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The relaxation of a spatially sinusoidal temperature perturbation in a dielectric crystal at a temperature
comparable to or higher than the Debye temperature is investigated theoretically. We assume that most phonons
contributing to the specific heat have a mean free path (MFP) much shorter than the thermal transport distance
and can be described by the thermal diffusion model. Low-frequency phonons that may have MFP comparable
to or longer than the grating period are described by the Boltzmann transport equation. These low-frequency
phonons are assumed to interact with the thermal reservoir of high-frequency phonons but not with each other.
Within the single mode relaxation time approximation, an analytical expression for the thermal grating relaxation
rate is obtained. We show that the contribution of “ballistic” phonons with long MFP to the effective thermal
conductivity governing the grating decay is suppressed compared to their contribution to thermal transport at long
distances. The reduction in the effective thermal conductivity in Si at room temperature is found to be significant
at grating periods as large as 10 μm.

DOI: 10.1103/PhysRevB.84.195206 PACS number(s): 66.70.−f, 63.20.−e, 44.10.+i

I. INTRODUCTION

Thermal transport at small distances is an area of active
research.1–8 In dielectrics and semiconductors heat is carried
predominantly by phonons, and thus the relationship between
the phonon mean free path (MFP) and the length scale of
heat transfer determines whether thermal transport follows
the classical thermal diffusion model. The “textbook” room
temperature MFP obtained from a simple kinetic model9 is in
the tens of nanometers range even for good heat conductors
such as silicon. According to this simplistic view, deviations
from the Fourier law at room temperature (RT) would only be
expected at distances below ∼100 nm.

In reality, describing phonon transport by a single number
for the MFP (the so-called gray-body approximation) is an
oversimplification of the problem. For any length scale there
will be phonons of low enough frequency that propagate
ballistically rather than diffusively. The question is whether the
deviation from the diffusive transport for these low-frequency
phonons produces a measurable effect in a given experimental
configuration. The issue of the onset of nondiffusive thermal
transport is not only of theoretical interest, but also of
considerable practical importance in areas such as thermal
management of micro- and nanoelectronic devices.2

The problem of nondiffusive phonon transport at small
distances has been the subject of extensive theoretical
work.6–8,10,11 However, two obstacles have made it difficult to
produce results that could be quantitatively compared to room
temperature experimental data. The first factor has been the
lack of reliable information on frequency-dependent phonon
lifetimes. Until very recently, lifetime information was ob-
tained by fitting thermal conductivity data with multiparameter
Callaway- or Holland-type models.12,13 Significant progress
in this area has now been achieved with the emergence of
first-principles calculations of thermal conductivity free of
fitting parameters.8,14–17 As will be shown below, quantitative
discrepancies between different models still persist; however,
the models invariably point to a large role for low-frequency
phonons. For example, according to Henry and Chen,15

phonons with MFP exceeding 1 μm contribute about 40%
to room-temperature thermal conductivity of Si.

Another obstacle has been the gap between theoretical
models and experimental configurations. The model favored
by theoreticians is that of thermal transport through a slab of
material between two blackbody walls.6–8,10,11 Reproducing
this model experimentally is extremely challenging, since
there are no true phonon blackbody walls and any real
interface between two materials involves thermal boundary
resistance which by itself presents a long-standing problem
in nanoscale thermal transport.1,18 Thermal measurements
across a slab with a fine depth resolution present yet another
challenge. Typically, experimental configurations for studying
nondiffusive effects in thermal transport at room temperature
are not easily subjected to rigorous theoretical analysis, and
experimentalists have resorted to simple models based on a
modified diffusion theory.3–5

An experimental technique for measuring thermal transport
in a simple enough geometry to admit a rigorous theoretical
treatment does in fact exist under various names including
laser-induced transient thermal gratings or impulsive stimu-
lated thermal scattering (ISTS).19,20 In this method, two short
laser pulses of central optical wavelength λopt are crossed
in a sample resulting in an interference pattern with period
L = λopt/2sin(θ/2) defined by the angle θ between the
beams. Absorption of laser light leads to a spatially periodic
temperature profile, and the decay of this temperature grating
through thermal transport is monitored via diffraction of a
probe laser beam. If the grating period is smaller than the
absorption depth of the excitation light, thermal transport
is nearly one dimensional and, in a single crystal sample,
no interfaces are involved. In addition, a spatially sinusoidal
temperature profile facilitates theoretical analysis, as will be
shown below. Studying thermal transport on nanometer-length
scales with transient gratings requires optical wavelengths
in the UV or deep UV range, which entails experimental
challenges. On the other hand, measurements on ∼1 μm scale
pose no difficulty and can be done with conventional laser
sources in the visible range.20
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In this paper, nondiffusive phonon transport in thermal
grating relaxation at temperatures on the order of or higher
than the Debye temperature �D is studied theoretically. Our
focus will be on the onset of nondiffusive transport; the grating
period will be assumed to be much larger than MFPs of optical
and high-frequency acoustic phonons that provide the main
contributions to the specific heat. As an example, we will
consider grating periods >1 μm in silicon at room temperature
(RT).

The main challenge for theoretical analysis of nondiffusive
thermal grating decay is the wide range of phonon MFPs,
as phonons contributing significantly to thermal conductivity
may have their MFP longer than, shorter than, or comparable
to the grating peak-null distance L/2 over which the heat
is transferred, and the transport may vary from purely ballistic
to purely diffusive over the phonon spectrum. One approach
to handling the wide MFP range is to solve the problem in
the “gray-body” approximation, i.e., for a fixed MFP, and then
integrate over the phonon spectrum as if phonons of different
frequencies contributed to thermal transport independently.11

This approach may be well warranted when the phonon MFP
is dominated by elastic scattering processes such as isotope,
defect, or grain boundary scattering. However, in single
crystal Si and many other materials at room temperature, the
dominant scattering mechanism is three-phonon scattering.21

Thus a more accurate model should include interactions among
different parts of the phonon spectrum.

The situation can be simplified significantly if we focus
our attention on the onset of nondiffusive transport. Low-
frequency phonons with MFP on the order of or longer than
∼1 μm in Si at RT may contribute significantly to thermal
conductivity but they contribute very little to the specific heat
due to their low density of states. Most thermal energy sits
in the high-frequency phonon modes with short MFP which
can be modeled as a “thermal reservoir” with locally defined
temperature and diffusive transport. The concept of separating
the phonon spectrum into low- and high-frequency parts goes
back to the “two-fluid” model of thermal conductivity.22 More
recently, a “two-channel” model breaking the phonon transport
into purely diffusive and purely ballistic components has been
applied to the analysis of thermal conductivity in transient ther-
moreflectance measurements.3,4 In our model, low-frequency
phonons will not be assumed to be purely ballistic. Rather,
they will be described by the Boltzmann transport equation
(BTE) that can handle ballistic, diffusive, and intermediate
transport regimes. The high-frequency phonons in the “thermal
reservoir,” on the other hand, will be described by the thermal
diffusion equation.

The paper is organized as follows: Sec. II presents the
model and main equations; in Sec. III, thermal grating decay
is analyzed and the equation for the “correction factor”
describing the reduction in the effective thermal conductivity
as a function of grating period L is obtained and compared with
the results of a two-channel model; in Sec. IV an analytical
formula for the reduction in the effective thermal conductivity
is derived assuming a quadratic frequency dependence of
low-frequency phonon lifetimes; in Sec. V a correction due
to the Akhiezer mechanism of phonon dissipation at sub-
THz frequencies is considered; finally, Sec. VI presents the
conclusions of the study.

II. THE MODEL

We consider a one-dimensional thermal grating created at t

= 0 by short laser pulses crossed in an unbounded material. The
details of the laser energy transfer to the lattice are outside the
scope of our analysis. In a typical experiment, lased energy
is initially absorbed by the electronic subsystem. In many
cases, such as intraband carrier relaxation in semiconductors,
at least part of the electronic excitation energy is transferred
to the lattice on a time scale of ∼1 ps,23 hence starting with
a spatially sinusoidal phonon population at t = 0 is not an
unrealistic model.

The classical thermal diffusion equation leads to a well
known result for the relaxation of the thermal grating with a
spatially sinusoidal profile of the temperature perturbation,19

T = T0 exp

(
− λ

C
q2t

)
cos(qx), (1)

where q = 2π /L is the “wave number” of the thermal grating,
λ is the thermal conductivity, and C is the specific heat per unit
volume. In Si at RT, in the range of thermal grating periods L

= 1–10 μm, the grating decay time according to the diffusion
model varies between about 0.3 and 30 ns.

Let us now divide the phonon spectrum into two subsys-
tems: “thermal reservoir” phonons above some frequency ω0

responsible for most of the specific heat, and low-frequency
acoustic phonons below ω0. The thermal reservoir phonons
will have MFP much shorter than the grating period, and
thermal transport within the thermal reservoir will be described
by the diffusion equation. For the low-frequency part no
simplifying assumptions will be made: It will include phonons
with MFP greater, on the order of, and shorter than the grating
period, and will be described by the BTE. We will see that the
exact choice of ω0 is unimportant and that our results do not
depend on ω0.

The thermal reservoir will be characterized by the tempera-
ture T whereas the low-frequency subsystem will be described
by the phonon density distribution n(ω,μ), where ω is the
frequency and μ is the unit vector representing the wave
vector direction.24 We will assume that the thermal grating
is a small perturbation and hence T and n will denote small
deviations from the background equilibrium temperature and
phonon density distribution. n(ω,μ) is comprised of three
sheets corresponding to the three acoustic phonon branches,
while all optical modes, as well as high-frequency parts of
acoustic branches are included in the thermal reservoir.

For both low-frequency and thermal reservoir parts we will
adopt the single mode relaxation time approximation (RTA)
that was much criticized in the past21 but is now viewed as
adequate for temperatures on the order of or higher than �D.
Recent first-principles calculations of the thermal conductivity
of Si14–16 indicated the validity of RTA above ∼100 K. Within
RTA, lattice thermal conductivity is given by an integral over
the phonon spectrum,25

λ = 1

3

∫ ωmax

0
cωv�dω, (2)

where cω is the differential frequency-dependent specific heat
per unit volume, v(ω) is the phonon group velocity, and �(ω)
is the frequency-dependent phonon MFP equal to the product
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of the velocity v and the relaxation time τ (ω). Here and in the
following, in order to simplify the notations, summation over
phonon branches is implied without an explicit summation sign
whenever an integration over phonon frequency is performed.
Equation (2) implies that the phonon group velocity and
relaxation time are isotropic; however, this assumption is
only essential for deriving the final analytical results and the
extension of the analysis to a general anisotropic case would
be straightforward.

At temperatures on the order of or higher than �D, phonon
lifetime is determined mainly by phonon-phonon scattering.
We will assume that the low-frequency phonons interact with
the thermal reservoir of high-frequency phonons while the
interactions between low-frequency phonons can be neglected.
The latter assumption is justified for two reasons: (i) There are
fewer low-frequency phonons due to their lower density of
states; (ii) the matrix element governing three-phonon scatter-
ing is larger for scattering events involving high-frequency
phonons.17,26,27 Thus the dominant relaxation channel for
low-frequency phonons is three-phonon scattering involving
one low-frequency phonon and two high-frequency phonons
from the thermal reservoir.22 In other words, relaxation of
low-frequency phonons occurs via their absorption or radiation
by the thermal reservoir.

Under the above assumptions, the two subsystems and their
interaction in the course of one-dimensional thermal transport
are described by the following coupled equations:

C
∂T

∂t
= λr

∂2T

∂x2
+

∫
dμ

∫ ω0

0
dω

n − n0(T )

τ
h̄ω,

(3)
∂n

∂t
+ vx

∂n

∂x
= n0(T ) − n

τ
.

Here λr is the thermal conductivity of the thermal reservoir
given by

λr = 1

3

∫ ωmax

ω0

cωv�dω, (4)

and n0(T ) is the low-frequency phonon distribution in equi-
librium with the local temperature T . For a small temperature
variation,

n0(T ) = 1

4π

cω

h̄ω
T . (5)

The integral in the first line of Eq. (3) represents the rate of
the energy loss (gain) by the thermal reservoir due to radiation
(absorption) of low-frequency phonons.

III. ANALYSIS OF THERMAL GRATING DECAY

The Boltzmann transport equation is notoriously difficult
to solve even in simple cases such as steady-state transport
between two blackbody walls.25,28 The difficulty lies in the
fact that the phonon distribution function n depends not only
on time and coordinate but also on frequency and wave vector
direction. The assumption that low-frequency phonon modes
interact with the thermal reservoir but not with each other
significantly simplifies the problem: We will see that phonons
at different frequencies and wave vector directions contribute
additively to the thermal grating decay. In this section, we

present a physically intuitive treatment of the problem, while
a more rigorous analysis can be found in the Appendix.

Let us consider the interaction of the thermal reservoir with
a subgroup of low-frequency phonons comprising phonons of
a specific (longitudinal or transverse) branch at a particular
frequency ωi and propagating in some specific direction μ(i)

and the opposite direction, –μ(i). The distribution function
n is now comprised of two values, n+ and n−, describing
phonon populations moving in the +μ(i) and –μ(i) directions,
respectively. Equation (3) now takes the form

C
∂T

∂t
= λr

∂2T

∂x2
+ n+ − n0(T )

τ
h̄ωi + n− − n0(T )

τ
h̄ωi,

∂n+
∂t

+ vx

∂n+
∂x

= n0(T ) − n+
τ

, (6)

∂n−
∂t

− vx

∂n−
∂x

= n0(T ) − n−
τ

,

where vx = μ(i)
x v. Introducing new variables

FS = (n+ + n−)h̄ωi,
(7)

FD = (n+ − n−)h̄ωi,

and using Eq. (5), we obtain the following representation of
Eq. (6):

C
∂T

∂t
= λr

∂2T

∂x2
− cω

2πτ
T + 1

τ
FS,

∂FS

∂t
+ vx

∂FD

∂x
= cω

2πτ
T − 1

τ
FS, (8)

∂FD

∂t
+ vx

∂FS

∂x
= − 1

τ
FD.

For a thermal grating with the grating wave number q,
we assume a sinusoidal spatial dependence exp(iqx) of all
variables, which reduces Eq. (8) to a set of ordinary differential
equations for the amplitudes:

∂T

∂t
= − 1

C

(
λrq

2 + cω

2πτ

)
T + 1

τC
FS,

∂FS

∂t
= cω

2πτ
T − 1

τ
FS − iqvxFD, (9)

∂FD

∂t
= −iqvxFS − 1

τ
FD.

Decay rates γ controlling the dynamics of the system are
found by equating the determinant to zero:

det

∣∣∣∣∣∣∣
− 1

C

(
λrq

2 + cω

2πτ

) − γ 1
τC

0
cω

2πτ
− 1

τ
− γ −iqvx

0 −iqvx − 1
τ

− γ

∣∣∣∣∣∣∣ = 0. (10)

Let us assume, initially, that the relaxation time τ is much
shorter than the thermal grating decay time. In this case, we
should expect the system dynamics to be comprised of a fast
rearrangement on the time scale of τ followed by a slow decay.
If we are only interested in the slow dynamics, we can set
(1/τ+γ ) = 1/τ , which leads to the following result:

γ = −λrq
2

C
− cω

2πτC

q2v2
xτ

2

1 + q2v2
xτ

2
. (11)
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The second term is the contribution of the low-frequency
phonons to the decay rate. If the phonon MFP is much smaller
than the grating period, qvxτ�1, the denominator in the
second term of Eq. (11) is close to unity. We will see that in
this case the correction to the decay rate is in agreement with
the diffusion model. The opposite case, qvxτ�1, corresponds
to the ballistic limit.

Now let us consider what happens if τ is on the order of or
larger than the thermal grating relaxation time 1/γ . Under the
assumptions of Sec. II, the thermal grating decay time must
be much longer that the phonon time-of-flight over a distance
L/2π , hence γ�qv. Indeed, the grating decay time on the
order of 1/qv would imply that the heat is carried at the speed
of sound, which is only possible if all phonons are ballistic.
For example, at L = 10 μm Eq. (1) yields γ∼3 × 107 s−1

(we will see that the actual decay rate is smaller) whereas
qv exceeds 3 × 109 s−1 for both transverse and longitudinal
acoustic phonons. Consequently, phonons whose lifetime is on
the order of or longer than the grating decay time ought to be
ballistic, with qvτ>1. Thus if τ�1/γ , then both γ and 1/τ in
Eq. (10) can be assumed small compared to qvx . In this case,
Eq. (10) yields the result

γ = −λrq
2

C
− cω

2πτC
, (12)

which coincides with the ballistic limit of Eq. (11).
According to Eq. (11), low-frequency phonons contribute

additively to the thermal grating decay rate. Thus in order to
account for the interaction of the thermal reservoir with phonon
subgroups corresponding to different frequencies and angles,
we add their respective contributions by integrating over angle
and frequency:

γ = −λrq
2

C
−

∫ ω0

0
dω

∫
dμ

cω

2πτC

q2v2
xτ

2

1 + q2v2
xτ

2

= −λrq
2

C
− 1

C

∫ ω0

0
dω

∫ π/2

0
sin θdθ

cω

τ

q2v2τ 2 cos2 θ

1 + q2v2τ 2 cos2 θ
.

(13)

A more rigorous derivation of Eq. (13) is presented in
the Appendix. The integration over θ is only from 0 to π /2
because each phonon subgroup includes phonons traveling
in both +μ(i) and –μ(i) directions. Assuming that v and τ

are independent of θ (here is one place where the isotropic
approximation is essential), this integration can be performed
analytically with the following result:

γ = −λrq
2

C
− 1

C

∫ ω0

0
dω

cω

τ

[
1 − arctan(q�)

q�

]
, (14)

where the product vτ has been replaced by the phonon MFP
�. Thus the effective thermal conductivity is given by

λeff =
∫ ωmax

ω0

1

3
cωv2τdω +

∫ ω0

0

cω

τq2

[
1 − arctan(q�)

q�

]
dω.

(15)
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FIG. 1. (Color online) Correction factor A vs the product of the
grating wave number and phonon mean free path. The solid curve was
calculated according to Eq. (18) while the dashed curve was obtained
from the “stitching model,” Eq. (23).

If the MFP is much smaller than the grating period, q��1,
expansion of the arctangent in a Taylor series leads to the
following result:

1 − arctan(q�)

q�
� 1

3
q2�2, (16)

and the two integrands in Eq. (15) become equal. Therefore the
effective conductivity can be represented by a single integral:

λeff = 1

3

∫ ωmax

0
Acωv�dω, (17)

where the correction factor A is given by

A(q�) = 3

q2�2

[
1 − arctan(q�)

q�

]
. (18)

The dependence of A on q� is shown by the solid curve in
Fig. 1. At q��1 the correction factor becomes unity, hence the
contribution of the “diffusive” phonons to the effective thermal
conductivity is, as expected, consistent with Eq. (2). At q��1
the correction factor drops down as (q�)−2 which means that
the contribution of low-frequency “ballistic” phonons to λeff

is strongly suppressed compared to Eq. (2). The result is
a reduction in the effective thermal conductivity due to the
reduced contribution of ballistic phonons.

A. Ballistic limit and stitching model

Let us consider a “two-channel” model3,4 where all phonons
below ω0 are assumed to be ballistic. The thermal grating decay
rate for this case can be obtained from Eq. (14) assuming
ballistic limit q��1 for the low-frequency phonons. It is
instructive to obtain the same result directly from Eq. (3)
using intuitive physical considerations. Since ballistic phonons
travel over a distance much larger than the grating period,
they redistribute energy uniformly over peaks and nulls of the
thermal grating. Once a ballistic phonon has been radiated, its
energy is lost as far as the thermal grating is concerned. Thus
the “grating” component of the ballistic phonon population
is at all times zero, and their radiation (absorbtion) rate,
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according to Eq. (3), is given simply by n0(T )/τ . Making use
of Eq. (5), we get the following equation for the temperature
of the thermal reservoir:

C
∂T

∂t
= λr

∂2T

∂x2
−

∫ ω0

0
dω

cωT

τ
. (19)

Assuming a sinusoidal spatial dependence of the temper-
ature given by exp(iqx), we arrive at an ordinary differential
equation yielding a relaxation rate

γ = −λrq
2

C
− 1

C

∫ ω0

0

cω

τ
dω. (20)

As expected, exactly the same result can be obtained from
Eq. (14) in the ballistic limit q��1.

The effective thermal conductivity is now given by

λeff =
∫ ωmax

ω0

1

3
cωv2τdω +

∫ ω0

0

cω

q2τ
dω, (21)

with the first term representing the diffusive and the second
the ballistic contribution. We can now “stitch” diffusive and
ballistic contributions by requiring that at ω = ω0 both
integrands in Eq. (21) be equal. We get

�(ω0) =
√

3

q
. (22)

Thus ω0 is now not arbitrary but determined by the stitching
condition for each phonon branch. Equation (21) can be
represented in the form of Eq. (17) with the correction factor
given by

Astitch(q�) =
{

1 if q� <
√

3

3 (q�)−2 if q� >
√

3
. (23)

The dashed curve in Fig. 1 represents the correction factor
according to the two-channel stitching model. Naturally it
yields the same results as Eq. (18) in the ballistic and
diffusive limits; however, the stitching model overestimates
the contribution of the intermediate range phonons with q�∼1
to the effective thermal conductivity.

IV. REDUCTION IN THE EFFECTIVE THERMAL
CONDUCTIVITY

Equation (17) solves the problem of finding the thermal
grating decay rate provided that the phonon density of states,
group velocity, and relaxation time for all phonon branches
are known. For Si at room temperature, these quantities have
been calculated in recent first-principles studies.8,14–17

To make further progress in the analytical treatment of the
problem, we take advantage of the fact that the total thermal
conductivity λ is normally well known from experiment. Thus
instead of calculating λeff according to Eq. (17) it would suffice
to calculate the reduction in the effective thermal conductivity
due to nondiffusive transport:

�λ = λ − λeff = 1

3

∫ ωmax

0
(1 − A)cωv2τdω. (24)

The advantage of using Eq. (24) as compared to Eq. (17)
is that the factor (1–A) is significantly nonzero only at low
frequencies where the calculations can be simplified.

TABLE I. Low-frequency phonon lifetime factors and MFPs at
1 THz at RT according to Henry and Chen (Ref. 15) and Ward and
Broido (Ref. 16).

Henry and Chen Ward and Broido
(Ref. 15) (Ref. 16)

al (10−17 s) 2.34 1.60
at (10−17 s) 6.11 2.50
�l at 1 THz (μm) 9 13
�t at 1 THz (μm) 2.4 5.9

To derive an analytical expression for the onset in the
reduction of the thermal conductivity, let us assume that
the low-frequency phonons are nondispersive and that the
relaxation time depends quadratically on frequency:15–17

τl,t = 1

al,tω2
, (25)

where subscripts l and t refer to the longitudinal and
transverse branches, respectively. At low frequency and high
temperatures, the average thermal energy per phonon mode is
kBT , and the differential frequency-dependent specific heat is
given by the product of the Boltzmann constant kB and the
low-frequency density of states:

cω = kBω2

2π2v3
l,t

. (26)

The reduction in the effective thermal conductivity is now
given by

�λ = kB

6π2

∑
l,t

1

al,t vl,t

∫ ωmax

0

[
1 − A

(
qvl,t

al,tω2

)]
dω, (27)

where the summation over the phonon branches is now in-
corporated explicitly. Since the integrand is only substantially
nonzero at low frequencies, we can extend the integration to
+∞, with the following result:

�λ = ηkBq1/2

6π2

∑
l,t

1

a
3/2
l,t v

1/2
l,t

,

(28)

η =
∫ ∞

0
dx

[
1 − 3x4 + 3x6 arctan

(
1

x2

)]
� 0.951.

Table I presents values of coefficients al,t for Si at RT
obtained by Henry and Chen15 and Ward and Broido16 by
fitting first-principles calculation data. Values of the MFP at
ω/2π = 1 THz are also presented. One can see that there
is some discrepancy between low-frequency phonon lifetime
factors in the two studies, even though both yielded the
correct value for the total thermal conductivity. Evidently, an
accurate determination of frequency-dependent phonon MFP
in the absence of direct experimental measurements is still a
challenge for theory.

The solid curves in Fig. 2 show the reduction in the effective
thermal conductivity vs thermal grating period calculated with
Eq. (28) using lifetime factors from Table I and velocity values
vl = 8.4 × 103 m/s and vt = 5.8 × 103 m/s. We see that
at a grating period as large as 10 μm the model predicts
a significant reduction in the effective thermal conductivity,
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FIG. 2. (Color online) Effective thermal conductivity reduction
in Si at RT vs thermal grating period calculated with the analytical
Eq. (28) (solid curves) and corrected for Akhiezer relaxation at low
frequencies (dashed curves). Pairs of curves labeled H and W were
calculated with phonon lifetime factors taken from Henry and Chen
(Ref. 15) and Ward and Broido (Ref. 16), respectively.

18% based on Ref. 15 and 45% based on Ref. 16 (since the
model is only valid for the onset of nondiffusive transport,
large reduction figures may be, of course, inaccurate). It can
be shown that for a sinusoidal temperature profile the average
distance of the heat transfer is equal to L/π . Therefore at L =
10 μm the effective heat transport length is ∼3 μm. According
to Ref. 15, phonons with MFP over 3 μm contribute 24% to
the thermal conductivity of Si at RT. Thus our result is not far
from a crude estimate obtained by cutting off the contribution
of phonons with MFP larger than the heat transfer length.3

V. EFFECT OF AKHIEZER RELAXATION AT SUB-THz
FREQUENCIES

According to Eq. (28), the reduction in the effective
thermal conductivity is inversely proportional to L1/2. Thus
a measurable effect is expected to be still present at grating
periods as large as 1 mm. A similar square root dependence
on the heat transfer distance can be seen in the results of
numerical calculations of the cross-plane thermal conductivity
of thin films8 which predicted a similarly early onset of the size
effect at RT, with ∼10% reduction in the thermal conductivity
expected for a 100-μm-thick Si film. However, the square root
dependence on L results from the assumption that the quadratic
dependence of the phonon lifetime on frequency according to
Eq. (25) can be extrapolated to arbitrarily low frequencies.
This assumption is known to be wrong: In the sub-THz
range, there is a transition in phonon-phonon interaction from
the Landau-Rumer (three-phonon scattering) to the Akhiezer
relaxation mechanism,27 and the frequency dependence of the
phonon lifetime strongly deviates from the quadratic one.29

Figure 3 shows experimental data on longitudinal phonon
lifetime compiled by Daly et al.29 alongside the quadratic
dependence according to Henry and Chen.15 At ultrasonic
frequencies (∼1 GHz and below), the dependence is also
quadratic;27 however, there is a disconnect of about three
orders of magnitude between ultrasonic data and extrapolated
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FIG. 3. (Color online) Frequency dependence of the longitudinal
phonon lifetime in Si at RT: Experimental data from Ref. 29 (symbols)
fitted by the Akhiezer relaxation model (thin solid curve); quadratic
dependence from the thermal conductivity model15 (dashed line);
total relaxation time according to Eq. (30) (thick gray curve).

thermal conductivity models. There must be a transition
between the two regimes and, indeed, measurements at
frequencies of 20–100 GHz29,30 indicated that this transition
occurs in the sub-THz range. Currently we do not have any
experimental data above 100 GHz tracing the transition into
the THz range. For the purposes of the current study we will
construct a simple model describing the transition between
the two regimes. At frequencies below 100 GHz, the phonon
lifetime is determined by the Akhiezer mechanism and can be
modeled by a relaxation-type equation:27,29

τA = τinf

(
1 + 1

τ 2
thω

2

)
, (29)

where the relaxation time τth is on the order of the characteristic
lifetime of dominant thermal phonons. With τ inf = 5.5 ns and
τ th = 14 ps we can reasonably fit the experimental data, as
shown in Fig. 3. We will now combine Eqs. (29) and (25)
using a Matthiessen-type rule to estimate the total longitudinal
phonon lifetime τ l :

1

τl

= 1

τA
+ 1

τtc
, (30)

where τ tc = 1/alω
2. The resulting dependence shown by the

gray curve in Fig. 3 provides a smooth transition between the
Akhiezer relaxation governing low-frequency behavior and
three-phonon scattering dominant at high frequencies.

For transverse phonons, only low-frequency lifetime data
at ∼1 GHz and below are available. To estimate transverse
phonon lifetime within the Akhiezer relaxation model, we
adjust the value of τ inf in Eq. (29) to fit the experimental
transverse lifetime data while leaving the relaxation time τ th

unchanged. Since the low-frequency transverse lifetime is
about five times longer that the longitudinal lifetime,31 we
simply increase τ inf fivefold to 27.5 ns. An equation similar to
Eq. (30) is then used to estimate the total transverse lifetime.
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Now that we have a model for low-frequency behavior of
phonon lifetimes τ l,t , we can calculate the effective thermal
conductivity reduction by an equation similar to Eq. (27), but
without making use of Eq. (25):

�λ = kB

6π2

∑
l,t

1

vl,t

∫ ∞

0
[1 − A(qvl,t τl,t )]ω

2τl,t dω. (31)

The results of this calculation are shown by dashed curves
in Fig. 2. We see that accounting for the Akhiezer mechanism
results in a small correction with respect to the total thermal
conductivity; however, now no size effect is seen at L =
1 mm, due to the reduction in the phonon MFP at sub-THz
frequencies.

VI. CONCLUSIONS

We used to think of heat transport at small distances in terms
of the transition from diffusive to ballistic transport depending
on the relationship between an average MFP and the distance
scale.10 For phonon-mediated thermal transport, this picture is
inadequate due to the wide range of phonon MFPs involved.
Rather, one needs to simultaneously consider phonons with
MFPs smaller, larger, and on the order of the distance scale. To
describe the onset of nondiffusive transport, we have proposed
a model in which high-frequency phonons responsible for most
of the specific heat are described by the thermal diffusion equa-
tion whereas the low-frequency phonons are described by the
Boltzmann transport equation. The coupled equations of the
model have been solved analytically for the transient grating
configuration with a sinusoidal temperature distribution. We
have shown that the contribution of the ballistic phonons to
thermal transport in this configuration is reduced compared
to the predictions of the thermal diffusion model, leading to
a reduction in the effective thermal conductivity. Thus the
onset of the size effect is expected to manifest itself in a
reduction in the diffusive transport rate rather than a transition
to ballistic transport. Assuming a quadratic dependence of
the low-frequency phonon lifetime on frequency, we obtained
an analytical formula for the reduction in the effective thermal
conductivity, which yields an L−1/2 dependence on the grating
period. In silicon at RT, the thermal conductivity reduction
is expected to be significant for grating periods as large as
10 μm. For very large periods this result needs to be corrected
by accounting for a reduced phonon lifetime in the sub-THz
range due to the Akhiezer dissipation mechanism. However, at
L ∼ 10 μm the correction is small and our analytical formula
is expected to be adequate. The analysis presented here lays
the groundwork for studying size effects in phonon transport
by the transient thermal grating method.
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APPENDIX

Let us consider the interaction of the thermal reservoir with
all phonon subgroups. Then Eq. (9) will turn into an infinite set
of equations. Assuming an exponential temporal dependence
exp(γ t) of all variables, we get[

− 1

C

(
λrq

2 +
∑

i

c(i)
ω

2πτi

)
− γ

]
T +

∑
i

1

τiC
F

(i)
S = 0

· · ·
c(i)
ω

2πτ
T −

(
γ + 1

τi

)
F

(i)
S − iqv(i)

x F
(i)
D = 0, (A1)

−iqv(i)
x F

(i)
S −

(
γ + 1

τi

)
F

(i)
D = 0,

· · ·

where the summation over i is equivalent to an integration over
solid angle and frequency and the bottom pair of equations is
repeated an infinite number of times. The coefficient matrix of
this system of linear equations is block diagonal, except for the
first row and the first column, and hence easy to diagonalize.
This block-diagonal form is the consequence of the assumption
that low-frequency modes do not interact with each other. It
is straightforward to exclude each pair of variables F

(i)
D and

F
(i)
S using the respective pair of equations, which leads to the

following equation for decay rates:

γ = − 1

C
λrq

2 −
∑

i

c(i)
ω

2πCτi

γ 2 + γ

τi
+ [

qv(i)
x

]2

(
γ + 1

τi

)2 + [
qv

(i)
x

]2 . (A2)

We are only interested in the slow dynamics with γ�qv,
as explained in Sec. III. Under this assumption Eq. (A2) takes
the form

γ = − 1

C
λrq

2 −
∑

i

c(i)
ω

2πCτi

γ

τi
+ [

qv(i)
x

]2

1
τ 2
i

+ [
qv

(i)
x

]2 , (A3)

which leads to the following result:

γ

{
C +

∑
i

c(i)
ω

2π

1

1 + [
qv

(i)
x τi

]2

}

= −λrq
2 −

∑
i

c(i)
ω

2πτi

[
qv(i)

x τi

]2

1 + [
qv

(i)
x τi

]2 . (A4)

The sum
∑

i c(i)
ω /(2π ) is the total specific heat of the low-

frequency phonons. Since this is assumed to be negligible
compared to the specific heat of the thermal reservoir, the
correction to the specific heat on the left-hand side of Eq. (A4)
can be neglected, yielding the final result:

γ = −λrq
2

C
− 1

C

∑
i

c(i)
ω

2πτi

[
qv(i)

x τi

]2

1 + [
qv

(i)
x τi

]2 . (A5)

Replacing the summation by the integration over frequency
and angle results in Eq. (13).
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