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Abstract
Objective. Accurate identification of surface electromyography (EMG)muscle onset is vital when
examining short temporal parameters such as electromechanical delay. The visualmethod is
considered the ‘gold standard’ in onset detection. Automatic detectionmethods are commonly
employed to increase objectivity and reduce analysis time, but it is unclear if they are sensitive enough
to accurately detect EMGonset when relating them to short-durationmotor events.Approach. This
study aimed to determine: (1) if automatic detectionmethods could be used interchangeably with
visualmethods in detecting EMGonsets (2) if the Teager–Kaiser energy operator (TKEO) as a
conditioning stepwould improve the accuracy of popular EMGonset detectionmethods. The
accuracy of three automatic onset detectionmethods: approximated generalized likelihood ratio
(AGLR), TKEO, and threshold-basedmethodwere examined against the visualmethod. EMG signals
from fast, explosive, and slow, ramped isometric plantarflexor contractionswere evaluated using each
technique.Main results. For fast, explosive contractions, theTKEOwas the best-performing automatic
detectionmethod, with a low bias level (4.7±5.6ms) and excellent intraclass correlation coefficient
(ICC) of 0.993, howeverwithwide limits of agreement (LoA) (−6.2 to+15.7ms). For slow, ramped
contractions, the AGLRwith TKEO conditioningwas the best-performing automatic detection
methodwith the smallest bias (11.3±32.9ms) and excellent ICC (0.983) but producedwide LoA
(−53.2 to+75.8 ms). For visual detection, the inclusion of TKEOconditioning improved inter-rater
and intra-rater reliability across contraction types comparedwith visual detectionwithout TKEO
conditioning. Significance. In conclusion, the examined automatic detectionmethods are not sensitive
enough to be appliedwhen relating EMGonset to amotor event of short duration. To attain the
accuracy needed, visual detection is recommended. The inclusion of TKEOas a conditioning step
before visual detection of EMGonsets is recommended to improve visual detection reliability.

Introduction

Surface electromyography (EMG) is a widely usedmeasurement technique for determiningmuscle activity in
biomechanics, biomedical, and areas of sports sciences (De Luca 1997). Surface EMG is primarily employed to
examine neurological and biomechanical aspects of humanmovement (Hermens et al 2000, Raez et al 2006,
Massó et al 2010, Tillin et al 2010,Hannah et al 2012, Ahmadian et al 2013, Chowdhury et al 2013). An important
application of EMG is the precise detection of temporal characteristics ofmuscle recruitment, such asmuscle
activity onset and offset times. Temporal characteristics are a prerequisite for studies ofmotor control and
performance. Due to the stochastic characteristics of the EMG signal, onset detection can be challenging,
especially when the signal-to-noise ratios are low. Temporal analysis of surface EMGdata has beenwidely
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employed to quantify electromechanical delay (EMD), which is the delay betweenmuscle activation and force
production (Cavanagh andKomi 1979).Many studies have used EMDas a determinant ofmusculoskeletal
performance across a variety of tasks andmuscles. Accurate identification of EMGonset is vital when examining
temporal parameters such as EMD,where the delay period between EMGonset and forcemay be as low as 10 ms
for voluntary contractions (Tillin et al 2010). EMGonset is one of themost commonly studied parameters in
surface EMGanalysis; however,methods of detection vary across the literature. The importance of accurate
onset detection is contextualized in limbmovement studies when comparingmuscle activation patterns
associatedwith clinical conditions (e.g. Parkinson’s disease, cerebral palsy)with normal function, and how this
affectsmovement outcomes (Chen et al 2001, Kumru et al 2004). The large variability of the EMG signal across
differentmuscles, populations, andmovement tasksmakes EMGonset identification quite difficult (Robichaud
et al 2009, Yang et al 2017). A detectionmethodwith high validity and reliability would enable comparisons
betweenmuscles, participants, and experimental conditions across research studies.

Since EMG signals are prone to sources of noise, precise identification of onset is difficult.Manual visual
identification is commonly considered the ‘gold standard’method for detecting EMGonset (VanBoxtel et al
1993,Hodges andBui 1996, Staude 2001, Allison 2003). Thismethod involves a skilled experimenter examining
the EMG trace and visually determiningwhen the onset has occurred using a preset criterion (e.g. earliest
detectable rise, last peak/trough before the signal deflects frombaseline noise). Visual onset identification is
consideredmore sensitive and accurate in detecting EMGonsets as it is not as influenced by signal-to-noise ratio
ormovement artefacts, whereas onset detections can be skewed using automatedmethods (Hodges and
Bui 1996, Allison 2003). However, visual detection is time-consuming and involves a risk of subjective bias.
Furthermore, the accuracy of visual detection is based on the experience of the assessor and includes variability
fromhuman error and error between researchers. This variability is prominent under conditionswhere the
signal-to-noise ratio is very low (Winter 1984).

Automatic computer-based detectionmethods are commonly employed in detecting EMGonset in an
attempt to increase the objectivity, reduce experimenter bias, and optimize analysis time. Several automatic
detectionmethods have been employed, including the threshold-basedmethod (TBM) (Hodges andBui 1996)
and advanced statisticalmethods (Staude 2001, Staude et al 2001, Lee et al 2007) andmore recently the Teager–
Kaiser energy operator (TKEO). TheTBM involves deriving a threshold frommuscle baseline signal amplitude
characteristics (usually themean and amultiple of the standard deviation) and determining the onset of the
EMGburst when the trace exceeds this threshold. TBM’s of EMGonset detection are robust when the signal
traces have a high signal-to-noise ratio coupledwith fast rates of amplitude increases (Hodges andBui 1996,
Allison 2003). However, as these algorithms utilize baseline amplitude characteristics, the subsequent threshold
value is sensitive to changes in the baseline amplitude. A low level of baseline amplitude reduces the detection
threshold and can result in early-onset detection, while high baseline amplitude has the opposite effect andmay
result in the late detection of the true onset (Hodges andBui 1996, Allison 2003). The outcome of such threshold
errors ismost notably the systematic shortening or lengthening of derived EMD. There is little consensus about
the criteria and parameters (e.g. processingmethods, themagnitude of deviation from the baseline to indicate
the threshold value, number of subsequent samples the EMG tracemust exceed the threshold) for EMGonset
detection using TBM. Previous research evaluating variations of the parameters and their influence on onset
detection of a postural task highlighted that several parameter combinations could accurately approximate the
onset times (Hodges andBui 1996). Another automatic detectionmethod utilized in EMGonset detection is the
approximated generalized likelihood ratio (AGLR). From a statistical standpoint, EMGonset detection can be
considered a binary testing problembetween the null hypothesisH0 indicating no statistical changewithin the
analyzed portion of the EMG signal andH1 signaling a statistical change in the analyzed segment of the signal.
AGLR is based on statistical testing of the null hypotheses (H0) and the alternate hypothesis (H1) and outlines the
statistical properties of an EMG series of samples. AGLRhas demonstrated improvements in the accuracy of
EMGonset detection compared to the TBM (Staude 2001, Roetenberg et al 2003, Lee et al 2007, Solnik et al
2010). Despite these improvements, AGLR andTBMboth lack the desired accuracy to be used interchangeably
with visual detection. AGLR is similarly reliant on baseline signal information in the detection of EMGonset.
Additionally, the rate of amplitude increase can significantly influence the accuracy of the automatic detection
methods, particularly for TBM.During slow, ramped contractions, the amplitude increase ismore gradual than
during fast, explosive contractions, which can result in delayed onset detection (Horak et al 1984, DiFabio 1987).
Thus, the accuracy of onset detectionmay be reducedwhen automatic detectionmethods are used to detect
EMGonset across contraction types with varying rates of amplitude increase (e.g. fast, explosive contraction
versus slow, ramped contraction).

Recently, the TKEOhas been proposed to reduce erroneous EMGonset (Li et al 2007). TKEOmeasures
instantaneous energy changes in signals composed of a single-time varying frequency. Duringmuscle
contraction, when amotor unit action potential fires, it is accompanied by an instantaneous increase in signal
frequency and amplitude. TKEO accentuates the frequency and amplitude properties ofmotor unit action
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potentials bymaking action potential spikes sharper and narrower (Li andAruin 2005). As the frequency of
muscle activity is higher than background noise activity, the TKEOoutput ofmuscle activity ismore
pronounced versus the background noise. The suppression of baseline noise and accentuation ofmuscle activity
reduces erroneous onsets attributed to baseline variability observed in other automatic detectionmethods (i.e.
TBM). By applying the TKEO as amethod of EMGonset detection, previous studies have reported
improvements in detection accuracy (Li et al 2007). Recognizing that the TKEO can improve EMG signal-to-
noise ratio, previous research demonstrated that TKEO ismost effective when used as a step in signal
conditioning. EMG signal conditioning using TKEO showedmarked improvements in the accuracy of
visual, TBM, andAGLR compared to conditioningmethodswithout TKEO (Solnik et al 2010). TKEOhas
demonstrated improvements in onset detection accuracymost notably on theAGLRmethod onEMG signals
reconstructed from isometric contractions in able-bodied adults (Solnik et al 2010). Interestingly, the accuracy
of visual detection compared to the true onset times also improved following TKEOconditioning. It is unclear
whether this accuracy remains across experimental EMGdata of varying signal-to-noise ratio and varying rate of
amplitude increase (i.e. fast, explosive and slow, ramped).

In studies ofmotor control and performance, the precise determination ofmotor events such asmuscle
contraction onset is vital.Motor events, such as EMD, produce values as low as 10 ms (Tillin et al 2010). Thus, it
is reasonable to propose that detection biases not exceed 2–3 ms in order to validate an automatic detection
method.While research has identified automatic detectionmethods that can detect true onset within this bias
range for constructed EMG signal (Solnik et al 2010), this has yet to be demonstrated for experimental data.
EMDmeasures differ across studies, with various contraction types (i.e. fast and explosive, ramped and
maximal, and involuntary) used tomeasure this delay period. The selection of themost accuratemethod for
onset detection across different EMDmeasures is a prerequisite for a valid study outcome. The accuracy of any
EMGonset detection algorithm is largely dependent on the amplitude increase of the EMG signal. This varies
betweenmuscle contraction types. Fast, explosive contractions can bemore accurately determined due to
abrupt amplitude increases than slow, ramped contractions with a slower amplitude increase (VanBoxtel et al
1993). Previous studies have examined the accuracy of various automatic detectionmethods across contraction
types (explosive and ramped), with the best-performingmethod producing EMGonsets thatmatched visual
within 10 ms inmore than 80%of trials (VanBoxtel et al 1993).When examiningmotor control parameters
such as EMD, this onset bias is too large. The TKEOmeasures instantaneous energy changes in the signal and
emphasizes action potential spikes, but has not previously been examined across contraction types. The use of
the TKEOas a conditioning step or as a detectionmethodmay improve detection accuracy when comparing
EMGonsets across contraction types where the amplitude increase in the EMG trace varies (i.e. fast, explosive
versus slow, ramped).

The current research aims to examine if automatic detectionmethods, namely TKEO,AGLR, andTBM,
could be used interchangeably with visual detection of EMGonsets across experimental isometric contractions.
Initial evidence suggests TKEO as a conditioning step improves EMGonset detection accuracy across visual and
automatic detectionmethods (Solnik et al 2010). This study also compares the accuracy of all detectionmethods
with andwithout TKEO as a conditioning step. For application in research involving short delay periods (i.e.
EMD), automatic onset detection biasmust not exceed 2–3 mswhen comparedwith visual. Determining an
automatic onset detectionmethod that is consistently reliable for EMGonset detection acrossmuscle
contraction tasks of varying amplitude increasemay enablemore accurate, quicker, and objective comparisons
ofmotor events across studies.

Methods

Participants
Following approval by the local University Research Ethics committee, fourteen participants (7♂, 7♀, 26±
3 years, 169.4±6.6 cm, 70.1±6.9 kg) of similar low-to-moderate levels of habitual physical activity were
recruited for the study. TheVictorian Institute of Sport Assessment-Achilles (VISA-A) questionnaire was used
to screen for anyAchilles tendinopathy pain (Robinson et al 2001). Participants were excluded if they had
experienced a lower-leg injury in the previous sixmonths. Additionally, participants were excluded if they
demonstrated symptoms of Achilles tendinopathy pain, determined as aVISA-A score under 90 (Iversen et al
2012). All participants signed awritten consent formbefore data collection commenced.

Experimental protocol
Following a familiarization daywhere participants were accustomed to the two contraction types, participants
returned to the lab for a testing session duringwhich data for both contraction types were collected. Participants
were secured lying prone in a calibrated dynamometer (Con-trex, Dubendorf, Switzerland). The dynamometer
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and ankle joint (at neutral angle) axes of rotationwere aligned, with the knee joint fixed at 180° in full extension.
The anklewas securely fastenedwith two straps, one 2 cmproximal to themedialmalleolus and one 3 cm
proximal to the head of the firstmetatarsophalangeal joint. Awaist belt and shoulder strapswere used to
minimize upper bodymovement. Firstly, participants completed a standardizedwarm-up of the plantarflexors
of the right legwith a series of submaximal contractions. Fast, explosive isometric contractions were performed
at three different joint angles (10° plantarflexion, 0° anatomical zero, and 10° dorsiflexion) following thewarm-
up. For each contraction, participants were instructed to relax asmuch as possible and, following an auditory
signal, attempt to plantarflex their ankle as ‘fast and hard’ as possible, with the emphasis on ‘fast’. Contractions
were separatedwith a 30 s rest period and fivewere performed at each joint angle. Following the explosive
contractions at each joint angle, slow, ramped (maximal voluntary) contractions were performed. Participants
completed three at each joint angle, separatedwith a 30 s rest period. The instruction for this contractionwas to
plantarflex the ankle as ‘hard’ as possible without concern for the rate of force development, reachingmaximum
torque in∼2 to 3 s. The order of joint angles for both contraction types was performed in a randomized order.

EMGcollection and data processing
Surface EMGdatawere recorded from the soleus, lateral gastrocnemius, andmedial gastrocnemius of the right
leg using aDELSYSTrigno EMG-system (Delsys, Boston,MA). Surface EMG for theNon-Invasive Assessment
ofMuscles (SENIAM) guidelines guided the placements of the electrodes. Ultrasonographywas used to identify
the largestmuscle belly and orientation of themuscle fibers formore precise electrode placement. Before
electrode attachment, the skinwas prepared by shaving, light abrasion, and cleansingwith 70%ethanol to
improve electrode-skin conductivity. EMG signals were amplified (×100; differential amplified, 20–450 Hz),
sampled at 2000Hz, and interfacedwith LabChart 8 software usingwireless communication. Twohundred and
fifty-two data sets (one trial× two conditions× three angles× threemuscles× 14 participants)were selected
from the available data for analysis. Data were separated into two categories of 126 traces based on the
contraction type. EMG signals were band-passed filtered in both directions between 10 and 400 Hz using a
fourth-order Butterworth digital filter. All data treatment and onset detectionwere performed inMATLAB
(R2019a,MathWorks,Massachusetts, USA) using a custom-written script. The anonymized data that support
thefindings of this study are openly available at the following link: (https://figshare.com/articles/dataset/
Participant_data/13482429). TheMATLAB script used for analysis is also available at this link.

EMGdata conditioning and onset detectionmethods
All EMG traces were evaluated usingmanual visual detection, TBM, andAGLR. These detection algorithms
were tested after two types of signal conditioning (without TKEOandwith TKEO) across both contraction
types. Additionally, all EMG traces were evaluatedwith TKEOas a detectionmethod, following conditioning
without TKEO. EMGconditioningminimizes background noise, reducesmovement artefacts, and can facilitate
onset detection. For signals conditionedwithout TKEO, data conditioning involved processingmethods specific
to the detectionmethod. Regardless of the detectionmethod, all signals were firstly band-passed filtered at
10–400 Hz (4th order Butterworth filter). For visual detection, the data was rectified following the band-pass
filter but not furtherfiltered. This has been previously recommended to facilitate visual onset detection (Dick
et al 1986, Latash et al 1995) and avoids biasing the agreement of the visual detection and the computer-based
methods (TBM, TKEO, AGLR), by ensuring similarfilteringmethods are used. For TBMandAGLR, after the
band-passfilter, data was rectified and low-passfiltered at 50 Hz (2nd order Butterworth, zero-phase forward
and reversefilter). Fast, explosive and slow, ramped contractions conditioned using the aforementioned
conditioningmethods formed the first set of data.

For the second set of data, fast, explosive and slow, ramped contractions were conditionedwith TKEOas a
step in the conditioning process. For all detectionmethods, TKEOwas applied after the signal was band-pass
filtered (10–400 Hz, 4th order Butterworthfilter). The discrete TKEOΨ is defined as

[ ( )] ( ) ( ) ( ) ( )Y = - + -x n x n x n x n1 1 , 12

with x representing the EMGvalue and n the sample number. After TKEOconditioning, each detectionmethod
followed the same process of conditioning as conditioningwithout TKEO.Once the onset detectionmethods
(visual, TBM,AGLR)were conditioned bothwithout TKEOandwith TKEO, onsets were detected across both
conditioning and contraction types. In the event an onset detection could not be determined by any of the onset
detectionmethods, amissing valuewas recorded for statistical analysis. EMG traces where onset detectionwas
obscured by amovement artefact were eliminated. This enabled a true comparison of themethods to detect
EMGonset accurately. A sample trace demonstrating the detectionmethodswith andwithout TKEO
conditioning is presented infigure 1.
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Visual detection
An individual with expertize in EMGanalysis visually determined the onset of all data traces. A custom-written
script inMATLABdisplayed individual EMG traces on the computermonitor enabling onset detection to the
nearestmillisecond. EMG traces for eachmusclewere plotted separately in randomorder to remove any bias.
For visual identification of onset, the criteria used byTillin et al (2010)was employed. Initially, EMG signals
were viewedwith a constant y-axis scale of 10 mV and an x-axis scale of 500 ms. These scales enabled clear
visualization of the pattern of noise and enabled signal onset detection. Signal onset was determined as the last
peak or trough before the signal deflected away frombaseline noise. To determine the reliability of visually
identifying EMGonsets, the examiner determined the onset times for a random sample of fourteen explosive
contractions (42 onsets) and fourteenmaximal voluntary contractions (42 onsets) oneweek after the initial
analysis. A second individual with EMGexpertize visually determined onsets of a sample of ten explosive
contractions (30 onsets) and tenmaximal voluntary contractions (30 onsets), blinded to the other reviewers’
onsets to examine inter-rater reliability. Both intra and inter-rater reliability analyseswas performed for traces
conditionedwithout TKEO andwith TKEO to examine could TKEOconditioning improve visual detection
reliability.

Figure 1.Representative EMG traces from a single trial for (A) fast, explosive contractions without TKEOconditioning (B) fast,
explosive contractionwith TKEO conditioning. Onset estimates of visual, AGLR, TKEOandTBM (best-performing) are indicated in
the legend for the selected trial.
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Approximated generalized likelihood ratio
AGLR involves statistical testing of the null hypothesesH0 and alternate hypothesisH1 of the statistical
properties of a series of EMG samplesY1, Y2,K., YR. The null hypothesisH0 is related to themuscle being relaxed
with no change in the statistical properties of the sequence and the alternate hypothesisH1 relates to a contracted
state with a change in statistical properties. AGLR tests the two hypotheses using a log-likelihood ratio test g(k):

⎜ ⎟
⎛
⎝

⎞
⎠

( ) ( )∣ )
( )∣ )

( )= >
<

=

g
p Yn H

p Yn H
hk ln

1 1

0 0
, 2

k

r

1

where ln represents the natural logarithm,Y(n) represents the series of EMG samples, p1 and p0 represent the
probability density function alignedwith hypothesisH1 andH0 respectively. TheAGLR functionswherebywhen
the log-likelihood g(k) exceeds the preset threshold h, then hypothesisH1 ismore probable and a signal change is
detected. TheAGLRhypothesis test is performed over a predefined slidingwindowof size L. A log-likelihood
ratio is calculated for every location of thewindow along the series of EMGdata. Once a signal change is detected,
the precise EMGonset time (t1) is estimated bymaximizing the likelihood estimators for each sample from the
last windowposition. Thewindow sizewas set at L=25 ms, and the detection threshold level was set at h=6
for fast, explosive contractions and h=10 for slow, ramped contractions. These thresholds were selected as they
introduced the smallest detection errors for the respective contraction type.

Threshold-basedmethod
TheTBMused themean (μ) and standard deviation (σ) of each trace baseline activity level to compute the onset.
The thresholdTwas determined as

( )m s= +T h. , 3

where h is a variable determining the threshold level. TheTBM involves identifying the onset as the point where
themean of a specified number of samples exceeds baseline activity by a specified number of standard deviations.
Twelve different combinations of parameters were evaluated using the TBM. The parameters examined
correspond to those, which tend to vary between studies employing the TBM. Thefirst parameter investigated
was the number of samples assessed in the slidingwindow (10, 25, 50 ms or 20, 50, 100 samples). The threshold
level (magnitude of the deviation from the baseline)was also assessed (1, 2, 3, 5 SD). All 12 possible combinations
of these two parameters were examined.

Teager–Kaiser energy operator
TKEOwas employed as both a conditioning step and a detectionmethod in the current study. As a detection
method, TKEO facilitates detection by emphasizing the frequency and amplitude properties ofmotor unit
action potentials and improving the signal-to-noise ratio. Thus, the output of TKEO is proportional to the
product of the instantaneous amplitude and frequency. The discrete TKEOΨ is defined as

[ ( )] ( ) ( ) ( ) ( )Y = - + -x n x n x n x n1 1 , 42

with x representing the EMGvalue and n the sample number. Thismethod of onset detection involves applying
the TKEO to each EMG trace and detecting the onset as the point where the TKEOoutput exceeds a preset
threshold. Similar to the TBM, the threshold level was determined by

( )m s= +T h. . 5

In the case of TKEO, h is a preset variable, which previous authors (Li andAruin 2005) recommend is
determined empirically. For this dataset, a threshold level of h=3 for the explosive (fast) contractions and
h=2 for themaximal voluntary (slow, ramped) contractions introduced the smallest detection errors.

Statistical analysis
Visual detection is widely employed in EMGonset detection studies and is considered the ‘gold standard’ for
onset detection (Hodges andBui 1996, Allison 2003, Tillin et al 2010,Hannah et al 2012). Previous research has
suggested that the accuracy of visual detection could be improved following conditioningwith TKEO,
particularly for signals with a low SNR (Li et al 2007, Solnik et al 2010). To evaluate the reliability of the visual
onset detectionwith andwithout TKEO conditioning, across both contraction types, single and average
intraclass correlation coefficients (ICC) and the typical error ofmeasurement (TE)were calculated to examine
intra-rater and inter-rater reliability respectively.When conditioned using TKEO, visual detection
demonstrated improved inter-rater and intra-rater reliability compared to visual detection conditionedwithout
TKEO. Thus, visual detectionwith TKEO conditioningwas used as the criterionmethod to comparewith the
automatic detectionmethods. Onset delays for automatic detectionmethods conditionedwithout TKEO
(AGLR, TBM, andTKEO) andwith TKEO (AGLR andTBM)were calculated against visual onsets for both fast,
explosive and slow, ramped trials. EMGonset bias (đ )was examined as themean and standard deviation of the
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difference between visual and automatic onsetmethods. Agreement between visual onset detection and each
automatic detectionmethod for all EMG traces was examined using Bland–Altman 95% limits of agreement
(LoA) (Bland andAltman 1986) and ICCwith 95% confidence intervals (CI) (Atkinson andNevill 1998). The
LoAprovide an interval withinwhich 95%of the differences between the onset detectionmethods are expected
to lie. ICCwas used to examine the absolute agreement between onset detectionmethods, specifically a two-way
mixed-effectsmodel. Technical error ofmeasurement (TEM)was evaluated between visual onset and each
automatic detectionmethod. TEM is an accuracy index and expresses the errormargin betweenmeasurement
methods (Perini et al 2005). TEMessentially provides ameasure of standard deviation between repeated
measures. Absolute and relative TEMwere calculatedwith the following formulas:

( )å=
d

n
Absolute TEM

2
, 6

2

whereΣd2=summation of deviations squared, and n=number of samplesmeasured.

( ) ( )= ´Relative TEM %
TEM

VAV
100, 7

where TEM=technical error ofmeasurement expressed in%, andVAV=variable average value.
The variable average value (VAV)was needed for the calculation of relative TEM.To calculate theVAV, it

was necessary to obtain themean of the twomeasurements (visual onset and automatic computer-determined
onset) for each EMG trace. Once themean value of each tracewas calculated, the averages obtainedwere
summedup and divided by the number of traces in the sample, generating theVAV. All analyses were
undertaken on the data separated by contraction type (fast, explosive and slow, ramped) and conditioning type
(with TKEOconditioning andwithout TKEOconditioning). All analyseswere performed using SPSS version 26
(SPSS Inc., Chicago, IL) andMicrosoft Excel (Microsoft Excel,Microsoft Corporation, Redmond,WA,USA).

Results

Reliability—visualmethod
Both visual detectionwithout TKEO conditioning andwith TKEOdemonstrated excellent agreement. The
intra-rater reliability of the visually determined EMGonset without TKEOconditioningwere determined
individually for fast, explosive (TE=0.6 ms; ICC=0.998; ICCCI=0.997–0.999) and slow, ramped
(TE=3.3 ms; ICC=0.999; ICCCI=0.998–1.000) contractions. Inter-rater reliability between the two
raters was also determined individually for the fast, explosive contractions (TE=1.4 ms; ICC=0.994;
ICCCI=0.856–0.997) and slow, ramped contractions (TE=3.1 ms; ICC=0.997; ICCCI=0.996–0.998).

Visually determined EMGonset with TKEOconditioning displayed improved agreement acrossmeasures
comparedwith visually determinedwithout TKEO conditioning. The intra-rater reliability demonstrated
improvements for fast, explosive (TE=0.3 ms; ICC=1.000; ICCCI=1.000–1.000) and particularly slow,
ramped (TE=0.6 ms; ICC=1.000; ICCCI=1.000–1.000) contractions. Inter-rater reliability was improved
for both fast, explosive (TE=1.1 ms; ICC=0.999; ICCCI=0.997–1.000) and slow, ramped contractions
(TE=1.5 ms; ICC=0.999; ICCCI=0.998–1.000).

Eliminated onsets
Trials were removed from the analysis if an onset was not detected using the automatic detectionmethods or
if amovement artefact significantly skewed the onset. Across automatic detectionmethods, onset detection
following TKEO conditioning reduced the number of trials screened out orwhere no onset was detected
(table 1). For signals conditionedwithout TKEO, the number of trials that produced no onset was highest for
the fast, explosive contractions and occurredmost frequently in the 5 SD/50 ms parameter combination,
potentially due to the conservative nature of the threshold and the short duration of themovement task. Trials
screened out (table 1) due to amovement artefact skewing the onset across automatic detectionmethodswas
higher for the slow, ramped contractions (6%of all trials—with TKEOconditioning, 23%of all trials—without
TKEOconditioning)when comparedwith the fast, explosive contractions (8%of all trials—withTKEO
conditioning, 12%of all trials—without TKEO conditioning). Automatic comparedwith visual onsets lower
and upper LoA,mean bias±SD, ICCs and 95%CI, andTEM (absolute and relative) are provided in table 2
(fast, explosive—without TKEOprocessing), table 3 (fast, explosive—withTKEOprocessing) table 4 (slow,
ramped—without TKEOprocessing) and table 5 (slow, ramped—withTKEOprocessing).

Fast, explosive contractions
EMGonset analysis for fast, explosive contractions indicated that the TKEO as a detectionmethod and the
AGLRwith TKEO conditioning achieved the best agreement for onset time detectionwhen compared to visual
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(tables 2, 3). TKEOhad a low level of bias (4.7±5.6 ms)with excellent ICC (0.993; ICCCI=0.977–0.997) and a
low relative TEM (5.2%) comparedwith other automatic detectionmethods. The LoA (−6.2 to+15.7 ms)were
wide under the current criteria of EMDcalculation (table 2). AGLRwith TKEO conditioning had a lower level of
bias (2.0±8.4 ms) compared to the TKEOdetectionmethod. Excellent ICC (0.991; ICCCI=0.986–0.994) and
a low relative TEM (6.0%)were also reported for this detectionmethod. The LoA (−14.4 to+18.3 ms)were
wide under the current criteria andwider than the TKEOdetectionmethod (table 3). The TBMparameters,
which resulted in the best agreement with the visualmethod for fast, explosive contractionswas SD5/50 mswith
TKEOconditioning. This TBMproducedwider LoA (−21.5 to+17.4 ms)when comparedwith the TKEO
detectionmethod andAGLR (withTKEO conditioning) levels of agreementwith visual onsets. Bias for the

Table 1.Eliminated EMG traces across automatic detectionmethods.

Detectionmethod Fast, explosive Slow, ramped

With TKEO

conditioning

Without TKEO

conditioning

With TKEO

conditioning

Without TKEO

conditioning

Method SD

Window

width

No

onset

Screened

out

No

onset

Screened

out

No

onset

Screened

out

No

onset

Screened

out

TKEO 2/3a 10 — — 0 1 — — 0 2

AGLR 6/10b 25 0 6 0 5 0 11 2 15

SD 1 10 0 14 0 96 0 4 0 77

SD 1 25 2 10 3 1 0 6 0 14

SD 1 50 0 4 3 12 1 0 3 32

SD 2 10 0 9 2 17 0 4 0 15

SD 2 25 0 2 5 1 0 2 0 17

SD 2 50 4 2 8 22 1 5 4 43

SD 3 10 0 3 2 1 0 3 0 1

SD 3 25 1 0 4 4 0 0 1 26

SD 3 50 1 0 2 34 4 0 12 50

SD 5 10 0 0 2 0 0 1 0 3

SD 5 25 0 0 2 7 0 3 2 35

SD 5 50 2 0 97 3 4 5 19 56

Note. No onset: algorithm returned no onset value; Screened out: onset screened out of analysis due tomovement artefact producing skewed

onset.
a TKEO2 SDused for slow, ramped, TKEO3 SDused for fast, explosive.
b AGLR6 SDused for fast, explosive, AGLR10 SDused for slow, ramped.

Table 2.Agreement and descriptive statistics for automatic detectionmethods comparedwith visual for fast, explosive contractions—
without TKEOprocessing.

Detectionmethod

Limits of

agreement (ms) Bias (ms) ICC95%CI TEM

Method SD WW LloA UloA Mean SD ICC Lower Upper Absolute Relative

AGLR 6 25 −10.1 41.7 15.8 13.2 0.949 0.519 0.984 14.5 7.4%

TKEO 3 10 −6.2 15.7 4.7 5.6 0.993 0.966 0.997 5.2 2.7%

SD 1 10 −108.6 163.3 27.4 69.4 0.320 −0.005 0.593 52.0 29.4%

SD 1 25 −51.3 78.4 13.5 33.1 0.860 0.772 0.910 25.2 12.7%

SD 1 50 −49.7 122.3 36.3 43.9 0.716 0.285 0.865 40.2 19.0%

SD 2 10 −41.7 40.2 −0.8 20.9 0.941 0.915 0.959 14.7 7.8%

SD 2 25 −38.8 79.7 20.4 30.2 0.855 0.636 0.928 25.7 12.8%

SD 2 50 −28.9 106.6 38.8 34.6 0.777 0.129 0.917 36.7 17.4%

SD 3 10 −25.4 35.7 5.1 15.6 0.967 0.949 0.978 11.6 6.0%

SD 3 25 −37.3 91.0 26.8 32.7 0.820 0.452 0.919 29.9 14.6%

SD 3 50 −20.4 112.7 46.2 34.0 0.715 −0.026 0.900 40.5 19.2%

SD 5 10 −13.4 38.6 12.6 13.3 0.959 0.753 0.985 12.9 6.5%

SD 5 25 −17.2 78.0 30.4 24.3 0.850 0.152 0.950 27.5 13.3%

SD 5 50 −15.3 121.0 52.9 34.8 0.702 −0.060 0.901 44.6 20.8%

Note. Abbreviations: SD=standard deviation;WW=windowwidth, LloA=lower limits of agreement, UloA=upper limits of

agreement, ICC=intraclass correlation coefficient, TEM=technical error ofmeasurement.
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5 SD/50 ms detectionmethod (−2.0±9.9 ms)was similar to the two best-performingmethods for fast,
explosive contractions (tables 2, 3). Across automatic detectionmethods, the TKEOdetectionmethodmost
closely estimated visual onset with narrower LoA compared to the other automatic detectionmethods (AGLRor
SD5/50 ms). Figure 2(A) demonstrates the TKEO agreementwith visual onset for fast, explosive contractions
using a Bland–Altman plot and LoA.

Slow, ramped contractions
TKEO (detectionmethod), AGLR, and all TBMparameters producedwide LoA, large bias, and high levels of
TEMwhen examining the agreement between automatic detectionmethods and visual for onsets of EMG
during slow, ramped contractions (tables 4, 5). Of the automatic detectionmethods, the AGLRwith TKEO
conditioning produced the smallest bias (11.3±32.9 ms) and narrowest LoA (−53.2 to 75.8 ms)with excellent
ICC (0.983; ICCCI=0.971–0.989). Figure 2(B) demonstrates theAGLR agreement with visual onset for slow,
ramped contractions using a Bland–Altman plot and LoA. Themethodwhich produced the next best agreement

Table 3.Agreement and descriptive statistics for automatic detectionmethods comparedwith visual for fast, explosive contractions—with
TKEOprocessing.

Detectionmethod

Limits of

agreement (ms) Bias (ms) ICC 95%CI TEM

Method SD WW LloA UloA Mean SD ICC Lower Upper Absolute Relative

AGLR 6 25 −14.4 18.3 2.0 8.4 0.991 0.986 0.994 6.0 3.2%

SD 1 10 −784.9 −512.8 −648.8 69.4 0.000 −0.002 0.003 461.4 −335.7%

SD 1 25 −874.5 1.2 −436.6 223.4 −0.007 −0.041 0.038 346.5 −982.7%

SD 1 50 −558.0 268.6 −144.7 210.9 0.106 −0.040 0.253 180.4 157.3%

SD 2 10 −905.3 −80.4 −492.9 210.4 −0.004 −0.029 0.029 378.7 −642.0%

SD 2 25 −647.8 221.1 −213.4 221.6 0.055 −0.055 0.176 217.1 269.6%

SD 2 50 −249.4 173.3 −38.1 107.8 0.421 0.257 0.558 80.6 47.9%

SD 3 10 −741.1 186.2 −277.5 236.5 0.027 −0.052 0.121 257.4 531.0%

SD 3 25 −464.9 262.5 −101.2 185.6 0.126 −0.025 0.277 149.0 109.1%

SD 3 50 −86.4 70.9 −7.8 40.1 0.831 0.768 0.878 28.8 15.7%

SD 5 10 −470.9 255.3 ‘−107.8 185.3 0.131 −0.022 0.283 151.1 113.4%

SD 5 25 −234.2 181.3 −26.5 106.0 0.392 0.238 0.528 77.0 44.2%

SD 5 50 −21.5 17.4 −2.0 9.9 0.987 0.982 0.991 7.1 3.8%

Note. Abbreviations: SD=standard deviation;WW=windowwidth, LloA=lower limits of agreement, UloA=upper limits of

agreement, ICC=intraclass correlation coefficient, TEM=technical error ofmeasurement.

Table 4.Agreement and descriptive statistics for automatic detectionmethods comparedwith visual for slow, ramped contractions—
without TKEOprocessing.

Detectionmethod

Limits of

agreement (ms) Bias (ms) ICC 95%CI TEM

Method SD WW LloA UloA Mean SD ICC Lower Upper Absolute Relative

AGLR 10 25 −158.1 326.3 84.1 123.6 0.728 0.420 0.857 105.3 24.6%

TKEO 2 10 −83.0 120.2 18.6 51.8 0.956 0.928 0.972 38.8 9.7%

SD 1 10 −213.4 156.4 −28.5 94.3 0.794 0.633 0.889 68.8 22.3%

SD 1 25 −121.8 278.0 78.1 102.0 0.791 0.445 0.901 90.5 22.0%

SD 1 50 −109.3 357.7 124.2 119.1 0.683 0.086 0.868 121.3 27.1%

SD 2 10 −187.5 202.0 7.2 99.4 0.854 0.790 0.900 70.1 18.8%

SD 2 25 −117.0 325.0 104.0 112.8 0.735 0.227 0.885 108.2 25.4%

SD 2 50 −83.8 387.5 151.8 120.2 0.669 −0.024 0.876 136.6 29.1%

SD 3 10 −128.6 203.5 37.4 84.7 0.879 0.791 0.925 65.2 16.7%

SD 3 25 −94.5 290.6 98.0 98.2 0.779 0.222 0.912 97.9 23.0%

SD 3 50 −50.9 349.1 149.1 102.0 0.640 −0.072 0.873 127.4 28.6%

SD 5 10 −133.7 278.7 72.5 105.2 0.785 0.500 0.890 90.1 22.1%

SD 5 25 −72.5 309.4 118.4 97.4 0.745 0.043 0.908 108.2 24.4%

SD 5 50 −78.9 445.9 183.5 133.9 0.456 −0.097 0.765 159.9 37.7%

Note. Abbreviations: SD=standard deviation;WW=windowwidth, LloA=lower limits of agreement, UloA=upper limits of

agreement, ICC=intraclass correlation coefficient, TEM=technical error ofmeasurement.
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with visual, similar to the fast, explosive analysis, was SD 5/50 mswith TKEOconditioning (−78.5 to
+102.2 ms).

Discussion

The present study examined if automatic detectionmethods, namely AGLR, TKEO, and various iterations of the
TBM, could be used interchangeably with visual in detecting EMGonset across contraction types. The goal was
to validate an automaticmethod of detection that is reliable and agrees well with visual onset detection across
contraction types. Additionally, the research examined if TKEO as a conditioning stepwould improve onset
detection accuracy across contraction types. The results demonstrated that when examining fast, explosive
contractions, TKEO as a detectionmethod provides a better alternative to the AGLR andTBM. For slow,
ramped contractions, theAGLRwith TKEOas a conditioning step performed best of the automatic detection
methods. AlthoughAGLRdemonstrated the best onset detection performance of the automatic detection
methods for slow, ramped contractions, it wasmore common for themeasurement to be less accurate than the

Figure 2.Bland–Altman plot displaying agreement between visual and best-performing automatic detectionmethod for (A) fast,
explosive contractions (TKEOas a detectionmethod) and (B) slow, ramped contractions (AGLR after TKEOconditioning).

Table 5.Agreement and descriptive statistics for automatic detectionmethods comparedwith visual for slow, ramped contractions—with
TKEOprocessing.

Detectionmethod

Limits of

agreement (ms) Bias (ms) ICC 95%CI TEM

Method SD WW LloA UloA Mean SD ICC Lower Upper Absolute Relative

AGLR 10 25 −53.2 75.8 11.3 32.9 0.983 0.971 0.989 24.5 6.2%

SD 1 10 −1171.9 −501.0 −836.4 171.1 0.001 −0.006 0.012 603.6 −1316.0%

SD 1 25 −1196.2 4.6 −595.8 306.3 −0.002 −0.036 0.044 473.3 603.1%

SD 1 50 −833.3 415.5 −208.9 318.6 0.196 0.002 0.374 268.6 96.0%

SD 2 10 −1185.5 −180.1 −682.8 256.5 0.004 −0.018 0.035 515.5 1665.4%

SD 2 25 −901.6 366.1 −267.8 323.4 0.177 −0.030 0.369 296.1 120.1%

SD 2 50 −322.8 244.7 −39.1 144.8 0.726 0.618 0.805 105.6 29.0%

SD 3 10 −982.6 265.8 −358.4 318.5 0.158 −0.065 0.371 338.3 171.6%

SD 3 25 −632.5 362.4 −135.0 253.8 0.402 0.178 0.574 202.6 64.0%

SD 3 50 −142.8 131.8 −5.5 70.1 0.923 0.891 0.947 49.5 13.0%

SD 5 10 −657.6 356.1 −150.8 258.6 0.343 0.112 0.527 211.0 69.2%

SD 5 25 −344.9 251.9 −46.5 152.2 0.730 0.617 0.810 112.1 31.1%

SD 5 50 −78.5 102.2 11.9 46.1 0.966 0.950 0.977 33.5 8.6%

Note. Abbreviations: SD=standard deviation;WW=windowwidth, LloA=lower limits of agreement, UloA=upper limits of

agreement, ICC=intraclass correlation coefficient, TEM=technical error ofmeasurement.
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best-performingmethod (TKEO) for fast, explosive contractions. Our results demonstrated that signal
conditioningwith TKEO improved the accuracy of visual andAGLR across both contraction conditions. TBM
demonstrated improved detection accuracy for the 5 SD/50 ms iteration but did not improve for all other
iterations. As TBM is largely determined using baseline amplitude, the reduced baseline amplitude following
TKEOconditioning resulted in consistent underestimations of the true onset. The accurate identification of
EMGburst boundaries is a crucial element of the biomechanical analysis of humanmovement. Inappropriate
selection of the analysis technique can induce errors of 16.9% toEMDmeasures based on the present data or
10.1%when applied to EMDdata for a heel-lift experiment (Crotty et al 2019)when the best-performing
automaticmethodwas employed.Motor events of durations as short as EMDwould require automatic
detectionmethods to have detection bias in the region of 2–3 ms comparedwith the visualmethod to justify
implementation. The automatic detectionmethods did not produce this level of agreement. Therefore, it is
recommended that visual inspection following TKEO conditioning is the bestmethod for accurate and reliable
onset detection across contraction types.

Determining EMGonset using automatic computer-basedmethods has beenwidely examined throughout
the literaturewith varying levels of success (Hodges andBui 1996, Staude et al 2001, Allison 2003, Solnik et al
2010). Themajority of automatic detection algorithms are robust and produce a good agreementwith visual
methodswhenEMG signals exhibit rapid amplitude increases and a large signal-to-noise ratio (Staude et al
2001). Thefindings alignwith this as fast, explosive contractions exhibited narrower LoA and smaller onset
biases across computer-basedmethodswhen compared to slow, ramped contractions (tables 2–5). These results
are comparable toVanBoxtel et al (1993), who reported the accuracy of several automatic detectionmethods in
determining EMGonset was lower for slow than fast contractions. Additionally, a larger number of trials were
screened out of the slow, ramped contractions due to skewed onsets stemming from smaller signal-to-noise
ratios (table 1). Similarly, Hodges andBui (1996) screened out a higher number of traces with no discernible
onset in a group of low signal-to-noise ratio compared to the high signal-to-noise ratio trials. The evidence
indicates that high baseline noise and low rates of EMGamplitude are themain factors inducing errors in the
automatic detection of EMGonset. The TBM is particularly affected by this as onset biases increasedwith respect
to baseline noise due to the necessarily higher thresholds for the signals conditionedwithout TKEO (Dotan et al
2016). Conditioningwith TKEOamplifies the energy of action potential spikes and assisted automaticmethods
in determiningmuscle onset. This resulted in a reduced number of trials screened out across contractions
(table 1).

The susceptibility of TBM to EMG trace characteristics (i.e. signal-to-noise ratio, and rate of amplitude
increase) in identifying EMGonset was evident from the results of this study. Across themajority of thresholds
(1/2/3/5 SD) andwindowwidth (10/25/50 ms) parameters examined, onsets significantly varied from visually
determined EMGonsets. The combination of TBMparameters which performed best across contraction
conditionswas 5 SD/50 mswith TKEO conditioning (tables 3, 5). This was unexpected since it was
hypothesized that contractions of different signal-to-noise ratios, and rate of amplitude increase would produce
different optimal parameters. Similar results were reported byHodges andBui (1996)with considerable overlap
between the optimal TBMparameters for EMG traces with high and lowbackground activity. For fast, explosive
contractions 5 SD/50 ms demonstrated excellent levels of agreement (ICC=0.987), and low bias
(−2.0±9.9 ms), but withwide LoA (−21.5 to+17.4 ms). For slow, ramped contractions 5 SD/50 mswas the
next best-performing automaticmethod after AGLR (with TKEOconditioning) and demonstrated excellent
levels of agreement (ICC=0.966) but with large bias (−11.9±46.1 ms), andwide LoA (−78.5
to+102.2 ms). The general problemof the thresholdmethod is that the threshold level is adapted to the
background noise and as a result varies with the signal-to-noise ratio. A higher noise level (decreased SNR) in the
calculated TBMonsets’without TKEO conditioning resulted in Type II errors, leading to delayed ormissed
onset detections (tables 2, 4). TKEO conditioningworks to enhance signal amplitude and frequency, thus
improving the signal-to-noise ratio.While TKEOconditioning improved detection accuracy for the 5 SD/50 ms
iteration, improvements were not extended to other iterations. The lower noise level (improved SNR) in the
calculated TBMonsets’withTKEO conditioning resulted in Type I errors and early-onset detectionwhen the
muscle was inactive (tables 3, 5). Additionally, low threshold levels (1 SD) and smaller windowwidths (10 ms)
increased Type I errors and early detection by identifying erratic bursts of activity as the onset. Higher threshold
levels (5 SD) and largewindowwidths (50 ms) ignored short EMGbursts and tended to delay accurate onset
identification. Overall, themeasurement was less accurate when the rate of amplitude increase was low versus
fast, ramping traces.When relating EMGonset to amotor event orwhen comparingmuscle onsets with
differing rates of EMGamplitude increase, the results suggest the iterations of the TBMexamined are not
accurate enough to be used interchangeably with visual detection.

AGLR involves statistical testing using a generalized likelihood ratio and has demonstrated increased onset
detection accuracy comparedwith TBM (Staude et al 2001, Roetenberg et al 2003, Solnik et al 2010). BothAGLR
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andTBMutilize baseline information in the detection process. However, AGLR ismore robust to changes in
signal parameters (i.e. signal-to-noise ratio, change dynamics) comparedwith TBM (Staude et al 2001, Solnik
et al 2010). Using AGLR, the automatic detection accuracy improved compared to TBMacross both contraction
types. For fast, explosive contractions, the results showed that AGLRwith TKEO conditioning demonstrated
excellent levels of agreement (ICC=0.991) and lowbias (2.0±8.4 ms)with visual onset detection.
Comparable results using AGLRwith TKEOconditioning have been reported by Solnik et al (2010), with low
bias (2.0±1.0 ms) on signals reconstructed from isometric contractions. For slow, ramped contractions, AGLR
with TKEO conditioningwas the best-performing automaticmethod. The results demonstrated that AGLR
produced the lowest bias (11.3±32.9 ms) and excellent agreement levels (ICC=0.983). AGLRperformedwell
comparedwith visual detection, however wide LoA for both fast, explosive (−14.4 to+18.3 ms) and slow,
ramped (−53.2 to+75.8 ms) contractions and large average detection errorsmake it unsuitable to be used
interchangeably with visual. The average detection error (ε=|(Automatic onset—Visual onset)|) of AGLR for
slow, ramped contractions was 19.9 ms. Implementing thismethod of onset detectionwould induce, on
average, a percentage change in EMDvalue of 38.2%.While AGLRwas the best-performing automaticmethod
for slow, ramped contractions, the large errors in EMDcalculation that could be produced by using thismethod
make it unsuitable.

Recent research has proposedTKEO as a viable automaticmethod of EMGonset detection (Li et al 2007).
TKEO improves the signal-to-noise ratio by suppressing the noise and amplifying the EMGburst. The results
confirmprevious suggestions that TKEO is not as influenced by signal baseline characteristics for onset
detection compared to other automatic detectionmethods. TKEO resulted in the best agreement for onset time
detection of fast, explosive contractions. The results show that TKEOproduced excellent levels of agreement
(ICC=0.993) and low bias (4.7±5.6 ms)with visual. Similar results reported by Li et al (2007) examined
EMGonset using TKEOon artificial signals. They observed increased consistency of onset times towithin
19.1±24.8 mswhenTKEOwas implemented across signals of varying signal-to-noise ratio. The current
results highlight that TKEOwas less accurate for slow, ramped contractions producing large bias
(18.6±51.8 ms), andwide LoA (−83.0 to+120.2 ms).While TKEOperformed best against visual for fast,
explosive contractions, wide LoA (−7.5 to+16.1 ms), and large average detection error indicate that itmay not
be used interchangeably with visual detectionwhen examiningmotor events, such as EMD. The average
detection error in determining EMGonset for fast, explosive contractions was 4.9 ms for TKEO.On average, this
could cause a percentage change in EMDvalue of 16.9%.While results from this study confirmed previous
findings that TKEO improves detection performance, it also extended themby providing results indicating
TKEOcan improve performance detection for fast, explosive contractions.However, TKEO lacks the accuracy
desired to be used interchangeably with visual when examiningmotor events of short duration.

Motor events, such as EMD, produce values as low as 10 ms (Tillin et al 2010). Thus, it is reasonable to
propose that detection biases not exceed 2–3 ms to validate an automatic detectionmethod. Similar to previous
research on automatic detectionmethods, this study demonstrated to attain the level of accuracy needed for
motor events, visual detection of EMGonsets is recommended. As visual detection is both objective and
dependent on rater experience, future researchersmust employmethods to examine rater reliability (inter and
intra) for EMGonset detection. Examining rater reliability is imperative before any detailed onset analysis of an
EMGdataset. This strategy assists in limiting the operator error bias that can influence conclusions on onset
measures. Previous research demonstrated that including TKEOas a conditioning step can improve the
accuracy of onset detection for the visualmethod, by suppressing baseline noise amplitude and amplifying the
EMGburst (Solnik et al 2010)The results from this study provide further support for including TKEO as a
conditioning step prior to visual detection, with improved inter-rater and intra-rater reliability across both
contraction types.While visual without TKEO conditioning demonstrated excellent results, the improvements
observed from visual detectionwith TKEOconditioning are important when examining shortmuscle delay
periods, such as EMD.Additionally, the inclusion of the TKEO as a conditioning step improved AGLRdetection
across contraction types (tables 3, 5). As AGLRutilizes baseline information the TKEO assisted in narrowing the
baseline probability distribution andwidening the EMGmuscle activity probability distribution (Solnik et al
2010), thus improving AGLRdetection.However, TKEOas a conditioning step did not improve the accuracy of
TBM.TheTBM ismore sensitive to randomvariations in the baseline signal. Following TKEOconditioning,
reduced baseline amplitudes’ led to a bias toward early detection compared toTBMdetectionwithout TKEO
conditioning (tables 2–5). Potentially this is due to the low thresholds used in the current study. This study
examined the conventional iterations of TBM (1, 2, 3, 5 SD)widely employed in EMG research. Previous
research indicates that thresholds of 6–8 (Li et al 2007) or even as high as 15 (Solnik et al 2010) are required
following TKEO conditioning due to the lowmagnitude of the baseline.
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Conclusion

In this study, the acceptability of AGLR, TBM, andTKEO as alternatives to visual EMGonset detectionwere
examined across contractions of varying rates of amplitude increase. Additionally, the accuracy of EMGonset
detectionwith andwithout TKEO conditioning applied to the detectionmethodswas examined. For fast,
explosive contractions, TKEO as a detectionmethod demonstrated the best accuracywith visual onsets. For
slow, ramped contractions, AGLRwith TKEOconditioning demonstrated the best accuracy.However, the
automaticmethods are not sensitive enough to be applied as the detectionmethodwhen relating EMGonset to a
movement ormotor event of short duration. This study confirmedmanual visual detection should be applied in
the analysis of such biomechanical events. As seen in this study and recommended by previous research (Solnik
et al 2010), including TKEO as a step of the signal conditioning process can suppress noise amplitude during the
steady-state portion of the EMG trace, and amplify the EMGburst. Inclusion of TKEO in signal processing can
assist in optimizing the visual detection procedure and reduce onset biases due to objectivity, especially for
signals of low signal-to-noise ratio and slow amplitude increases. Problems in visual detection can arise in signals
with low signal-to-noise ratio and slow rate of EMGamplitude increase. However, the TKEO as a conditioning
step demonstrated improved inter-rater and intra-rater reliability for visual detection across contractions of
varying rates of amplitude increase. Thus, it is recommended to employ this as a conditioning step prior to visual
detection in future studies examining EMGonset. Improvements in detection accuracywere demonstratedwith
TKEOas a detectionmethod and as a conditioning step for automatic detectionmethods (i.e. AGLR). Future
research should assess the applicability of TKEO in determiningmuscle onsets and offsets in dynamic tasks.
Previous research has demonstrated improvements in onset detection in EMGonwalking gait following TKEO
as a conditioning step for automatic detectionmethods (Solnik et al 2010). The use of TKEO either as a detection
method or as a conditioning stepmay be a viable option for detecting kinematic events such as EMGonset in
high-speed dynamic conditions (e.g. sprinting). In actions as such, the EMG signal amplitude increases are fast
and the accuracy of onset is not as vital as inmotor events, such as EMD.
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