
 Open access Journal Article DOI:10.1007/S00224-012-9427-Y

OnlineMin: A Fast Strongly Competitive Randomized Paging Algorithm
— Source link

Gerth Stølting Brodal, Gabriel Moruz, Andrei Negoescu

Institutions: National Research Foundation of South Africa, Goethe University Frankfurt

Published on: 01 Jan 2015 - Theory of Computing Systems \/ Mathematical Systems Theory (Springer US)

Topics: Page replacement algorithm, Competitive analysis, Paging, Online algorithm and Randomized algorithm

Related papers:

 ONLINEMIN: a fast strongly competitive randomized paging algorithm

 A study of replacement algorithms for a virtual-storage computer

 Competitive analysis of randomized paging algorithms

 A strongly competitive randomized paging algorithm

 Efficient Online Weighted Multi-Level Paging

Share this paper:

View more about this paper here: https://typeset.io/papers/onlinemin-a-fast-strongly-competitive-randomized-paging-
crwv2bmvj7

https://typeset.io/
https://www.doi.org/10.1007/S00224-012-9427-Y
https://typeset.io/papers/onlinemin-a-fast-strongly-competitive-randomized-paging-crwv2bmvj7
https://typeset.io/authors/gerth-stolting-brodal-2s14gbln8w
https://typeset.io/authors/gabriel-moruz-2y031upjyx
https://typeset.io/authors/andrei-negoescu-1oxoltmevp
https://typeset.io/institutions/national-research-foundation-of-south-africa-434txg6b
https://typeset.io/institutions/goethe-university-frankfurt-2bengykv
https://typeset.io/journals/theory-of-computing-systems-mathematical-systems-theory-2g3lkhpl
https://typeset.io/topics/page-replacement-algorithm-1t3bomxi
https://typeset.io/topics/competitive-analysis-20kqx39f
https://typeset.io/topics/paging-2shs4tkg
https://typeset.io/topics/online-algorithm-gmdl2h5f
https://typeset.io/topics/randomized-algorithm-203508zg
https://typeset.io/papers/onlinemin-a-fast-strongly-competitive-randomized-paging-2bnxz4d1jt
https://typeset.io/papers/a-study-of-replacement-algorithms-for-a-virtual-storage-5dfeh7yjrf
https://typeset.io/papers/competitive-analysis-of-randomized-paging-algorithms-1kmbjoxg1n
https://typeset.io/papers/a-strongly-competitive-randomized-paging-algorithm-1ywkovnb7o
https://typeset.io/papers/efficient-online-weighted-multi-level-paging-2jqkdgg83f
https://www.facebook.com/sharer/sharer.php?u=https://typeset.io/papers/onlinemin-a-fast-strongly-competitive-randomized-paging-crwv2bmvj7
https://twitter.com/intent/tweet?text=OnlineMin:%20A%20Fast%20Strongly%20Competitive%20Randomized%20Paging%20Algorithm&url=https://typeset.io/papers/onlinemin-a-fast-strongly-competitive-randomized-paging-crwv2bmvj7
https://www.linkedin.com/sharing/share-offsite/?url=https://typeset.io/papers/onlinemin-a-fast-strongly-competitive-randomized-paging-crwv2bmvj7
mailto:?subject=I%20wanted%20you%20to%20see%20this%20site&body=Check%20out%20this%20site%20https://typeset.io/papers/onlinemin-a-fast-strongly-competitive-randomized-paging-crwv2bmvj7
https://typeset.io/papers/onlinemin-a-fast-strongly-competitive-randomized-paging-crwv2bmvj7

OnlineMin: A Fast Strongly Competitive

Randomized Paging Algorithm

Gerth Stølting Brodal1, Gabriel Moruz2,⋆, and Andrei Negoescu2

1 MADALGO⋆⋆, Department of Computer Science, Aarhus University. Åbogade 34,
8200 Aarhus N, Denmark. Email: gerth@cs.au.dk.

2 Goethe University Frankfurt am Main. Robert-Mayer-Str. 11-15, 60325 Frankfurt
am Main, Germany. Email: {gabi,negoescu}@cs.uni-frankfurt.de.

Abstract. In the field of online algorithms paging is one of the most
studied problems. For randomized paging algorithms a tight bound of Hk

on the competitive ratio has been known for decades, yet existing algo-
rithms matching this bound have high running times. We present the
first randomized paging approach that both has optimal competitive-
ness and selects victim pages in subquadratic time. In fact, if k pages fit
in internal memory the best previous solution required O(k2) time per
request and O(k) space, whereas our approach takes also O(k) space,
but only O(log k) time in the worst case per page request.

1 Introduction

Online algorithms are algorithms for which the input is not provided beforehand,
but is instead revealed item by item. The input is to be processed sequentially,
without assuming any knowledge of future requests. The performance of an on-
line algorithm is usually measured by comparing its cost against the cost of an
optimal offline algorithm, i.e. an algorithm that is provided all the input be-
forehand and processes it optimally. This measure, denoted competitive ratio [9,
12], states that an online algorithm A has competitive ratio c if its cost satisfies
cost(A) ≤ c · cost(OPT) + b, where cost(OPT) is the cost of an optimal offline
algorithm and b is a constant. If A is a randomized algorithm, cost(A) denotes
the expected cost. In particular, an online algorithm is denoted strongly compet-
itive if its competitive ratio is optimal. While the competitive ratio is a quality
guarantee for the cost of the solution computed by an online algorithm, factors
such as space complexity, running time, or simplicity are also important.

In this paper we study paging algorithms, a prominent and well studied ex-
ample of online algorithms. We are provided with a two-level memory hierarchy,
consisting of a cache and a disk, where the cache can hold up to k pages and
the disk size is infinite. When a page is requested, if it is in the cache a cache
hit occurs and the algorithm proceeds to the next page. Otherwise, a cache miss

⋆ Partially supported by the DFG grant ME 3250/1-2, and by MADALGO.
⋆⋆ Center for Massive Data Algorithmics, a Center of the Danish National Research

Foundation.

occurs and the algorithm has to load the page from the disk; if the cache was
full, a page must be evicted to accommodate the new one. The cost is given by
the number of cache misses performed.

Related work. Paging has been extensively studied over the last decades. In [4]
an optimal offline algorithm, denoted MIN, was given. In [12] a lower bound of k
on the competitive ratio for deterministic paging algorithms was shown. Several
algorithms, such as LRU and FIFO, meet this bound and are thus strongly com-
petitive. For randomized algorithms, Fiat et al. [7] proved a lower bound of Hk

on the competitive ratio, where Hk =
∑k

i=1
1/i is the k-th harmonic number.

They also gave an algorithm, named Mark, which is (2Hk − 1)-competitive.
The first strongly competitive randomized algorithm being Hk-competitive was
Partition [11]. For Partition, the memory requirement and runtime per re-
quest can reach Θ(n), where n is the number of page requests, and n can be
far greater than k. Partition was characterized in [1] as counter-intuitive and
difficult to understand. The natural question arises if there exist simpler and
more efficient strongly competitive randomized algorithms. The Mark algo-
rithm can be easily implemented using O(k) memory and very fast running time
(O(1) dictionary operations) per request, but it is not strongly competitive. Fur-
thermore, in [6] it was shown that no Mark-like algorithm can be better than
(2Hk − 1)-competitive. The strongly competitive randomized algorithm Equi-

table [1] was a first breakthrough towards efficiency, improving the memory
complexity to O(k2 log k) and the running time to O(k2) per page request. In [3]
a modification of Equitable, denoted Equitable2, improved the space com-
plexity to O(k). Both Equitable algorithms are based on a characterization in
[10] in the context of work functions. The main idea is to define a probability
distribution on the set of all possible configurations of the cache and ensure that
the cache configuration obeys this distribution. For each request, it requires k
probability computations, each taking O(k) time. For a detailed view on paging
algorithms, we refer the interested reader to the comprehensive surveys [2, 5, 8].

Our contributions. In this paper we propose a strongly competitive random-
ized paging algorithm, denoted OnlineMin, that handles each page request in
O(log k) time in the worst case. This is a significant improvement over the fastest
known algorithm, Equitable3, which needs O(k2) time per request. The space
requirements of our algorithm are O(k), like Equitable2.

The main building block of our algorithm is a priority based incremental
selection process starting from the same characterization of an optimal solution
in [10] as the Equitable algorithms. The analysis of this process yields a simple
cache update rule which is different from the one in [1, 3], but leads to the same
probability distribution of the cache content. A straightforward implementation
of our update rule requires O(k) time per request. Additionally we design appro-
priate data structures that result in an implementation which processes a page
request in O(log k) time in the worst case.

3 Since no explicit implementation of Equitable2 is provided, due to their similarity
we assume it to be the same as for Equitable.

2

2 Randomized Selection Process

In this section we first give some preliminary notions about offset functions for
paging algorithms introduced in [10]. We then describe in Section 2.2 a new pri-
ority based selection process which is the basis of our algorithmOnlineMin. We
analyze the selection process in order to obtain a simple page replacement rule
which remains at all times consistent with the outcome of the selection process.
Finally, in Section 2.3 we prove equivalences between the cache distribution of
our selection process and the Equitable algorithms [1, 3], which implies that
OnlineMin is Hk-competitive.

2.1 Preliminaries

Let σ be the request sequence so far. For the construction of a competitive paging
algorithm it is of interest to know the possible cache configurations if σ has been
processed with minimal cost. We call these configurations valid.

For fixed σ and an arbitrary cache configurationC (a set of k pages), the offset
function ω assigns C the difference between the minimal cost of processing σ
ending in configuration C and the minimal cost of processing σ. Thus C is a
valid configuration iff ω(C) = 0. Koutsoupias and Papadimitriou [10] showed
that ω can be represented by a sequence of k + 1 disjoint page sets, denoted
layers, and proved the following4.

Lemma 1. If (L0, . . . , Lk) is a layer representation of ω, then a set C of k pages
is a valid configuration, i.e. ω(C) = 0, iff |C ∩ (∪i≤jLi)| ≤ j for all 0 ≤ j ≤ k.

The layer representation is defined as follows. Initially each layer Li, where
i > 0, consists of one of the first requested k pairwise distinct pages. The layer L0

contains all pages not in L1, . . . , Lk. We denote by ωp the offset function which
results from ω by requesting p. We have the following update rule.

ωp =

{

(L0 \ {p}, L1, . . . , Lk−2, Lk−1 ∪ Lk, {p}), if p ∈ L0

(L0, . . . , Li−2, Li−1 ∪ Li \ {p}, Li+1, . . . , Lk, {p}), if p ∈ Li, i > 0

We give an example of an offset function for k = 3 in Figure 1. The support
of ω is defined as S(ω) = L1 ∪ · · · ∪ Lk. In the remainder of the paper, we
call a set with a single element singleton. Also, let i be the smallest index such
that Li, . . . , Lk are singletons. We distinguish the set of revealed pages R(ω) =
Li ∪ · · · ∪Lk, and the set of non-revealed pages N(ω) = L1 ∪ · · · ∪Li−1. A valid
configuration contains all revealed pages and no page from L0. Note that when
requesting some non-revealed page p in the support, we have R(ωp) = R(ω) ∪
{p} and the number of layers containing non-revealed items decreases by one.
Moreover, if p /∈ L1 then N(ωp) = N(ω)\{p} and otherwise N(ωp) = N(ω)\L1.
Also, the layer representation is not unique and especially each permutation of
the layers containing revealed items describe the same offset function.

4 We use a slightly modified, yet equivalent, version of the layer representation in [10].

3

0

4
1

2
2

51, 3, 6
3

4 4
2

5
4
2

C1 C2 C3

ω =

C0

6

0

4
1

2, 5
2

61, 3
3

4 5
4

6
5
4

C1 C2 C3C0

4

0

2, 5
1

6
2

41, 3
3

5 6
5

6
5
4

C1 C2 C3C0

2

0 1

6
2

21, 3, 5
3

6 6
4

6
4
2

C1 C2 C3C0

4

Fig. 1. The update of ω and the selection sets. The initial cache configuration is {4, 2, 5}
for k = 3 and request the pages 6, 4, 2. The priority of a page is its number.

Equitable and Equitable2. Based on the layer partition above both Equi-

table algorithms are described using a probability distribution over all con-
figurations where the probability that C is the cache content is defined as the
probability of being obtained at the end of the following random process. Starting
with C = R(ω) a page p is selected uniformly at random from N(ω), p is added
to C, and ω is set to ωp. This process is iterated until C has k pages. The proba-
bility for each configuration reachable by one page replacement is computed from
its actual configuration such that the distribution remains consistent with the
random process. The request is handled according to the computed probabilities.

2.2 Selection process for OnlineMin

If ω is the offset function for the input requested so far an online algorithm
should have a configuration similar to the cache COPT of an optimal strategy.
We know that COPT contains all revealed items and no item from L0. Which
non-revealed items are in the cache depends on future requests. To guess the
order of future requests of non-revealed items OnlineMin assigns priorities to
pages when they are requested. It maintains the cache content of an optimal
offline algorithm under the assumption that the priorities reflect the order of
future requests. We introduce a priority based selection process for the layer
representation of ω. Assuming that each order of priorities has equal probabil-
ity, we prove that the outcome of the selection process has the same probability
distribution as the Equitable algorithms. Our approach allows an efficient and
easy-to-implement update method for the cache of OnlineMin, which is con-
sistent with our selection process.

In the following we assume that pages from L1, . . . , Lk have pairwise distinct
priorities. For some set S we denote by minj (S) and maxj (S) the subset of S
of size j having the smallest and largest priorities respectively. Furthermore,
min(S) = min1 (S) and max(S) = max1 (S).

Definition 1. We construct iteratively k + 1 selection sets C0(ω), . . . , Ck(ω)
from the layer partition ω = (L0, . . . , Lk) as follows. We first set C0(ω) = ∅ and
then for j = 1, . . . , k we set Cj(ω) = maxj (Cj−1(ω) ∪ Lj).

When ω is clear from the context, we let Ci = Ci(ω). For a page request p
and offset function ω = (L0, . . . , Lk), denote ωp = (L′

0, . . . , L
′
k) and let C′

k be
the result of the selection process on ωp. By the layer update rule each layer
contains at least one element and the following result follows immediately.

4

Fact 1 |Cj | = j for all j ∈ {0, . . . , k}. If |Lj | is singleton then Cj = Cj−1 ∪Lj.
Moreover, all revealed pages are in Ck.

Updating Ck. We analyze how Ck changes upon a request. First we give an aux-
iliary result in Lemma 2 and then show in Theorem 1 that C′

k can be obtained
from Ck by at most one page replacement. We get how C′

k can be directly con-
structed from Ck and the layers, without executing the whole selection process.

Lemma 2. Let p be the requested page from layer Li, where 0 < i < k. If for
some j, with i ≤ j < k we have q ∈ Cj and C′

j−1 = Cj \ {q}, then we get:

C′
j =

{

Cj+1 \ {q}, if q ∈ Cj+1

Cj+1 \min{Cj+1}, otherwise

Proof. We have:

C′
j = max

j
(L′

j ∪ C′
j−1) = max

j
(Lj+1 ∪ Cj \ {q}) = Cj+1 \ {q} (case: q ∈ Cj+1)

C′
j = max

j
(L′

j ∪C′
j−1) = max

j
(Lj+1 ∪ Cj \ {q}) = max

j
(Cj+1) (case: q /∈ Cj+1)

In both cases, we first use the assumption C′
j−1 = Cj \ {q} and the partition up-

date rule, L′
j = Lj+1. In the case q ∈ Cj+1 we use Cj+1 = maxj+1 (Lj+1 ∪ Cj) =

maxj (Lj+1 ∪Cj \ {q}) ∪ {q}, which holds as q ∈ Cj implies q /∈ Lj+1. If
q /∈ Cj+1, we use Cj+1 = maxj+1 (Lj+1 ∪ Cj) = maxj+1 (Lj+1 ∪ Cj \ {q}). We
have q ∈ Cj , q /∈ Cj+1 and |Cj+1| = j + 1, which leads to C′

j = maxj (Cj+1) =
Cj+1 \min{Cj+1}. ⊓⊔

Theorem 1. Let p be the requested page. Given Ck, we obtain C′
k as follows:

1. p ∈ Ck: C
′
k = Ck

2. p /∈ Ck and p ∈ L0: C
′
k = Ck \min(Ck) ∪ {p}

3. p /∈ Ck and p ∈ Li, i > 0: C′
k = Ck \min(Cj)∪{p}, and j ≥ i is the smallest

index with |Cj ∩ Ck| = j.

Before the proof, note that for the third case |Cj ∩ Ck| = j is equivalent to
|(L1∪· · ·∪Lj)∩Ck| = j since Cj has elements only in L1∪· · ·∪Lj and Cj ⊆ Ck.

Proof. First assume that p ∈ L0. In this case, by construction p is not in Ck.
The only layers that change are Lk−1 and Lk: L

′
k−1 = Lk−1 ∪Lk and L′

k = {p}.
Applying the definition of C′

k and the fact that Ck = maxk−1 (Ck−2 ∪ Lk−1)∪Lk,
since Lk is singleton, we get:

C′
k = C′

k−1 ∪ {p} = max
k−1

(Ck−2 ∪ Lk−1 ∪ Lk) ∪ {p} = Ck \min (Ck) ∪ {p};

Now we consider the case when p ∈ Li. We distinguish two cases: p ∈ Ck and
p /∈ Ck. If p ∈ Ck, we have by construction that p is in all sets Ci, . . . , Ck and
we get Ci = maxi (Ci−1 ∪ Li) = maxi−1 (Ci−1 ∪ Li \ {p}) ∪ {p}. Based on this

5

observation we show that C′
i−1 = Ci \ {p}. It obviously holds for i = 1 since C′

0

is empty. For i > 1 we get:

C′
i−1 = max

i−1
(Ci−2 ∪ Li−1 ∪ Li \ {p}) = max

i−1
(Ci−1 ∪ Li \ {p}) = Ci \ {p} .

Using C′
i−1 = Ci \ {p} and p ∈ Ci, applying Lemma 2 we get C′

i = Ci+1 \ {p}.
Furthermore, using that p is in all sets Ci+1, . . . , Ck, we apply Lemma 2 for all
these sets which leads to C′

k−1
= Ck \ {p} and we obtain C′

k = C′
k−1

∪{p} = Ck.
Now we assume that p /∈ Ck. This implies that p is a non-revealed page. First

we analyze the structure of C′
i−1 which will serve as starting point for applying

Lemma 2. If p ∈ Ci we argued before that C′
i−1 = Ci \ {p}. Otherwise, we show

that C′
i−1 = Ci \ min(Ci). It holds for i = 1 since C0 is always empty and by

Fact 1 we have |C1| = 1. For i > 1 we get:

C′
i−1 = max

i−1
(Ci−2 ∪ Li−1 ∪ Li \ {p}) = max

i−1
(Ci−1 ∪ Li \ {p}) = Ci \min(Ci) .

Let j ≥ i be the smallest index such that |Cj∩Ck| = j. By construction, we have
Cj ⊆ Ck. Applying Lemma 2 for sets C′

i−1, . . . , C
′
j−1 we get C′

j−1 = Cj \ {s},
where s ∈ Cj and either s = p, s = minCj , or s is a page with minimal priority
from a set Cl, with i ≤ l < j. Note that page s is also in Ck by the definition of Cj

and thus s = p can be excluded since p is not in Ck. If s is a page with minimal
priority from some set Cl then all the other pages in Cl are also in Cj and thus
in Ck because all of them have higher priorities than s. This leads to Cl ⊂ Ck

which contradicts the minimality of j. Thus we have s = minCj . Since the page
s = min(Cj) is in all sets Cj , . . . , Ck by Lemma 2 we get C′

k−1 = Ck \min(Cj)
and it follows C′

k = Ck \min(Cj) ∪ {p}. ⊓⊔

2.3 Probability distribution of Ck

Theorem 2. Assume that non-revealed pages are assigned priorities such that
the order of the priorities is distributed uniformly at random. For any offset func-
tion ω, the distribution of Ck over all possible cache configurations is the same
as the distribution of the cache configurations for the Equitable algorithms.

Proof. Let u be the index of the last non-revealed layer, more precisely |Lu| > 1
and |Li| = 1 for all i > u. The set of non-revealed items is N(ω) = L1 ∪ · · · ∪Lu

and the singletons Lu+1, . . . , Lk contain the revealed items R(ω).
The following selection process is used by both Equitable and Equitable2

to obtain the probability distribution of the cache M . Initially M contains all
k−u revealed items R(ω). Then u elements x1, . . . , xu are added to M , where xi

is chosen uniformly at random from the set of non-revealed items of ωx1,...,xi−1 ,
the offset function obtained from ω after requesting the sequence x1, . . . , xi−1.

We define an auxiliary selection C∗
k(ω) which is a priority based version of

Equitable’s random process and then prove for every fixed priority assignment
that Ck(ω) = C∗

k(ω) holds.
Assume that pages in N(ω) have pairwise distinct priorities, with a uniformly

distributed priority order. Initialize C∗
k(ω) to R(ω) and add elements x∗

1, . . . , x
∗
u

6

to C∗
k(ω), where x∗

i is the page with maximal priority from the non-revealed

items of ωx∗

1
,...,x∗

i−1 . Obviously all pages from N(ω) have the same probability
to posses the maximal priority and thus x∗

1 and x1 have the same distribution.
Since x∗

1 is a revealed item in ωx∗

1 , the priority order of pages in N(ωx∗

1) remains
uniformly distributed. This implies inductively that C∗

k (ω) has the same distribu-
tion as Equitable. Note that by the definition of C∗

k we have C∗
k (ω) = C∗

k(ω
x∗

1)
because x∗

1 becomes a revealed item in ωx∗

1 .
Now we prove for each fixed priority assignment that Ck(ω) = C∗

k (ω) by
induction on u. For u = 0 both C∗

k and Ck contain all k revealed items. For u ≥ 1,
let x∗

1 be the non-revealed page with the largest priority in ω. For the auxiliary
process, we have already shown that C∗

k(ω) = C∗
k(ω

x∗

1). Also, the index u for ωx∗

1

is smaller by one than for ω, which by inductive hypothesis leads to C∗
k(ω) =

C∗
k(ω

x∗

1) = Ck(ω
x∗

1). It remains to prove that Ck(ω
x∗

1) = Ck(ω). By the definition
of the selection process for C1, . . . , Ck we have Ck(ω) = Cu(ω) ∪R(ω). Page x∗

1

has the highest priority from N(ω) = L1 ∪ · · · ∪ Lu and thus it is a member
of Cu(ω) and hence also in Ck(ω). Applying the update rule from Theorem 1 we
get Ck(ω) = Ck(ω

x∗

1), and this concludes the proof. ⊓⊔

3 Algorithm OnlineMin

3.1 Algorithm

OnlineMin initially holds in its cache M the first k pairwise distinct pages.
Note that the last requests for all pages in Li are smaller than the last requests
for all pages in Li+1.

Page replacement. The algorithm maintains as invariant that M = Ck after
each request. To do so, it keeps track of the layer partition ω = (L0, . . . , Lk),
where it suffices to store only the support layers (L1, . . . , Lk). The cache update
is performed according to Theorem 1. More precisely, if the requested page p is
in the cache, M remains unchanged. If a cache miss occurs and p is from L0 the
page with minimal priority from M is replaced by p. If p is from Li with i > 0,
and p /∈ M we first identify the set Cj in Theorem 1 satisfying |Cj∩M | = j. This
can be done as follows. Let p1, . . . , pk be the pages in M sorted in increasing
order by their layer index. We search the minimal index j ≥ i, such that the
layer index of pj is j, i.e. pj ∈ Lj. We evict the page with minimal priority from
p1, . . . , pj. The layers are updated after the cache update is done.

Forgiveness. If the amount of pages in (L1, . . . , Lk) is 3k and a page in L0 is
requested we apply the forgiveness mechanism in [3]. More precisely, we perform
the partition and cache update as if the requested page was from L1. Doing this
all pages in L1 are moved to L0, i.e. they are removed from the support, and the
support size never exceeds 3k.

Priorities. If page p is requested from L0, we select for p a rank within the
support chosen uniformly at random, i.e. a number in {0, . . . , |Sw|}, and we
assign it a priority such that it reflects its rank.

7

Time and space complexity. Storing the layer partition together with the page
priorities needs O(k) space by applying the forgiveness mechanism. A naive
implementation storing the layers in an array processes a page request in O(k)
time. In the remainder of the paper we show how to improve this complexity to
O(log k) time per request in the worst case.

Competitive ratio. We showed in Theorem 2 that the probability distribution
over the cache configurations for OnlineMin and Equitable2 are the same.
This holds also when using the forgiveness step, and thus the two algorithms
have the same expected cost. This leads to the result in Lemma 3.

Lemma 3. OnlineMin is Hk-competitive.

3.2 Algorithm Implementation

We show how to implement OnlineMin efficiently, such that a page request is
processed in O(log k) worst case time while using O(k) space. In the following
we represent each page in the support by the timestamp of its last request.

Basic structure. Consider a list L = (l1, . . . , lt), with t ≤ 4k, where L has two
types of elements: k layer delimiters and at most 3k page elements. Furthermore,
we distinguish two types of page elements: cache elements which are the pages
in the cache and support elements which are pages in the support but not in the
cache. We store in L the layers L1, . . . , Lk from left to right, separated by k layer
delimiters. For each layer Li we store its layer delimiter, followed by the pages
in Li. For each list element li, be it page element or layer delimiter, we store a
timestamp ti and a v-value vi with vi ∈ {−1, 0, 1}; for page elements we also
store the priority. For some element li, if it is a layer delimiter for some layer
Lj , we set vi = 1 and ti to the minimum of all page timestamps in Lj . If li is a
page element, then ti is set to the timestamp corresponding to the last request
of the page; we set vi = −1 for cache elements and vi = 0 for support elements.
Note that the layer delimiters always have ti values matching the first page in
their layer. As described before, layer delimiters always precede page elements.
An example is given in Figure 2.

Note that the v-values have the property that |Ck ∩ (L1∪· · ·∪Li)| = i iff the
prefix sum of the v-values for the last element in Li is zero. Furthermore, since
|Ck ∩ (L1 ∪ · · · ∪ Li)| ≤ i the prefix sum cannot be negative. This property will
be used when dealing with a cache miss caused by a page from Li, with i > 0.

We show how to implement OnlineMin using the following operations on L:

– find-layer(lp). For some page lp, find its layer delimiter.
– search-page(lp). Check whether lp is a page in L.
– insert(lp), delete(lp). The item lp is inserted (or deleted) in L.
– find-min(lp). Find the cache element lq ∈ (l1, . . . , lp) with minimum priority.

– find-zero(lp). Find the smallest j, with p ≤ j such that
∑j

l=1
vl = 0, and

return lj .

8

1 0v

t 2 2 4 5 5 8 8 10 11 13 13 15 18 18 21 21

1 1 1 1 1−1 −1 −1 −1 −1−10 0 0

Fig. 2. Example for list L: representing pages by timestamps of last requests, we have
L1 = {2, 4}, L2 = {5}, L3 = {8, 10, 11}, L4 = {13, 15}, L5 = {18}, and L6 = {21}.
Layer delimiters are emphasized and the memory is M = {4, 10, 11, 15, 18, 21}.

We describe how to update the list L upon a request for some page p. On-

lineMin keeps in memory at all times the elements in L having the v-value
equal to -1.

If p /∈ M , we must identify a page to be evicted from M . To evict a page we
set its v-value to zero and to load a page we set its v-value to -1. We first find
the layer delimiter for p. We can have p ∈ Li with 0 < i ≤ k or p ∈ L0. If p ∈ Li,
the page to be evicted is the cache element in L1 ∪ · · · ∪Lj having the minimum
priority, where j ≥ i is the minimal index satisfying |M ∩ (L1 ∪ · · · ∪ Lj)| = j.
This is done using find-zero(lLi

), where lLi
is the layer delimiter of Li, and

the page to be evicted is identified using find-min applied to the value returned
by find-zero. If p ∈ L0, if the forgiveness need not be applied, the page having
the smallest priority in M is to be evicted. We identify this page in L using
find-min on the last element in L. If we must apply forgiveness, we treat p as
being a support page in L1.

After updating the cache, we perform in L the layer updates as follows. If
p ∈ Li with i > 0, the layers are updated as follows: Li−1 = Li−1 ∪ Li \ {p},
Lj = Lj+1 for all j ∈ {i, . . . , k − 1}, and Lk = {p}. We first delete the layer
delimiter for Li and the page element for p, which triggers not only the merge
of Li−1 and Li \ {p}, but also shifts all the remaining layers, i.e. Lj = Lj+1 for
all j ≥ i. If we deleted the layer delimiter for L1, we also delete all pages in L1

because in this case L1 is merged with L0. To create Lk = {p}, we simply insert
at the end a new layer delimiter followed by p, both items having as timestamp
the current timestamp.

If p ∈ L0, we first check whether we must apply the forgiveness step, and
if so we apply it by simulating the insertion of p in L1 and then requesting
it, as described above. If forgiveness need not be applied, we update the layers
Lk−1 = Lk−1 ∪ Lk and Lk = {p} as follows. We first delete the layer delimiter
of Lk, which translates into merging Lk−1 and Lk. Then, we insert a new layer
delimiter having the timestamp of the current request, i.e. create Lk, and insert p
with the same timestamp.

3.3 Data Structures

We implement all the operations previously introduced using two data structures:
a set structure and a page-set structure. The set structure focuses only on the
find-layer operation, and the page-set data structure deals with the remaining
operations. While most operations can be implemented using standard data

9

t

v 1 0 1−1−1 1 10 0 11−1 −1 −10 −1

5 5 8 8 112 2 4 10 13 13 15 18 2118 21

0, −10, −11, 1 1, 0 −1, −1 0, 0 0, 0

0, 01, 0 0, 0 −1, −1

1, 0 −1, −1

0, 0

−1, −1

Fig. 3. The page-set data structure for L1 = {2, 4}, L2 = {5}, L3 = {8, 10, 11},
L4 = {13, 15}, L5 = {18}, and L6 = {21}, and the memory M = {4, 10, 11, 15, 18, 21}.
For each internal node u we show the (su,mu) values.

structures, i.e. balanced binary search trees, the key operation for the page-set
structure is find-zero. That is because we need to find in sublinear time the
first item to the right of an arbitrary given element having the prefix sum zero
in the presence of updates, and the item that is to be returned can be as far as
Θ(k) positions in L.

Set structure. The set structure is in charge only for the find-layer operation.
To do so, it must also support updating the layers. It is a classical balanced
binary search tree, e.g. an AVL tree, built on top of the layer delimiters in L
having as keys the timestamps of the delimiters. Whenever a layer delimiter
is inserted or deleted from L, the set structure is updated accordingly. Each
operation takes O(log k) time in the worst case.

Page-set structure. The page-set structure contains all elements of L and sup-
ports all the remaining operations required on L. We store the elements of L,
i.e. both page elements and layer delimiters, in the leaves of a regular leaf ori-
ented balanced binary search tree indexed by the timestamps. For some node u,
denote by T (u) the subtree rooted at u and by L(u) the leaves of T (u). For each
node u we store the sum su of the v-values in L(u). We also store the minimum
prefix sum value mu among all the prefix sums restricted on the elements within
L(u). More precisely, if L(u) = (p1, . . . , pm), we have mu = minml=1(

∑l

j=1
pj).

Finally, in each node u we also store the minimum priority of a cache page in the
subtree rooted at u. Note that if the subtree rooted at u has no cache elements
the priority field is set to infinity.

Fact 2 For each internal node u we have that mu = min(mul
, sul

+mur
), where

ul and ur denote the left and right child of u respectively.

Updates. We discuss how to perform insertions and deletions in the page-set
structure. To insert an element, we first identify its location and then insert it.

10

It remains to update the information at the internal nodes, i.e. the sum of the
v-values, the minimum prefix-sum values and the minimum priorities. The sums
of the elements of the subtrees are easily updated in a bottom up traversal,
together with the minimum priorities, even if rotations need to be done. The
minimum prefix sum values can also be updated in a bottom up traversal using
the observation stated in Fact 2. Deleting an element in the page-set structure
is done analogously to insertion. We note however that when requesting a page
in L1 we must delete both the layer delimiter and all page elements in L1 from
the data structure which leads to O(log k) amortized time. We will show later
how to improve this bound to O(log k) worst case time for deletions as well.

Queries. We turn to queries supported by the page-set structure, which are
the queries required on L. The search-page operation is implemented using a
standard search in a leaf-oriented binary search tree.

To find the page element having the minimum priority in l1, . . . , lp, we first
find the value of the priority as follows. On the path from lp to the root, for each
node u we consider the minimum priority value stored at its left child if the left
child is not on the path. The priority to be returned is the smallest among these
minimums. To find the page, we traverse the tree top-down and at each node
we branch on the subtree matching the minimum priority value. Since it does a
bottom-up and a top-down traversal, this operation takes O(log k) time.

It remains to deal with the find-zero operation, where we are given some
leaf storing lp and must return the first leaf to the right which has the prefix
sum of the v-values zero. We note that the prefix sum cannot be negative, and
thus it suffices to find the first leaf to the right having the minimum prefix sum.
We do so in two steps: we first identify a subtree containing the leaf having the
minimum prefix sum in bottom-up traversal and then we identify the leaf itself
in a top-down traversal of this subtree. To identify the subtree containing the
leaf to be returned, we traverse the path from the leaf storing lp to the root while
maintaining a sum s of the v-values of the right children not on this path, and at
each node u we compute a score as follows. If the right child ur of u is not on the
path, the score of u is given by s+mur

and afterwards we set s = s+ sur
. The

subtree we are looking for is the one having the minimum score; in case of several
subtrees having an identical score, the leftmost one, i.e. the first one encountered
on the path from the leaf to the root, is considered. To identify the leaf having
the minimum prefix sum, we do a top-down traversal of the subtree previously
computed and we use the observation stated in Fact 2 to decide which way to
branch, i.e. we branch left if mul

≤ sul
+ mur

and we branch right otherwise.
This operation requires a bottom-up and a top-down traversal of the tree and
thus takes O(log k) time in the worst case.

Worst-case bounds. The only operation taking ω(log k) time is page deletion,
more precisely when a page in L1 is requested all pages in L1 are moved to L0 and
thus should be removed from the support. Instead of deleting the set delimiter
and all the pages corresponding to L1, we delete only the set delimiter. With the
leading set delimiter removed, the list L no longer starts with a set delimiter,

11

but with at most O(k) elements having the v-value set to 0, since all of these
pages belong to L0 and thus cannot be cache elements. Also, these pages do not
influence the prefix sums for the v-values. When we process a page, we simply
start by checking if the leftmost element in the tree has a v-value of 0, and if
so we delete it. Since each page requests adds at most one new element to the
support, the space complexity is still O(k). This way deletions can be done in
O(log k) time in the worst case.

Each page request uses O(1) operations in both data structures. In Theorem 3
we give the time and space complexities for OnlineMin.

Theorem 3. OnlineMin uses O(k) space and processes a request in O(log k)
time in the worst case.

Acknowledgements

We would like to thank previous anonymous reviewers for very insightful com-
ments and suggestions. Also, we would like to thank Annamária Kovács for
useful advice on improving the presentation of the paper.

References

1. D. Achlioptas, M. Chrobak, and J. Noga. Competitive analysis of randomized
paging algorithms. Theoretical Computer Science, 234(1-2):203–218, 2000.

2. S. Albers. Online algorithms: a survey. Mathematical Programming, 97(1–2):3–26,
2003.

3. W. W. Bein, L. L. Larmore, J. Noga, and R. Reischuk. Knowledge state algorithms.
Algorithmica, 60(3):653–678, 2011.

4. L. A. Belady. A study of replacement algorithms for virtual-storage computer.
IBM Systems Journal, 5(2):78–101, 1966.

5. A. Borodin and R. El-Yaniv. Online computation and competitive anlysis. Cam-
bridge University Press, 1998.

6. M. Chrobak, E. Koutsoupias, and J. Noga. More on randomized on-line algorithms
for caching. Theoretical Computer Science, 290(3):1997–2008, 2003.

7. A. Fiat, R. M. Karp, M. Luby, L. A. McGeoch, D. D. Sleator, and N. E. Young.
Competitive paging algorithms. Journal of Algorithms, 12(4):685–699, 1991.

8. A. Fiat and G. J. Woeginger, editors. Online Algorithms, The State of the Art (the
book grow out of a Dagstuhl Seminar, June 1996), 1998.

9. A. R. Karlin, M. S. Manasse, L. Rudolph, and D. D. Sleator. Competitive snoopy
caching. Algorithmica, 3:77–119, 1988.

10. E. Koutsoupias and C. H. Papadimitriou. Beyond competitive analysis. In Proc.
35th Symposium on Foundations of Computer Science, pages 394–400, 1994.

11. L. A. McGeoch and D. D. Sleator. A strongly competitive randomized paging
algorithm. Algorithmica, 6(6):816–825, 1991.

12. D. D. Sleator and R. E. Tarjan. Amortized efficiency of list update and paging
rules. Communications of the ACM, 28(2):202–208, 1985.

12

