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®NN Vertex Function and the ynnnt Anomaly

J.Speth and R.Tegen’

Institut fur Kernphysik, Forschungszentrum Jilich, Postfach 1913, D-524235 Jilich, Germany

Abstract: We show that the empirical @NN form factor with a cut-off of 1400-1500MeV can
be understood as arising from a combination of a quark model form factor with a typical cut-
off of 700-800MeV and an anomalous form factor ~q* arising from the 3x-intermediate state.

The anomaly contributes to the Dirac form factor F,(q°) with F,(0) = 0, _% F, (g%) >0
q gi=0
(and sizable), and to the Pauli form factor F»(q®) with F;(0) # 0. The resulting tensor coupling
F,(0) is sensitive to the cut-off of the pion momenta in the two-loop integrals and turns out to
be small for values around 1 GeV. The quark model @NN zensor coupling F-(0) vanishes for
point-like quarks. The anomaly, however, contributes a non-vanishing zensor coupling which
via the Gordon decomposition can be seen to enhance the vecfor coupling. It remains to be
seen if the here discussed zensor form factor contribution to the ®NN vertex function has an
effect on NN observables similar in magnitude to an enhanced quark model vector coupling.
This could remove the only remaining discrepancy between empirical ®NN vector coupling
constants (obtained under the assumption of a near-vanishing tensor coupling) (g.,. )’ /47 =
10-20 , necessary to fit the NN phase shifts, and the simplest (SU(3)awow) quark model

prediction, whichis g% =3g,2, g0 =0,

* On sabbatical leave from: Physics Department, University of the Witwatersrand,
Johannesburg 2050, South Africa



1. Introduction

Meson cloud corrections to the nucleon form factors come in two distinct varieties: one-meson
loop (Fig.1b-d) and two-meson loop (Fig. le and Fig.2). The naive expectation is that all two-
meson loop contributions are of higher order and, therefore, small. While this is true for
diagrams of the type displayed in Fig.2 it is not a priori so for the contributions in Fig.1e. The
reason is that Fig.1e contains the ynnn anomaly (VAAA) which can not be neglected as it is
related via Ward identities to the well-known ( one-loop ) 7° — yy anomaly (AVV). The
VAAA anomaly has been widely studied in @(782)-decays as well as in the reaction

e’e” — "~ x° [1,6,12], but not, to our knowledge, in the oNN vertex function. This vertex
function plays a fundamental role in the understanding of the short-ranged repulsion observed
in the NN force [2,13,14]. The presence of this anomaly in nucleon form factors is reflected in
the empirical paradox (first noted in ref [4]) that the isoscalar magnetic moment of the nucleon
is small while its isoscalar radius is large. Such anomalous behaviour of nucleon form factors
shows also up in the difficulties that chiral quark models have to reproduce both the proton
and the neutron charge form factor. The neglect of contributions like Fig. 1e may result in large
discrepancies between the empirical and the theoretical G;(g*) close to -q°= 0, where the

form factor has been accurately measured [21]. The transition y — z*7 z° probes the I =

0, G = -1 content of the photon,; these are the quantum numbers of the &(782), $(1020),
J/y(3097), ... mesons. Therefore, the @NN coupling is expected to contain a component
resulting from the (VAAA) anomaly. We will see below that the anomaly predicts a @NN
vertex function which strongly deviates from the quark model @NN vertex function for very
small 4-momentum transfers -q>(or: large separation in r-space) while it has a similar q*-
dependence for large (-g%). It is found empirically that the ®NN (vector) coupling deviates
significantly from the simplest (SU(3 )g..0) quark model prediction, which is

gha1 —3gv4d  gTed = 0 Empirically one finds (g),, )’ /47 =0.84 <1, and NN phase shift

analyses require [2,5,14] (g%, )’ / 47 = 10-20 (and often closer to 20). This is much larger

than the quark model prediction which gives less than 9 for this coupling strength. We
demonstrate here that the anomaly hardens the quark model vector form factor (i.e. the cut-off
is moved from 700-800MeV to close to 1500MeV) and contributes a non-vanishing tensor
form factor. The latter effect could be re-interpreted (via the Gordon decomposition of the
electromagnetic current) as an enhanced vector coupling. It remains to be seen if a combination
of vector and tensor form factors as discussed here has a comparable effect in NN phase shifts
as those “hard” and large vector monopole form factors employed in relativistic nucleon-
nucleon models [2,5,14]. The paper is organized as follows. In the next Section we present the
necessary formalism for the derivation of the ®NN form factors including the VAAA anomaly.
In Section 3 our numerical results are presented and their implications for NN models
discussed. Technical details of our 2-loop calculation are relegated to three appendices, where
we also discuss similarities and differences with a technique developped for scalar two-loop
integrals in QCD [15].



2. The Transition y N - z*z z’N —> N.

We consider the electromagnetically gauged Lagrangian of the o-model
1 v
[ =L, ~FL P = j,A* 21)
with j* = j# + j% + j4. , where

Jh @) =y(x)eyy v (x)
JA () = 6,08, (2 & 6,(5)
and an "anomalous"” contribution related to the Wess-Zumino anomaly term,
Jh(x) = eHE ™ 5 3,0,8,(x)8,8,()3.8.(¥) 22)

With this £ EM we calculate now the anomalous contribution (Fig.le) to the nucleon

electromagnetic form factors F,q°) or, equivalently, the Sachs form factors Gem(q’). Note
that the Tn° intermediate state couples only to the isoscalar component of the photon.
Under the additional assumption of vector meson dominance (VMD) this process would be
dominated by the isoscalar vector mesons ( @(782), $(1020), J/W(3097), ...). Without any
vector mesons the chiral anomaly (2.2) comes only in one variety ( the "contact" term), then
[1]H = H° = (247°1%)" in eq.(2.2), leading to my’ H°= 4.4 . We note here that H® is given by a
combination of the KSFR relation [8] and the field theoretic connection between the AVV
anomaly (asin 7° — yy ) and the VAAA anomaly considered here [1,6].

If one includes, however, the vector mesons in (2.1), then the constant H in eq.(2.2) obtains
w
structure due to the now possible processes ¢

r= Jiy
Y
o with a branching ratio of ~ 90%; the corresponding branching ratio for the ¢ (J/y ) is ~
3% (1% ) [71.
The contribution of Fig.le to F4™(q?) can then be decomposed into their vector meson
content F.. V' (q?) (V=0,¢, Jv, Y, ..).
2
em,

="V I’dull 4

o . The  decays into
S AP T AT

In momentum space one has (see Fig.2 for a definition of the momenta)
jE_(0) = eH(s,t,u)e"™™ LSk (22"

where H is in general a Lorentz-scalar vertex function describing the structure of the y—37
transition (see below), H=H° + H*", with [1]

H® = (247*£.)" 2.4)



and HY as in the Gell-Mann-Sharp-Wagner model [9], see below.
We find for the contact term
Id“’x e <Nf ‘j,’,‘,,,,(x)’Nm> =ieH """ gl Id“x e ﬂj'd“xld"xzd“x3

Id“k I d*l ¢ d*L
@n)* (2n)*° (27)*

(a:;e-t[,-(x,—x) )(O»v;e -:k-(x—xl))(év;e-xb(x;—x))

! 1 i d4 —ip{ i d4P —iPAxy =%, ) 1Py X3 =tPypx
2 2 . 2 2 . 2 2 . I p-t") e :)I 4 i l)er i
kP —m +igl’ —m, +ie L' -m, +ie° (27) (2m)
— i i
w(P,)i i ' PN,
( f) 75 p_mN +i€ },5 P—m‘v +I.€I}/Sgabcrarbfcu( m) m>
k

=(27)' 5 (q - P, + P,)6(—1)egn Hcf”mqvﬂ“(z—ﬁ)rkaer;'Dz—l

¥
d*kd’l
(@(P, )y u(P, )2k P, — k) + 1k @(P,)y v v *u(P,)} 25)

with D, = (I* -m} +ig)(q+k - —m} +ie)(P, -k +1]) -m} +ig)

D, = (k* —m? +ie)(P, — k)’ —mj, +ig) (2.6)
It is easy to show that the ¥y ;u - term in eq.(2.5) does not contribute; the d’k - and d'l -
integrations in this case yield terms g.. , P P™,, P, , g, P™ which all vanish after
contraction with € q, The @y 7,y ;u -term in eq.(2.5), however, survives because of the

identity

iy =ty T -8y -8yt 8y (27)
This leads to the gauge invariant results compiled in table 1.
We define
. 4
Ly (k.q,Fp =] LD kg B 28)

where the A on the integral signifies that this integral is logarithmically divergent and needs to
be regulated. Details have been relegated to Appendix A; the result is

1 1-x
] PEP:
L* (ka q, })in) = - —Ts; jd" ,( ay{—%g“’fl(c,z\s Y+f2(c.Ag )()’2‘—"‘—:'2" +"')} 29
a0

N
where the dots replace terms ~ k°k*,q°k" ,q°q" ,q° P*,P*q" which either vanish upon
contraction with €™ q, or vanish after d'k - integration and contraction with the
antisymmetric tensor. The functions f; »(c,Az) are defined in App.A,; they depend on the cut-off
Ae and implicitly (via the polynomial c(k,q,Px;X,y) on the momenta k, q , P,,. The remaining
d*k - integration can now be done as well; the functions f, .(c,As) do not contain physical poles
50 that the same procedure yields (for details see Appendix B)

d*k a
] Gy FoAsLer b0 POD K )
A

i it PP, 1 PP , »
=3n mmﬁ{gu(—;n—;—af(qz).—Zgaﬂaf(qz))+gaﬂ — a; (@ )+ (2.10)




where the dots stand for terms which vanish upon contraction with € q, @,y s © yPu_ . The

functions a, -5(q*) are given in appendix B. The resuit of the contraction can be read-off table 1
( gP,P. is obtained by permutations from the g..P, P; result ). Finally we obtain

J'd4x e‘iq-x <Nf‘]:~,m(x)1N"’> =

3egd miH® 1
_%i_(‘;af (@T4 +(al (@) +ai (@’ NTE,) (21D

with T}, asintable 1. This has to be compared with the general form dictated by Lorentz-
invariance

=(27)'6"Y(g-P, +P,)

fd*x e"""<Nf | j”(x)|N,.,,> =

Pl‘

=(2n)'6“(q- P, +P,) eu(P)) { I{q*) +:!—f1"2 (g°)+ 7”1"3(42)} u(F,) (2.12)

N N

where T',(g*) =T,(¢*) due to gauge invariance and the I',(¢”) are Lorentz-scalar functions,
trivially related to F,(q®) and Gean(q?), ( n = -q*/4my’ 20):

M) =) = 3 @)= 37775 G @) - Gu@)
I(g")=F(g)+ (@) =Gu(g) (213)

A comparison of (2.11) and (2.12) yields

r,<q2)srz(q2)=ro(—%a:«f)+a;-(q’>—a;~(q2»

L,(g*) = To(af (g*) - 21 + )@} (g") +ai (")) (214a)
3g3 m3 HC
where [, = —42-’“’;'—6-14—— =13 . Interms of the Sachs form factors (2.14a) reads
T v

Gr(¢)=-T,nal(@’)~q’, G (0)=0
G (g®) =T (a}(g")-2(+n)ai (") +ai(@’), Gy (0)=0 (2.14b)

and in terms of the Pauli and Dirac form factors

F*(g*)=-2Tyn(al(g") +aj @) ~q’, F(0)=0

F"(q")=2T( -;-af (@)-a;(@)-ai(@"), FT(®=0 (214c)

From this we can extract the ®NN vertex functions



o :
R () =g, (+ 1T @l (g +al @) ~a',  Fr =0

ﬂ)

Fz“’*a“””(q:)=2fogm(l+n )( af (@*) - a3 (g*)-ai(g®), B (0)=0

mﬂ)

where Fy¢;, refers to the vector (tensor) coupling and g, is the y-@ coupling constant, see

section 3. Note that F,™"(0)=0, F™"(0)=0 . The vanishing of the vector coupling

strength for ¢ — 0 is different from the usual parametrization in terms of a monopole fit with
cut-off masses typically A,=1414 MeV [5]. For completeness we note that the corresponding
pNN monopole fit requires a somewhat different A, =1970 MeV, indicative of the different
underlying Physics ( no anomaly in the pNN case).

Before we turn to numerical results for the form factors obtained with the contact term we give
the corresponding equations for the two-step process YN — npN — nanN which had first
been considered by Gell-Mann, Sharp and Wagner [9]. The integrand in (2.5) is accordingly
modified: H, is replaced under the k- and l-integrals with

1 B
k=1 —im T (k-D?)  mt—(g=D —im,T,((q-D")
N 1
mf, -—(q+lr)2 —imprp((q+k)2)

H(s,t,u)y=-H,(q")m, (215)

where
2
m@
_g—zgmxpgpm
H.(¢g*>)m* = 2 +e 216
o mi, —q* —im,T,(q%) @10

and T, (q”) is the momentum-dependent decay width of the vector meson V [10]. The dots in

(2.16) stand for other isoscalar vector meson contributions (¢, J/y, Y, ...) which we disregard
here. Instead of eq.(2.5) we obtain now

(27)*6“ (g - P, + P,)6iegin H, (¢ )" q,(-D)m;

d*k d*l . p Py N U
(== Gy Kolaks(P )y "y *uPo)D;'D; {D;' +D; +D;' } (217)

with D,, = (a—b)* -m’ +im,I ,((a—b)*). If we define in analogy to (2.8)

L% (k,q, P, ZL"’GS’”(kq By (2.18)
where
1H)GSW
L( ) (k q’ In) Em j d 14IGITDI lDltI
4
L(z)Gsw(k q.P.)- 2." A i

A o)t
L(i)GSW(k’q’ Lar(k q’ m)m D_l



one finds (see Appendix C):
.1 1-x d-x-y apt
L(;)Gsw(k’ q, })i,,) = 8—317‘ I dx I dy J.dz{- %gaffs(c(n’/\a Y faleayAg X3P L -_.Pb' +"')} (219)
0 0 ) my
and
[-2k  ky LY (k.. P, )D} (K, B,)
” (27[)4 ar in n
3r PP | PP
— P o B myrca?y_ L W42 (a2)) + alc )gioq2 290
32027)° N{gat( m‘ :’ ,q7) 4goﬁ @)+ 84 m; :(q7) ( )

Then we get for the first of the three contributions

. 1
TP (g") =T (¢*) = T (@) "4 @)~ "4} (¢') - "4 (")
L% () =T (@ X- V4 (g?) +20+ (43 (g?) + V47 (@) (221a)

9g>  m’ z . .
with rg"(qz)z%;Lrpﬁo(qz)zyp%f—)ro. The functions 47(q?) are given in

App.C. The second contribution is also of the form (2.21a) with the superscript (1) replaced
with (2) on all A-functions, the resulting *’A4*(g*)have the same functional form as

M 4*(q*); only cy, needs to be replaced with c, ; see App.C.
The third contribution is different

TP (q) = 310G PAAe) - 4l - i)
el 'l =33r;"(q1)< - Qai(g?)+2(1+ nX VAN + VAN (221c)
where & 424°) is now distinct from (V4%(4%) (j=12) see Appendix C.The 5-fold

integration in the ()4%(g%) can only partly be done by analytical integration. The c-

integration leads to di-logarithms (or: Spence integrals) typical for regularized loop-
integrations. The remaining 4-Feynman parameter integrals have to be done numerically.



3. Results and Discussion

Combining eq.(2.14a) and (2.21a+c) we obtain as final result
Fvla::N (qZ) = F;m—-)S:r—oNN (qZ ) + F;w—bm—)S;r—rNN(q2)

4m; R H,(q* .
= 2,8, (147 ”’:'2”)r{—(a;((m+a§(q2))+3r,,—°]§ff—)(Afs"~l(q-)+A?”-l(qz))}
F;:V"N (qZ) - an)—b3’r—>NN (q2)+F2m—bxp—r31r—)NN(q2) (31)
H(qz) 1 eswa, 2 GW.Ap, 2
4 2 1 2 5 - r 0 —— A4 > +A" .
=2roga,(1+n:2”)[—(—Eal*(q-)+a§<q-)+a:(q-»+ » e CyATT@D AT

+ATG)
where 47% = W4t + P47 +% ®4*% . (i=1.2,3). A similar form is obtained for the Sachs

form factors G, = F, - nF,, G, =F,+F, Notethat F3u(g’) and Gg,, . (q") are

completely determined by the 2-loop integrals a,(q*), 4°°" (¢*) once the coupling constants

S 218w 80+ 8onp>&ome and masses m, ,m,,m_,m, are known. In Fig.4 we display the 2-loop
integrals for three pion momentum cut-offs A =1.2,1.0 and 0.8 GeV between q*=0 and
-q*=1.75 GeV?. Not surprisingly the contact term produces much flatter 2-loop integrals a(q’)

than the GSW process, A(q°). Because g .., < 0, while all other coupling constants are
positive, we observe for -q° > 0 a cancellation of contributions from the contact term and

from the GSW process. This is manifest in a zero of Far (¢*) for n 2 0.5 and of £ (¢*) for
M < 0.5, dependent on the cut-off, see Fig.5a. We have used (m, ,m,,m, .m, )=
(940,782,770,140) MeV and ( £, , Zuwy » 8o » Gonp»&pnn ) = (92.4 MeV, 13.45, 16, -19 GeV", 6)
[17]. These are typical values with some freedom of variation in g, and g,  While our
numerical results depend very little on g, they do depend almost linearly on g, due to the

smallness of the contact term relative to the GSW process. If heavier vector mesons are
included these values would have to change accordingly.

A striking feature of our result, eq.(3.1) is that F;»" (¢*) ~ n ; the slope at n = 0 increases
with increasing A. A larger slope of the form factor ' (¢°) at zero momentum-transfers
could only be accommodated by a larger / g,/ , if the cut-off remains unchanged. E2N (g

depends sensitively on A and changes sign (from positive to negative) for A > 1.0 GeV. The
same trend is displayed by Gi 4 ...(q°), see Fig.5b. In Fig.6 we show our total result

E™(@)=F2N(g")+ FE%(¢"), K™ (@) =Fa' (")
where

- V,qq
F;w—»qq (qz ) — ga:VN

2

(32)
1-1_
2
Ay ]
is a reasonable parametrization of the quark model form factor with gl& =3g/# =10 and

Aq= 800 MeV [16], and compare with the empirical monopole form



Vv -
Fo (g7) = —San_ (33)
1- Az
and A,..= 800 and 1400 MeV. Between 1 =0and m = 0.3 our result /™" (¢*) is very close
to the monopole form (3.3) with A, = 1400 MeV. The form factor 5™ (¢”) is (for the same
pion cut-off A = 1.0 GeV ) essentially flat between 1 =0and n =0.2 . Our resuit

™ (0)~1 zl—loF,‘"W (0) confirms the empirical finding from fits to the NN phase shifts that

gl usually comes out much smaller than g.,, . Note that the relevant range for nuclear

physics applications is 0 < < 0.1 , corresponding to 0 < -g°< (600MeV/c)*. In the usually
used Breit frame one has —g® = . It will be interesting to see if our ;™ (¢*) , Fig.5a, could

produce effects similar to those arising from an unnaturally high g%, =16ineq.(3.3)". The

oNN vertex function corresponds to an isoscalar vector field probing the nucleon and, thus,
gives rise to a size parameter for the target nucleon which is necessarily isoscalar in nature. The
peculiar q°-dependence of the anomaly contribution near q°=0 will lead to a decrease of the
size parameter originating from the quark-antiquark sector. If added to the usual quark model
contribution one sees that the ®— 37 anomaly stabilizes the isoscalar radius of the nucleon, a
well-known effect observed also in Skyrme-type models [3] ; here this effect is manifest in a
shrinking of the nucleon isoscalar radius due to the presence of the @—>37 anomaly which
adds a stabilizing mesonic cloud to the nucleon. We recall here the presence of log(m,) and
m,” terms in the isovector radii <r,,>>"" due to the presence of the p (2r) cloud [18], which
tend to ‘destabilize’ the nucleon, in the sense that these radii become infinite in the chiral limit.
The isoscalar radii (here including the anomaly) contain only terms O(m,’log m,) and O(m,?)
which are finite in the chiral limit ; there is, therefore, no obvious connection between isoscalar
radii and the pion Compton wave length. The contribution of heavier isoscalar vector mesons

( (1020), J/w(3097), ...) in (2.3) is suppressed because the time-like pole they induce via (2.3)
moves further and further away from the space-like region considered here; we have neglected
them here for the purpose of our qualitative discussion. We note also that the Euclidean cut-off
procedure used here for simplicity does not interfere with the gauge invariance of the
contributions considered here. This is not necessarily so, see the discussion in [19]. Finally we
want to mention that there is an interesting relation between the Euclidean cut-off (which
happens to respect the gauge invariance here) and the Pauli-Villars cut-off procedure (which is
known to respect gauge invariance ), see [19].

In summary, we have shown that the empirical ®NN form factor with a cut-off of 1400-
1500MeV can be understood as arising from a combination of a quark model form factor with
a typical cut-off of 700-800MeV and an anomalous form factor ~q° arising from the 3=n-
intermediate state. The anomaly contributes to the Dirac form factor Fi(q%) with F,(0) = 0,

F, (¢%) > ¢ (and sizeable), and to the Pauli form factor F(q°) with F»(0) # 0. The
q L)

resulting tensor coupling F(0) is sensitive to the cut-off of the pion momenta in the two-loop

integrals and turns out to be small for values around 1 GeV. While the quark model @NN

tensor coupling F,(0) vanishes for point-like quarks this is not so for the anomaly contribution

which is a non-negligible fensor coupling. This can be seen ( via the Gordon decomposition of

d2

! Two different paramemsauons are being used in the literature, eq.(3.3) and
g(A? —m?2)/(A* = ¢*)[2,14]. The coupling constants differ by a factor (1- m/ A2 )™ ~ 145 which
could explain the bulk part of the discrepancy. with the balance possibly provided by the tensor coupling.
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the electromagnetic current ) to enhance the vector coupling. It remains to be seen if the here
discussed fensor form factor contribution to the @NN vertex function has an effect on NN
observables similar in magnitude to an enhanced quark model vector coupling. This could
remove the only remaining discrepancy between empirical ®NN vecfor coupling constants
(obtained under the assumption of a near-vanishing tensor coupling) (ghw ) /4 = 10-20,
necessary to fit the NN phase shifts, and the simplest (SU(3)gmos) quark model prediction,

which is gl =3g%, g =0. Our result confirms the findings in [5] which model the

®NN coupling in NN scattering via correlated mp exchange, leaving much less room for
explicit quark-gluon effects than previously assumed.

Table 1

T oo FE [-imy)
PPy I
4 ar 2
mN
8o Bop 2l

with the definiton F¥ =& q,a(P,)y s “y "u(P,) i

combinations (g, I}, =0),

and the gauge invariant

N

Ity = (P, ){;}—(P; +P)=2(14 n)r”}u(l’m) . Ty =T, )[mL(P; +Bf)- 2#}:(1’,,)
N
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Appendix A

We use Feynman’s parametrization to treat the pole-structure of D'in L7 (k,q,P,)

2 0 +o +o0 3 3 1err
Qen)? —j;dz, :[odzz .";d23§(1 B iz=1:2i )1;1 i )jd4l [72 —mlc+ i£]3 4D

with 7 =1+2,P, —z,q-(z, +2,)k and

L*(k.q.F,) =

k z, P z 22 m’ '
c=—(z, 4z 1z, -z ) e Tm Tt Ty B x(1-z) (42)
m, 2, +Z3 m,, Z, +23 mN Z, -i—Z3 my,
- 2
m .
Note that ¢(z, = 1,2z, =0)=—-#0 . Therefore, one can not neglect the m, -term compared to
my

the my*-term ! The origin can be shifted / — T because of the logarithmic divergence. The

d*T - integration can be done via a Wick-rotation to Euclidean 4-space:
. 1-2,
i

1
ar 1 ar
L”(k,q,B,) = —— | dz, jdza{——-g file A+
87° % o 4

P, k o P, k.
e Nz 2z, Lo (2 +2,) ) (2 2y 4 (7, +2,)—) } (43)
my my my my N m,
with
A% 2 a2+ 3 2 22
x c
SeAg)= Idx eeinl I c‘__° 2 ST (44
< (x+myc) le] 22 +¢ 2(XF+0)
and

x 1 A
(x +mic)’  2c (A +c)

where A = A / my, is the cut-off on the Euclidean 4-momenta.

fileAg) = [de (45)



12

Appendix B

With eq.(2.6) and (2.9) we obtain

J- d*k

d‘k k k,L
K kL, (k D;'(k dt g Far
[y okaLer (ko0 Fo)DE (k. B,) = j |

A@D £ - miRis]

(B))

with k=k-tP, and R=t*+(1=1)r,; (r,=m./m,). The shift of origin can be done
1 .
because L_ (k)~ o which follows from f,,(c) ~ 1 for |k2| — o, so that (B.1) is
c
only logarithmically divergent (hence no surface terms). Then (B.1) reads

‘F k ki, +*P" Py +1(k, Py +k,P,
jdj d ( £ ")L (k+OQ)") (B2)

2 a (27’ [kz—m,‘,RHg]2

where L. depends (viac)on (k +Q)’ with
2

O=(t-—2)p +-2 4 c=-—(zz+z3)(1—22—23)(k+Q)2+ 5 yr(-z) (B3)

z, +2z, z, +2z, m, 2z, +2,

Commensurate with our drastic cut-off on the Euclidean 4-momenta, we make another
simplifying assumption

L. (k+0) =L, (k*+0*)+k*R

wu(K) (B4)
where R,., contains derivatives of ¢ with respect to k a Q*=0.In other words : we
assume that the curvature of L,. in & - space is much smaller than it’s gradient at Q* =0. This
approximation is exact at ¢=0 and at large g* - ©. Eq.(B.4) has the effect that ¢ in
fi2(c,A;) in(A.4)is replaced with the scalar (in k) function
o(5,1,2,,2,,1) = (2. + 2, )(1 - 2, —23)(s—-12)+z3: +r,(1-z)+4m,(1-2, —z;)(1-1)
+21z,(1 -2, —z;) (B.5)

with s=—k*/m’, the normalized Euclidean 4-momentum squared. Note that ¢ does not
contain mixed terms (% -Q) anymore which vanish after symmetric integration. Now the k -
mtegral in (B.2) can be done using Wick-rotation. Then ¢ becomes positive as a function of

> 0 except for the negative t>-term which introduces a zero into ¢ and a manageable
smgulanty into the (lnlcl) term in fi(c). Insertmg (B.4) and (B.5) in (B.2) yields

_omy |1 s F(s)
(Bz)"s(z ) \i gar oﬁ! _£ ( +R)

m ml mPrnl 2 2
jd jdsSF(s) }— S (g a2 L (Be)
my, 3 3 (+R)’
where the dots stand for terms
PaPrPaPﬂ’(zgaﬁPaPr +gﬂrPaPa+ngrPﬂ)a(goﬂPaPr +gﬂrPaPa +gauPrPﬂ+garPaPﬁ) >
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which all vanish upon contraction with " q, %, ¥,y °r?u, . The functions F,, are integrals
over the functions f; ;(c):

F(s) = [de [ (c(s,m%,,0)

Fy9) = [ [y fu(els,mxp.t)  (BT)

with f; ,(c) as in (A.4+5) and
(s, 7, %y, = (x+y)l-x-y)s—1>)+y* +r,(A-y)+dm(1-x-y)1-1)
+2(1-x-y)
Then
m2 1 in "‘ mPin
B6)=- ¥ +Z 7 + *_al(q? B8
( ) 32(2”)4 |: gar( 4 oﬁal (q ) mN a2 (q )) gaﬂ m;, 3 (q )} ( )

where the new functions a(q®) (i=1,2,3) are defined as follows

1

a@ (@)= .!dt‘([df ( szR)z J & {@( ylzjf@ (c(s,m,%,y,1))

0

1 A
aj(q*) = [dn’®
0 [¢]

(c(s,7m,%,7,1)) (B.9)

Eq.(B.8) is identical with eq.(2.10) in the main text. In order to isolate the singularity (for c—0
the (Inld]) - term diverges) we transform the s-integration first, writing c(s,n,x.y,t)=

a(x,y)(s-t2y+b(x,y,n,t) with a(x,y)=(x+y)(1-x-y) 2 0 (1/4 = a(x,y) = 0) and b(x,y,n,t)=
Y 1-y)Hnx(1x-y)(1-t)+2yt(1-x-y) ( r. < b(x,y,n,t) < 1) and R(t) as defined below (B.1)
with R(t)> 1, > 0, we transform ( first for a(x,y) = 0 ).

2 2 1 d+a?? (C—d)z B
!ds( TR’ f[]\( ()= _‘; —-———————( —d+ Ra)’ fm(c) (B.10)

\2/

with d=b-at®. Then the c-integral becomes a principal-value integral for d(x,y,n,t) <0. For
d(x,y,n,t) >0 the integral is easily done without singularities of the integrand. The case
a(x,y)=0 in (B.9) requires special care. For a(x,y)=0 we have c(s)=b independent of s, then
fi(c)=hi(b) and

so that we finally obtain

dvait?
1 Idc———(—c———g)—z—zfm (¢) fora(x,y)=0

1 1 1-x ~d+Ra !
a", (qz)=j-dtjdx Id}’( 12) a y (c + lz) sz/ i (B11)
& > 2 o VY f(lj (bYA* -2RIn ; toLgp rexn=0
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and, similarly,

-x d+ai?

a(q") = jdn jdx!dy jdc—d——Ra)—ﬁ()

Note that for a(x,y)=0 the c-mtegral has been done explicitly; for a(x,y) # 0 we can express the
c-integral in terms of dilogarithms (which are related to the Spence function [11])

Li,(z) = jdzl““ )

The remaining t-, x-, y-integrations have to be done numerically. Finally, we would like to
compare our procedure ( layed out in Appendices A,B,C) with a new technique (generalized
Wick rotation) for the evaluation of certain scalar two-loop integrals appearing in QCD
diagrams [15]. The method of ref.[15] is elegant and efficient; it has been tested extensively.
Unfortunately our two-loop integrals are tensorial in nature and not directly applicable to this
method. If the method of [15] could be generalized to include tensor 2-loop contributions to 3-
point functions (vertex functions like ours), the approximation, eq.(B.4) would become
unnecessary. None of our conclusions, however, depend sensitively on this approximation.
There is certainly room for future improvements of our procedure, should the need arise from
applications in NN physics.
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Appendix C

()GSW .
We calculate here L: (k g, En) as defined after eq.(2.18). First for (i=1):

6m 3 11
LV (k q, P )= dz, |dz, [dz,601- z,. 6 (z,)|d*l a s Cl1
@™ kg, Pn) = s | j j J a-22)]] )| TR (C1)

with Tsl+z3Pm—zzq—(l—z1)k and
k z, P,z 2!
Coy =z (1-z (—~— s my 2 Ty, 5
m, l-zm, l-z m
mZ
Note that c,,(z, =1z, =0,z, =0) = —
N

convergence. The d‘T - integration can be done via a Wick-rotation to Euclidean 4-space:

+4n—2 4 r (2, +z)+r,(1-2 -2, -2z,)
-2z, 1-2z

1-2,-23
ngcs"xk,q,fzn)- j dz, j d, | dz{ ~ 8o fs(Cayr Ag) +
P k k
AW +zz—-(z-—-!—(z2 +z,+z,)—), (-z; = +zzi+(z2 +2z,+2,)—),
m, m, m, N my, m,
(C2)
with
z 2 2 2 2
1 ch
f3(c)=jds ° 4=—1_ z/1 —'2_ 2)~ Tt zc 3
s (s+c)" 3c(A" +o) 3(AF+¢) 3(A +o)
and

1 1 c 1 1
Jile )= J; (+) Tl 3R +c) 2B to)

Note that £, ,(c) are finite for A— . Up to terms which vanish upon contraction (indicated as
dots) we obtain

1-2,-2

i
Lg:csw(k,q,}’.,.)"g—jdzq j‘dt.3 jdz4{ 4ga,f3(c(l),AE)+z§

m wm

— falcqy, Ag) +} (C3)

N

1
Note that f, ~— forc,, >0 and f, ~—

—  for ¢,, — 0 . The further evaluation

Cay €ay
follows the steps given in App.B,
d*k
k kg L"’GS"' k.,q,P D (k,

j(?_ﬂy (k.4 P)D; (e, P,) =
5 J, k k hk,+1PY Py +1(k, Py +kyP) s
> 1 (27)° [Ez -mLR +i£]2 -

3m2 r P"'P"’ Pm P,m
=32(2"ﬂ‘)’4 a,(——gaﬁ R R H OIS P i (qz)} (C4)

N N
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with
[ dy+ag A 2
] Gorae (c _d(l))
-y | c f \(C) fOI' a(])(x y:~)¢0
M 42 e law 4, (- dy, + Ra,))’ (3
A()(q) jdtjdxjdy jdz aam R
f (4 1))(’12 2RIn + ) fora(,)(x ¥,2)=0
L L4) R A+
(C.5)
and
~x  l-x-~y d(l)*“(nl -d )
1 Q1
AlgP) = jdzz jdxjdy [a [de —d tRa) 7 /3(€)
o 4y m
where
Cny = S+d“), = (x+y+z)(l—x—y—z), d(,)(x,y,z,t) = b(,,(x,y,z,t) —a(1)(xay:z)t2:

b(l)(x>y>z:t)=y +r;r(1_y_z)+rp

With L% we obtain the same form (C.4) with

z+2t(l-x—y-2)+4m(z+(1-t)(1-x-y—2))

(I)A/

(2) 47
> Ag, and

(c(l)aa(l) ab(1)) il (c(Z)sa(z) >b(z)) with ¢, =apstde , ao (X,y,2)=(x+y)(1-x-y), dy = b -a 14,
bey (XY, 2,t)=y . (1-y-2)+r, z+2ty(1-x-y)+n[(1-x-y-z)(x(1-t)+z(1H(x+y)))-tz(x-z(x+y))].

For L% in (2.18) we can go straight to the k-integration:

d'k kkyL,,
k,k,L, (k.q,P,)D;'D;', =2\dt |dt, |dt,6(1- ) 1)] |0 @) —
}{(2”) ? I j 2'[ Z 11—1[ J-(275) [ —mAR(3)+1£]
with Ry, =12 +r,(1—-t, — ;) + t,r, +4nt;(1—1, — 1;) . The usual shift of origin can be done
k—k =k—1t,P, +t,q with aresult of the form (2.21c) with
-4 1 digy+ag (C d )‘.’
(”A‘ (q y=|dr, |d1,|dx dy( ] dc & f (c)
. j I 3'([ '[ d-[, (c—dy +Ryas)’ n
and (C.6)
iy +ant _
@ 42 (q*) = jdzz jdt jdxjaya (x,y) jd ) - £,(©)
7 i ¢—dgy +Ri3ya5) 7
d(l)

and ¢ =a)stds) , ag) (X,y)=(x+y)(1-x-y), ds) = bg, -a, (22 '4nt3(t2+ t3))
by (XY, 2,0)=y>+ 1, (1-y)H2y(1-x-y)( t2-2t:m )ranx(1-x-y)(1- t:-2t3).
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Figure Captions

Fig.1 : Coupling of a virtual photon to the nucleon via (a) direct coupling to the nucleon charge , (b)
coupling to the isovector pion cloud, (c) vertex correction (both isovector and isoscalar), (d) self-energy
corrections to the nucleon mass, and (e) the isoscalar 7w’ state; the solid dot in (e) represents a contact
interaction as well as the two-step process via the mp intermediate state, see text.

Fig.2 : A two-pion - loop contribution of higher order.
Fig.3 : kinematics associated with Fig.le.

Fig.4 : (a) g>-dependence (note : m = -q*/4my’ 20 ) of the contact two-loop integral a,, eq.(B.11), (dashed
curves) and of the GSW two-loop-integral A, , eq.(3.1), (solid curves) for three cut-off values around 1
GeV.

(b) same notation as in (a) but now for the combinations (a- + a;) , eq.B.11, and
(Az1A), eq.(3.1).

Fig.5: (a) oNN vertex functions /7%, (%) (solid curves) and /3% (¢*) (dashed curves) versus n,eq. 3.1,
for three cut-offs around 1 GeV.

(b) ©NN vertex functions Gom (¢°) (solid curves) and G2™ (¢*) (dashed curves) versus n, for
three cut-offs around 1 GeV.

Fig.6: ®NN vertex function /™" (¢”). Long-dashed curve: anomaly contribution, eq.(3.1) with pion cut-
off A= 1 GeV; short-dashed curves: monopole form factor with An.=1.4 GeV (empirical fit to NN-data)
and A¢=0.8 GeV (quark contribution, eq.(3.2)) and g",, = 10 for both, see eq.(3.3); solid curve: sum of
anomaly and quark contributions.
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