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In the presence of interactions, a closed, homogeneous (disorder-free) many-body system is believed to

generically heat up to an “infinite temperature” ensemble when subjected to a periodic drive: in the spirit of

the ergodicity hypothesis underpinning statistical mechanics, this happens as no energy or other conservation

law prevents this. Here we present an interacting Ising chain driven by a field of time-dependent strength, where

such heating begins only below a threshold value of the drive amplitude, above which the system exhibits

nonergodic behavior. The onset appears at strong, but not fast driving. This in particular puts it beyond the scope

of high-frequency expansions. The onset location shifts, but it is robustly present, across wide variations of the

model Hamiltonian such as driving frequency and protocol, as well as the initial state. The portion of nonergodic

states in the Floquet spectrum, while thermodynamically subdominant, has a finite entropy. We find that the

magnetization as an emergent conserved quantity underpinning the freezing; indeed, the freezing effect is readily

observed, as initially magnetized states remain partially frozen up to infinite time. This result, which resembles the

Kolmogorov-Arnold-Moser theorem for classical dynamical systems, could be a valuable ingredient for extending

Floquet engineering to the interacting realm.

DOI: 10.1103/PhysRevB.97.245122

I. INTRODUCTION

Interacting many-body systems, by the ergodic hypothesis,

generically thermalize, placing them in the purview of sta-

tistical mechanics and equilibrium thermodynamics [1]. Our

understanding of the corresponding situation for nonequilib-

rium systems is still in flux. For perhaps the simplest class of

nonequilibrium systems, namely periodically driven (Floquet)

systems, thermalization physics at first glance looks maximally

simple: removing time translation invariance destroys energy

conservation, hence the concept of temperature—which means

thermalization to a featureless “infinite-temperature” state

[2,3].

Such Floquet systems have been predicted to be capable of

sustaining new forms of spatiotemporal ordering when many-

body localized as a result of strong quenched disorder [4]. The

experimental search for such so-called discrete time crystals

has been qualitatively more successful [5,6] than may have

been anticipated: the collection of systems appearing to exhibit

such order now even includes a dense periodic array of nuclear

spins initialized in a thermal state [7].

All of this focuses the inquiry on settings that permit

long-lived correlations and order to persist despite the presence

of periodic driving even in the absence of quenched disor-

der. In periodically driven noninteracting systems, quantum

heating can be suppressed [8–12] and an extensive number

of periodically conserved quantities identified [13]. In turn, a

prethermalization regime has been identified [14] that resem-

bles a frozen nonthermal state [8], which can be described

by a periodic (generalized) Gibbs’ ensemble [13]. Tuning the

drive parameters, and weakening the interactions, can sub-

stantially enhance the prethermalization period, still expected

to remain finite [15–17]. In fact, for disorder-free systems, a

transient but exponentially long-lived regime exhibiting dis-

crete time-crystalline phenomenology has already been iden-

tified [18]. These constitute lower bounds on the thermalization

timescales. For finite-size systems, an emergent integrability

structure for strong drives has also been proposed as a way to

avoid thermalization [19]. There is further evidence indicating

the absence of heating at high drive frequencies in a variety

of other settings [20–29] and in specially designed models

[30,31].
Here, we address the question of whether there is an

identifiable threshold for the ratio of driving and interaction
strength, below which the system approaches a nontrivial
steady state that depends on the drive and the initial state. We
consider a spin chain subject to strong, but not fast driving,
and we use remanent infinite-time magnetization of an initial
magnetized state as a measure of failure to Floquet-thermalize.
As the driving is increased from low strength, where standard
Floquet thermalization is observed, we find a remarkably
well-defined second regime, in which remanent magnetization
is present even in the infinite-time limit. Its value is given by
the Floquet diagonal ensemble average implied by the initial
state. The location of this threshold moves, but its existence
is stable to variations in state initialization, driving strength,
driving protocol, and driving frequency.

In all cases, however, we are able to identify an emergent
approximately conserved quantity—in the case we discuss
at length, the magnetization itself—which becomes exactly
conserved if the static part of the Hamiltonian is ignored.
Thus, rather than an extensive set of integrals of motion, as is
present in the case of the periodic Gibbs ensemble [13] and the
Floquet many-body localized cases [32–34], all that appears
to be needed to stop the system from heating up indefinitely is
a single, approximately conserved quantity.
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While our numerical investigation on systems up to L = 14

spins naturally limits our capacity to extrapolate these results

to the “thermodynamic” limit, there are indications that this

is not only a finite-size effect. First, in plots of remanent

magnetization versus driving strength, we identify a crossing

point for curves for different L separating the ergodic and the

nonthermal regimes. Second, the set of Floquet eigenstates

exhibiting memory, while accounting only for a vanishing

fraction of the total Hilbert space, extrapolates to have a

finite entropy in the thermodynamic limit. This means that

such states can still be straightforwardly selected by an initial

condition, not unlike initializing a static system in a low-

temperature configuration.

In the following, first we set the notation and provide a

brief introduction to the Floquet concepts we have used. We

then define our model and drive protocol. We characterize the

ergodic and the nonthermal phases and the threshold between

them using various measures, and we demonstrate robustness

to variations of drive patterns and system parameters. We close

with an outlook and suggestions for further investigations. In

particular, the origin and nature of the sharp features in the

memory as a function of driving strength merit further study.

II. FLOQUET BASICS

Let us decompose the time-dependent Hamiltonian H (t)

into a static interacting Hamiltonian H0 and a time-periodic

drive HD(t) with [H0,HD] �= 0:

H (t) = H0 + HD(t). (1)

The time evolution operator evolving a state through a

period from t = ǫ to t = ǫ + T (0 � ǫ < T ) is U (ǫ). Since

U (ǫ) is unitary, it can always be expressed in terms of a

Hermitian operator, the “Floquet Hamiltonian” Heff, as

U (ǫ) = e−iHeff(ǫ). (2)

Formally,

exp [−iHeff(ǫ)] = T exp

(

−i

∫ ǫ+T

ǫ

dt H (t)

)

, (3)

where T denotes time-ordering. Let |μi〉 denote the ith

“Floquet eigenstate” of Heff corresponding to the “Floquet

eigenvalue” (also known as quasienergy) μi .

A sequence of stroboscopic observations at instants t =

ǫ,ǫ + T , . . . ,ǫ + nT (integer n) is identical to that produced

by the dynamics under the time-independent Hamiltonian Heff.

This applies for every ǫ, hence we get a continuous family of

stroboscopic series.

In the following, we are interested in long-time asymptotic

behavior, so that temporal variations within a driving period

are of secondary importance. Hence, we arbitrarily pick ǫ = 0.

A. Infinite-time limit: Diagonal ensemble average

The nature of the asymptotic state under the drive can be

understood as follows. Consider an initial state,

|ψ(0)〉 =
∑

i

ci |μi〉,

and the stroboscopic time series for an observable,

Ô =
∑

i,j

Oij |μi〉〈μj |,

〈ψ(nT + ǫ)|Ô|ψ(nT + ǫ)〉 =
∑

i,j

cic
∗
jOije

−i(μi−μj )(nT +ǫ).

(4)

As in the case of static Hamiltonians, under quite general

and experimentally relevant conditions (see, e.g., Ref. [35]), at

long times (n → ∞) the off-diagonal (i �= j ) terms “average

to zero” and the state of the system can hence be described

by an effective “diagonal ensemble” (in the absence of syn-

chronization, e.g., for discrete time crystals, this is replaced

by a block diagonal ensemble [36]). This is captured by

the mixed density matrix [37] ρ̂
DE

=
∑

i |ci |
2|μi〉〈μi |. Thus,

the asymptotic properties of a periodically driven system are

effectively given by a classical average (known as the diagonal

ensemble average, or DEA) over the expectation values of the

eigenstates of Heff,

〈Ô〉(DEA) =
∑

i

|ci |
2〈μi |Ô|μi〉. (5)

Hence it is sufficient to study the nature of the eigenstates and

eigenvalues of Heff, or equivalently of U (ǫ), in order to obtain

the long-time behavior.

III. THE DRIVE PROTOCOL AND THE MODEL

In this section, we introduce the notation, model Hamilto-

nian, drive protocol, and observables to be studied. We consider

L spins on a chain. We chose a binary drive protocol, which

switches periodically between a pair of rectangular pulses. The

time-dependent Hamiltonian is

H (t) = H0 + sgn(sin ωt) HD, (6)

with the two components

H0 =−J
∑

i

σ x
i σ x

i+1+κ
∑

i

σ x
i σ x

i+2−hx
0

L
∑

i

σ x
i −hz

L
∑

i

σ z
i ,

(7)

HD = −hx
D

L
∑

i

σ x
i . (8)

The σ α are Pauli matrices. For the results in the main text,

we have chosen J = 1, κ = 0.7, hz = 1.2, and hx
0 = 0.02. We

use a periodic boundary condition, but tamper the boundary

slightly by setting JL,1 = 1.2J and κL−1,1 = 1.2κ to break

translational invariance (and hence remove any remaining

block-diagonal structure of the Hamiltonian). Here since we

keep the interaction strengths constant during the drive, we use

the drive amplitude itself as the tuning parameter. We have cho-

sen our drive frequency ω = 0.1 unless stated otherwise

explicitly.

In the presence of the transverse field, the Hamiltonian H0 is

known to be ergodic due to the four-fermionic interaction terms

arising from the next-nearest-neighbor interactions under the
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FIG. 1. Freezing and its onset threshold. Left frame: Stroboscopic time series of magnetization mx(t) for different driving strengths showing

initial-state memory for strong driving. The inset zooms in on the long-time behavior; the black horizontal line denotes the DEA of the

magnetization. Middle frame: Remnant magnetization as a function of driving strength for different system sizes. The high-field regime (top

inset) shows an increase of the remnant magnetization with L. The bottom inset shows the DEA of mx vs drive amplitude for a “generic”

state (see the text for details) whose net initial magnetization is marked with the horizontal line, which remains almost unchanged for very

strong drives. Right frame: Same data as the middle frame on a doubly logarithmic plot for 1 − mx(DEA). The deviation away from almost

complete thermalization gets steeper and moves toward the right with increasing system size. The curves appear to accumulate from the left at

a “threshold point” (T), which itself appears to move little as the system size is increased from L = 11 to 14.

spin to fermion mapping, and also due to the longitudinal field.

We have explicitly verified that H0 is ergodic for our case [38].

We initialize the simulation in the time domain with differ-

ent initial states. Unless otherwise stated, we use the default

choice of the ground state of H (t = 0).

IV. NUMERICAL RESULTS

The central quantity is the longitudinal magnetization

mx(t) =
1

L

L
∑

i

〈ψ(t)|σ x
i |ψ(t)〉. (9)

We monitor its real-time dynamics in a stroboscopic time

series. We diagnose nonthermalization/freezing via its long-

time asymptotic behavior, the remnant magnetization, which

we study as a function of various model parameters.

A. Onset of Floquet thermalization

In the following, we provide numerical evidence that for

a strong (but not fast) drive, the system fails to Floquet-

thermalize, instead retaining memory of its initially magne-

tized state. We then show that the onset of Floquet thermaliza-

tion occurs at a fairly well-defined threshold driving strength.

The stroboscopic time series for the magnetization mx is

shown in Fig. 1, left frame. Already at short times, three

representative trajectories for different driving strengths show

strikingly different behavior. While for weak driving fields,

the magnetization disappears almost immediately, for stronger

ones the decay slows down. Finally, for hx
D beyond a threshold

value, the decay is arrested: even at the longest times, a remnant

magnetization persists.

This remnant magnetization agrees with the DEA of the

magnetization evaluated for the same system (see the inset).

Note that the nonvanishing DEA is already in itself a signature

of the lack of Floquet thermalization—in general, Floquet-

thermalized eigenstates individually show no nontrivial corre-

lations.

To locate the onset, the DEA of mx as a function of the drive

amplitude hx
D is plotted in Fig. 1, middle frame. A threshold

for nonzero remnant magnetization is observed, separating the

ergodic (mx
DE ≈ 0) from the nonergodic regime.

The lower inset shows freezing for an initial state with a

reduced polarization in the x direction. The black dotted line

shows the initial value of mx for the state, and the curve shows

that for high enough hx
D , the DEA of mx almost coincides with

it. In detail, this initial state is given as |ψ0〉 =
∑2L

i=1 ci |ix〉,

where |ix〉 is the ith eigenstate of the longitudinal field part

(computational basis states in the x direction, or x-basis states),

by choosing Re[ci] and Im[ci] from a uniform distribution

between −1 and +1, multiplying them by eβmx
i , where β > 0

and mi
x is the longitudinal magnetization of |ix〉, and finally

normalizing the state. This gives a “generic” state with a bias

toward positive longitudinal magnetization. For the plot in

Fig. 1 (middle frame), we have chosen a random instance

corresponding to β = 1.75. The right frame of Fig. 1 shows the

DEA of 1 − mx on a doubly logarithmic log-log plot zoomed

in around the threshold for better visibility.

B. Floquet eigenstates and an emergent conservation law

1. Localization and magnetization

We now turn to the properties of the Floquet eigenstates

obtained by numerically diagonalizing the time evolution

operator U (0), Eq. (2). We consider first their “localization” in

Hilbert space, followed by their magnetization content.

To investigate the localization properties of the Floquet

states in the x basis {|ix〉}, we calculate the inverse par-

ticipation ratio (IPR) in said basis defined as IPR(|μj 〉) =
∑2L

i=1 |〈ix |μj 〉|
4. The left frame of Fig. 2 shows the IPR

thus obtained, arranged in decreasing order. Indefinite heating

corresponds to the states being delocalized in the eigenbasis of

any local operator, which implies a uniformly small IPR given

by the inverse dimension of Hilbert space, 1/DH . This is indeed

what is observed for small drive fields. By contrast, for large

drive fields, states appear that have an IPR close to 1, which

indicates the presence of well-localized states, and hence the

absence of Floquet thermalization for the corresponding part

of the spectrum.
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FIG. 2. Emergent conservation law for strong drives, as reflected in the Floquet eigenstates |μi〉. Left frame: Values of the IPR in the x

basis, arranged in decreasing order. Unbounded heating requires these states to be delocalized in the eigenbasis of any local operator. This is

the case for the drive with amplitude below the threshold (hx
D = 10,) but not above (hx

D = 18,40,60). The inset shows a decreasing IPR for

different system-sizes for hx
D = 40 due to the emergent conservation law evidenced in the middle frame: mx for the Floquet eigenstates arranged

in decreasing order, for different values of hx
D . Black dotted lines (hx

D = ∞) show the values of mx of the x-basis states (multiplied by a factor

of 1.4 for visibility). For hx
D = 40, clear steplike structures appear, indistinguishable from the steps of mx for x-basis states for both system

sizes L = 10,14 (see [38] for finer details of the L dependence of this matching). For a lower drive value hx
D = 18, close to the threshold, the

curve smoothes out, indicating weakening of the quasiconservation, yet highly polarized Floquet states are still substantial in number. For still

lower values (e.g., hx
D = 10), the curve finally flattens. The pronounced asymmetry in the Floquet magnetizations for lower values of hx

D is due

to the small asymmetry in the drive. Right frame: The log of the number Nc of Floquet eigenstates with polarization above a given value mc

is shown to grow approximately exponentially with system size, corresponding to (a vanishing fraction of states but with a) finite entropy. For

large hx
D (hx

D = 40), the numerical data points fall almost exactly on the analytically calculated results (black dotted lines) corresponding to

hx
D = ∞ (see the matching of the steplike structures in the middle frame). For a lower value hx

D = 18, a linear fit is done for the numerical data

points.

Complementary information can be gleaned by considering

the correlations encoded in the nonergodic states. The middle

frame of Fig. 2 shows the magnetization of different Floquet

eigenstates, mx
i , ordered according to their size. In the ergodic

regime, these curves are featureless and mx
i is uniformly

tiny, showing a tendency to increase with increasing drive

strength. Deep into the nonergodic regime, large values of mx
i

appear, which together form plateaus. For the largest drives

hx
D , the plateaus correspond to essentially an integer number

of spin flips, which indicates that the new basis is close to the

computational basis in the x direction mentioned above. As the

drive is decreased, the plateaus give way to a smooth curve,

which, however, still makes a large excursion toward mx = ±1

before assuming the featureless shape of the ergodic regime.

While the fraction of Floquet states with a magnetization

above a certain value is thermodynamically vanishing, their en-

tropy is nonetheless finite (see Fig. 2, middle and right frames).

This is analogous to the case of a finite-temperature ensemble

of a magnet in a field, where a nonzero magnetization arises as

a thermodynamically vanishing fraction of magnetized states is

preferentially populated, with their energy gain compensating

for the entropy loss involved in concentrating the probability

density on them. Here, the selection of the magnetized Floquet

states arises via the state initialization. It is interesting to note

that in this 1D system there would be no magnetization at any

finite temperature: the observation of a finite magnetization at

finite energy density is purely a nonequilibrium effect.

2. Emergence of mx as a local quasiconserved quantity

We next address what we believe is the central feature

underpinning the nonthermalization, namely the existence of

a conserved quantity in the drive Hamiltonian in isolation. In

our example, this is the magnetization in the x direction, mx ,

which persists as a quasiconserved quantity even when the ratio

of drive to static components of the Hamiltonian is finite.

The middle frame of Fig. 2 shows the value of mx for

the different Floquet eigenstates arranged by their size. For

the strongest drives, the steps in this quantity are identical

to the ones of the computational basis states in the x basis,

i.e., the steps simply reflect the number of spins flipped.

The static part of the Hamiltonian then mixes the states

with the same value of mx , which is reflected in the nontrivial

distribution of the IPR of the Floquet states (left frame of

Fig. 2). The growth of the size of each mx sector (except for

the fully polarized one) is in turn reflected in a decrease of

the IPR.

For lower driving strengths, hx
D = 18, the steps get washed

out, but the range of mx continues to span practically the

full range in the interval between −1 and 1. This feature

disappears below the threshold, hx
D = 10, where the curve

flattens substantially.

While the fraction of Floquet states with a nonzero mag-

netization density vanishes with system size, these states

nonetheless have nonzero entropy (Fig. 2, right panel), as is

the case for magnetized states of a paramagnet generally.

The emergent quasiconserved nature of mx , along with

the straightforward possibility of initializing the system in a

magnetized state, account for the main features of the results

discussed in this work.

C. Robustness against variation of model

and protocol parameters

We first address the existence of the onset for variants of the

above model. We note that so far, no fine-tuning was necessary.
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FIG. 3. Remnant magnetization in various settings. Top left: Dependence of a DC transverse field hz that does not commute with the other,

mutually commuting, terms of the model. hz enhances thermalization (upper inset). The response approximately scales with hx
D/hz (main

panel); in particular, the estimated threshold hx
D

∗ is approximately proportional to hz (lower inset). Top right: Robustness of freezing with

respect to the addition of a DC field hx
0 . Bottom left: Freezing for uneven division of the total drive period. For 0 � t < rT , hx

D = +40 while for

rT � t < T , hx
D = −40, where r = 1/(golden ratio). Deep freezing minima persist to high driving strengths but show little size dependence.

Bottom right: Behavior for the initial state chosen as the ground state of the nonintegrable undriven part H0, with hz and hx
0 chosen to created

an initial state with a small positive polarization mx(0) ≈ 0.373 90. For large hx
D , freezing increases somewhat with L.

The central demand was for the drive amplitude hx
D to be the

largest scale, while the other parameters of the Hamiltonian

were chosen all to be in the same ballpark.

1. Role of the noncommuting term

First, the location of the thermalization threshold can be

moved by varying the strength of the term in the static

Hamiltonian H0, which does not commute with the driving

Hamiltonian HD . Indeed, the top left frame of Fig. 3 shows

that the threshold driving field is approximately proportional

to the static transverse field strength hz.

2. Drive shape and initial state

Also, we ask whether the “symmetry” of having a vanishing

mean drive of zero for symmetric pulse shapes about zero is an

important ingredient. Figure 3, top right frame, shows that the

freezing is quite robust to the addition of a dc field of strength

hx
0 . Indeed, the freezing actually grows with hx

0 .

Next, we consider a deviation of the drive protocol away

from a time-symmetric switch in the sign of the driving

term to one where more time is spent for one sign than the

other (Fig. 3, bottom left frame). While the latter case has

considerably more structure at high drives, in particular an

apparently regular suppression of the remnant magnetization

even above the onset threshold, the former curve basically acts

as a high-magnetization envelope of the latter.

Further, we consider an initial state prepared as the ground

state of a many-body problem (rather than a more simply

prepared polarized state). This displays (Fig. 3, bottom right

frame) all the salient features observed with the simply polar-

ized ground state in Fig. 1, right frame.

3. Drive frequency

What is particularly worth emphasizing is that the noner-

godic behavior is not a high-frequency phenomenon. While

such freezing also exists in the limit of a driving frequency in

excess of the many-body bandwidth of the finite-size system,

it is not even the case that the nonergodicity necessarily grows

with frequency. This is illustrated in Fig. 4, where the remnant

magnetization is, if anything, more robust at small driving

frequencies.

This is intriguing since at lower drive frequencies, Magnus-

type high-frequency expansions are divergent. Hence, this is

an example of the breakdown of a Magnus expansion which is

not associated with unbounded heating.
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FIG. 4. Dependence of the remnant magnetization on the drive

frequency ω for L = 14 initialized with the ground state of H (0). The

basic morphology (in particular, the two regimes and the threshold)

remains the same over two decades in frequency. The freezing de-

creases as ω is increased, with the threshold only varying slowly with

ω. The inset shows mx vs ω for hx
D = 10 (outside the frozen regime)

and hx
D = 40, where the weakening of freezing with increasing ω is

evident.

D. Finite-size behavior

Our results indicate that an absence of thermalization in this

driven interacting system might persist even in the infinite-size

limit. While there are some dips of the freezing strength in

the nonergodic regime complicating a sharp identification of

a threshold, the onset nonetheless appears to sharpen with

increasing system size. A closer view of the nonergodic regime

(Fig. 1, middle frame, top inset) shows the smooth behavior

of the remnant magnetization for the largest fields; this in

fact grows with increasing system size. By contrast, for weak

drives, the remnant magnetization tends to decrease with

system size. This results in a crossing point as the curves

for different system sizes of the deviation of the remnant

magnetization from its initial value (Fig. 1, right frame) thus

approximately cross at the threshold point. While it is hard

entirely to rule out a slow drift to higher fields of the threshold

with increasing system size, these observations suggest the

possibility of a sharp transition at a finite threshold field in the

thermodynamic limit.

Next, and most importantly, the step structures in the mx

of the Floquet states are almost indistinguishable from that of

the x-basis states for all system sizes we investigated (Fig. 2,

middle frame). This absence of a system-size dependence

indicates that at large values of hx
D , the drive does not mix the

x-basis states of different mx values. A decrease in the fraction

of Floquet states with mx > mc with system size is not because

in larger systems the Floquet states are more delocalized

between different magnetization sectors, but merely because

the number of x-basis states in a given magnetization sector

changes with the system size. Delocalization between different

magnetization sectors is suppressed strongly for all system

sizes at hand for hx
D above the threshold. This is in keeping

with the observations that on different types of initial states,

Figs. 1 and 3, the freezing at the highest frequencies does not

decrease with system size, and it gives a further indication that

our results are not merely finite-size effects.

1. Ergodicity with and without driving

Though our results from various directions point toward

the absence of thermalization in the thermodynamic limit, a

limited many-body quantum finite-size numerical study cannot

guarantee that. In this context, it is interesting to note that

there has been a series of studies on ergodicity breaking

in quantum systems in the context of quenches by Rigol

and collaborators [39–41]. In these studies, rather than a

time-dependent system, the properties of the eigenstates of

a static local Hamiltonian are investigated as a function of

integrability breaking parameters. These studies illustrate the

importance of going to large system sizes in order to see ergodic

behavior emerge. By contrast, in our case the static part of the

Hamiltonian, H0 [Eq. (8)], is already ergodic for the system

sizes studied [38].

A question that arises naturally, therefore, is whether it is

possible to induce nonergodic behavior by driving an ergodic

system. This is indeed possible, as exhibited by the famous

problem of a periodically driven quantum kicked rotator (see,

e.g., [42] and references therein), where energy absorption is

bounded by quantum interference even where the static system

is chaotic (ergodic). Analogous phenomenology cannot be

ruled out in a many-body system in principle, and indeed it

is that question that has partly motivated this work [43].

V. DISCUSSION

We have studied the onset of Floquet thermalization in a

driven interacting spin chain. We have found a fairly sharp

threshold for the drive strength, above which Floquet ther-

malization does not take place. The threshold value varies in

different manners with parameters such as pulse shape, drive

frequency, or the (noncommuting) transverse field strength, but

the freezing persists robustly under all these variations. The

question of the existence of such a threshold is of fundamental

importance, with a related issue appearing for classical dynam-

ical systems, where the Kolmogorov-Arnold-Moser theorem

deals with the onset of chaotic behavior upon breaking of

integrability.

An open question concerns the origin, and in particular the L

dependence, of the dips in the frozen component even beyond

the threshold in the mx versus hx
D plots: the dips touching

the x axis correspond to points of thermalization. While their

occurrence for certain discrete values of hx
D has no significant

consequence, if their number diverges with L, this may lead

to a destruction of the frozen regime. For drives with pulse

durations evenly placed about T/2, the dips disappear rapidly

with increasing hx
D . Such dips are, however, observed to persist

even for very strong amplitudes for the case of drive with

uneven division of the drive period (Fig. 3, bottom left). In

this case, the total drive period is divided into two parts, T/GR

and T (1 − 1/GR), where GR is the Golden ratio. While the

depth of the dips seems to increase with L, their number and

locations remain surprisingly independent of L, which points

against their proliferation. Regarding an extrapolation to the
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thermodynamic limit, we refer to our discussion at the end of

the previous section.

Comparison of the magnetization and IPR of the Floquet

states in the frozen regime allows one to conclude that the

magnetization itself plays the role of a quasiconserved quantity,

which becomes exactly conserved in the limit of infinitely

strong driving. However, the emergence of only a single

conserved quantity does not rule out nontrivial steady states, as

can be gleaned from the structure of Floquet eigenstates in the

frozen regime: these states have definite mx values, yet they

are not fully localized in the x basis. It is also interesting to

note that a single local conserved quantity such as mx does

not preclude a nonlocal Heff, yet it is sufficient to result in a

nonthermal Floquet spectrum.

While our driving term in isolation is integrable, it appears

that the existence of a conserved quantity is all that is required

for the existence of the frozen regime. A study of a noninte-

grable drive with an emergent conservation law is therefore an

obvious item for future work.

This nonergodicity is not a high-frequency phenomenon.

Instead, it is particularly well-developed at lower driving

frequencies, which a priori renders attempts to construct a

Magnus-type high-frequency expansion problematic. Instead,

nonergodicity is primarily associated with strong driving.

Note that for the driving term in isolation, the instantaneous

eigenvectors of the Hamiltonian are time-independent, while

the instantaneous eigenvalues change; this suggests the devel-

opment of a perturbation theory controlled by the instantaneous

gap, rather than a high frequency. It would also be interesting

to investigate the connections of this problem to the case of

weakly driven interacting systems with approximate conser-

vation laws [44].

The role of emergent conservation laws may in particular

be important for experimental studies of driven many-body

systems. Indeed, a first sighting of the physics we have

analyzed here has occurred in the context of an experiment

of Floquet many-body localization [26], where the possibility

of a finite threshold for delocalization was also noted for the

low-disorder limit. The main ingredient we have identified,

namely an emergent conservation law, turns out also to have

been present in that situation. Analogously, for the searches

of time crystals taking place at present, it will be interesting

to investigate if emergent conservation laws do, or can, play a

role there as well.

Finally, while periodic driving is expected to heat a system

and hence delocalize it, drive-induced destructive quantum

interference can produce just the opposite effect. A competition

of these might result in unexpected freezing behavior, as has

been observed in a quantum counterpart of classically chaotic

systems, namely in the kicked rotators (see, e.g., [42]). Such

a suppression of heating [43] might not be impossible in

a quantum many-body system in which interactions lead to

ergodicity. An absence of unbounded heating under periodic

driving could be a step in that direction, and the availability of

emergent approximate conservation laws may turn out to be a

useful ingredient for many-body Floquet engineering.
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