a known quantity. This 

analysis demonstrates that the empirical FDR is correctly controlled over 

time. We have also applied the procedures to two real-life data reposito-

ries (all data and code are available as a Zenodo repository at 

https://doi.org/10.5281/zenodo.1343578). 
The first is from the International Mouse Phenotyping Consortium 

(IMPC). As described in Karp et al. (2017), the IMPC coordinates a 

large study to functionally annotate every protein coding gene by explor-
ing the impact of the gene knockout on the resulting phenotype for up to 

234 traits of interest. Data is uploaded to a public database where phe-

nodeviants are identified using a fixed significance threshold (p < 
0.0001). The dataset and resulting family of hypotheses constantly grows 

as new knockouts are studied. As part of their analysis, Karp et al. tested 

both the role of genotype and the role of sex as a modifier of genotype 
effect. Hence, the analysis resulted in two sets of p-values, one for test-

ing genotype effects and the other for testing sexual dimorphism (SD). 

The second dataset, described by Wildenhain et al. (2016), contains 
phenotypic growth data for 240 diverse yeast gene deletion strains grown 

in the presence of about 5,500 unique compounds. This collection has 

been generated to investigate how small molecule chemical-genetic 
fingerprints could be used to predict synergistic chemical-chemical com-

binations that induce lethal phenotypes. Significant phenotypic responses 

are identified as those with an absolute z-score greater than 4 (or equiva-
lently, p < 0.000032). 

Visually, we can compare the different procedures by visualizing the 
adjusted significance thresholds over time (Figure 1). 

Figure 1. Adjusted significance thresholds on the log10 scale. Applied to geno-

type effect data from the IMPC dataset, at a FDR level of 5%.
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We see that for LOND, the adjusted significance thresholds fall away 

quickly and then remain roughly constant at a very low level. The Bon-
ferroni-like procedure continues to monotonically decrease towards zero, 

and will always have lower significance thresholds than LOND. In con-

trast, the LORD procedures recover relatively high adjusted significance 
thresholds when discoveries are made. Visually this can be seen in Fig-

ures 1a and 1b as the adjusted significance thresholds that are elevated 

due to recent discoveries. This explains why the LORD procedures will 
typically have a higher power than LOND, which in turn has a higher 

power than the Bonferroni-like procedures. 
Table 1 gives the number of discoveries made by the proposed proce-

dures when applied to the two datasets. As benchmark comparisons, we 

used the fixed thresholds currently used by the associated databases and 

the Benjamini and Hochberg (BH) procedure (as well as the adjusted BH 
that is valid for arbitrary dependencies between p-values; see Benjamini 

and Yekutieli (2001)). The BH procedure is an offline procedure (i.e. 

requiring all p-values to be available at once), and so in practice could 
not be applied to a growing data repository, but we include it as a ‘gold-

standard’ comparison. The fixed thresholds do not provably control the 

FDR or adapt to the data over time. 

Table 1. Number of discoveries made by the online FDR procedures 

(and benchmark comparisons) for the IMPC and yeast datasets, at a FDR 

level of 5%.  

Method Genotype    SD Yeast Method details 

Fixed  4,158   969 41,767 IMPC < 0.0001 

Yeast < 0.000032 

 

BH 12,907   2,084 55,982 Benjamini and Hochberg  

 

LORD 3 9,685   1,343 53,766 Based on recent discoveries 

 

LORD++ 8,517   1,193 52,352 Modified version of LORD 2 

 

LORD 2 8,049   1,088 51,864 Based on recent discoveries 

 

LOND 2,905   206 44,418 Based on number of discoveries 

 

BH (dep) 4,078   315 46,486 BH for arbitrary dependence 

 

LOND (dep) 1,475   76 40,325 LOND for dependent p-values 

 

LORD (dep) 780   25 36,833 LORD for dependent p-values 

 

Bonferroni 795   60 34,363 Bonferroni-like procedure 

 

N 172,328   172,328 417,026  

SD = Sexual Dimorphism; dep = dependent; N = total number of p-values. 

 

We see that the LORD procedures make more discoveries than the 
fixed thresholds and (for LORD 2 and LORD++) are recommended as 

they provably control the FDR. LORD also makes substantially more 

discoveries than LOND, as seen in Figure 1 above for the IMPC data for 
example. While LOND makes fewer discoveries than the fixed threshold 

for the IMPC data, the latter procedure does not guarantee control of the 

FDR. For the yeast data, the LORD procedures even achieved a similar 
number of discoveries (93-96%) as the offline BH procedure. Some loss 

in power is expected when controlling the FDR in an online manner 

compared to offline procedures. In general, the power of the LORD and 
LOND procedures tends to increase with the fraction of non-null hypoth-

eses. In the supplementary material, we also compare the sets of discov-

eries for the genotype effect data from the IMPC dataset.  

Meanwhile, the Bonferroni-like procedure has a relatively low number 

of discoveries, particularly for the yeast dataset. There is a large drop in 

the number of discoveries for both LORD and LOND when using meth-
ods for dependent p-values. The relative power of these procedures com-

pared with the Bonferroni-like one depends on the number of hypothesis 

tests carried out and on the proportion of true nulls in the dataset; see 

Robertson et al. (2018). Further research is required to characterise 

which dependencies (if any) inflate the FDR when using the LORD and 
LOND procedures designed for independent p-values. 

4 Conclusion 

onlineFDR is an accessible and easy to use R package that controls the 

FDR for online hypothesis testing. This new tool is particularly useful in 
allowing bioinformaticians to control for multiplicity in growing data 

repositories by controlling the FDR across a family of hypotheses. Im-

plementation of this formal framework to manage multiple testing is a 
substantial improvement over the ad-hoc methods implemented to date, 

and will help enable robust statistical analyses. 
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