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Abstract Consider the cubic nonlinear Schrödinger equation set on a d-
dimensional torus, with data whose Fourier coefficients have phases which
are uniformly distributed and independent. We show that, on average, the evo-
lution of the moduli of the Fourier coefficients is governed by the so-called
wave kinetic equation, predicted in wave turbulence theory, on a nontrivial
timescale.

Contents

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 788
1.1 The Kinetic equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 788
1.2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 790
1.3 The difficulties of the problem . . . . . . . . . . . . . . . . . . . . . . . . . . . 791
1.4 The main result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 792
1.5 Notations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 794

2 The general result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 795
2.1 The Equidistribution parameter ν . . . . . . . . . . . . . . . . . . . . . . . . . . 796
2.2 The Strichartz parameter θd . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 796

B J. Shatah
shatah@cims.nyu.edu

1 Department of Mathematics, Princeton University, 304 Washington Rd, Princeton NJ
08544, USA

2 Courant Institute of Mathematical Sciences, 251 Mercer Street, New York 10012,
USA

3 Department of Mathematics, University of Michigan, 530 Church St, Ann Arbor MI
48109, USA

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00222-021-01039-z&domain=pdf


788 T. Buckmaster et al.

2.3 The approximation theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 797
3 Formal derivation of the kinetic equation . . . . . . . . . . . . . . . . . . . . . . . . 797
4 Feynman trees: bounding the terms in the expansion . . . . . . . . . . . . . . . . . . 802

4.1 Expansion of the solution in the data . . . . . . . . . . . . . . . . . . . . . . . . 802
4.2 Bound on the correlation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 806
4.3 Cancellation of degenerate interactions . . . . . . . . . . . . . . . . . . . . . . . 807
4.4 Estimate on non-degenerate interactions . . . . . . . . . . . . . . . . . . . . . . 808

5 Deterministic local well-posedness . . . . . . . . . . . . . . . . . . . . . . . . . . . 815
5.1 Strichartz estimate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 815
5.2 A priori bound in Zs

T and energy . . . . . . . . . . . . . . . . . . . . . . . . . . 816
5.3 Existence theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 818

6 Improved integrability through randomization . . . . . . . . . . . . . . . . . . . . . 821
7 Proof of the main theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 823
8 Number theoretic results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 825

8.1 Identifying main terms vs error terms . . . . . . . . . . . . . . . . . . . . . . . . 828
8.2 Asymptotic formula on a coarse scale . . . . . . . . . . . . . . . . . . . . . . . 831
8.3 Bourgain’s theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 833
8.4 Proof of Theorem 8.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 847

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 853

1 Introduction

1.1 The Kinetic equation

The central theme in the theory of non-equilibrium statistical physics of
interacting particles is the derivation of a kinetic equation that describes the
distribution of particles in phase space. The main example here is Boltzmann’s
kinetic theory: rather than looking at the individual trajectories of N -point par-
ticles following N−body Newtonian dynamics, Boltzmann derived a kinetic
equation that described the effective dynamics of the distribution function in
a certain large-particle limit (so-called the Boltzmann–Grad limit).

A parallel kinetic theory for waves, being as fundamental as particles, was
proposed by physicists in the past century.Much like the Boltzmann theory, the
aim is to understand the effective behavior and energy-dynamics of systems
where many waves interact nonlinearly according to time-reversible disper-
sive or wave equations. The theory predicts that the macroscopic behavior
of such nonlinear wave systems is described by a wave kinetic equation that
gives the average distribution of energy among the available wave numbers
(frequencies). Of course, the shape of this kinetic equation depends directly on
the particular dispersive system/PDE that describes the reversible microscopic
dynamics.

The aim of this work is to start the rigorous investigation of such passage
from a reversible nonlinear dispersive PDE to an irreversible kinetic equation
that describes its effective dynamics. For this, we consider the cubic nonlinear
Schrödinger equations on a generic torus of size L (with periodic boundary
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Onset of the wave turbulence description 789

conditions) and with a parameter λ > 0 quantifying the importance of nonlin-
ear effects (or equivalently via scaling, the size of the initial datum):{

i∂t u −�βu = −λ2|u|2u, x ∈ T
d
L = [0, L]d ,

u(0, x) = u0(x).
(NLS)

The spatial dimension is d ≥ 3. Here, and throughout the paper, we denote

�β := 1

2π

d∑
i=1

βi∂
2
i ,

where β := (β1, . . . , βd) ∈ [1, 2]d , and we denoteZ
d
L := 1

L Z
d , the dual space

to T
d
L .

Typically in this theory, the initial data are randomly distributed in an appro-
priate fashion. For us, we consider random initial data of the form

u0(x) = 1

Ld

∑
k∈Z

d
L

√
φ(k)e2π i[k·x+ϑk(ω)], (1.1)

for some nice (smooth and localized) deterministic functionφ : R
d → [0,∞).

The phases ϑk(ω) are independent random variables, uniformly distributed on
[0, 1]. Notice that the normalization of the Fourier transform is chosen so that

‖u0‖L2 ∼ 1.

Filtering by the linear group and expanding in Fourier series, we write

u(t, x) = 1

Ld

∑
k∈Z

d
L

ak(t)e
2π i[k·x+t Q(k)], where Q(k) :=

d∑
i=1

βi (ki )
2.

(1.2)

The main conjecture of wave turbulence theory is that as L → ∞ (large box
limit) and λ2

Ld → 0 (weakly nonlinear limit), the quantity

ρL
k (t) = E|ak(t)|2

converges to a solution of a kinetic equation. More precisely, it is conjectured
that, as L → ∞, t → ∞ and λ2

Ld → 0, then ρL
k (t) ∼ ρ(t, k), where ρ :

R × R
d → R+ satisfies the wave kinetic equation
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790 T. Buckmaster et al.

⎧⎨
⎩
∂tρ = 1

τ
T (ρ) = 1

τ

´

(Rd )3

δ(Σ)δ(Ω)
∏3

i=0 ρ(ki )
[∑3

i=0
(−1)i

ρ(ki )

]∏3
i=0 dki ,

ρ(0, k) = φ(k).
(WKE)

where τ ∼
(

Ld

λ2

)2
, we introduced the convention k0 = k and the notation

{
Σ = Σ(k, k1, . . . , k3) =∑3

i=0(−1)i ki

Ω = Ω(k, k1, . . . , k3) =∑3
i=0(−1)i Q(ki ),

and finally δ(�)δ(�) is to be understood in the sense of distributions: δ(�)

is just the convolution integral over k1 − k2 + k3 = k, whereas δ(� = 0) :=
limε→0

´
ϕ(�

ε
)dk1dk2dk3 for some ϕ ∈ C∞

c (R) with
´
ϕ = 1. Note that this

is absolutely continuous to the surface measure through the formula δ(�) =
1

|∇�|dμ�, with dμ� being the surface measures on {� = 0}.

1.2 Background

In the physics literature, the wave kinetic Eq. (WKE) was first derived by
Peierls [33] in his investigations of solid state physics; it was discovered again
byHasselmann [23,24] in hiswork on the energy spectrumofwaterwaves. The
subject was revived and systematically investigated by Zakharov and his col-
laborators [38], particularly after the discoveryof special power-type stationary
solutions for the kinetic equation that serve as analogs of the Kolmogorov
spectra of hydrodynamic turbulence. These so-called Kolmogorov–Zakharov
spectra predict steady states of the corresponding microscopic system (pos-
sibly with forcing and dissipation at well-separated extreme scales), where
the energy cascades at a constant flux through the (intermediate) frequency
scales. Nowadays, wave turbulence is a vibrant area of research in nonlinear
wave theory with important practical applications in several areas including
oceanography and plasma physics, to mention a few. We refer to [31,32] for
recent reviews.

The analysis of (WKE) is full of very interesting questions, see [16,22,34]
for recent developments, but we will focus here on the problem of its
rigorous derivation. Several partial or heuristic derivations have been put
forward for (WKE), or the closely related quantum Boltzmann equations [1–
3,10,13,17,28,30,36]. However, to the best of our knowledge, there is no
rigorous mathematical statement on the derivation of (WKE) from random
data. The closest attempt in this direction is due to Lukkarinen and Spohn
[29], who studied the large box limit for the discrete nonlinear Schrödinger
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Onset of the wave turbulence description 791

equation at statistical equilibrium (corresponding to a stationary solution to
(WKE)).

In preparation for such a study, one can first try to understand the large box
and weakly nonlinear limit of (NLS) without assuming any randomness in
the data. In the case where (NLS) is set on a rational torus, it is possible to
extract a governing equation by retaining only exact resonances [6,18,20,21].
The limiting equation is then Hamiltonian and dictates the behavior of the
microscopic system (NLS on T

d
L ) on the timescales L2/λ2 (up to a log loss for

d = 2) and for sufficiently small λ. It is worth mentioning that such a result
is not possible if the equation is set on generic tori, since most of the exact
resonances are destroyed there.

Finally, we point out that there are very few instances where the derivation
of kinetic equations has been done rigorously. The fundamental result of Lan-
ford [27], later clarified in [19], deals with the N -body Newtonian dynamics,
from which emerges, in the Grad limit, the Boltzmann equation. This can be
understood as a classical analog of the rigorous derivation on (WKE). Another
instance of such success was the case of random linear Schrödinger operators
(Anderson’s model) [12,14,15,35]. This can be understood as a linear analog
of the problem of rigorously deriving (WKE).

1.3 The difficulties of the problem

There are several difficulties in proving the validity of (WKE) which we now
enumerate:

(a) The textbook derivation of the wave kinetic equation is done under the
assumption that the independence of the data propagates for all time. This
assumption cannot be verified for any nonlinear model. A way around this
difficulty is to Taylor expand the profile ak in terms of the initial data. Such
an expansion can be represented byFeynman trees, and permits us to utilize
the statistical independence of the data in computing the expected value
of |ak |2. Moreover one needs to control the errors in such an expansion
to derive the kinetic equation (WKE). These calculations are presented in
Sects. 4 and 5.

(b) The wave kinetic equation induces an O(1) change on its initial config-
uration at a timescale of τ . Thus we need to establish that for solutions
of (NLS), the expansion mentioned above converge up to time τ . This
requires a local existence result on a timescale which is several orders of
magnitude longer than what is known. This shortcoming is a main reason
why our argument cannot reach the kinetic timescale τ , and we have to
contend with a derivation over timescales where the kinetic equation only
affects a relatively small change on the initial distribution, and as such
coincides (up to negligible errors) with its first time-iterate.
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792 T. Buckmaster et al.

Therefore, a pressing issue is to increase the length of the time interval
[0, T ], over which the Taylor expansion gives a good representation of
solutions to the nonlinear problem. For deterministic data, the best known
results that give effective bounds in terms of L come from our previous
work [6] which gives a description of the solution up to times ∼ L2/λ2

(up to a log L loss for d = 2) and for λ 	 1. Such timescale would be
very short for our purposes.
To increase T , we have to rely on the randomness of the initial data.
Roughly speaking, for a random field that is normalized to 1 in L2(Td

L),
its L∞ norm can be heuristically bounded on average by L−d/2. There-
fore, regarding the nonlinearity λ2|u|2u as a nonlinear potential V u with
V = λ2|u|2 and ‖V ‖L∞ � λ2L−d , one would hope that this should get a
convergent expansion on an interval [0, T ] provided that Tλ2L−d 	 1,
which amounts to T ≤ √

τ . This is the target in this manuscript.
The heuristic presented above can be implemented by relying on
Khinchine-type improvements to the Strichartz norms of a linear solu-
tion eit�β u0 with random initial data u0. Similar improvements have been
used to lower the regularity threshold for well-posedness of nonlinear dis-
persive PDE. Here, the aim is to prolong the existence time and improve
the Taylor approximation. The randomness gives us better control on the
size of the linear solution over the interval [0, T ], while an improved deter-
ministic Strichartz estimate for ‖eit�βψ‖L p([0,T ]×Td ) with ψ ∈ L2(Td),
allows us to maintain the random improvement for the nonlinear problem.
The genericity of the (βi ) is crucial (as was first observed in [11]), and
allows us to go beyond the limiting T 1/p growth that occurs on the rational
torus. Unfortunately, the available estimates here (including those in [11])
are not optimal for some ranges of the parameters λ and L , which is why,
in d = 3, our result in Theorem 1.1 below falls short of the timescale√
τ ∼ L3/λ.

(c) To derive the kinetic equation in the large box limit, using the expansion
for ρL

k (t) = E|ak(t)|2, one has to prove equidistribution theorems for
the quasi-resonances over a very fine scale, i.e., T −1. Since T could be
� L2, such scales are much finer than the any equidistribution scale on
the rational torus. Again, here the genericity of the (βi ) is crucial. For
this we use and extend a recent result of Bourgain on pair correlation for
irrational quadratic forms [5].

1.4 The main result

Precise statements of our results in arbitrary dimensions d ≥ 3 will be given in
Sect. 2. Those statements depend on several parameters coming from equidis-
tribution of lattice points and Strichartz estimates. For the purposes of this
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Onset of the wave turbulence description 793

introductory section, we present a less general theorem without the explicit
appearance of these parameters.

Theorem 1.1 Consider the cubic (NLS) on the three-dimensional torus T
3
L .

Assume that the initial data are chosen randomly as in (1.1). There exists δ > 0
such that the following holds for L sufficiently large and L−A ≤ λ ≤ L B (for
positive A and B):

E|ak(t)|2 = φ(k)+ t

τ
T (φ)(k)+ O�∞

(
L−δ t

τ

)
, Lδ ≤ t ≤ T, (1.3)

where τ = 1
2

(
L3

λ2

)2
and T ∼ L3−γ

λ2
, for some 0 < γ < 1 stated explicitly in

Theorem 2.2.

We note that the right-hand side of (1.3) is nothing but the first time-iterate
of the wave kinetic Eq. (WKE) with initial data φ (cf. (1.1)) which coincides
(up to the error term in (1.3)) with the exact solution of the (WKE) over long
times scales, but shorter than the kinetic timescale τ .

The proof this theorem can be split into three components:

(1) Section 4: Feynman tree representation. In this sectionwe derive the Taylor
expansion of the nonlinear solution in terms of the initial data. Roughly
speaking, we write the Fourier modes of the nonlinear solution ak(t) (see
(1.2)) as follows:

ak(t) =
N∑

n=0

Jn(t, k)(a(0))+ RN+1(t, k)(a(t)),

where Jn are sums of monomials of degree 2n + 1 in the initial data
a(0), and RN is the remainder which depends on the nonlinear solution
a(t). Each term of Jn can be represented by a Feynman tree which makes
the calculations of E(JnJn′) more transparent. Such terms appear in the
expansion ofE|ak |2. The estimates in this section rely on essentially sharp
bounds on quasi-resonant sums of the form∑

k∈Z
rd
L

1(|k| � 1)1(|Q(k)| ∼ 2−A) � 2−A Lrd (1.4)

where 1(S) denotes the characteristic function of a set S and Q is an
irrational quadratic form. Since A will be taken large 2A ∼ T � L2, such
estimates belong to the realm of number theory and will be a consequence
the third component of this work.
The boundswe obtain for such interaction are good up to times of order

√
τ
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794 T. Buckmaster et al.

which is sufficient given the restrictions on the time interval of convergence
imposed by the second component below.

(2) Section 5: Construction of solutions. In this section we construct solu-
tions on a time interval [0, T ] via a contraction mapping argument. To
maximize T while maintaining a contraction, we rely on the Khinchine
improvement to the space-time Strichartz bounds, as well as the long-time
Strichartz estimates on generic irrational tori proved in [11]. It is here
that our estimates are very far from optimal, since there is no proof to the
conjectured optimal Strichartz estimates.

(3) Section 8: Equidistribution of irrational quadratic forms. The purpose of
this section is two-fold. The first is proving bounds on quasi-resonant sums
like those in (1.4) for the largest possible T , and the second is to extract
the exact asymptotic, with effective error bounds, of the leading part of the
sum. It is this leading part that converges to the kinetic equation collision
kernel as L → ∞.
Here we remark, that if Q is a rational form, then the largest A for which
one could hope for an estimate like (1.4) is 2A ∼ L2 which reflects the fact
that a rational quadratic form cannot be equidistributed at scales smaller
than L−2 (at the level of NLS, it would yield a time interval restriction of
T � L2 for the rational torus). However, for generic irrational quadratic
forms, Q is actually equidistributed at much finer scales than L−2. Here,
we adapt a recent work of Bourgain [5] which will allow us to reach
equidistribution scales essentially up to L−d .

1.5 Notations

In addition to the notation introduced earlier forT
d
L = [0, L]d andZ

d
L = 1

L Z
d ,

we use standard notations. A function f on T
d
L and its Fourier transform f̂ on

Z
d
L are related by

f (x) = 1

Ld

∑
Z

d
L

f̂ke2π ik·x and f̂k =
ˆ

T
d
L

e−2π ik·x f (x) dx .

Parseval’s theorem becomes

‖ f ‖2
L2(Td

L )
= ‖ f̂ ‖2

�2L (Z
d
L )

= 1

Ld

∑
k∈Z

d
L

| f̂k |2.
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Onset of the wave turbulence description 795

We adopt the following definition for weighted �p spaces: if p ≥ 1, s ∈ R,
and b ∈ �p,

‖b‖�p,s
L (Zd

L )
=
⎡
⎢⎣ 1

Ld

∑
k∈Z

d
L

(〈k〉s |bk |)p

⎤
⎥⎦
1/p

.

Sobolev spaces Hs(Td) are then defined naturally by

‖ f ‖Hs(Td ) = ‖〈k〉s f̂ ‖�2,s(Zd
L )
.

For functions defined on R
d , we adopt the normalization

f (x) =
ˆ

Rd

e2π iξ ·x f̂ (ξ) dξ and f̂ (ξ) =
ˆ

Rd

e−2π ik·x f (x) dx .

We denote by C any constant whose value does not depend on λ or L . The
notation A � B means that there exists a constant C such that A ≤ C B. We
alsowrite A � Lr+ B, if for any ε > 0 there existsCε such that A ≤ CεLr+ε B.
Similarly A � Lr− B, if for any ε > 0 there existsCε such that A ≥ CεLr−ε B.
Finally we use the notation u = OX (B) to mean ‖u‖X � B.

We would like to thank Peter Sarnak for pointing us to unpublished work
by Bourgain [5]. This reference helped us improve an earlier version of our
work. We also would like to thank Peter and Simon Myerson for many helpful
and illuminating discussions.

2 The general result

Westart bywriting the equations for the interaction representation (ak(t))k∈Z
d
L
,

given in (1.2):

⎧⎪⎪⎨
⎪⎪⎩

i ȧk = −
(

λ
Ld

)2 ∑
(k1,...,k3)∈(Zd

L )
3

k−k1+k2−k3=0

ak1ak2ak3e−2π i tΩ(k,k1,k2,k3)

ak(0) = a0
k = √

φ(k)eiϑk(ω),

(2.1)

wherewe recallΩ(k, k1, k2, k3) = Q(k)−Q(k1)+Q(k2)−Q(k3), andϑk(ω)

are i.i.d. random variables that are uniformly distributed in [0, 2π ]. Our results
depend on two parameters: the equidistribution parameter ν, and a Strichartz
parameter θp, which we now explain.
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2.1 The Equidistribution parameter ν

The interaction frequency Ω(k, k1, k2, k3) above is an irrational quadratic
form. Such quadratic forms can be equidistributed at scales that are much
smaller than the finest scale ∼ L−2 of rational forms.

Wewill denote by ν the largest real number such that for all k ∈ Z
d
L , |k| ≤ 1,

and ε > 0, there exists δ > 0 such that, for |a|, |b| < 1 with b − a ≥ L−ν− ,

∑
a≤Ω(k,k1,k2,k3)≤b

|k1|,|k2|,|k3|≤1
k−k1+k2−k3=0

1 = (1+ O(L−δ))L2d

ˆ

|k1|,|k2|,|k3|≤1

1a≤Ω(k,k1,k2,k3)≤bδ(k − k1 + k2 − k3) dk1 dk2 dk3.

Proposition 2.1 With the above definition for ν, we have

(i) If βi = 1 for all i ∈ {1, . . . , d}, ν = 2.
(ii) If the βi are generic, ν = d.

Proof The first assertion is classical, e.g., see [6]. The second assertion is
proved in Sect. 8. ��

2.2 The Strichartz parameter θd

Our proof relies on long-time Strichartz estimates, which are used to maintain
linear bounds for the nonlinear problem. The genericity of the β’s gives crucial
improvements from the rational case. The improved estimates for generic β’s
were proved in [11],

‖eit�β PNψ‖L p
t,x ([0,T ]×Td ) � N

d
2− d+2

p

(
1+ T

N γ (d,p)

)1/p

‖ψ‖L2(Td )

for some 0 ≤ γ (d, p) ≤ d − 2. The N γ term can be thought of as the time
it takes for a focused wave with localized wave number ≤ N , to focus again.
For the rational torus γ = 0.

Here we only need to use the L4
t,x ([0, T ] × T

d
L) norm, and therefore we

introduce a parameter θd to record how the constant in the L4
t,x ([0, T ] × T

d
L)

estimates depends on L . By scaling, the result in [11] translates into,

‖eit�β Pk≤1ψ‖L4
t,x ([0,T ]×T

d
L )

� L0+
(
1+ T

Lθd

)1/4
‖ψ‖L2(Td

L )
(2.2)
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Onset of the wave turbulence description 797

where θd :=
{

4
13 + 2, d = 3
(d−2)2

2(d−1) + 2, d ≥ 4.

2.3 The approximation theorem

With these parameters defined, we state the approximation theorem for the
cubic NLS in dimension d ≥ 3 and generic β’s.

Theorem 2.2 Assume the β’s are generic and d ≥ 3. Let φ0 : R
d → R

+, a
rapidly decaying smooth function. Suppose that ak(0) = √

φ(k)eiϑk(ω) where
ϑk(ω) are i.i.d. random variables uniformly distributed in [0, 2π ]. For every ε0,
a sufficiently small constant, and L > L∗(ε0) sufficiently large, the following
holds:

There exists a set Eε0,L of measure P(Eε0,L) ≥ 1 − e−Lε0 such that: if
ω ∈ Eε0,L , then for any L > L∗(ε0), the solution ak(t) of (NLS) exists in
Ct Hs([0, T ] × T

d
L) for

T ∼
{
λ−2L

d+θd
2 −4ε0 if L

−d+θd
4 � λ � L

d−θd
4 −2ε0 ,

λ−4Ld−8ε0 if λ ≥ L
d−θd
4 −2ε0 .

Moreover,

E

[
|ak(t)|21Eε0,L

]
= φ(k)+ t

τ
T3(φ)(k)+ O�∞

(
L−ε0

t

τ

)
,

Lε0 ≤ t ≤ T, and τ = L2d

2λ4
.

For d = 3, 4, the solutions exist globally in time [4,26], and one has the
same estimate without multiplying with 1Eε0

inside the expectation.

Here we note that the error could be controlled in amuch stronger norm than
�∞, and that other randomizations of the data are possible (complex Gaussians
for instance) without any significant changes in the proof.

3 Formal derivation of the kinetic equation

In this section, we present the formal derivation of the kinetic equation, whose
basic stepswe shall follow in the proof. The starting point is Eq. (2.1) integrated
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in time,

ak(t) = a0
k + iλ2

L2d

tˆ

0

∑
(k1,k2,k3)∈(Zd

L )
3

k−k1+k2−k3=0

ak1ak2ak3e−2π isΩ(k,k1,k2,k3) ds (3.1)

The derivation of the kinetic equation proceeds as follows:
Step 1: expanding in the data Noting the symmetry in (3.1) in the variables

k1 and k3, we have upon integrating by parts twice, and substituting (2.1) for
ȧk ,

ak(t) = a0
k (3.2a)

+ λ2

L2d

∑
k−k1+k2−k3=0

a0
k1a0

k2
a0

k3

1− e−2π i tΩ(k,k1,k2,k3)

2πΩ(k, k1, k2, k3)

+ 2
λ4

L4d

∑
k−k1+k2−k3=0
k1−k4+k5−k6=0

a0
k4a0

k5
a0

k6a0
k2

a0
k3

1

2πΩ(k, k1, k2, k3)
(3.2b)

[
e−2π i tΩ(k,k4,k5,k6,k2,k3) − 1

2πΩ(k, k4, k5, k6, k2, k3)
− e−2π i tΩ(k1,k4,k5,k6) − 1

2πΩ(k1, k4, k5, k6)

]

+ λ4

L4d

∑
k−k1+k2−k3=0
k2−k4+k5−k6=0

a0
k1a0

k4
a0

k5a0
k6

a0
k3

1

2πΩ(k, k1, k2, k3)
(3.2c)

[
e−2π i tΩ(k,k1,k4,k5,k6,k3) − 1

2πΩ(k, k1, k4, k5, k6, k3)
− e−2π i tΩ(k2,k4,k5,k6) − 1

2πΩ(k2, k4, k5, k6)

]
(3.2d)

+ {higher order terms}. (3.2e)

where we denoted Ω(k, k1, k2, k3, k4, k5) = Q(k) +∑5
i=1(−1)i Q(ki ); we

also used the convention that, if a = 0, e2π i ta−1
2πa = i t , while, if a = b = 0,

1
2πa

(
e2π i t (a+b)−1
2π(a+b) − e2π i ta−1

2πa

)
= −1

2 t2.

Step 2: parity pairing We now compute E|ak |2, where the expectation E is
understood with respect to the random phases (random parameter ω). The key
observation is,

E(a0
k1 . . . a0

ks
a0
�1

. . . a0
�s
) =
{
φk1 . . . φks if there exists a γ such that kγ (i) = �i
0 otherwise.
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(for k ∈ Z
d
L , we write φk = φ(k)). Computing E

(|ak |2
)
with the help of

the above formula, we see that, there are no terms of order λ2. There are two
kinds of terms of order λ4 obtained as follows: either by pairing the term of
order λ2, namely (3.2b), with its conjugate, or by pairing one of the terms of
order λ4, (3.2c) or (3.2d), with the term of order 1, namely a0

k . Overall, this
leads to

E|ak |2(t) = φk + 2λ4

L4d∑
k−k1+k2−k3=0

φkφk1φk2φk3

[ 1
φk

− 1

φk1
+ 1

φk2
− 1

φk3

]∣∣∣ sin(tπΩ(k, k1, k2, k3))

πΩ(k, k1, k2, k3)

∣∣∣2

+ {higher order terms} + {degenerate cases},

where degenerate cases occur for instance if k, k1, k2, k3 are not distinct1. The
details of the computation are as follows:

(a) Consider first E|(3.2b)|2 = E(3.2b)(3.2b), and denote k1, k2, k3 the
indices in (3.2b) and k′

1, k′
2, k′

3 the indices in (3.2b). There are two possi-
bilities:
• {k1, k3} = {k′

1, k′
3}, in which case k2 = k′

2, and Ω(k, k1, k2, k3) =
Ω(k, k′

1, k′
2, k′

3).• (k2 = k1 or k3) and (k′
2 = k′

1 or k′
3), in which caseΩ(k, k1, k2, k3) =

Ω(k, k′
1, k′

2, k′
3) = 0.

Overall, we find, neglecting degenerate cases (which occur if k, k1, k2, k3
are not distinct),

E|(3.2b)|2 = 2λ4

L4d

∑
k−k1+k2−k3=0

φk1φk2φk3

∣∣∣∣sin(π tΩ(k, k1, k2, k3))

πΩ(k, k1, k2, k3)

∣∣∣∣
2

+4λ4

L4d
t2
∑
k1,k3

φkφk1φk2 .

(b) Consider next the pairing of a0
k with (3.2c), which contributes 2ERe[

(3.2c)a0
k

]
. The possible pairings are

• {k, k2} = {k4, k6}, implying k3 = k5, and leading toΩ(k1, k4, k5, k6) =
−Ω(k, k1, k2, k3), and Ω(k, k4, k5, k6, k2, k1) = 0.

• (k3 = k2 or k) and (k5 = k4 or k6) in which case Ω(k, k1, k2, k3) =
Ω(k1, k4, k5, k6) = 0.

1 Degenerate cases, like higher order terms, have smaller order of magnitude, on the timescales
we consider as will be illustrated in Sect. 4.
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This gives, neglecting degenerate cases,

2ERe
[
a0

k (3.2c)
]
= 8λ4

L4d

×
∑

k−k1+k2−k3=0

φkφk2φk3Re

[
e−2π i tΩ(k,k1,k2,k3) − 1

4π2Ω(k, k1, k2, k3)2

]

− 8λ4

L4d
t2
∑
k1,k3

φkφk2φk3

= − 2λ4

L4d

∑
k−k1+k2−k3=0

φkφk1φk2φk

[
1

φk1
+ 1

φk3

] ∣∣∣∣ sin(π tΩ(k, k1, k2, k3))

πΩ(k, k1, k2, k3)

∣∣∣∣
2

− 8λ4

L4d
t2
∑
k1,k3

φkφk2φk3 ,

where we used in the last line the symmetry between the variables k1 and
k3, as well as the identityRe(eiy − 1) = −2| sin(y/2)|2, for y ∈ R.

(c) Finally, the pairing of a0
k with (3.2d) can be discussed similarly, to yield

2ERe
[
a0

k (3.2d)
]
= 2λ4

L4d

∑
k−k1+k2−k3=0

φkφk1φk3

∣∣∣∣ sin(π tΩ(k, k1, k2, k3))

πΩ(k, k1, k2, k3)

∣∣∣∣
2

+ 4λ4

L4d
t2
∑
k1,k3

φkφk2φk3 ,

Summing the above expressions for E|(3.2b)|2, 2ERe[
a0

k (3.2c)
]
and 2ERe

[
a0

k (3.2d)
]
gives the desired result.

Step 3: the big box limit L → ∞Assuming thatΩ(k, k1, k2, k3) is equidis-
tributed on a scale

L−ν 	 1

t
, (3.3)

we see that, as L → ∞,

∑
k−k1+k2−k3=0

φkφk1φk2φk3

[
1

φk
− 1

φk1

+ 1

φk2
− 1

φk3

] ∣∣∣∣sin(π tΩ(k, k1, k2, k3))

πΩ(k, k1, k2, k3)

∣∣∣∣
2

∼ L2d
ˆ

δ(Σ)φkφk1φk2φk3

[
1

φk
− 1

φk1
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+ 1

φk2
− 1

φk3

] ∣∣∣∣sin(π tΩ(k, k1, k2, k3))

πΩ(k, k1, k2, k3)

∣∣∣∣
2

dk1 dk2 dk3.

Step 4: the large time limit t → ∞ Observe that2
´

(sin x)2

x2
dx = π2, so

that, in the sense of distributions,∣∣∣∣sin(π tΩ)

πΩ

∣∣∣∣
2

∼ tδ(Ω) as t → ∞.

Therefore, as t → ∞,

∑
k−k1+k2−k3=0

φkφk1φk2φk3

[
1

φk
− 1

φk1
+ 1

φk2
− 1

φk3

] ∣∣∣∣ sin(π tΩ(k, k1, k2, k3))

πΩ(k, k1, k2, k3)

∣∣∣∣
2

∼ t L2d
ˆ

δ(Σ)δ(Ω)φ(k)φ(k1)φ(k2)φ(k3)[
1

φ(k)
− 1

φ(k1)
+ 1

φ(k2)
− 1

φ(k3)

]
dk1 dk2 dk3

= t L2dT (φ, φ, φ).

Conclusion: relevant timescales for the problem Overall, we find, assuming
that the above limits are justified

E|ak |2(t) = φk + 2
λ4

L2d
tT (φ, φ, φ)+ {lower order terms}. (3.4)

This suggests that the actual timescale of the problem is

τ = L2d

2λ4
,

and that, setting s = t
τ
, the governing equation should read

∂sφ = T (φ, φ, φ) (3.5)

In which regime is this approximation expected? Let T be the timescale over
which we consider the equation.

• In order for (3.4) to hold, the condition (3.3) has to hold, and the limits
L → ∞ and T → ∞ have to be taken: one needs

T 	 Lν, L � 1, and T � 1.

2 This follows from Plancherel’s theorem, and the fact that the Fourier transform of 1
π

sin x
x is

the characteristic function of [− 1
2π , 1

2π ].
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• In order for the nonlinear evolution of (3.5) to affect an O(κ) change on
the initial data, the two conditions above should be satisfied; in addition
T should be of the order of κτ (equivalently s ∼ κ). Thus we find the
conditions

1 	 T ≈ κτ 	 Lν and κ
1
4 Ld/2 � λ � κ

1
4 Ld/2−ν/4.

4 Feynman trees: bounding the terms in the expansion

Since we are considering the problem with rapidly decaying φ, then the rapid
decay of φ yields all the bounds one needs for wave numbers |k| ≥ L0+ , thus
we might as well consider φ to be compactly supported.

4.1 Expansion of the solution in the data

We followmostly the notations in Lukkarinen–Spohn [29], Section 3 (see also
[9]).

The iterates of φ, considered in the previous section, can be represented
through trees (at least up to lower order error terms). To explain these trees, let
us start with the equation satisfied by the amplitude of the wave number ak

ak(t) = a0
k + iλ2

L2d

tˆ

0

∑
(k1,k2,k3)∈(Zd

L )
3

k−k1+k2−k3=0

ak1ak2ak3e−2π isΩ(k,k1,k2,k3) ds,

ak(t) = a0
k + iλ2

L2d

tˆ

0

P3(a)(s)e
−2π isΩ ds.

where the subscript inP3 is to indicate that it is a monomial of degree 3, and
where we suppressed the k dependence for convenience. The expansion can
be obtained by integrating by parts on the oscillating factor e−2π isΩ . Thus the
first integration by parts gives the cubic expansion,

ak(t) = a0
k + iλ2

L2d
P3(a)(0)Ft

0 + iλ2

L2d

tˆ

0

Ṗ3(a)(s)Ft
s ds, Ft

s :=
tˆ

s

e−2π iτΩdτ .

Using the equation for a, we see that Ṗ3(a) consists of three monomials of
degree 5, and if we denote on of them by P5, then the integral term consists
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k3,1

k1,1

k0,1 k0,2 k0,3 k0,4 k0,6 k0,7k0,5

k2,1

k1,2 k1,3 k1,4 k1,5

k2,2 k2,3

s3

s0

s1

s2

+

− +

+

+++

σ = −1

+

+ −

−+ +

−

−

−

�3 = 1, Ω3

�2 = 3, Ω2

�1 = 2, Ω1

level 0

level 2

level 1

level 3

Fig. 1 tree of depth 3

of three integrals of the type,

(
iλ2

L2d

)2 tˆ

0

P5(a)(s)e
−2π isΩ Ft

s ds.

Another integration by parts gives the quintic expansion, which consist of three
terms of the form

(
iλ2

L2d

)2
P5(a)(0)G

t
0 +
(

iλ2

L2d

)2 tˆ

0

Ṗ5(a)(s)G
t
s ds, Gt

s =
tˆ

s

e−2π iτΩ Ft
τ dτ .

Consequently, to compute the expansion to order N we need to integrate by
parts N times on the oscillating exponentials, giving the expansion,

ak(t) =
N∑

n=0

Jn(t, k)(a(0))+ RN+1(t, k)(a(t)), (4.1)

where Jn =∑
�

Jn,�, and each Jn,� is a monomial of degree 2n + 1 generated

by the nth integration by parts. The index � is a vector whose entries keep track
of the history of how themonomialJn,� was generated. RN+1 is the remaining
time integral.

Each Jn,� can be represented by a tree similar to Fig. 1 below. which we
now explain.

The trees will be constructed in reverse order of their usage. Therefore the
labeling of the wave numbers will be done backwards: n − j , 0 ≤ j ≤ n.

The tree corresponding to Jn,�, is given as follows.
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804 T. Buckmaster et al.

• There aren+1 levels in the tree, the bottom level is the 0th level.Descending
from the top to the bottom, each level is generated from the previous level
by an integration by parts step. Thus level j represents the terms present
after n − j integration by parts.

• k j,m denote the wave numbers present in level j , and therefore 1 ≤ m ≤
2(n − j)+ 1.

• k j,m has a parity σm due to complex conjugation. For m odd or even,
σm = +1 or σm = −1 respectively.

ak j,m ,σm =
{

ak j,m if σm = +1

ak j,m if σm = −1
.

• For each level j , we associate a number � j , which signals out the wave
number k j,� j which has 3 branches. This is the wave number of the a (or
ā) that was differentiated by the j th integration by parts. The index vector
�, keeps track of the integration by parts history in the tree for Jn,�. The
entries � j , 1 ≤ j ≤ n, are given by

� = (�1, . . . , �n) ∈ {1, . . . , 2n − 1} × {1, . . . , 2n − 3} × · · · × {1, 2, 3} × {1}.

• The tree has a signature σ� =∏n
j=1(−1)� j+1.

• Transition rules. To go from level j to level j − 1, the wave numbers are
related as follows

⎧⎪⎨
⎪⎩

k j,m = k j−1,m for m < � j

k j,m = k j−1,m+2 for � j < m

k j,� j = k j−1,� j − k j−1,� j+1 + k j−1,� j+2

(4.2)

Note that for any j ,
∑2(n− j)+1

m=1 (−1)m+1k j,m = kn,1 = k. The wave num-
bers at level 0, i.e., those present in Jn,�, are labeled

k = (k0,1, . . . , k0,2n+1) ∈ (Zd
L)

2n+1 .

• At each level j , the derivative of the element with wave number k j,� j (due
to the integration by parts), generates a oscillatory term with frequency

Ω j (k) = (−1)� j+1 (Q(k j,� j )− Q(k j−1,� j )+ Q(k j−1,� j+1)− Q(k j−1,� j+2)
)
.

• We introduce variables s = (s0, . . . , sn) ∈ R
n+1+ ; t j (s) =

j−1∑
k=0

sk , 1 ≤
j ≤ n. This choice of variables can be explained as follows. Repeated
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Onset of the wave turbulence description 805

integration by parts generates terms of the form

tˆ

0

g0(s0)

tˆ

s0

g1(s1) . . .

tˆ

sn−2

gn−1(sn−1)

=
tˆ

0

g0(s0)

t−s0ˆ

0

g1(s0 + s1) . . .

t−s0−···−sn−2ˆ

0

gn−1(s0 + · · · + sn−1)

which can be written as

ˆ

R
n+1+

g0(s0)g1(s0 + s1) . . . gn−1(s0 + · · · + sn−1)δ(t −
n∑

l=0

sl)

With this notation at hand,

J0 = a0
k , J1 = J1,1 = (3.2b), J2 = J2,(1,1) + J2,(2,1) + J2,(3,1),

J2,(2,1) = (3.2d), J2,(1,1) = J2,(3,1) = 1

2
(3.2c),

and Fig. 1 represents J3,(2,3,1). The general formula for Jn,� is given by

Jn,�(t, k) =
(

iλ2

L2d

)n

σ�

∑
k∈(Zd

L )
2n+1

δk
kn,1

2n+1∏
j=1

a0
k0, j ,σ j

ˆ

R
n+1+

n∏
m=1

e−2π i tm(s)Ωm(k)δ

(
t −

n∑
0

si

)
ds (4.3)

Here and throughout the manuscript we write

δk
j =
{
1, k = j,

0, k �= j,

while δ(·) is the Dirac delta.
Finally, we write Rn(t, k)(a) =∑

�

t́

0
Rn,�(t, s0; k)(a(s0))ds0, where

Rn,�(t, s0; k)(b) =
(

iλ2

L2d

)n

σ�

∑
k∈(Zd

L )
2n+1

δk
kn,1

2n+1∏
j=1

bk0, j ,σ j

ˆ

R
n+

n∏
j=1

e−2π i t j (s)Ω j (k)
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×δ

(
t − s0 −

n∑
1

si

)
ds. (4.4)

4.2 Bound on the correlation

Our aim is to prove the following proposition.

Proposition 4.1 If t < Ld−ε0 , then∣∣∣∣∣∣
∑

n+n′=S

∑
�,�′

E(Jn,�(t, k)Jn′,�′(t, k))

∣∣∣∣∣∣ �S (log t)2
(

t√
τ

)S 1

t
. (4.5)

Remark 4.2 The trivial estimate would be that∣∣∣∣∣∣
∑

n+n′=S

∑
�,�′

E(Jn,�(t, k)Jn′,�′(t, k))

∣∣∣∣∣∣ �
(

t√
τ

)S

.

Indeed, Jn,�Jn′,�′ comes with a prefactor
(

λ2

L2d

)n+n′
; the size of the domains

where the time integration takes place is O(tn+n′
); and the summation over k

and k′ is over 2d(n + n′ + 1) dimensions, half of which are canceled by the
pairing (see below), out of which d further dimensions are canceled by the

requirement that kn,1 = k. Overall, this gives a bound
(

λ2

L2d

)n+n′
× tn+n′ ×

Ld(n+n′) =
(

t√
τ

)n+n′
.

Therefore, the above proposition essentially allows a gain of 1
t over the

trivial bound. This gain of 1
t comes from cancelations in the “non degenerate

interactions” as will be exhibited by Eq. (4.13).

Before we start the proof of Proposition 4.1, we shall classify the transitions
(4.2) as degenerate if

k j,� j ∈ {k j−1,� j , k j−1,� j+2},

i.e., if the parallelogram with verticies (k j,� j , k j−1,� j−1, k j−1,� j , k j−1,� j+2)

degenerates into a line. In this caseΩ� j (k) = 0. When all transitions in a tree
that represents Jn,� are degenerate we denote the term by Dn,�(t, k), and if
one transition is non degenerate we denote it by J̃n,�(t, k), that is

Jn,�(t, k) = J̃n,�(t, k)+ Dn,�(t, k) (4.6)
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Dn,�(t, k) =
(

iλ2

L2d

)n

σ�

∑
k∈(Zd

L )
2n+1

δk
kn,1

(1−�(k))
2n+1∏
j=1

a0
k0, j ,σ j

ˆ

R
n+1+

δ
(

t −
n∑
0

si

)
ds

= 2n tn

n!
(

iλ2

L2d

)n

σ�a0
k

∑
k∈(Zd

L )
n

n∏
j=1

|a0
k j
|2, (4.7)

J̃n,�(t, k) =
(

iλ2

L2d

)n

σ�

∑
k∈(Zd

L )
2n+1

δk
kn,1

�(k)
2n+1∏
j=1

a0
k0, j ,σ j

ˆ

R
n+1+

n∏
m=1

e−2π i tm(s)Ωm(k)δ
(

t −
n∑
0

si

)
ds, (4.8)

where�(k) = 1−∏n
j=1 δ

k j,� j
{k j−1,� j +1,k j−1,� j +1+σ j,� j

}. Note that�(k) = 1 when-

ever J̃n,�(t, k) �= 0.

4.3 Cancellation of degenerate interactions

As can be seen froma simple computation in the formula for Dn,�, the contribu-

tion of each E(Dn,�(t, k)Dn′,�′(t, k)) to the sum in (4.5) is of size ∼
(

t√
τ

)S
,

which is too large. Luckily, all those terms cancel out as shows the lemma
below.

Note that this cancellation between graph expectations is essentially due to
the invariance of the expectation E|ak |2 under Wick renormalization, which
is a classical trick in the analysis of the nonlinear Schrödinger equation that
eliminates all degenerate interactions. However, working at the level of graph
expectations might be applicable in more general contexts.

Lemma 4.3 For any S ≥ 2

∑
n+n′=S

∑
�,�′

E(Dn,�(t, k)Dn′,�′(t, k)) = 0.
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Proof First we note that since each level in the tree has parity equal to 1, then

∑
�

σ� =
n∏

j=1

(parity of line j) = (1)n = 1 .

Hence by Eq. (4.7)

∑
�

Dn,�(t, k) = 2n tn

n!
(

iλ2

L2d

)n
⎛
⎜⎝ ∑

k∈(Zd
L )

n

n∏
j=1

|a0
k j
|2
⎞
⎟⎠ a0

k .

Thus we obtain∑
n+n′=S

∑
�,�′

E(Dn,�(t, k)Dn′,�′(t, k))

= 2St S
(

λ2

L2d

)S
⎛
⎜⎝ ∑

k∈(Zd
L )

S

S∏
j=1

|a0
k j
|2
⎞
⎟⎠ |a0

k |2
⎛
⎝ ∑

n+n′=S

in−n′

n!n′!

⎞
⎠ .

The result will follow once we show that

∑
n+n′=S

in−n′

n!n′! = 0.

This follows by parametrizing the above sum as {(n, n′) = (S − j, j) : j =
0, . . . S}, which gives

∑
n+n′=S

in−n′

n!n′! = i S
S∑

j=0

(−1) j

(S − j)! j ! = i S

S!
S∑

j=0

(−1) j S!
(S − j)! j ! = i S

S! (1+ x)S
∣∣
x=−1 = 0.

��

4.4 Estimate on non-degenerate interactions

Proposition 4.1 now follows from the following lemma:

Lemma 4.4 Suppose Gn′,�′(t, k) ∈ {J̃n′,�′(t, k)), Dn′,�′(t, k))}, then for 0 <

t < Ld−ε0 ,

∣∣∣E(J̃n,�(t, k)Gn′,�′(t, k))
∣∣∣ �n (log t)2

(
t√
τ

)n+n′
1

t
.
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k1,1

k0,3k0,1 k0,2

+

− +

−

− −

+ −

k′1,1 k′1,2 k′1,3

k′2,1

k′0,3 = k0,6 k′0,4 = k0,7 k′0,5 = k0,8k′0,2 = k0,5k′0,1 = k0,4

˜J 2,(3,1)

+− −

˜J1,1

+

+

Fig. 2 Relabeling trees

Proof We will only consider the case of Gn′,�′(t, k) = J̃n′,�′(t, k), since the
case Gn′,�′(t, k) = Dn′,�′(t, k)) is easier to bound. Using the identity

δ

(
t −

n∑
0

s j

)
= 1

2π

ˆ
e−iα(t−∑n

j=0 s j ) dα ,

we can write for any (e0, . . . , en) ∈ R
n+1 and η > 0

ˆ

R
n+1+

n∏
j=0

e−is j e j δ

(
t −

n∑
0

si

)
ds = eηt

2π

ˆ

R

e−iαt
n∏

j=0

i

α − e j + iη
dα .

(4.9)

Thus by choosing η = 1
t , we have

J̃n,�(t, k) = ie

2π

(
− λ2

L2d

)n

σ�

∑
k∈(Zd

L )
2n+1

δk
kn,1

�(k)
2n+1∏
j=1

a0
k0, j ,σ j

×
ˆ

e−iαt dα

(α −Ω1 −Ω2 − · · · −Ωn + i
t ) . . . (α −Ωn + i

t )(α + i
t )
.

Here we employed the notation Ω j = 2πΩ j (k).

To bound E(J̃n,�(t, k)J̃n′,�′(t, k)), we will simplify the notation by setting
k0,2n+1+ j = k′

0, j , which also preserves the parity convention. Conse-
quently, we have 2n + 2n′ + 2 wave numbers present in the expression for

E(J̃n,�(t, k)J̃n′,�′(t, k)) (Fig. 2).
Next, since the phases are i.i.d. with mean 0, then only specific paring

of the wave numbers contribute nonzero terms, namely the paring should be
between terms with the same wave number and opposite parity. For this reason
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810 T. Buckmaster et al.

we introduce P = P(n, n′, σ , σ ′) a class of pairings indices and parities, as
illustrated in Fig. 3

P � ψ : {1, . . . , 2n + 2n′ + 2} → {1, . . . , 2n + 2n′ + 2}
⇔ ψ( j) = l ⇒ ψ(l) = j, and σψ( j) = −σ j

Furthermore, we define the pairing of wave numbers induced by ψ ,

Γψ(k, k′) = ∏2n+2n′+2
j=1 δ

k0, j
k0,ψ( j)

. By the independence of the phases ϑk0, j (ω),
we have, ∣∣∣∣∣∣Eω

⎡
⎣2n+1∏

j=1

eiσ0, jϑk0, j (ω)
2n′+1∏
j ′=1

e−iσ0, j ′ϑk0, j (ω)

⎤
⎦
∣∣∣∣∣∣

�
∑
ψ∈P

Γψ(k .k′),

Hence we obtain

∣∣∣E(J̃n,�(t, k)J̃n′,�′(t, k))
∣∣∣ � ( λ2

L2d

)n+n′ ∑
ψ∈P

∑
k∈(Zd

L )
2n+1

k′∈(Zd
L )

2n′+1

Aψ(k, k′)

×
∣∣∣∣
ˆ

e−iαt dα

(α −Ω1 − · · · −Ωn + i
t ) . . . (α −Ωn + i

t )(α + i
t )

×
ˆ

eiα′t dα′

(α′ −Ω ′
1 − · · · −Ω ′

n′ + i
t ) . . . (α

′ −Ω ′
n′ + i

t )(α
′ + i

t )

∣∣∣∣.
where Aψ(k, k′) = δ

kn,1
k δk

k′
n′,1

�(k)�(k′)Γψ(k, k′)
∏2n+1

j=1

√
φ(k0, j )

∏2n′+1
j ′=1√

φ(k′
0, j ′).

By Hölder’s inequality, for any m ≥ 1 and b1, . . . , bn′+1 ∈ R,

ˆ

R

dα′

|α′ − b1 + i
t | . . . |α′ − bm+1 + i

t |
� tm , (4.10)

and applying this bound to the α′ integral yields

∣∣∣E(J̃n,�(t, k)J̃n′,�′(t, k))
∣∣∣ � tn′

(
λ2

L2d

)n+n′ ∑
ψ∈P

∑
k∈(Zd

L )
2n+1

k′∈(Zd
L )

2n′+1

Aψ(k, k′)
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k1,1

k0,3k0,1 k0,2

+

− +

−

− −

+ −

k′1,1 k′1,2 k′1,3

k′2,1

k′0,3 = k0,6 k′0,4 = k0,7 k′0,5 = k0,8k′0,2 = k0,5k′0,1 = k0,4

˜J 2,(3,1)

− −ψ (1) = 4
ψ (2) = 5
ψ (3) = 7
ψ (6) = 8

˜J1,1

+

+

+

I1 I3I2
J1 J2 J3

Fig. 3 Pairing trees

×
∣∣∣∣∣
ˆ

dα

(α −∑n
l=1 Ωl + i

t ) . . . (α −Ωn + i
t )(α + i

t )

∣∣∣∣∣ .
Let p = p(k) be the smallest integer such that kp+1,�p /∈

{kp,�p+1, kp,�p+1+σp+1,�p
}, i.e., in the tree for J̃n,� the transition from level

p + 1 to level p is not degenerate. Note that 0 ≤ p ≤ n − 1, and

∣∣∣E(J̃n,�(t, k)J̃n′,�′(t, k))
∣∣∣ � tn′

(
λ2

L2d

)n+n′ ∑
ψ∈P

∑
k∈(Zd

L )
2n+1

k′∈(Zd
L )

2n′+1

Aψ(k, k′)

×
∣∣∣∣∣
ˆ

dα

(α−∑n
l=p+1 Ωl+ i

t )
p+1 . . . (α −Ωn+ i

t )(α+ i
t )

∣∣∣∣∣=:
∑
ψ

∑
p

Ip,ψ .

We now set

I1 = �p, I2 = �p + 1, I3 = �p + 2, kp = (kp,I1, kp,I2, kp,I3),

J1 = ψ(I1), J2 = ψ(I2), J3 = ψ(I3) .

Note that, by definition of p,

{I1, I2, I3} ∩ {J1, J2, J3} = ∅.

The figure below illustrate all the introduced notations and parings for the
product of two non degenerate terms.

We distinguish three cases depending on the values of the numbers Ji .
Case 1: J1, J2, J3 ≥ 2n + 2 For a fixed p and ψ we sum over all wave

numbers inIp,ψ that yield degenerate transitions, i.e., wave numbers generated
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812 T. Buckmaster et al.

in rows 0 ≤ l ≤ p − 1. This contributes Ldp to the bound,

Ip,ψ � tn′
Ldp
(

λ2

L2d

)n+n′∑∗∑
kp

Aψ(k, k′)

ˆ
dα

|(α −∑n
l=p+1 Ωl + i

t )
p+1 . . . (α −Ωn + i

t )(α + i
t )|

,

where
∑∗ stands for the sum over kp, j , where 1 ≤ j ≤ 2(n − p) + 1 and

j /∈ {I1, I2, I3}, and k′
0, j ′ for 1 ≤ j ′ ≤ 2n′ + 1 with j ′ /∈ {J1, J2, J3}.

The contribution of the above integral is acceptable as long as the denomi-
nator is O(〈α〉−2). Therefore, it suffices to prove the desired bound when the
domain of integration reduces to α ∈ [−R, R], for some R > 0, since the
resonance moduliΩi are bounded. Furthermore by bounding the integrand by

tn−1

|α−Ωp+1−···−Ωn+ i
t ||α+ i

t |
, matters reduce to estimating

tn′+n−1Ldp
(

λ2

L2d

)n+n′∑∗
Aψ(k, k′)

∑
kp

ˆ R

−R

dα

|α −∑n
l=p+1 Ωl + i

t ||α + i
t |

.

(4.11)

By the identity kp+1,I1 − kp,I2 = σp,I1(kp,I3 − kp,I1), this can also be written

tn′+n−1Ldp
(

λ2

L2d

)n+n′∑∗
Aψ(k, k′)

ˆ R

−R

⎡
⎣∑

kp

δ
kp+1,I1
kp,I2+σp,I1 (kp,I3−kp,I1 )

1

|α −∑n
l=p+1 Ωl + i

t |

⎤
⎦ dα

|α + i
t |
,

and since
∑2(n−p)+1

j=1 σp, j k p, j = kn,1 = k, we note that

Ωp+1 + . . .+Ωn = Q(k)−
2(n−p)+1∑

j=1

σp, j Q(kp, j ) =

−σp,I1 Q(kp,I1 )− σp,I3 Q(kp,I3 )− σp,I2 Q(kp+1,I1 − σp,I1 (kp,I3 − kp,I1 ))+ C

(4.12)

where C depends only on k and the variables kp, j with j /∈ {I1, I2, I3}.
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By setting P = kp,I3 and R = kp,I1 , for t < Lν we bound

∑
P,R∈Z

d
L|P|,|R|≤1

1∣∣−Q(P)+ Q(R)− Q(N + P − R)+ C + i
t

∣∣ ,

using the equidistribution result in Sect. 8. If |− Q(P)+ Q(R)− Q(N + P −
R)+ C | ≤ t−1, we have by Corollary 8.5

∑
P,R∈Z

d
L|P|,|R|≤1

1∣∣−Q(P)+ Q(R)− Q(N + P − R)+ C + i
t

∣∣ � t
(

L2d 1

t
+ Ld
)
.

Whereas for | − Q(P)+ Q(R)− Q(N + P − R)+ C | ≥ t−1, we bound

∑
P,R∈Zd

L|P|,|R|≤1

1∣∣−Q(P)+ Q(R)− Q(N + P − R)+ C + i
t

∣∣
�
∑

1
t <2n�1

2−n
∑

|−Q(P)+Q(R)−Q(N+Q−R)+C |∼2n

1 � L2d
∑

1
t <2n�1

1 � L2d log t.

(4.13)

Therefore, we can bound (4.11) by

tn′+n−1Ldp
(

L2d log t + t Ld
)( λ2

L2d

)n+n′∑∗
Γψ(k, k′)

ˆ R

−R

dα

|α + i
t |
,

The sum
∑∗ is over 2(n + n′ − p − 2) variables; however, because of the

pairingΓψ , half of themdrop out, so that the remaining sum is� Ld(n+n′−p−2).

Ans since
´ R
−R

dα
|α+ i

t |
� log t , the above expression can be bounded by,

tn′+n−1
(
(log t)2Ld(n+n′) + t (log t)Ld(n+n′−1)

)( λ2

L2d

)n+n′

,

which gives the stated bound.
Case 2: only two of J1, J2, J3 are ≥ 2n + 2 Suppose for instance that

J2 ≤ 2n+1.Then, there exists I4 ≤ 2(n−p)+1 such thatψ(I4) = J4 ≥ 2n+2
(such an index exists because there is an odd number of elements in the set of
elements in {1, . . . , 2(n − p) + 1} \ {I1, I2, I3, J2}, so they cannot be paired
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together completely). One can then follow the above argument replacing I2 by
I4.

Case 3: two of J1, J2, J3 are ≤ 2n + 1 Assume for instance that J1, J3 ≤
2n + 1 Proceeding as in Case 1, it suffices to bound

tn′
Ldp
(

λ2

L2d

)n+n′∑∗ ∑
kp,I1 ,kp,I3

Aψ(k, k′)

ˆ
dα

|(α −∑n
l=p+1 Ωl + i

t )
p+1 . . . (α −Ωn + i

t )(α + i
t )|

,

where�∗ is the sum over kp, j , with j ∈ {1, . . . , 2(n− p)+1}\{I1, I3, J1, J3},
and over k0, j ′ , with j ′ ∈ {1, . . . , 2n′ + 1}.

A crucial observation is that, since
∑2(n−p)+1

j=1 σp, j k p, j = kn,1 = k, the
wave numbers kp,I1 and kp,I3 do not contribute to this sum since the paring
kp,I1 = kp,J1 and kp,I3 = kp,J3 , causes them to cancel one another. Further-
more, 0 ≤ p ≤ n − 2 since J1, J3 ≤ 2n + 1, and therefore we bound the
integrand by tn−1

|α−Ωp+2−···−Ωn+ i
t ||α+ i

t |
. Overall, we can bound the above by

Ldptn+n′−1
(

λ2

L2d

)n+n′∑∗
Aψ(k, k′)

ˆ R

−R

⎛
⎝ ∑

kp,I1 ,kp,I3

1

|α −Ωp+2 − · · · −Ωn + i
t |

⎞
⎠ dα

|α + i
t |
.

From Eq. (4.12), we conclude

n∑
l=p+2

Ωl = −σp,I1 Q(kp,I1)− σp,I3 Q(kp,I3)

−σp,I2 Q(kp+1,I1 − σp,I1(kp,I3 − kp,I1))+ C

where C only depends on the variables in
∑∗. Applying (4.13) enables us

to bound the inner sum by L2d log t , and the α integral by log t . Finally, the
number of variables in

∑∗ is 2(n+n′ − p−1). By pairing them there are only
n+n′ − p−1, and fixing kn,1 = k brings their number down to n+n′ − p−2.
Thus
∑∗ will contribute � Ld(n+n′−p−2). Overall, we obtain the bound

� (log t)2tn′+n−1Ld(n+n′)
(

λ2

L2d

)n+n′

,
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Onset of the wave turbulence description 815

which is the desired estimate. ��

5 Deterministic local well-posedness

Local or long time existence existence of smooth solutions is usually carried
out by using Strichartz estimates to bound solutions. The known Strichartz
estimates for our problem (2.2) are not sufficient to allow us to prove exis-
tence of solutions for a long time interval where the wave kinetic Eq. (WKE)
emerges. However, if the data is assumed to be random, then one has improved
estimates due to Khinchin’s inequality [7]. Based on this, we first present a
local well-posedness theorem provided the data satisfies a certain estimate. In
Sect. 6, we show that such an improved estimate occurs with high probability.

Moreover, to use the results from Sects. 4 and 8, we will restrict discussion
to the case T < Ld−ε0 .

5.1 Strichartz estimate

Recall Eq. (2.2) , which can be written as,

‖eit�β P1ψ‖L4
t,x ([0,T ]×T

d
L )

≤ Sd,ε‖ψ‖L2(Td
L )
, Sd,ε := Cd,εLε

〈 T

Lθd

〉1/4
Moreover if we denote the characteristic function of the unit cube centered

at j ∈ Z
d by 1B j , and define

ψ̂B j (k) = 1B j (k)ψ̂(k), and therefore ψB0 = P1ψ .

Then, using the Galilean invariance
∣∣e−i t�βψB j (x)

∣∣
= ∣∣[e−i t�β (e2π i j xψ)B0](x − 2t j)

∣∣, we have
‖eit�βψB j ‖L4

t,x ([0,T ]×T
d
L )

≤ Sd,ε‖ψ‖L2(Td
L )
. (5.1)

Converting this estimate to its dual, and applying theChrist–Kiselev inequality,
one gets

∥∥∥∥∥∥
T̂

0

e−is�FB j (s) ds

∥∥∥∥∥∥
L2(Td

L )

≤ Sd,ε‖F‖
L4/3

t,x ([0,T ]×T
d
L )

(5.2)

∥∥∥∥∥∥
tˆ

0

ei(t−s)�FB j (s) ds

∥∥∥∥∥∥
L4

t,x ([0,T ]×T
d
L )

≤ S2
d,ε‖F‖

L4/3
t,x ([0,T ]×T

d
L )

(5.3)
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for an appropriate choice of Cd,ε used in the definition of Sd,ε .

5.2 A priori bound in Zs
T and energy

Let Zs
T denote the function space defined by the norm,

‖u‖Zs
T
=
⎛
⎝∑

j∈Zd

〈 j〉2s‖u B j ‖2L4
t,x ([0,T ]×T

d
L )

⎞
⎠

1/2

, (5.4)

then the Zs
T norm of the nonlinearity is bounded.

Lemma 5.1 Fix s > d
2 . For every ε0 > 0, and an appropriate choice of Cd,ε0 ,

we have

∥∥∥∥
ˆ t

0
ei(t−s)�β |u(s)|2u(s)ds

∥∥∥∥
Zs

T

≤ S2∗‖u‖3Zs
T
, S∗ := Sd,ε0 = Cd,ε0 Lε0

〈 T

Lθd

〉1/4
.

(5.5)

Proof Considerv ∈ L
4
3
t,x ([0, T ]×T

d
L), and let ṽ(s, x) = ´ T

s ei(s−s′)�β v(s′)ds′,
then∥∥∥∥

ˆ t

0
ei(t−s)�β PB j |u(s)|2u(s)ds

∥∥∥∥
L4

t,x ([0,T ]×T
d
L )

= sup
‖v‖

L
4/3
t,x

=1

ˆ T

0

ˆ t

0

ˆ

T
d
L

[
ei(t−s)�β PB j |u(s)|2u(s)

]
v(t, x)dx, ds dt

= sup
‖v‖

L
4/3
t,x

=1

ˆ T

0

ˆ t

0

ˆ

T
d
L

|u(s)|2u(s)ei(t−s)�β vB j (t, x) dx ds dt

= sup
‖v‖

L
4/3
t,x

=1

ˆ T

0

ˆ

T
d
L

|u(s)|2u(s )̃vB j (s, x) ds dx .

Using Eq. (5.3), we have for every ε0 > 0,

ˆ T

0

ˆ

T
d
L

|u(s)|2u(s )̃vB j (s, x) ds dx

=
∑

j1− j2+ j3− j=O(1)

ˆ T

0

ˆ

T
d
L

u B j1
u B j2

u B j3
ṽB j ds dx
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�
∑

j1− j2+ j3− j=O(1)
j1, j2, j3∈Z

d

3∏
k=1

‖u B jk
‖L4

t,x
‖̃vB j ‖L4

t,x

� Lε0
〈 T

Lθd

〉1/2 ∑
j1− j2+ j3− j=O(1)

j1, j2, j3∈Z
d

3∏
k=1

‖u B jk
‖L4

t,x
,

and therefore ∥∥∥∥
ˆ t

0
ei(t−s)�β PB j |u(s)|2u(s)ds

∥∥∥∥
L4

t,x ([0,T ]×Td )

� Lε0
〈 T

Lθd

〉1/2 ∑
j1− j2+ j3− j=O(1)

j1, j2, j3∈Z
d

3∏
k=1

‖u B jk
‖L4

t,x
.

Consequently, for s > d/2, we have

⎛
⎝∑

j∈Zd

〈 j〉2s
∥∥∥∥
ˆ t

0
ei(t−s)�β PB j |u(s)|2u(s)ds

∥∥∥∥
2

L4
t,x

⎞
⎠

1/2

� Lε0
〈 T

Lθd

〉1/2⎛⎝∑
j∈Zd

〈 j1〉2s‖u B j1
‖2

L4
t,x

⎞
⎠

1/2⎛
⎝∑

�∈Zd

‖u B�
‖L4

t,x

⎞
⎠

2

� Lε0
〈 T

Lθd

〉1/2‖u‖3Zs
T
.

proving Eq. (5.5). ��
Lemma 5.2 (A priori energy estimates)

∥∥∥∥
ˆ t

0
ei(t−s)�β |u|2u ds

∥∥∥∥
L∞

t Hs
x

≤ S∗‖u‖3Zs
T
. (5.6)

Proof By duality, we have

∥∥∥∥
ˆ t

0
ei(t−s)�β |u|2u ds

∥∥∥∥
L∞

t Hs
x

≤ sup
‖ψ‖

L2x
=1

0≤t≤T

ˆ t

0

ˆ

T
d
L

|u|2u eis�β 〈∇〉sψ dx ds
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= sup
‖ψ‖

L2x
=1

0≤t≤T

∑
j1− j3+ j3− j4=O(1)

ˆ t

0

ˆ

T
d
L

u B j1
u B j2

u B j3
eis�β 〈∇〉sψB j4

dx ds .

Applying the Strichartz estimate (5.1) yields

∑
j1− j3+ j3− j4=O(1)

∣∣∣∣∣
ˆ t

0

ˆ

T
d
L

u B j1
u B j2

u B j3
eis�β∇sψB j4

dx ds

∣∣∣∣∣
�

∑
j1− j2+ j3− j4=O(1)

〈 j4〉s
3∏

k=1

‖u B jk
‖L4

t,x
‖eis�βψB j4

‖L4
t,x

� Lε0
〈 T

Lθd

〉1/4 ∑
j1− j2+ j3− j4=O(1)

〈max(| j1|, | j2|, | j3|)〉s
3∏

k=1

‖u B jk
‖L4

t,x
‖ψB j4

‖L2
x

� Lε0
〈 T

Lθd

〉1/4⎛⎝∑
j

‖ψB j ‖2L2

⎞
⎠

1/2⎛
⎝∑

j

〈 j〉2s‖u B j ‖2L4

⎞
⎠

1/2⎛
⎝∑

j

‖u B j ‖L4

⎞
⎠

2

� Lε0
〈 T

Lθd

〉1/4‖u‖3Zs
T
‖ψ‖L2

x
.

This establishes the stated bound. ��

5.3 Existence theorem

Local well-posedness for (NLS) will be established in the space Zs
T , with data

f of size at most I ,

I := Lε0(T L−d)
1
4 ≥ ‖eit�β f ‖Zs

T
. (5.7)

This seemingly strangenormalization is actuallywell adapted to the problem
we are considering. Indeed, consider for simplicity initial data f supported
on Fourier frequencies � 1, whose L2 norm is of size Lε0 , and with ran-
dom Fourier coefficients of uncorrelated phases. Then we expect eit�β f to be
evenly spread over T

d
L . By conservation of the L2 norm, this corresponds to

‖eit�β f ‖Zs
T
∼ I .

Theorem 5.3 Let f ∈ Zs
T with I and S∗ defined in Eqs. (5.7) and (5.5)

respectively, then

{
i∂t u −�βu = −λ2|u|2u

u(0, x) = f (x)
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Onset of the wave turbulence description 819

is locally well-posed in Zs
T , provided

R
def= 12(λS∗I )2 ≤ 1

2
. (5.8)

The solution u ∈ Zs
T , satisfies ‖u‖Zs

T
≤ 2I . Moreover

‖u‖L∞
t Hs

x ([0,T ]×T
d
L )

≤ ‖ f ‖Hs
x
+ Cλ2S∗I 3 = ‖ f ‖Hs

x
+ C

R

S∗
I ≤ ‖ f ‖Hs

x
+ C R.

(5.9)

Remark 5.4 The time scale T overwhich the solution canbe constructedwould
be equal to

√
τ , up to subpolynomial losses in L , if the long-time Strichartz

estimate conjectured in [11] for p = 4 could be established. Since it is currently
not known to be true, the result stated above gives a shorter time scale, with a
more complicated numerology.

Proof This theorem is proved by using a contraction mapping argument, to
find a fixed point of the map,

Φ(u) = eit�β f + iλ2
tˆ

0

ei(t−s)�β |u|2u(s) ds,

in {u ∈ Zs
T

∣∣ ‖u‖Zs
T
≤ 2I }. Consequently u = limN→∞ ΦN (0), where ΦN

stands for the N -th iterate of Φ:

Φ0(0)=eit�β f, ΦN+1(0)=eit�β f +iλ2
tˆ

0

ei(t−s)�β |ΦN (0)|2ΦN (0) ds .

To check that Φ is a contraction on BZs
T
(0, 2I ), note that by Eq. (5.5),

‖Φ(u)−Φ0(0)‖Zs
T
=
∥∥∥∥∥∥λ2

tˆ

0

ei(t−s)�β |u|2u(s) ds

∥∥∥∥∥∥
Zs

T

≤ λ2S2∗‖u‖3Zs
T
≤ 8λ2S2∗I 3 ≤ RI ≤ 1

2
I .

and thus Φ maps BZs
T
(0, 2I ) into itself. Again, by Eq. (5.5),

‖Φ(u)−Φ(v)‖Zs
T
≤ 3λ2S2∗(2I )2‖u − v‖Zs

T
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820 T. Buckmaster et al.

≤ R‖u − v‖Zs
T
≤ 1

2
‖u − v‖Zs

T
.

ThereforeΦ is a contraction on {u ∈ Zs
T

∣∣ ‖u‖Zs
T
≤ 2I }, and the Hs estimate

follows from the a priori energy bound. ��
Besides the established bounds on u, we need to investigate the rate of

convergence of ΦN (u) → u.

Corollary 5.5 Under the conditions of Theorem 5.3, there holds

‖u −ΦN (0)‖L∞Hs ≤ C
RN

S∗
I ≤ C RN

Proof Since Φ is a contraction with modulus R, then

‖Φ j (0)−Φ j−1(0)‖Zs
T
≤ R j−1‖Φ0(0)‖Zs

T
.

Moreover the energy estimate (5.6) gives

‖Φ j+1(0)−Φ j (0)‖L∞
T Hs ≤ C

R

S∗
‖Φ j (0)−Φ j−1(0)‖Zs

T
.

Consequently by writing u −ΦN (0) =
∞∑

j=N
Φ j+1(0)−Φ j (0), we bound

‖u −ΦN (0)‖L∞
T Hs ≤

∞∑
j=N

∥∥∥Φ j+1(0)−Φ j (0)
∥∥∥

L∞
T Hs

≤ C
R

S∗

∞∑
j=N

∥∥∥Φ j (0)−Φ j−1(0)
∥∥∥

Zs

≤ C
R

S∗

∞∑
j=N

R j−1‖Φ0(0)‖Zs
T
≤ C

RN

S∗
‖Φ0(0)‖Zs

T
.

��
Next we establish an energy bound for the Feynman trees,

Un,�(t) = 1

Ld

∑
k∈Z

d
L

Jn,�(t, k)e2π i(k·x+t Q(k)).
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Onset of the wave turbulence description 821

Corollary 5.6 Under the conditions of Theorem 5.3,

‖Un,�‖L∞
T Hs ≤ C

RN

S∗
I ≤ C RN

Proof Since Un,� is the linear propagator of Jn,� in physical space, then they
can be represented by the following iterative procedure: Set vm

0 = e2π i t�β u0

for 0 ≤ m ≤ 2n + 1 and for any 1 ≤ j ≤ n we define v
j
m for 0 ≤ m ≤

2(n − j) + 1 as vm
j = vm

j−1 if m < � j , and vm
j = vm+2

j−1 if m > � j , where we
set

v� j = iλ2
ˆ t

0
ei(t−s)�β v

� j
j−1v

� j+1
j−1 v

� j+2
j−1 ds .

Hence we have Un,� = v1n .
Using the energy estimate (5.6), we bound

‖v1n‖L∞
T Hs ≤ λ2S∗‖v1n−1‖Zs

T
‖v2n−1‖Zs

T
‖v3n−1‖Zs

T
.

We can then descend down the tree by estimating v
�n− j
n− j using the Zs estimate

(5.5). This leads to the stated bound. ��

6 Improved integrability through randomization

Recall that

u0 = 1

Ld

∑
k∈Z

d
L

√
φ(k)e2π ik·x e2π iϑk(ω),

where the ϑk(ω) are independent random variables, uniformly distributed on
[0, 2π ].

For any t , s, ω, we have

‖eit�β u0‖Hs =
⎡
⎢⎣ 1

Ld

∑
k∈Z

d
L

〈k〉2sφ(k)

⎤
⎥⎦
1/2

.

In other words, the randomization of the angles of the Fourier coefficients
does not have any effect on L2 based norms. This is not the case for Lebesgue
indices larger than 2.

Theorem 6.1 Assume that |φ(k)| � 〈k〉−s , with s > d
2 . Then
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822 T. Buckmaster et al.

(i) E
∥∥eit�β u0

∥∥4
L4

t,x ([0,T ]×T
d
L )

� T
Ld ‖u0‖4L2

x
(ii) (large deviation estimate)

P

[∥∥∥eit�β u0

∥∥∥4
L4

t,x ([0,T ]×T
d
L )

> λ

]
� exp

(
−c

(
λ

T 1/4L−d/4

)2)

Proof (i) The proof is more or less standard. See [7] for instance.
(i i) We follow the argument in [7]. By Minkowski’s inequality (for p ≥ 4)

and Khinchin’s inequality,∥∥∥eit�β u0

∥∥∥
L p
ω(Ω,L4

t,x ([0,T ]×T
d
L ))

�
∥∥∥eit�β u0

∥∥∥
L4

t,x ([0,T ]×T
d
L ,L

p
ω(Ω)))

�
√

p

Ld

∥∥∥∥(∑φ(k)
)1/2∥∥∥∥

L4
t,x ([0,T ]×T

d
L )

� √
pT 1/4L−d/4.

By Chebyshev’s inequality,

P

[∥∥∥eit�β u0

∥∥∥
L p

t,x ([0,T ]×T
d
L )

> λ

]
� λ−p(C0

√
pT 1/4L−d/4)p.

The desired inequality is then obvious if λ < 2eC0T 1/4L−d/4; if not, it
follows upon choosing

p =
(

λ
C0T 1/4L−d/4e

)2
. ��

As a consequence, we deduce the following proposition.

Proposition 6.2 Let ε0 > 0, α > s + d
2 , and assume that |φ(k)| � 〈k〉−2α .

Then, for two constant C, c > 0,

P

[∥∥∥eit�β u0

∥∥∥
Zs

< T 1/4Lε0−d/4
]
> 1− Ce−cLε0

.

Proof Applying Theorem 6.1 to (u0)B j ,

P

[∥∥∥eit�β u0

∥∥∥
L4

t,x ([0,T ]×T
d
L )

> 〈 j〉−αT 1/4L
ε0
2 − d

4

]
� exp(−c〈 j〉2αLε0).

Therefore, for L sufficiently large,

P

[∥∥∥eit�β u0

∥∥∥
Zs

< T 1/4Lε0−d/4
]
> 1−

∑
j

P

[∥∥∥eit�β (u0)B j

∥∥∥
Zs

> T 1/4L
ε0
2 −d/4〈 j〉−α

]
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Onset of the wave turbulence description 823

> 1− C
∑

j

exp(−c〈 j〉2αLε0 )

> 1− Ce−cLε0
.

��

7 Proof of the main theorem

Fix ε0 > 0 sufficiently small, and recall that T ≤ Ld , with

S∗ = C4,ε0 Lε0
〈 T

Lθd

〉1/4
, I = Lε0(T L−d)

1
4 , and R

def= 12(λS∗I )2.

1) Excluding exceptional data. Let Eε0,L be the event {∥∥eit�β u0
∥∥

Zs ≤ I },
and Fε0,L its contrary: {∥∥eit�β u0

∥∥
Zs > I }. By Proposition 6.2,

P(Fε0,L) � e−cLε0
.

This is the set appearing in the statement of Theorem 2.2. By conservation
of mass

E
(|ak(t)|2

) = E
(|ak(t)|2 | Eε0,L

)+ O�∞(e−cLε0 Ld).

2) Iterative resolution. To ensure that R ≤ 1
2 we restrict the range of the

parameters λ, T relative to L . There are two regimes depending on the
Strichartz constant S∗ and the number theory restriction t ≤ Ld−ε0 (see
Remark 8.2).
• Lθd � T � Ld . The condition R ≤ 1

2 translates into T ∼
λ−2L

d+θd
2 −4ε0 . Therefore we restrict λ to

L
−d+θd−8ε0

4 � λ � L
d−θd−8ε0

4 .

For this range of parameters, the energy inequality (5.9) implies
‖u‖L∞

t Hs
x ([0,T ]×T

d
L )

� 1.

• T � Lθd . In this case the condition on R restricts T ∼ min(Lθd ,

λ−4Ld−8ε0), and therefore

L
d−θd−8ε0

4 � λ.

Here the energy inequality also implies ‖u‖L∞
t Hs

x ([0,T ]×T
d
L )

� 1.

Note that for these ranges of parameters T ≤ L−2δ√τ , where δ is that
of Theorem 8.1.
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With these restrictions on the range of the parameterswe proceed bywriting
u = ΦN (0)+u−ΦN (0). Note that sinceΦN (0) is a polynomial of degree
3N , we write

u =
N∑

n=0

Un,� +
∑

(n,�)∈SN

Un,� + u −ΦN (0),

where SN includes all the terms in ΦN (0) of degree greater than N .
By Corollary 5.5 and Proposition 5.6, this implies that

u =
N∑

n=1

∑
�

Un,� + OL∞
t Hs

x

(
RN
)

where the constant depends on N . In terms of Fourier variables this can be
written as,

|ak(t)|2=
∣∣∣∣∣

N∑
n=1

∑
�

Jn,�

∣∣∣∣∣
2

+O
�
1,2s
L

(
RN
)
=
∣∣∣∣∣

N∑
n=1

∑
�

Jn,�

∣∣∣∣∣
2

+ O�∞
(

Ld RN
)
.

3) Pairing. By Proposition 4.1,

∣∣∣∣∣
N∑

n=1

∑
�

Jn,�

∣∣∣∣∣
2

= E

[
|J1(k)|2 + J0(k)J2(k)+ J0(k)J2(k)

]

+ O

(
t

τ

t log t√
τ

)

= φk + 2λ4

L4d

∑
k−k1+k2−k3=0

φkφk1φk2φk3

[
1

φk
− 1

φk1
+ 1

φk2
− 1

φk3

]

×
∣∣∣∣ sin(tπΩ(k, k1, k2, k3))

πΩ(k, k1, k2, k3)

∣∣∣∣
2

+ O�∞
(

t

τ

t log t√
τ

)

4) Large box limit L → ∞. By the equidistribution Theorem 8.1, we have
for t < Ld−ε

2λ4

L4d

∑
k−k1+k2−k3=0

φkφk1φk2φk3

[
1

φk
− 1

φk1
+ 1

φk2
− 1

φk3

] ∣∣∣∣ sin(tπΩ(k, k1, k2, k3))

πΩ(k, k1, k2, k3)

∣∣∣∣
2

= 2λ4

L2d

ˆ
δ(Σ)φ(k)φ(k1)φ(k2)φ(k3)

[
1

φ(k)
− 1

φ(k1)
+ 1

φ(k2)
− 1

φ(k3)

]

×
∣∣∣∣ sin(π tΩ(k, k1, k2, k3))

πΩ(k, k1, k2, k3)

∣∣∣∣
2

dk1 dk2 dk3 + O�∞ (
t

τ
L−δ).
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5) Large time limit t ∼ T → ∞. Since for a smooth function f ,

ˆ ∣∣∣∣sin(π t x)

x

∣∣∣∣
2

f (x) dx = π2t f (0)+ O(1),

then, with τ = L2d

2λ4
, we have

2λ4

L2d

ˆ
δ(Σ)φ(k)φ(k1)φ(k2)φ(k3)

[
1

φ(k)
− 1

φ(k1)
+ 1

φ(k2)
− 1

φ(k3)

]

×
∣∣∣∣sin(π tΩ(k, k1, k2, k3))

πΩ(k, k1, k2, k3)

∣∣∣∣
2

dk1 dk2 dk3 = t

τ
T (φ, φ, φ)+ O

(
1

τ

)
.

Consequently, for ε0 sufficiently small and t ≤ T ≤ Ld−ε0 , we choose
L ≥ L1(ε0) to bound the error term in Step 1 by t

τ
L−ε0 . Also, since R ≤ 1

2
then by picking N large enoughwe can bound the error in Step 2 by O( t

τ
L−ε0).

Similarly, since t log t ≤ L−δ
√
τ , then the error for Steps 3, 4, and 5, are of

order O�∞( t
τ

L−δ), and this concludes the Proof of Theorem 2.2.

8 Number theoretic results

Our aim in this section is to prove the asymptotic formula for the following
Riemann sum,

Theorem 8.1 Given φ ∈ S (Rd) and ε > 0, there exists a δ > 0 such that if
0 < t ≤ Ld−ε , then

∑
ki∈Zd

L
k−k1+k2−k3=0

φkφk1φk2φk3

[
1

φk
− 1

φk1
+ 1

φk2
− 1

φk3

] ∣∣∣∣ sin(π tΩ(k, k1, k2, k3))

πΩ(k, k1, k2, k3)

∣∣∣∣2

= L2d
ˆ

δ(Σ)φkφk1φk2φk3

[
1

φk
− 1

φk1
+ 1

φk2
− 1

φk3

] ∣∣∣∣ sin(π tΩ(k, k1, k2, k3))

πΩ(k, k1, k2, k3)

∣∣∣∣2 dk1dk2 dk3

+ O
(

t L2d−δ
)
+ O
(

Ld
)
,

where we recall Σ(k, k1, k2, k3) = k − k1 + k2 − k3.

The difficulty in proving this theorem is that Ω can be very small, while
the stated time interval for the validity of the asymptotic formula is very large.
In fact if we restrict ourselves to a timescale which is not too long, then the
asymptotic formula is straight forward as will be demonstrated in Proposi-
tion 8.10. However to prove this theorem as stated we need to generalize a
result of Bourgain on pair correlations of generic quadratic forms [5].
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Bourgain considered a positive definite diagonal form,

Q(n) =
d∑

i=1

βi n
2
i , n = (n1, . . . , nd), Q(p, q) := Q(p)− Q(q),

(8.1)

for generic β = (β1, . . . , βd) ∈ [1, 2]d , and proved that for d = 3 the lattice
points in the region,

RZ

de f= {(p, q) ∈ Z
2d ∩ [0, L]2d

∣∣ Q(p, q) ∈ [a, b], p �= q},

are equidistributed at a scale of 1
Lρ , for 0 < ρ < d−1. Specifically, he proved,

∑
RZ

1 = L2(d−1)(b − a)H2d−1
(
{(x, y) ∈ [−1, 1]2d

∣∣ Q(x, y) = 0}
)

+O
(

Ld−2−δ(b − a)
)
,

provided |a|, |b| < O(1) and L−ρ < b − a < 1. Here H2d−1 is the 2d −
1 Hausdorff measure.

Our quadratic formΩ , restricted toΣ , can be transformed to Q(p, q), given
in (8.1), as follows. Rescale time μ := t L−2, let Ki = Lki ∈ Z, and denote
by

g(x) =
(
sin(πx)

πx

)2
,

W0

(
K

L
,

K1

L
,

K2

L
,

K3

L

)
= φkφk1φk2φk3

[
1

φk
− 1

φk1
+ 1

φk2
− 1

φk3

]
.

Then the sum can be expressed as

t2
∑

K ,K1,K2,K3∈Z
d

K−K1+K2−K3=0

W0

(
K

L
,

K1

L
,

K2

L
,

K3

L

)
g(μ�(K , K1, K2, K3)) .

By defining

u′ = K1 − K ∈ Z
d , u′′ = K3 − K ∈ Z

d , and u = (u′, u′′) ∈ Z
2d

then

�(K , K1, K2, K3) = Q0(u)
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where

Q0(u) := −2β1u′
1u′′

1 − 2β2u′
2u′′

2 − · · · − 2βdu′
du′′

d . (8.2)

Hence the sum can be expressed as

t2
∑

(u′
i ,u

′′
i )∈Z

2

W0

(
K

L
,

u′ + K

L
,

u′ + u′′ + K

L
,

u′′ + K

L

)
g(μQ0(u)). (8.3)

The quadratic form Q0 can be diagonalized by making the change of coordi-
nates

pi = u′
i + u′′

i , qi = u′
i − u′′

i

where pi and qi are either both even or both odd, i.e.∑
ui∈Z2

=
∑

pi ,qi∈2Z

+
∑

pi ,qi∈(2Z+1)

=
∑

pi ,qi∈Z

−
∑

pi∈2Z,qi∈Z

−
∑

pi∈Z,qi∈2Z

+2
∑

pi ,qi∈2Z

.

Consequently, the sum (8.3), can be written as four different sums of the form,

t2
∑

(p,q)∈Z2d

W
( p

L
,

q

L

)
g(μQ(p, q)), (8.4)

where Q(p, q) is given by3 (8.1), and where we suppressed the dependence
of W on k for convenience.

Remark 8.2 Note that we do not exclude the points when p2i = q2
i for all

i ∈ [1, . . . , n], as Bourgain did. These points contribute O(Ld) to the sum
and will be considered as lower order terms. They also explain the O(Ld) term
in Theorem 8.1.

It is this fact that prevents us from using the full strength of our equidistri-
bution result which holds for μ = t L−2 ≤ Ld−1−ε , and we use the result for
t ≤ Ld−ε . This ensures that O(Ld) term is an error in the asymptotic formula.

To prove the asymptotic formula given in Theorem 8.1, with 0 < μ =
t L−2 ≤ Ld−1−ε , we proceed as follows: 1) identify which part of the sum
contributes the leading order term and which part contributes error terms; 2)
prove equidistribution of lattice points on a coarse scale; 3) present Bourgain’s
theorem on equidistribution on a fine scale; and finally 4) prove Theorem 8.1.

3 There are factors of 2 missing due to sums over even terms. However, this has no impact since
β is generic.
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8.1 Identifying main terms vs error terms

To identify the leading order term in the equidistribution formula, we first
obtain upper bounds on lattice sums that are optimal up to sub-polynomial
factor.

For generic β = (β1, . . . , βd) ∈ [1, 2]d , a good upper bound for the linear
formβ ·n ∈ [a, b], where n = Z

d is a consequence of the pigeonhole principle:

Lemma 8.3 The linear form β · n ∈ [a, b] satisfies the following bound

#{n∈Z
d ∩ [−M, M]d ∣∣ a≤β · n ≤ b}=

∑
a≤β·n≤b
|n|≤M

1� M (d−1)+(b − a)+ 1

(8.5)

Proof Since β = (β1, . . . , βd) are generic, then for 0 < |n| ≤ M (see for
example [8], Chapter VII)

|β · n| � 1

M (d−1)+ .

For arbitrary n(1) �= n(2) ∈ Z
d satisfying a ≤ β ·n(i) ≤ b and 0 <

∣∣n(i)
∣∣ ≤ M ,

1

M (d−1)+ �
∣∣∣β · (n(1) − n(2))

∣∣∣ ≤ b − a .

By the pigeonhole principle we obtain (8.5). ��
An upper bound on the cardinality of the set,

RZ

de f= {(p, q) ∈ Z
2d ∩ [0, L]2d

∣∣ Q(p, q) ∈ [a, b], p �= q},
can be obtained by bounding the number of lattice points in subsets of the
form,

RZ� = {(p, q) ∈ Z
2d ∩ [0, L]2d

∣∣ Q(p, q) ∈ [a, b], pi �= qi , 1 ≤ i ≤ �, and

pi = qi , �+ 1 ≤ i ≤ d},
using Lemma 8.3, and by using the divisor bound d(k) �ε kε .

Lemma 8.4 For � = 1, . . . d the cardinality of RZ� satisfies the bound

#RZ� =
∑
RZ�

1 � L(d+�−2)+(b − a)+ L(d−�)+ (8.6)
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Proof Define ki = (pi − qi )(pi + qi ), for 1 ≤ i ≤ �. Since pi = qi , for
�+ 1 ≤ i ≤ d, we conclude

#RZ� � Ld−�
∑

a≤
�∑

i=1
βi ki≤b

0<|k|�L2

⎛
⎝ ∑

(pi−qi )(pi+qi )=ki

1

⎞
⎠

By the divisor bound

∑
(pi−qi )(pi+qi )=ki

1 � L0+,

and by (8.5), with M = L2, we obtain

#RZ� � L(d−�)+
(

L2(�−1)+(b − a)+ 1
)
,

and (8.6) follows. ��
Corollary 8.5 The number of elements in RZ, can be bounded by

#RZ � L2(d−1)+(b − a)+ L(d−1)+ (8.7)

Moreover, if we further assume |a| , |b| ≤ 1, then we have the improved bound

#RZ � L2(d−1)+(b − a)+ L(d−2)+, (8.8)

Proof It suffices to apply the Lemma 8.4, and to observe that � ∈ {1, . . . , d}
since p = q is excluded. (8.8) follows from noting that if |a| , |b| ≤ 1, then
RZ1 is empty. ��
Remark 8.6 Note, that in terms of the first estimate (8.7), the second term
may be treated as an error as long as b − a ≥ L−(d−1)+ε0 for some ε0 > 0.
Analogously, the second term of (8.8) may be treated as an error assuming
b − a ≥ L−d+ε0 .

Following this remark on identifying the leading order term, we can now
identify subsets of RZ that contribute error terms only. The first such subsets
are when |pi − qi | � L1−δ for some fixed δ > 0 and some i that we may
without loss of generality assume to be 1.
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Lemma 8.7 For |a| , |b| ≤ 1, the number of elements in RZ satisfying |p1 −
q1| � L1−δ satisfy the following bound

#RZ ∩ {(p, q) ∈ Z
2d
∣∣ |p1 − q1| � L1−δ} � L2(d−1)+−δ(b − a)+ L(d−1)+ .

Proof If pi = qi for at least one i , then by Corollary 8.5 with d replaced by
d − 1, we have

#RZ ∩ {(p, q) ∈ Z
2d
∣∣ pi = qi } � L

(
L2(d−2)+(b − a)+ L(d−3)+

)
,

which is lower order. Moreover, if pi �= qi for all i , and |p1 − q1| � L1−δ ,
then the sum over 2 ≤ i ≤ d can be bounded by L2(d−2)+(b−a)+ L0+ , using
Lemma 8.4, while the sum over p1 and q1 can be by L2−δ . This gives a bound

of L2−δ
(

L2(d−2)+(b − a)+ L0+
)
, which is lower order if d ≥ 3. ��

Next we show that if one pi or qi is less than L1−δ , where we may again
assume i = 1, then the contribution to the number of elements in RZ is lower
order.

Lemma 8.8 For |a| , |b| ≤ 1, we have the following estimate

#RZ ∩ {(p, q) ∈ Z
2d
∣∣ |p1| � L1−δ} � L2(d−1)+−δ(b − a)+ L(d−1)+

Proof If both |p1| � L1−δ and |q1| � L1−δ or pi = qi for at least one i , then
by Lemma 8.7 we have the stated bound. Otherwise, the sum over 2 ≤ i ≤ d
contributes L2(d−2)+(b − a)+ L0+ , while the sum over p1 and q1 contributes
L2−δ. ��
From Lemmas 8.7 and 8.8, we have

Corollary 8.9 Setting

RZδ = RZ \
d⋃

i=1

(
{(p, q) ∈ Z

2d ∣∣ where, |pi |, |qi |, or |pi − qi | � L1−δ, for at least onei}
)
.

Then, for |a| , |b| ≤ 1, we have the following cardinality bound on the set
difference RZ \ RZδ

#RZ \ RZδ � L2(d−1)+−δ(b − a)+ L(d−1)+
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8.2 Asymptotic formula on a coarse scale

These upper bounds, in particular Corollary 8.5 allow us to present a simple

proof of the asymptotic formula for #RZ on a coarser scale, e.g. b − a = L
4
3 .

Note hat this is still better then the trivial Riemann sum scale of b−a = O(L2).

Proposition 8.10 Fix δ > 0 sufficiently small, then if L1+4δ ≤ b−a ≤ L2−δ ,
we have the asymptotic formula

#
{
(p, q) ∈ Z

d ∩ [0, L]2d
∣∣ Q(p, q) ∈ [a, b]

}
= L2(d−1)(b − a)

¨

R2d

1[0,1]2d (x, y)δ(Q(x, y)) dxdy

+ O
(

L2(d−1)−δ(b − a)
)
.

Proof First wewill smooth the characteristic functions by extending the region
to a slightly bigger region with a controlled error term. This is done as follows.
Let wL ∈ C∞

c ([−Lδ, L + Lδ]) be a bump function satisfying wL(x) = 1 for
x ∈ [0, L] and

‖wL‖C N � L−Nδ .

Then by setting WL(x, y) =∏d
i=1 wL(Lxi )wL(yi ), we have,

∑
p,q∈Zd

WL

( p

L
,

q

L

)
− 1[0,L]2d (p, q) = O

(
L2d−1+δ

)
.

Moreover, if we denote by hL ∈ C∞
c ([a−L1+2δ, b+L1+2δ]) a bump function

hL(x) = 1 for x ∈ [a, b] and

‖hL‖C N � L−N (1+2δ) .

then by Corollary 8.5, we have

∑
p,q∈Zd

WL

( p

L
,

q

L

)
hL (Q(p, q))− 1[0,L]2d (p, q)1[a,b](Q(p, q))

= O
(
L2d−1+δ

)+ O
(
L(2d−1+2δ)+) = O

(
L2(d−1)−δ(b − a)

)
.
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assuming that b − a ≥ L1+4δ. Thus, it is sufficient to obtain the asymptotic
formula for

S :=
∑

p,q∈Zd

WL

( p

L
,

q

L

)
hL (Q(p, q)) .

Using Fourier transform, we express S as

S =
ˆ ∞

−∞
ĥL(s)
∑
p,q

WL

( p

L
,

q

L

)
e(Q(p, q)s) ds :=

ˆ ∞

−∞
ĥL(s)S(s) ds

(8.9)

Applying Poisson summation we may rewrite S(s) as

S(s) =
∑
�

ˆ
WL

( x

L
,

y

L

)
e(Q(x, y)s − m · x − n · y) dx dy (8.10)

=L2d
∑
�

ˆ
WL (z) e(L2Q(z)s − L� · z) dz (8.11)

where z = (x, y), and � = (m, n).
The term � = 0 contributes the asymptotic formula

L2d
ˆ

WL(z)hL(L2Q(z))dz

= L2(d−1)(b − a)
ˆ

R2d

1[0,1]2d (z)δ(Q(z)) dz + O
(

L2(d−1)−δ(b − a)
)

where we used (b − a) < L2−δ in replacing hL(L2Q)) by δdirac(Q). So it
remains to show that the sum for � �= 0 can be treated as error. First we estimate
the sum for s ≤ 1

L1+δ . In this case we write �(z, �, s) = L2Q(z)s − L� · z,

and note that since |s| ≤ 1
L1+δ and |z| � 1, then |∇z�(z,m, s)| ≥ L|�|

2 , where

∇z�(z, �, s) = L2∇Q(z)s − L� , (8.12)

and thus upon integrating (8.11) by parts, we obtain

S(s) =
∑
��=0

L2d
ˆ

∇ j

(
WL(z)

2π i∇ j�(z, �, s)

)
e(�(z, �, s)) dz. (8.13)
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Since each derivative of WL contributes L1−δ , then each integration by parts
contributes a factor of 1

Lδ |�| . Applying a sufficient number of integrations by

parts, and using the fact that |̂hL(s)| � b − a, we may ensure that the contri-
bution for � �= 0 and |s| ≤ 1

L1+δ is arbitrarily small.

For |s| ≥ 1
L1+δ we note that

|̂hL(s)| � (b − a)
1(

L1+2δ|s|)N ,

for all N , and thus this term can be treated as an error. This concludes the
stated result. ��

8.3 Bourgain’s theorem

Now we present Bourgain’s proof of equidistribution.

Theorem 8.11 Fix ε > 0, then for δ > 0 sufficiently small the following
statement is true: Suppose I j , J j ⊂ [0, L], j = 1, . . . , d for d ≥ 3 are
intervals with length satisfying

L1−δ ≤ ∣∣I j
∣∣ , ∣∣J j
∣∣ ≤ L (8.14)

Then for a, b satisfying |a| , |b| ≤ 1 and L−d+1+ε < b − a < L−ε we have

∑
a≤Q(p,q)≤b
p j∈I j ,q j∈J j

p �=q

1 =
ˆ

I1×···×Id

ˆ

J1×···×Jd

1a≤Q(x,y)≤b dxdy+O(L2(d−1−dδ)(b − a)) .

(8.15)

In order to prove Theorem 8.11, we first make a series of reductions.
Step 1: Restrict to dyadic lengths and discrete intervals (a,b) We first show

that it sufficient to assumedyadic lengths L = 2N1 for N1 ∈ N and that (a, b) =
(N2L−d+1+ε, (N2+1)L−d+1+ε), for N2 ∈ Z such that |N2| ≤ 2Ld−1−ε. The
restriction to dyadic lengths L = 2N1 is valid since it only has potential effect
of modifying the implicit constants in the theorem. Now suppose (8.15) is
satisfied for all such L and (a, b) as described above and suppose we are given
another interval (a′, b′) such that a′, b′ satisfies

∣∣a′∣∣ , ∣∣b′∣∣ ≤ 1 and L−d+1+2ε <

b′ − a′ < L−ε . Then, by assuming δ is sufficiently small (depending on ε),
and summing over intervals of the form (N2L−d+1+ε, (N2 + 1)L−d+1+ε) we
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obtain

∑
a′≤Q(p,q)≤b′
p j∈I j ,q j∈J j

p �=q

1=
ˆ

I1×···×Id

ˆ

J1×···×Jd

1a′≤Q(x,y)≤b′ dxdy+O(L2(d−1)−ε(b′ − a′)) .

Thus, by again taking δ smaller if needed, we obtain Theorem 8.11 with ε

replaced by 2ε, i.e. up to a relabeling of ε, we obtain Theorem 8.11.
Step 2: Ignore intervals that contribute lower order sums Set δ̃ = 4dδ, then

by Corollary 8.9 we have for δ̃ sufficiently small,

∑
RZ

1 =
∑
R
Zδ̃

1+ O
(

L2(d−1)+−δ̃(b − a))
)
+ O(L(d−2)+

=
∑
R
Zδ̃

1+ O
(

L2(d−1)+−δ̃(b − a)
)

(8.16)

where we have used the restriction of a − b and assumed δ to be sufficiently
small compared to ε.

Thus we restrict our attention to the case where

(a) ∀pi ∈ Ei , and ∀qi ∈ Fi , we have |pi | > L1−δ̃ , |qi | > L1−δ̃ ,
(b) distance(Ei , Fi ) > L1−δ̃ .

With this reduction at hand, we divide each interval into at most L3δ̃ intervals,
Ei = ∪α I αi and Fi = ∪α Jα

i each satisfying

(c) 1
2 L1−3δ̃ ≤ ∣∣I αi ∣∣ , ∣∣Jα

i

∣∣ ≤ L1−3δ̃ ,

and prove that for intervals I αi and Jα
i , satisfying Conditions (a), (b), and (c)

we have

∑
a≤Q(p,q)≤b
p j∈Iαj ,q j∈Jα

j
p �=q

1 =
ˆ

Iα1 ×···×Iαd

ˆ

Jα
1 ×···×Jα

d

1a≤Q(x,y)≤b dxdy

+O(L2(d−1)−(3d+1)δ̃(b − a)) . (8.17)
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Summing in α and using (8.16) we have

∑
a≤Q(p,q)≤b
p j∈I j ,q j∈J j

p �=q

1 =
∑
α

(ˆ
Iα1 ×···×Iαd

ˆ

Jα
1 ×···×Jα

d

1a≤Q(x,y)≤b dxdy

+O(L2(d−1−(3d+1)δ̃)(b − a))
)

+ O
(

L2(d−1)+−4dδ(b − a)
)

=
∑
α

ˆ

Iα1 ×···×Iαd

ˆ

Jα
1 ×···×Jα

d

1a≤Q(x,y)≤b dxdy

+ O
(

L2(d−1)+−δ̃(b − a)
)
.

Using that δ̃ = 4dδ and

∣∣∣∣∣
ˆ

I1×···×Id

ˆ

J1×···×Jd

1a≤Q(x,y)≤b dxdy −
∑
α

ˆ

Iα1 ×···×Iαd

ˆ

Jα
1 ×···×Jα

d

1a≤Q(x,y)≤b dxdy

∣∣∣∣∣
� L2(d−1)+−δ̃ (b − a)

we conclude (8.15).
Summarizing, if by abuse of notation, we drop the index α and replace δ̃

with δ, we have reduced the proof of Theorem 8.11 to proving the following
proposition.

Proposition 8.12 Fix ε > 0, then for δ > 0 sufficiently small the following
statement is true: Suppose I j , J j ⊂ [−L , L], j = 1, . . . , d for d ≥ 3 are
intervals satisfying

(1) ∀pi ∈ Ii , and ∀qi ∈ Ji , we have |pi | > L1−δ, |qi | > L1−δ .
(2) distance(Ii , Ji ) > L1−δ .
(3) 1

2 L1−3δ ≤ |Ii | , |Ji | ≤ L1−3δ

Then for a, b satisfying |a| , |b| ≤ 1 and L−d+1+ε < b − a < L−ε we have

∑
a≤Q(p,q)≤b
p j∈I j ,q j∈J j

p �=q

1 =
ˆ

I1×···×Id

ˆ

J1×···×Jd

1a≤Q(x,y)≤b dxdy + O(L2(d−1)−(3d+1)δ(b − a)) .

(8.18)

Let us now suppose I j and J j satisfy the hypothesis of Proposition 8.12.
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Step 3: Transform the region of summation The sum can be written as,

∑
pi∈I j ,q j∈J j

1[a,b](Q(p, q)) =
∑

pi∈I j ,q j∈J j

1[
0, b−a

2

] (Q(p, q)− a + b

2

)

(8.19)

By writing Id = [u − �u, u + �u], and Jd = [v − �v, v + �v], and
utilizing the fact that |u − v| > L1−δ , we express the region RZ as,

∣∣∣∣∣
∑d−1

j=1 β j (p2j − q2
j )− b+a

2

βd(p2d − q2
d )

+ 1

∣∣∣∣∣ ≤ b − a

2βd
∣∣p2d − q2

d

∣∣ ,
≤ b − a

2βd
∣∣u2 − v2

∣∣ + O

(
(b − a)L−δ∣∣u2 − v2

∣∣
)

since

∣∣p2d − q2
d − u2 + v2

∣∣ � L(�u +�v) � L2−3δ and
∣∣u2 − v2

∣∣ ≥ L2−2δ .

Setting ξ = b+a
2 and η = b−a

2 , then by taking logarithms andTaylor expanding
ln(x) around x = 1 we obtain

∣∣∣∣∣∣ln
⎛
⎝d−1∑

j=1

β j (p2j − q2
j )− ξ

⎞
⎠− ln

(
p2d − q2

d

)
− ln βd

∣∣∣∣∣∣ ≤
η

βd
∣∣u2 − v2

∣∣ + O

(
ηL−δ∣∣u2 − v2

∣∣
)

,

(8.20)

here we assumed, without loss of generality,
∑d−1

j=1 β j (p2j − q2
j )− ξ > 0 and

p2d − q2
d > 0.

Step 4: Replace the sum with an analogous sum
Instead of considering the sum over the region RZ, we will consider the sum

over the region SZ, defined as

SZ =
⎧⎨
⎩(p, q) ∈

d∏
j=1

I j ×
d∏

k=1

Jk :
∣∣∣∣∣∣ln
⎛
⎝d−1∑

j=1

β j (p2j − q2
j )− ξ

⎞
⎠− ln

(
p2d − q2

d

)
− ln βd

∣∣∣∣∣∣
≤ η

βd
∣∣u2 − v2

∣∣
}

(8.21)
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In order to make this reduction, we need a bound on cardinality of (p, q)
satisfying

∣∣∣∣∣∣ln
⎛
⎝d−1∑

j=1

β j (p2j − q2
j )− ξ

⎞
⎠−ln

(
p2d − q2

d

)−ln βd

∣∣∣∣∣∣
= η

βd
∣∣u2 − v2

∣∣+O

(
ηL−δ∣∣u2 − v2

∣∣
)
,

Such a bound would follow as a consequence of a version of a weaker version
of Proposition 8.12 with the asymptotic formula (8.18) replaced with a sharp
upper bound, i.e.,

Proposition 8.13 Fix ε > 0, then for δ > 0 sufficiently small the following
statement is true: Suppose I j and J j satisfy the hypothesis of Proposition 8.12,
then for a, b satisfying |a| , |b| ≤ 1 and L−d+1+ε < b − a < L−ε we have

∑
a≤Q(p,q)≤b
p j∈I j ,q j∈J j

p �=q

1 = O(L2(d−1)−3dδ(b − a)) . (8.22)

We note that for Proposition 8.12 compared with Proposition 8.13 we may
require a stricter smallness criteria on δ relative to the choice of ε. With
this in mind, applying Proposition 8.13, the difference in summing in p
and q satisfying (8.20) and computing the cardinality of SZ is of order
O(L2(d−1)−(3d+1)δ(b − a)) and hence can be treated as an error. We remark
that such arguments will be used later to bound analogous error terms.

By the arguments above, the sum in Proposition 8.13may be estimated from
above by the cardinality of SZ with η replaced by 2η in the set’s definition.
Hence up to a factor of 2 in the definition of SZ, to prove both Propositions 8.13
and 8.12, it suffices to obtain an asymptotic formula for SZ.

If we set

F(p, q) = ln

⎛
⎝d−1∑

j=1

β j (p2j − q2
j )− ξ

⎞
⎠− ln

(
p2d − q2

d

)
− ln βd , A = η∣∣u2 − v2

∣∣ ,

then we can rewrite the cardinality of SZ as

∑
SZ

1 =
∑

(p j ,q j )∈Ii×J j

1[−A,A](F(p, q)) .
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For a technical reason (as will be seen in Step 7), we replace 1[−A,A] by a
smooth approximation. Let φ : R → R be a smooth, non-negative, symmetric
Friedrich mollifier, that is monotonically decreasing on R

+. Setting φε(x) =
ε−1φ( x

ε
). Then, we have

∑
SZ

1 =
∑

(p j ,q j )∈Ii×J j

(
1[−A,A] ∗ φL−100d

)
(F(p, q))

+
∑

(p j ,q j )∈Ii×J j

(
1[−A,A] − 1[−A,A] ∗ φL−100d

)
(F(p, q))

= I + I I . (8.23)

In an analogous argument to showing that the cardinality of RZ can well
approximated by the cardinality of RZ, we may show that sum I I can be
estimated up to an acceptable error.

Step 5: Expressing the sum using Fourier Transform The number #SZ can
be expressed using the Fourier transform as follows. Let

F(p, q) = ln

⎛
⎝d−1∑

j=1

β j (p2j − q2
j )− ξ

⎞
⎠− ln

(
p2d − q2

d

)
− ln βd , A = η∣∣u2 − v2

∣∣ ,

and write

I =
∑

(p j ,q j )∈Ii×J j

(
1[−A,A] ∗ φL−100d

)
(F(p, q))

=
∑

(p j ,q j )∈I j×J j

ˆ
eiF(p,q)t ̂

(
1[−A,A] ∗ φL−100d

)
(t)dt

=
ˆ

S1(t)S2(t)e
−i t ln βd 1̂[−A,A]φ̂L−100d dt,

where,

S1(t) =
∑

pi∈Ii ,qi∈Ji
i=1,...,d−1

⎛
⎝d−1∑

j=1

β j (p2j − q2
j )+ ξ

⎞
⎠

i t

(8.24)

S2(t) =
∑

pd∈Id ,qd∈Jd

(p2d − q2
d )

i t . (8.25)

Step 6: A scaling argument As mentioned earlier, if A is large compared to
L−1, then comparing the sum over SZ and the area of S is relatively simple. For
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this reason we split our sum by scaling with a factor A
A0
, where A0 = L4/3

|u2−v2| ,
i.e., split the integral into two terms,

I = A

A0

ˆ
S1(t)S2(t)e

−i t ln βd ̂1[−A0,A0]φ̂L−100d dt

+
ˆ

S1(t)S2(t)e
−i t ln βd

(
1̂[−A,A] − A

A0
̂1[−A0,A0]

)
φ̂L−100d dt = I I I + I V .

Ignoring the factor φ̂L−100d , the first integral is counting p, q such that

∣∣∣∣∣∣ln
⎛
⎝d−1∑

j=1

β j (p2j − q2
j )− ξ

⎞
⎠− ln

(
p2d − q2

d

)− ln βd

∣∣∣∣∣∣ ≤ A0β
−1
d .

As in Step 4, the factor φ̂L−100d can be ignored, up to a suitable contributing
error. Then, one is reduced to counting

∣∣∣∣∣∣
d∑

j=1

β j (p2j − q2
j )− ξ

∣∣∣∣∣∣ ≤ L
4
3 + O(L

4
3−δ) .

Again, applying a similar upper/lower bounding argument to that used in Step
4 with the use of Proposition 8.13 replaced by the use of Proposition 8.10, we
obtain

I I I =
ˆ

I1×···×Id

ˆ

J1×···×Jd

1a≤Q(x,y)≤b dxdy + O(L2(d−1)−(3d+1)δ(b − a)) .

For the purpose of proving Proposition 8.13, one simply observes that the first
term is of order O(L2(d−1)−3dδ(b − a)). Thus in order to complete the proof
of Propositions 8.12, 8.13, and by implication Theorem 8.11, it suffices to
estimate I V .

Step 7: Replace S2 with a sum involving smooth cut-offs
We now replace the sum S2 with a sum involving smooth cut-offs. This is a

preparatory step, that will be needed for Step 10, in order to apply an argument
involving the Mellin transform and Riemann zeta function estimates.

We rewrite S2 in terms of the coordinates m = pd − qd , n = pd + qd and
the set

K := {pd − qd)
∣∣ (pd , qd) ∈ Id × Jd} .
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840 T. Buckmaster et al.

Then S2 becomes

S2 =
∑
pd ,qd

1Id (pd)1Jd (qd)(p2d − q2
d )

i t

=
∑
m,n

1[−1,1]
(

m + n − 2u

2�u

)
1[−1,1]

(
m − n − 2v

2�v

)
mit nit

=
∑
m∈K

mit
∑

n

1[−1,1]
(

m + n − 2u

2�u

)
1[−1,1]

(
m − n − 2v

2�v

)
nit .

Without loss of generality, we may assume �u ≤ �v. Let us cover K by
disjoint intervals M j of length L1−100dδ and define w j to be the center of M j .
It is not difficult to show that that may be achieved such that #{M j } � L100dδ

we have the following bound on the set difference

#

(⋃
k

M j

)
\ K � L1−100dδ .

Thus we have∣∣∣∣∣∣S2 −
∑

j

∑
m∈M j

mit
∑

n

1[−1,1]
(

m + n − 2u

2�u

)
1[−1,1]

(
m − n − 2v

2�v

)
nit

∣∣∣∣∣∣
� L2−100dδ .

Using that M j is of length L1−100dδ, wemay also replacem with themidpoints
w j in order to obtain the estimate

∣∣∣∣∣
∑

n

(
1[−1,1]

(m + n − 2u

2�u

)
1[−1,1]

(m − n − 2v

2�v

)
− 1[−1,1]

(w j + n − 2u

2�u

)
1[−1,1]

(w j − n − 2v

2�v

))∣∣∣∣∣
� L1−100dδ ,

and hence

S2 =
∑

j

∑
m∈M j

mit
∑

n

1[−1,1]
(
w j + n − 2u

2�u

)
1[−1,1]

(
w j − n − 2v

2�v

)
nit

+O(L2−100dδ) .

Again, up to an allowable error we may also replace the sharp cut-off cutoff
functions with a smooth cut-off ψ ≡ 1 on [−1+ L−100dδ, 1− L−100dδ] and
supported on the interval [−1, 1], i.e.
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2 =∑ j
∑

m∈M j
mit
∑

n

ψ

(
w j + n − 2u

2�u

)
ψ

(
w j − n − 2v

2�v

)
nit

︸ ︷︷ ︸
S j

+O(L2−100dδ) .

(8.26)

Finally, the sum in m can be replaced be a sum involving a smooth cut-off, up
to an allowable error

S2 =
∑

j

∑
m

ψ

(
w j − m

L1−100dδ

)
mit S j

︸ ︷︷ ︸
S̃2

+O(L2−100dδ) . (8.27)

We now decompose I V as

I V =
ˆ

S1(t)S̃2(t)e
−i t ln βd

(
1̂[−A,A] − A

A0
̂1[−A0,A0]

)
φ̂L−100d dt

+
ˆ

S1(t)(S2(t)− S̃2(t))e
−i t ln βd

(
1̂[−A,A]− A

A0
̂1[−A0,A0]

)
φ̂L−100d dt

= V + V I

By (8.27) we have

|V I | � L2d−100dδ
ˆ ∣∣∣∣
(
1̂[−A,A] − A

A0
̂1[−A0,A0]

)
φ̂L−100d

∣∣∣∣ dt .

Observe that∣∣∣∣1̂[−A,A](t)− A

A0
̂1[−A0,A0](t)

∣∣∣∣ = A

∣∣∣∣sin(At)

At
− sin(A0t)

A0t

∣∣∣∣
� min

(
AA2

0 |t |2 ,
A

1+ A |t |
)

. (8.28)

and for any N we have

∣∣∣φ̂L−100d

∣∣∣ � 1

(1+ L−200d t2)N
. (8.29)

Thus using that A � (b − a)L−2+2δ, we have

|V I | � (b − a)L2(d−1)−50dδ ,

which is an acceptable error.
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Step 8: V is an error Now consider V , we aim to show that

|V | � L2(d−1)−3dδη (8.30)

for a set of (β2, βd) of full measure, independent of our choice of length L =
2N1 and interval (a, b) = (N2L−d+1+ε, (N2 + 1)L−d+1+ε). By Chebyshev’s
inequality, it suffices to show

‖V ‖L2
β2,βd

� L2(d−1)−(3d+1)δη
3
2 .

To see this, define

�L ,N2 = {β ∈ [1, 2]d ∣∣ |V | > L2(d−1)−3dδη} .

By Chebyshev’s inequality we have

∣∣�L ,N2

∣∣ � 1

L4(d−1)−6dδη2
‖V ‖2

L2
β2,βd

� L−2δη .

Recall that η = L−d+1+ε, then, since

⋂
N1≥M, |N2|≤2Ld−1−ε

∣∣�2N1 ,N2

∣∣ ≥ 1− C
∞∑

j=N

2−2 jδ = 1− C
4δ(1−N )

4δ − 1
→ 1 as M → ∞ .

we obtain (8.30) for a set of (β2, βd) of full measure, where the implicit
constant depends on (β2, βd).

Applying (8.28) and (8.29) we have∣∣∣∣
(
1̂[−A,A] − A

A0
̂1[−A0,A0]

)
φ̂L−100d

∣∣∣∣ � min

(
AA2

0 |t |2 ,
A

1+ A |t |
)

.

Averaging in β2 and βd , and using Plancherel’s theorem for the integral in

βd , we have from the bounds A = ηL−2+2δ and A0 = L− 2
3+2δ

‖V ‖2
L2
β2,βd

� A2
(

A4
0

ˆ

|t |≤L
1

100
t4 ‖S1‖2L2

β2

∣∣∣S̃2∣∣∣2 dt

+
ˆ

|t |≥L
1

100

1

1+ A2t2
‖S1‖2L2

β2

∣∣∣S̃2∣∣∣2 dt

)

� η2L
−20
3 +12δ

ˆ

|t |≤L
1

100
t4 ‖S1‖2L2

β2

∣∣∣S̃2∣∣∣2 dt
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+ η2L−4+4δ
ˆ

|t |≥L
1

100

1

1+ η2L−4t2
‖S1‖2L2

β2

∣∣∣S̃2∣∣∣2 dt

� η2L
−8
3 +6δ

ˆ

|t |≤L
1

100
t4 ‖S1‖2L2

β2

dt︸ ︷︷ ︸
V I I

+ η2L−4+4δ
ˆ

|t |≥L
1

100

1

1+ η2L−4t2
‖S1‖2L2

β2

∣∣∣S̃2∣∣∣2 dt︸ ︷︷ ︸
V I I I

where we have used the trivial bound # S̃2 ≤ #Id#Jd ≤ L2−6δ.
Step 9: Bounding VII To bound ‖S1‖L2

β2
, we rewrite

|S1(t)|2 =
∑

pi∈Ii ,qi∈Ji
i=1,...,d−1

∑
r j∈I j ,s j∈J j
j=1,...,d−1

⎛
⎝d−1∑

j=1

β j (p2j − q2
j )− ξ

⎞
⎠

i t ⎛
⎝d−1∑

j=1

β j (r
2
j − s2j )− ξ

⎞
⎠

−i t

=
∑

pi∈Ii ,qi∈Ji
i=1,...,d−1

∑
r j∈I j ,s j∈J j
j=1,...,d−1

(p21 − q2
1 + β2(p22 − q2

2 )

+ ψ1)
i t (r21 − s21 + β2(r

2
2 − s22 )+ ψ2)

−i t

=
∑

pi∈Ii ,qi∈Ji
i=1,...,d−1

∑
r j∈I j ,s j∈J j
j=1,...,d−1

eit
((
ln
(

p21−q2
1+β2(p22−q2

2 )+ψ1
)−ln
(
r21−s21+β2(r22−s22 )+ψ2

)))

where

ψ1 :=
d−1∑
j=3

β j (p2j − q2
j )− ξ and ψ2 =

d−1∑
j=3

β j (r
2
j − s2j )− ξ

for d > 3 or ψ1 = ψ2 = ξ for the case d = 3. Setting

φ := ln
(

p21 − q2
1 + β2(p22 − q2

2 )+ ψ1
)− ln

(
r21 − s21 + β2(r

2
2 − s22)+ ψ2

)
we have

∣∣∂β2φ∣∣ =
∣∣∣∣∣ p22 − q2

2

p21 − q2
1 + β2(p22 − q2

2 )+ ψ1
− r22 − s22

r21 − s21 + β2(r22 − s22)+ ψ2

∣∣∣∣∣
≥
∣∣∣∣∣(p22 − q2

2 )(r
2
1 − s21 + ψ2)− (r22 − s22)(p21 − q2

1 + ψ1)

L4

∣∣∣∣∣ ,
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then for t ≤ L4, and by taking the sup over indices 3 ≤ i ≤ d − 1, we have

ˆ
|S1(t)|2 dβ2 � sup

ψ1,ψ2

L2(d−3)
∑

pi∈Ii ,qi∈Ji
ri∈Ii ,si∈Ji

i=1,2

(
1+ |t | inf

β2
|∂β2!|

)−1

.

Here we a using the trivial bound for the case 1 ≥ |t | infβ2 |∂β2!|, otherwise
we use Van der Corput’s Lemma (see for example [37] Chapter 8, Proposition
2). For the former case, to apply the proposition, we split the integral into
regions for which ∂β2� is monotonic in β2.

Set (pi − qi )(pi + qi ) = wi and (ri − si )(ri + si ) = zi , and sum over fixed
wi and zi using the divisor bound d(k) �ε |k|ε , we obtain

ˆ
|S1(t)|2 dβ2 � sup

ψ1,ψ2

L2(d−3)+

∑
L2−2δ≤|wi |,|zi |≤L2

(
1+ |t |

L4
|w2(z1 + ψ2)− z2(w1 + ψ1)|

)−1

The above sum can rearranged by summing first over the set,

Aψ(k, w2, z2) = {L2−2δ ≤ |w1| , |z1| ≤ L2
∣∣  ["]|w2(z1 + ψ2)− z2(w1 + ψ1)| = k},

and then over (k, w2, z2) to obtain,

ˆ
|S1(t)|2 dβ2 � sup

ψ1,ψ2

L2(d−3)+ ∑
0≤k�L2

L2−2δ≤|w2|,|z2|≤L2

#Aψ(k, w2, z2)
L4

L4 + |t | k

� sup
ψ1,ψ2

L2(d−3)+ ∑
L2−2δ≤|w2|,|z2|≤L2

max
k

#Aψ(k, w2, z2)

(
1+ L4+

|t |

)

Nowweestimate #Aψ(k, w2, z2) for afixed (k, w2, z2).AssumeAψ(k, w2, z2)
�= ∅, then there exists w0 and z0, such that, L2−2δ ≤ |w0 − ψ2| ≤ L2 and
L2−2δ ≤ |z0 − ψ1| ≤ L2 and

[|w2(z0)− z2(w0)|] = k .

Thus

#Aψ � #{w2̃z1 = z2w̃1
∣∣ |w̃1 − w0| ,
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|̃z1 − z0| ≤ L2} = #{w1 = w2̃z1
z2

∣∣ |w̃1 − w0| , |̃z1 − z0| ≤ L2}

Since w̃1 ∈ Z then #Aψ � 1+ L2 gcd(w2,z2)
z2

, and consequently

ˆ
|S1(t)|2 dβ2 � L2(d−3)+

(
1+ L4+

|t |

) ∑
L2−2δ≤|w2|,|z2|≤L2

(
1+ L2 gcd(w2, z2)

z2

)

� L2(d−3)+
(
1+ L4+

|t |

)⎛⎜⎜⎜⎝
∑

L2−2δ≤|w2|,|z2|≤L2

1+
∑

L2−2δ≤|w2|,|z2|≤L2

gcd(w2,z2) �=1

L2+

⎞
⎟⎟⎟⎠

� L2(d−1)+δ

(
1+ L4

|t |
)

.

Hence, applying this bound to V I I yields

V I I � η2L
−8
3 +6δ

ˆ

|t |≤L
1

100
|t |3 L2(d+1+δ) dt

� η2L4(d−1)L−2d+ 10
3 +7δ+ 1

25 � η3L4(d−1) .

where we used that η = L−d+1+ε, δ is sufficiently small and d ≥ 3.
Step 10: Bounding VIII Now consider V I I I , we have

V I I I � η2L2(d−3)+5δ
ˆ

|t |≥L
1

100

|t | + L4

1+ η2L−4t2
1

|t |
∣∣∣S̃2∣∣∣2 dt

� η2L2(d−3)+5δ sup

κ≥L
1

100

κ1+ + L4κ0+

1+ η2L−4κ2

ˆ

|t |≥L
1

100

1

|t |1+
∣∣∣S̃2∣∣∣2 dt

� η2L2(d−3)+5δ
(

L2+

η
+ L4+

)⎛⎝sup
k

L− 1
100 2−k

ˆ L
1

100 2k+1

L
1

100 2k

∣∣∣S̃2∣∣∣2 dt

⎞
⎠ .

(8.31)

We proceed to estimate
∣∣S j
∣∣, defined in (8.26). Defining

χ(z) = ψ

(
w j − 2u

2�u
+ z

)
ψ

(
w j − 2v

2�v
− z�u

�v

)
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and letting χ̂ denote Mellin transform of χ , then

S2
j =
(

1

2π i

ˆ

$s=2
χ̂ (s)(2�u)sζ(s − i t)ds

)2
.

Shifting the contour to $s = 1
2 we pick up the residue

χ̂(1+ i t)(2�u)1+i t ,

which for |t | ≥ L
1
3 is order O(L−N ) for any N due to the decay of χ̂ and that

�u and �v are of comparable size. Then using �u ∼ L1−3δ

|S j |2 =
∣∣∣∣∣ 12π

ˆ

$s= 1
2

χ̂ (s)(2�u)sζ(s − i t)ds

∣∣∣∣∣
2

+ O(1)

� L1−3δ

∣∣∣∣∣
ˆ

$s= 1
2

χ̂ (s)ζ(s − i t)ds

∣∣∣∣∣
2

+ O(1)

= L1−3δ
∣∣∣∣χ̂
(
1

2
+ i ·
)

∗ ζ

(
1

2
− i ·
)
(t)

∣∣∣∣
2

+ O(1) .

Again, using the rapid decay of ψ̂ , we have

|S j |2 � L1−3δ
∣∣∣∣
(
1[−L100dδ,L100dδ](·)χ̂

(
1

2
+ ·
))

∗ ζ

(
1

2
− i(·)
)
(t)

∣∣∣∣
2

+ O(1) .

We now utilize following classical L4 bound of the zeta function in the critical
strip [25]

1

T

ˆ T

0

∣∣∣∣ζ
(
1

2
− i t

)∣∣∣∣
4

dt � T 0+ .

Using the above bound yields

∥∥∥∥
(
1[−L100dδ,L100dδ](·)χ̂

(
1

2
+ i ·
))

∗ ζ

(
1

2
− i ·
)∥∥∥∥

4

L4([L 1
100 2k ,L

1
100 2k+1])

�
∥∥χ̂∥∥L∞

∥∥∥∥ζ
(
1

2
+ i(·)
)∥∥∥∥

4

L4([L 1
100 2k−L100dδ,L

1
100 2k+1+L100dδ])

� L
1

100+δ2k
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Thus we obtain ∥∥S j
∥∥4

L4([L 1
100 2k ,L

1
100 2k+1]) � L2+ 1

100−5δ2k .

An analogous argument also yields

∥∥∥∥∥
∑

m

ψ

(
w j − m

L1−100dδ

)
mit

∥∥∥∥∥
4

L4([L 1
100 2k ,L

1
100 2k+1])

� L2+ 1
100−5δ2k .

Using the decomposition (8.26) and the bound #{M j } � L100dδ, we have

∥∥∥S̃2∥∥∥2
L2([L 1

100 2k ,L
1

100 2k+1]) � L2+ 1
100+100δ2k .

Thus, combining the above estimate on S2 with (8.31), we obtain

V I I I � η2L2(d−3)+5δ
(

L2+

η
+ L4+

)(
sup

k
L− 1

100 2−k L2+ 1
100+100dδ2k

)

� η2L2(d−2)+(5+100d)δ
(

L2+

η
+ L4+

)
� η2L4(d−1)L−2d+2+200dδη−1

where we used that η = L−d+1+ε > L2 since d ≥ 3. Thus assuming δ to be
sufficiently small, then

L−2d+2+200dδ ≤ L2d+2+ε−3dδ = η2L−3dδ ,

and hence

V I I I ≤ L2(d−1)−3dδη ,

as desired.

8.4 Proof of Theorem 8.1

First we note that the sum in Theorem 8.1 can be simplified as follows,

(1) Ignore all pairs (p, q) such that
∣∣p j
∣∣ = ∣∣q j

∣∣ for each j . The sum of
such pairs such that |p| , |q| ≤ L1+δ is of order O(t2Ld(1+δ)) and hence
contributes to an admissible error, where here we used the restriction t ≤
Ld−ε .
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(2) We restrict the sum to the positive sector p, q ∈ Z
d+∩[0, L1+δ] for p �= q.

Here we are using that the subset of (p, q) such that p j = 0 or q j = 0 for
some j is an admissible error. This follows as a consequence ofLemma8.8.
To rigorously carry out such an estimate, one must split the contributions
when |Q(p, q)| ≤ μ−1 and |Q(p, q)| > μ−1. Assuming without of loss
of generality that p1 = 0, then splitting up the later part dyadically in the
size of |Q(p, q)| and using |g(x)| � 1

|x |2 one obtains the estimate

t2
∑

(p,q)∈Z2d+
p1=0, p �=q

∣∣∣W ( p

L
,

q

L

)
g(μQ(p, q))

∣∣∣ � t2
(

L2(d−1)+−2δ

μ
+ L(d−1)+

)
� t L2d−δ ,

where W was defined in (8.4).
With all these reductions in mind, proving Theorem 8.1 will follow as a

consequence of the following theorem.

Theorem 8.14 (Equidistribution)Fix ε > 0 and let δ > 0 be sufficiently small.
Then for generic β ∈ [1, 2]d , we have that for any function W ∈ S (Rd), the
following holds,

∑
(p,q)∈Z

2d+
p �=q

W
( p

L
,

q

L

)
g(μQ(p, q))

= L2d
ˆ

R
2d+

W (x, y)g(L2μQ(x, y)) dxdy + O

(
L2(d−1)−δ

μ

)

where 1 < μ ≤ Ld−1−ε .

We remark that the above theorem is actually stronger than required: in view
of the restriction on t in the hypothesis of Theorem 8.1, we need only consider
μ within the range 0 < μ ≤ Ld−2−ε .

Before we prove Theorem 8.14, we will need a couple of auxiliary lemmas.
The following lemma is helpful in bounding errors to the asymptotic formula.

Lemma 8.15 Let ε > 0. Given a generic quadratic from Q(p, q) as defined
in (8.1), we have the following estimate

∑
(p,q)∈Z

2d∩[0,L]2d

p �=q,|Q(p,q)|≥a

1

Q(p, q)2
� L(2d−2)+

a
. (8.32)
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for a ≥ L−d+ε

Proof We begin by dyadically subdividing the interval [a,C L2], for some
large C , we define

R
Z(m)

de f= {(p, q) ∈ Z
2d ∩ [0, L]2d

∣∣ |Q(p, q)| ∈ [2m, 2m+1], p �= q},
mmin =  log2 a", and mmax = %log2 C L2& .

Applying Lemma 8.4 yields

∑
(p,q)∈Z

2d∩[0,L]2d

p �=q,|Q(p,q)|≥a

1

Q(p, q)2
�

mmax∑
m=mmin

2−2m#R
Z(m)

�
mmax∑

m=mmin

2−2m L(2d−2)+2m

�
mmax∑

m=mmin

L(2d−2)+

a
.

��
The following lemma will be useful localizing the sum in Theorem 8.14.

Lemma 8.16 Fix ε > 0, then for δ > 0 sufficiently small the following state-
ment is true: Suppose I j , J j ⊂ [0, L] for j = 1, . . . , n are intervals with
length satisfying

L1−δ ≤ ∣∣I j
∣∣ , ∣∣J j
∣∣ (8.33)

and define

S(I,J )
de f= {(p, q) ∈ Z

2d
∣∣ p j ∈ I j , q j ∈ J j , p �= q} .

Then for μ satisfying Lε ≤ μ ≤ Ld−ε we have

∑
(p,q)∈S(I,J )

g(μQ(p, q)) =
ˆ

I1×···×Id

ˆ

J1×···×Jd

g(μQ(x, y)) dxdy

+O

(
L2(d−1−dδ)

μ

)
. (8.34)
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Proof First note that by Lemma 8.15

∣∣∣∣∣∣∣∣∣
∑

(p,q)∈S(I,J )

g(μQ(p, q))−
∑

(p,q)∈S(I,J )

|Q(p,q)|≤μ−1L4dδ

g(μQ(p, q))

∣∣∣∣∣∣∣∣∣
� L2(d−1)+(1−4d)δ

μ

� L2(d−1−dδ)

μ
.

Define the sum A(y) and the integral Ã as follows

A(y) =
∑

(p,q)∈S(I,J )
|Q(p,q)|≤y

1 and Ã(y) =
ˆ

I1×···×Id

ˆ

J1×···×Jd

1[−y,y](Q(u, v)) dudv

Then in the sense of distributions

∑
(p,q)∈S(I,J )

|Q(p,q)|≤μ−1L4dδ

g(μQ(p, q)) =
ˆ μ−1L4dδ

0
g(μy)A′(y) dy

= −μ

ˆ μ−1L4dδ

0
g′(μy)A(y) dy + g(L4dδ)A(μ−1L4dδ)

= −μ

ˆ μ−1L4dδ

0
g′(μy)A(y) dy + O

(
L2(d−2)−4dδ

μ

)

where in the last inequality we applied Lemma 8.4 and the bound Lε ≤ μ ≤
Ld−ε . Writing A = Ã + (A − Ã), we have

∑
(p,q)∈S(I,J )

|Q(p,q)|≤μ−1L4dδ

g(μQ(p, q)) = −μ

μ−1L4dδˆ

0

g′(μy) Ã(y) dy

+μ

μ−1L4dδˆ

0

g′(μy)(A(y)− Ã(y)) dy

+O

(
L2(d−2)−4dδ

μ

)
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By Theorem 8.11 (by choosing δ smaller than the δ used in the theorem) it
follows that assuming y ≥ L−d+ε then

∣∣∣A(y)− Ã(y)
∣∣∣ � L2(d−1)−10dδ y .

For y ≤ L−d+ε by the trivial bound

∣∣∣A(y)− Ã(y)
∣∣∣ � A(y)+ Ã(y) � Ld−2+ε+δ .

Using the trivial bound g′(z) � 1 we have

μ

ˆ μ−1L4dδ

0

∣∣∣g′(μy)(A(y) − Ã(y))
∣∣∣ dy

� μ

ˆ L−d+ε

0

∣∣∣g′(μy)(A(y) − Ã(y))
∣∣∣ dy +

ˆ μ−1L4dδ

L−d+ε

∣∣∣g′(μy)(A(y) − Ã(y))
∣∣∣ dy

� μL−2+2ε+δ + μL2(d−1)−10dδ
ˆ μ−1L4dδ

L−d+ε

ydy

� μ−1L2(d−1)−ε+δ + μ−1L2(d−2)−2dδ

where in the last inequality we used μ ≤ Ld−ε . Choosing δ sufficiently small
in relation to ε, this constitutes an allowable error. The proof concludes by
noting that by integration by parts

− μ

μ−1L4dδˆ

0

g′(μy) Ã(y) dy

=
¨

I1×···×Id
J1×···×Jd

1[−μ−1L4dδ,μ−1L4dδ](Q(x, y))
(

g(μQ(x, y))+ g(L4dδ)
)

dxdy

��
Proof of Theorem 8.14 Wefirst note that by symmetry, it is sufficient to restrict
ourselves to the positive sector p, q ∈ Z

d+. Note that Lemma 8.8 implies the
subset of (p, q) such that p j = 0 or q j = 0 may be treated as an admissible
error. Thus, it suffices to show

∑
(p,q)∈Z

2d+
p �=q

W
( p

L
,

q

L

)
g(μQ(p, q)) = L2d

ˆ

R
2d+

W (x, y)g(L2μQ(x, y)) dxdy
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+ O

(
L2(d−1)−δ

μ

)

= L2(d−1)

μ

ˆ

R
2d+

W (x, y)δ(Q(x, y)) dxdy

+ O

(
L2(d−1)−δ

μ

)

Divide [0, Lδ]d × [0, Lδ]d into products of cubes M j , Nk ⊂ R
d+ of length

L−10dδ. Define W j,k to be the average of W over M j × Nk :

W j,k :=
 

M j

 

Nk

W (x, y) dxdy

Note that if (x, y) ∈ M j × Nk then from the smoothness of W

∣∣W (x, y)− W j,k
∣∣ � L−10dδ .

Hence using Lemma 8.15

∣∣∣∣∣∣∣∣∣
∑

(p,q)∈Z
2d+

p �=q

W
( p

L
,

q

L

)
g(μQ(p, q))−

∑
j,k

∑
p∈L M j ,q∈L Nk

p �=q

W j,k g(μQ(p, q))

∣∣∣∣∣∣∣∣∣
� L2(d−1)(1+δ)+δ−10dδ

μ

� L2(d−1)−δ

μ

Applying Lemma 8.16 (taking δ to be sufficiently small) we obtain

∑
j,k

∑
p∈L M j ,q∈L Nk

p �=q

W j,k g(μQ(p, q)) =
∑
j,k

ˆ

L M j

ˆ

L Nk

W j,k g(μQ(x, y)) dxdy

+ O

(
L2(d−1)−δ

μ

)
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= L2d
ˆ

R
2d+

W (p, q)g(L2μQ(x, y)) dxdy

+ O

(
L2(d−1)−δ

μ

)
.
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