REVISTA MATEMATICA de la Universidad Complutense de Madrid Volumen 7, número 1: 1994 http://dx.doi.org/10.5209/rev_REMA.1994.v7.n1.17776

On The Locally Uniformly Weak Star Rotundity of Orlicz Spaces •

TINGFU WANG and ZHONGRUI SHI

ABSTRACT. In the paper, a sufficient and necessary condition is given for the locally uniformly weak star rotundity of Orlicz spaces with Orlicz norms.

A Banach space X is said to be locally uniformly rotund (LUR), locally weakly uniformly rotund (LWUR), locally uniformly weak star rotund (LW^*UR) provided that $||x_n|| = 1$ (n = 0, 1, 2, ...), $||x_n + x_0|| \rightarrow 2$ imply $||x_n - x_0|| \rightarrow 0$, $x_n - x_0 \stackrel{w}{\rightarrow} 0$, $x_n - x_0 \stackrel{w}{\rightarrow} 0$, respectively. X is said to be uniformly weak star rotund (W^*UR) provided that $||x_n|| = ||y_n|| = 1$, $||x_n + y_n|| \rightarrow 2$ imply $x_n - y_n \stackrel{w^*}{\rightarrow} 0$. At a glance we know that

$$LUR \Rightarrow LWUR \Rightarrow LW^*UR \Rightarrow R$$

$$W^*UR \Rightarrow LW^*UR$$

where 'R' stands for the rotundity.

^{*} This subject supported by NSFC and NSFH. 1991 Mathematics Subject Classification: 46E30. Editorial Complutense. Madrid, 1994.

In the sequel (G, Σ, μ) denotes a finite non-atomic measurable space, M and N denote a pair of complemented N-functions, p and q denote their right-hand derivatives, respectively. For a measurable function x(t) we denote the modular of x by $R_M(x) = \int_G M(x(t)) \ d\mu$. $L_M(G, \Sigma, \mu)$ denotes an Orlicz space generated by M, that is

$$L_M(G, \Sigma, \mu) = \{x(t) : \text{ for some } a > 0, R_M(ax) < \infty\}$$

and endowed with the Orlicz norm

$$||x|| = \sup_{R_M(y) \le 1} \int_G x(t)y(t) d\mu = \inf_{k > 0} \frac{1}{k} (1 + R_M(kx)).$$

 $M \in \Delta_2$ stands for that M which satisfies the condition Δ_2 for large $u, M \in \nabla_2$ stands for $N \in \Delta_2$, $M \in SC$ stands for that M which is strictly convex on the whole axis i.e. for $0 < \lambda < 1, u, v, u \neq v$,

$$M(\lambda u + (1 - \lambda)v) < \lambda M(u) + (1 - \lambda)M(v).$$

(cf [1] and [3]).

In Orlicz spaces, for Luxemburg norm, it was obtained in [2] that $LUR \Leftrightarrow LWUR \Leftrightarrow LW^*UR \Leftrightarrow R \Leftrightarrow M \in SC \cap \Delta_2$; for the Orlicz norm, it is more complicated, for instance, $LUR \Leftrightarrow LWUR \Leftrightarrow M \in \Delta_2 \cap \nabla_2 \cap SC(cf[3])$, $W^*UR \Leftrightarrow M \in SC \cap UC(cf[4])$ and $R \Leftrightarrow M \in SC(cf[5])$. But so far it has not been discussed for LW^*UR . The goal of this paper is to fill this gap, we will find a criterion for Orlicz space equipped with the Orlicz norm to be LW^*UR . For the sake of convenience, we first establish several lemmas.

Lemma 1. For arbitrary $0 \le \lambda$, δ , $\lambda' < 1$, there exists $0 < \delta' \le \delta$ such that for all u, v > 0 if $M(\lambda u + (1 - \lambda)v) \le (1 - \delta)(\lambda M(u) + (1 - \lambda)M(v))$, then

$$M(\lambda' u + (1 - \lambda')v) < (1 - \delta')(\lambda' M(u) + (1 - \lambda')M(v))$$

Proof. Without loos of generality, we assume that $\lambda' > \lambda$. Take $\delta' = min \left\{ 1, \frac{\lambda(1-\lambda')}{\lambda'(1-\lambda)} \right\} \delta$.

Hence $0 < \delta' \le \delta$ and

$$M(\lambda'u + (1 - \lambda')v) = M\left[\frac{1 - \lambda'}{1 - \lambda}(\lambda u + (1 - \lambda)v)\right] + \frac{\lambda' - \lambda}{1 - \lambda}u\right]$$

$$\leq \frac{1 - \lambda'}{1 - \lambda}M(\lambda u + (1 - \lambda)v) + \frac{\lambda' - \lambda}{1 - \lambda}M(u)$$

$$\leq \frac{1 - \lambda'}{1 - \lambda}(1 - \delta)[\lambda M(u) + (1 - \lambda)M(v)] + \frac{\lambda' - \lambda}{1 - \lambda}M(u)$$

$$= \lambda'M(u) - \frac{1 - \lambda'}{1 - \lambda}\lambda\delta M(u) + (1 - \delta)(1 - \lambda')M(v)$$

$$= \left(1 - \frac{\lambda(1 - \lambda')}{\lambda'(1 - \lambda)}\delta\right)\lambda'M(u) + (1 - \delta)(1 - \lambda')M(v)$$

$$\leq (1 - \delta')\lambda'M(u) + (1 - \delta')(1 - \lambda')M(v)$$

$$= (1 - \delta')(\lambda'M(u) + (1 - \lambda')M(v)). \quad \blacksquare$$

Remark. Notice that for fixed $\lambda, \delta, \delta'(\lambda') = min\left\{1, \frac{\lambda(1-\lambda')}{\lambda'(1-\lambda)}\right\}\delta$ is continuous over the interval (0,1). We deduce that for any $[\alpha, \beta] \subset (0,1)$, in Lemma 1, there is a common δ'_0 such that for all $\lambda' \in [\alpha, \beta]$, and $u, v > 0, u \neq v$,

$$M(\lambda'u + (1-\lambda')v) \le (1-\delta_0')(\lambda'M(u) + (1-\lambda')M(v)).$$

Lemma 2. For $x \in L_M$, if for some k > 0, $R_N(p(kx)) = \int_G N(p(kx(t))) d\mu \le 1$ and for all $\lambda > 1$, $R_N(p(\lambda kx)) > 1$, then

$$||x|| = \frac{1}{k} \Big(1 + R_M(kx) \Big).$$
 (cf[3])

Lemma 3. For $x \in L_M$, there is k > 0 satisfying

$$||x|| = \frac{1}{k} \Big(1 + R_M(kx) \Big).$$
 (cf[3])

Lemma 4. If $M \in SC$, $||x_n|| = \frac{1}{k_n}(1 + R_M(k_n x_n))$ (n = 0, 1, 2, ...) with bounded $\{k_n\}_{n=0}^{\infty}$ and $||x_n + x_0|| \to 2$, then

$$k_n x_n - k_0 x_0 \stackrel{\mu}{\to} 0. \tag{cf[3]}$$

Lemma 5. Under the same assumption as in Lemma 4, let $y_n \in L_N$, $R_N(y_n) \leq 1$ with $\int_G (x_n(t) + x_0(t))y_n(t) d\mu \to 2$. Then for every $e_n \subset G$,

$$\lim_{n \to \infty} \int_{e_n} [k_n x_n(t) y_n(t) - M(k_n x_n(t)) - N(y_n(t))] d\mu = 0,$$

$$\lim_{n \to \infty} \int_{e_n} [k_0 x_0(t) y_n(t) - M(k_0 x_0(t)) - N(y_n(t))] d\mu = 0,$$

$$\lim_{n \to \infty} \int_{e_n} (k_n x_n(t) - k_0 x_0(t)) y_n(t) d\mu =$$

$$= \lim_{n \to \infty} \int_{e_n} M(k_n x_n(t)) - M(k_0 x_0(t)) d\mu.$$

As n tends to ∞ , the above limits hold uniformly with respect to subsets e_n .

Proof. We have the following

$$1 \leftarrow \frac{1}{k_n} \int_G k_n x_n(t) y_n(t) \ d\mu \le \frac{1}{k_n} \left(R_N(y_n) + R_M(k_n x_n) \right)$$
$$\le \frac{1}{k_n} (1 + R_M(k_n x_n)) = ||x_n|| = 1.$$

Hence

$$\int_G \left[M(k_n x_n(t)) + N(y_n(t)) - k_n x_n(t) y_n(t)
ight] \, d\mu
ightarrow 0.$$

Since the integrand is nonnegative, we immediately get the first and the second identity. The third one is a simple consequence of the others.

Lemma 6. In Orlicz space $L_M(G, \Sigma, \mu)$ endowed with Orlicz norm, the set

$$A = \left\{ x(t) \in L_M : R_N(p(kx)) = 1 \text{ where } ||x|| = \frac{1}{k} (1 + R_M(kx)) \right\}$$

is dense in L_M.

Proof. It is enough to show that for any $x \in L_M$ with $R_N(p(kx)) > 1$ or < 1 where $||x|| = \frac{1}{k}(1 + R_M(kx))$, and for any $\varepsilon > 0$, there is $x' \in A$, such that $||x - x'|| < \varepsilon$ and $R_N(p(kx')) = 1$.

Let
$$R_N(p(kx)) > 1$$
.

Notice that for any $\varepsilon > 0$, $R_N(p((1-\varepsilon)kx) \le 1$. When $R_N(p((1-\varepsilon)kx)) = 1$, set $x'(t) = (1-\varepsilon)x(t)$. Then $R_N(p(kx')) = 1$. Now by Theorem 10.5 in [1], we get that $||x'|| = \frac{1}{k}(1+R_M(kx'))$, i.e., $x' \in A$. Clearly $||x-x'|| \le \varepsilon$.

When $R_N(p((1-\varepsilon)kx)) < 1$, since (G,Σ,μ) is nonatomic, there is $G' \subset G$

$$\int_{G'} N(p((1-\varepsilon)kx(t))) \ d\mu + \int_{G\backslash G'} N(p(kx(t))) \ d\mu = 1$$

Setting $x'(t)=(1-\varepsilon)x(t)\chi_{G'}(t)+x(t)\chi_{G\backslash G'}(t)$, we get $R_N(p(kx'))=1$. Also by [1], $||x'||=\frac{1}{k}(1+R_M(kx'))$. Clearly $||x-x'||\leq \varepsilon$.

The argument is analogous for the case $R_N(p(kx)) < 1$.

Theorem. Endowed with the Orlicz norm, Orlicz space $L_M(G, \Sigma, \mu)$ is LW^*UR if and only if

- (i) $M \in SC$,
- (ii) $M \in \nabla_2$,
- (iii) for any $\varepsilon > 0$, there exist δ , a > 0 such that for u, v satisfying $\varepsilon^2 \le \varepsilon u \le v < u$, $M(u) \ge \varepsilon u p(u)$, and $M\left(\frac{u+v}{2}\right) > (1-\delta) \frac{M(u)+M(v)}{2}$, we have

$$p((1-\varepsilon)u) \le ap((1-\delta)v).$$

Proof. Sufficiency. Suppose $||x_n|| = \frac{1}{k_n}(1+R_M(k_nx_n)) = 1$ $(n=0,1,2,\ldots)$ and $||x_n+x_0|| \to 2$. By Lemma 6, assume $R_N(p(k_nx_n)) = 1$ $(n=1,2,\ldots)$.

In view of $M \in \nabla_2$, we know from [3] that $\{k_n\}_{n=1}^{\infty}$ is bounded. Denote $\bar{k} = \sup_n k_n$. In the following we shall show that $x_n \stackrel{w^*}{\to} x_0$, i.e., any subsequence of $\{x_n\}_{n=1}$ has its subsequence w^* -convergent to x_0 . So we can assume that $k_n \to k$. On the other hand, by Lemma 4, it yields $k_n x_n - k_0 x_0 \stackrel{\mu}{\to} 0$. Therefore by Theorem 14.6 in [1], $k_n x_n - k_0 x_0 \stackrel{E_N}{\to} 0$.

At first we claim that $k \geq k_0$. Indeed, for any $\eta > 0$, take $y \in E_N$, $R_N(y) \leq 1$ such that $\int_G x_0(t)y(t) \ d\mu > ||x_0|| - \eta = 1 - \eta$. Since $\int_G k_n x_n y \ d\mu \rightarrow \int_G k_0 x_0 y \ d\mu$, we get that for n large enough $\int_G k_n x_n y \ d\mu > \int_G k_0 x_0 y \ d\mu - \eta > k_0(1 - \eta) - \eta$. So $k \leftarrow k_n = ||k_n x_n|| \geq \int_G k_n x_n y \ d\mu > \int_G k_0 x_0 y \ d\mu - \eta > k_0(1 - \eta) - \eta$.

Now we only need to show that $k = k_0$, so $x_n - x_0 \stackrel{\mu}{\to} 0$. Then by Theorem 14.6 in [1], we get that $x_n - x_0 \stackrel{E_N}{\to} 0$ i.e., $x_n - x_0 \stackrel{w^*}{\to} 0$.

Take $y_n \in E_N$, $R_N(y_n) \leq 1$ satisfying $\int_G (x_n(t) + x_0(t)) y_n(t) \ d\mu \to 2$. Then $\int_G x_n(t) y_n(t) \ d\mu \to 1$, and $\int_G x_0(t) y_n(t) \ d\mu \to 1$. Therefore we have

$$k - k_0 = \lim_{n \to \infty} \int_{C} (k_n x_n(t) - k_0 x_0(t)) y_n(t) \ d\mu \tag{1}$$

Let $\varepsilon > 0$ be arbitrary. By $M \in \nabla_2$, there exists $\varepsilon \ge \eta'(\varepsilon) > 0$ (cf[6,3]) such that for all $|u| \ge \varepsilon$, and for all λ , $\frac{1}{1+k} \le \lambda \le \frac{2\bar{k}+k_0}{2(k_0+k)}$, it holds

$$M(\lambda u) \le (1 - \eta')\lambda M(u) \tag{2}$$

Denote $m=1+\bar{k}$. For $\eta=\frac{\eta'}{m}$, by (iii), there exist $\delta,\ a>0$ such that for $u,v,\ 0<\eta^2\leq \eta u\leq v< u,$ if $M(u)\geq \eta up(u),$ and $M\left(\frac{u+v}{2}\right)>(1-\delta)\frac{M(u)+M(v)}{2}$ then

$$p((1-\eta)u) \le ap((1-\delta)v) \tag{3}$$

For such δ and $[\alpha,\beta]=\left[\frac{1}{1+k},\frac{\bar{k}}{1+\bar{k}}\right]$, by the remark after Lemma 1, it follows that there exists δ' such that if $M\left(\frac{u+v}{2}\right) \leq (1-\delta)\frac{M(u)+M(v)}{2}$, and $\lambda' \in \left[\frac{1}{1+\bar{k}},\frac{\bar{k}}{1+\bar{k}}\right]$, then

$$M(\lambda' u + (1 - \lambda')v) \le (1 - \delta')(\lambda' M(u) + (1 - \lambda')M(v). \tag{4}$$

Since $\int_G |k_0x_0(t)|p((1-\delta)k_0x_0(t)) \ d\mu \le R_M(k_0x_0) + R_N(p((1-\delta)k_0x_0)) \le k_0$ we can find $G_0 \subset G$ such that $\mu(G\backslash G_0)$ is small enough to get the following

$$\int_{G\backslash G_0} |k_0 x_0(t)| p((1-\delta)k_0 x_0(t)) \ d\mu < \frac{\eta \varepsilon}{a}$$

$$\int_{G\backslash G_0} M(k_0 x_0(t)) \ d\mu < \varepsilon \tag{5}$$

and

$$k_n x_n(t) - k_0 x_0(t) \stackrel{U}{\to} 0$$

uniformly over G_0 .

For each n, we split $G\backslash G_0$ into the five parts:

$$A_n = \{ t \in G \backslash G_0 : |k_n x_n(t)| < |k_0 x_0(t)| \}$$

$$B_n = \{t \in G \setminus G_0 \setminus A_n : \max(|k_n x_n(t)|, |k_0 x_0(t)|) < \varepsilon\}$$

$$C_n = \{t \in G \setminus G_0 \setminus A_n \setminus B_n : M(k_n x_n(t)) < \eta | k_n x_n(t) | p(|k_n x_n(t)|)\},$$

$$D_n = \left\{ t \in G \backslash G_0 \backslash A_n \backslash B_n \backslash C_n : |k_0 x_0(t)| < \eta |k_n x_n(t)|; \text{ or } x_n(t) x_0(t) < 0; \right.$$
or $M\left(\frac{k_n x_n(t) + k_0 x_0(t)}{2}\right) \le (1 - \delta) \frac{M(k_n x_n(t)) + M(k_0 x_0(t))}{2} \right\},$

$$E_n = G \backslash G_0 \backslash A_n \backslash B_n \backslash C_n \backslash D_n$$

$$= \left\{ t \in G \setminus G_0 : x_n(t)x_0(t) \ge 0; \ \eta \varepsilon \le \eta |k_n x_n(t)| \le |k_0 x_0(t)| \le |k_n x_n(t)| \right\}$$

$$M(k_nx_n(t)) \ge \eta k_n|x_n(t)|p(k_n|x_n(t)|);$$
 and

$$M\left(\frac{k_nx_n(t)+k_0x_0(t)}{2}\right) \geq (1-\underline{\delta})\frac{\underline{M(k_nx_n(t))+M(k_0x_0(t))}}{2}\bigg\}.$$

In the following, one by one, we estimate the integrals of the integrand $(k_n x_n - k_0 x_0) y_n$ over G_0 , A_n , B_n , C_n , D_n , and E_n .

From (6), for n large enough

$$\left| \int_{G_0} (k_n x_n - k_0 x_0) y_n \ d\mu \right| < \varepsilon ||y_n||_{(N)} \tag{7}$$

From the structure of A_n , by Lemma 5, it follows that for n large enough

$$\int_{A_n} (k_n x_n - k_0 x_0) y_n \ d\mu \le \int_{A_n} (M(k_n x_n(t)) - M(k_0 x_0(t))) \ d\mu + \varepsilon \le \varepsilon.$$
(8)

From the structure of B_n ,

$$\left| \int_{B_n} (k_n x_n - k_0 x_0) y_n \ d\mu \right| \le 2\varepsilon ||y_n||_{(N)} \le 2\varepsilon. \tag{9}$$

Since $||x_n|| = 1$, $R_M(x_n) \le 1$. From $R_N(p(k_n x_n)) = 1$, it yields that for n large enough

$$\int_{C_n} (k_n x_n - k_0 x_0) y_n \ d\mu \le \int_{C_n} \left(M(k_n x_n(t)) - M(k_0 x_0(t)) \right) d\mu + \varepsilon$$

$$\le \int_{C_n} M(k_n x_n(t)) \ d\mu + 2\varepsilon \le \eta \int_{C_n} |k_n x_n(t)| p(k_n x_n(t)) \ d\mu + 2\varepsilon$$

$$\le \eta \bar{k} \left(\int_G M(x_n(t)) \ d\mu + \int_G N(p(k_n x_n(t))) \ d\mu \right) + 2\varepsilon$$

$$\le 2\bar{k}\eta + 2\varepsilon \le 2(1 + \bar{k})\varepsilon.$$

When $t \in D_n$, $|k_0x_0(t)| < \eta |k_nx_n(t)|$, since $t \notin A_n \cup B_n$. So $|k_nx_n(t)| > \varepsilon$, and from (2) it follows

$$M\left(\frac{k_n k_0}{k_n + k_0} (x_n(t) + x_0(t)) \le M\left(\frac{k_0 + \eta k_n}{k_n + k_0} k_n x_n(t)\right)$$

$$\leq (1 - m\eta) \, \frac{k_0 + \eta k_n}{k_n + k_0} \, M(k_n x_n(t)) \, = \, (1 - m\eta) \, \frac{k_0 + \eta k_n}{k_0} \, \frac{k_0}{k_n + k_0} \, M(k_n x_n(t))$$

$$\leq (1-\eta) \frac{k_0}{k_n+k_0} M(k_n x_n(t))$$

$$\leq (1-\eta) \left[\frac{k_0}{k_n + k_0} M(k_n x_n(t)) + \frac{k_n}{k_n + k_0} M(k_0 x_0(t)) \right] \tag{*}$$

When $t \in D_n$, $x_n(t)x_0(t) < 0$, since $t \notin A_n \cup B_n$. While $|x_n(t)| \ge |x_0(t)|$,

$$M\left(\frac{k_n k_0}{k_n + k_0} \left(x_n(t) + x_0(t)\right)\right) \le M\left(\frac{k_n k_0}{k_n + k_0} x_n(t)\right)$$

$$\leq (1 - \eta') \frac{k_0}{k_n + k_0} M(k_n x_n(t))$$

$$\leq (1 - \eta') \left[\frac{k_0}{k_0 + k_0} M(k_n x_n(t)) + \frac{k_n}{k_n + k_0} M(k_0 x_0(t)) \right]$$
 (**)

While $|x_n(t)| < |x_0(t)|$,

$$M\left(\frac{k_{n}k_{0}}{k_{n}+k_{0}}\left(x_{n}(t)+x_{0}(t)\right) \le M\left(\frac{k_{n}k_{0}}{k_{n}+k_{0}}x_{0}(t)\right)$$

$$\leq \frac{k_n}{k_n + k_0} \ M(k_0 x_0(t))$$

$$\leq \left(1 - \frac{k_0}{k_n + k_0}\right) \left[\frac{k_0}{k_n + k_0} \ M(k_n x_n(t)) + \frac{k_n}{k_n + k_0} \ M(k_0 x_0(t)) \right]. \tag{***}$$

Taking
$$\delta'' = min(\delta', \eta, \frac{1}{1+k})$$
, and applying (4), we have $0 \leftarrow 2 - ||x_n + x_0||$

$$\geq \frac{1}{k_n}(1 + R_M(k_n x_n)) + \frac{1}{k_0}(1 + R_M(k_0 x_0)) -$$

$$-\frac{k_n+k_0}{k_nk_0}\left(1+R_M\left(\frac{k_nk_0}{k_n+k_0}(x_n+x_0)\right)\right)$$

$$= \frac{k_n + k_0}{k_n k_0} \int_G \left[\frac{k_0}{k_n + k_0} M(k_n x_n(t)) + \frac{k_n}{k_n + k_0} M(k_0 x_0(t)) - \frac{k_n + k_0}{k_n + k_0} M(k_0 x_0(t)) \right]$$

$$-M\left(\frac{k_n k_0}{k_n + k_0} (x_n + x_0)(t)\right) d\mu$$

$$\geq \frac{\frac{k_n + k_0}{k_n k_0}}{\frac{k_n + k_0}{k_n + k_0}} \int_{D_n} \left[\frac{k_0}{k_n + k_0} M(k_n x_n(t)) + \frac{k_n}{k_n + k_0} M(k_0 x_0(t)) - M \left(\frac{k_n k_0}{k_n + k_0} (x_n + x_0)(t) \right) \right] d\mu$$

$$\geq \frac{k_n + k_0}{k_n k_0} \int_{D_n} \delta'' \left[\frac{k_0}{k_n + k_0} \ M(k_n x_n(t)) + \frac{k_n}{k_n + k_0} \ M(k_0 x_0(t)) \right] \ d\mu$$

$$\geq \frac{\delta''}{k} \int_{D_n} (M(k_n x_n(t)) + M(k_0 x_0(t))) \ d\mu.$$

Obviously, for n large enough

$$\int_{D_n} (k_n x_n - k_0 x_0) y_n \ d\mu \le \int_{D_n} M(k_n x_n(t)) - M(k_0 x_0(t)) \ d\mu + \varepsilon \le 2\varepsilon.$$
(11)

When $t \in E_n$, then $|\eta k_n x_n(t)| \le |k_0 x_0(t)| \le |k_n x_n(t)|$, and $M(k_n x_n(t)) \ge \eta k_n |x_n(t)| p(k_n |x_n(t)|)$, and

$$M\left(\frac{k_n x_n(t) + k_0 x_0(t)}{2}\right) > (1 - \delta) \frac{M(k_n x_n(t)) + M(k_0 x_0(t))}{2}.$$

Hence

$$p((1-\eta)|k_nx_n(t)|) \le ap((1-\delta)|k_0x_0(t)|).$$

Moreover, from Lemma 4 and condition (5) we get for n large enough that

$$\int_{E_n} (k_n x_n - k_0 x_0) y_n \ d\mu$$

$$= \eta \int_{E_n} k_n x_n y_n \ d\mu + \int_{E_n} (1 - \eta) k_n x_n y_n \ d\mu - \int_{E_n} k_0 x_0 y_n \ d\mu$$

$$\leq \eta \bar{k} + \int_{E_n} M((1-\eta)k_n x_n(t)) \ d\mu + \int_{E_n} N(y_n(t)) \ d\mu - \int_{E_n} M(k_0 x_0(t)) \ d\mu$$

$$-\int_{E_n} N(y_n(t)) d\mu + \varepsilon$$

$$\leq \eta \bar{k} + \varepsilon + \int_{E_{-}} (1 - \eta) k_{n} |x_{n}(t)| p((1 - \eta) k_{n} |x_{n}(t)|) d\mu$$

$$\leq \eta \bar{k} + \varepsilon + (1 - \eta) \frac{a}{\eta} \int_{E_N} k_0 |x_0(t)| p((1 - \delta) |k_0 x_0(t)|) d\mu$$

$$\leq \eta \bar{k} + \varepsilon + \frac{a\eta\varepsilon}{\eta a} = \eta \bar{k} + 2\varepsilon \leq (2 + \bar{k})\varepsilon.$$

Combining (7) - (12), and (1), we deduce that

$$0 \le k - k_0 < 0(\varepsilon),$$

where $0(\varepsilon) \to 0$ as $\varepsilon \to 0$.

Hence $k = k_0$, which completes the proof of the sufficiency.

Necessity.

 $LW^*UR\Rightarrow M\in SC$. Since $LW^*UR\Rightarrow R$, it follows (i), by [5]. $LW^*UR\Rightarrow M\in \nabla_2$. Indeed, if we suppose that it is not true, then there exist $u_n\nearrow\infty$, satisfying $\frac{u_np(u_n)}{N(p(u_n))}>2^n\ (n=1,2,\ldots)\ (cf\ [6,3])$. Choose $c>0,\ G_0\subset G$, with $\mu(G\backslash G_0)>0$ and $N(p(c))\mu G_0=1$. Moreover, choose $G_n\subset G\backslash G_0$, with $u_np(u_n)\mu G_n=1$. Hence $N(p(u_n))\mu G_n<\frac{1}{2^n}$. Then take $T_n\subset G_0$, such that $N(p(c))\mu T_n+N(p(u_n))\mu G_n=1$. Hence $\mu T_n\to\mu G_0$. Now set

$$k_0 = cp(c)\mu G_0; \quad k_n = cp(c)\mu T_n + u_n p(u_n)\mu G_n. \quad (n = 1, 2, ...)$$

Obviously, $k_n \to k_0 + 1$. Define

$$x_0(t) = \frac{c}{k_0} \chi_{G_0}(t); \quad x_n(t) = \frac{1}{k_n} \left(c \chi_{T_n}(t) + u_n \chi_{G_n}(t) \right). (n = 1, 2, ...)$$

Since $R_N(p(k_0x_0)) = R_N(p(k_nx_n)) = 1$, by Theorem 10.5 of [1], it follows that

$$||x_0|| = \frac{1}{k_0} cp(c)\mu G_0 = 1;$$

$$||x_n|| = \frac{1}{k_n} (cp(c)\mu T_n + u_n p(u_n)\mu G_n) = 1 (n = 1, 2, ...)$$

and

$$||x_n + x_0|| \ge \left(\frac{1}{k_n} + \frac{1}{k_0}\right) cp(c) \mu T_n + \frac{1}{k_n} (u_n p(u_n) \mu G_n \to 2.$$

But on the other hand, we have

$$x_0 - x_n = \left(\frac{1}{k_0} - \frac{1}{k_n}\right) c \chi_{T_n}(t) + \frac{c}{k_0} \chi_{G_0 \setminus T_n}(t) - \frac{u_n}{k_n} \chi_{G_n}(t)$$

Since $\mu(G_0 \backslash T_n) \to 0$, $\mu G_n \to 0$, $T_n \nearrow G_0$, by Theorem 14.6 in [1], we derive that

$$x_0 - x_n \stackrel{w^*}{\to} \left(\frac{1}{k_0} - \frac{1}{1 + k_0}\right) c \chi_{G_0} \neq 0.$$

This contradicts to the fact that L_M is LW^*UR , which show that $M \in \nabla_2$.

 $LW^*UR \Rightarrow (iii)$. Otherwise, suppose there exist $\varepsilon > 0$, u_n , $v_n \nearrow \infty$ such that $\varepsilon^2 \le \varepsilon u_n \le v_n < u_n$, $M(u_n) \ge \varepsilon u_n p(u_n)$,

$$M(\frac{u_n + v_n}{2}) > (1 - \frac{1}{n}) \frac{M(u_n) + M(v_n)}{2}$$
, and

$$p((1-\varepsilon)u_n) > 2^n p((1-\frac{1}{n})v_n).$$

In view of the continuity of M(u), we select Θ_n , $0 < \Theta_n < 1$ with $\Theta_n \nearrow 1$ and

$$\underline{M\left(\frac{u_n + \Theta_n v_n}{2}\right)} \ge \left(1 - \frac{1}{n}\right) \frac{\underline{M(u_n) + M(\Theta_n v_n)}}{2}.$$
 (13)

We first construct two sequences $\{w_n\}_{n=1}^{\infty}$ and $\{\tau_n\}_{n=1}^{\infty}$ satisfying

$$\tau_n \setminus 1, \ \Theta_n v_n \le w_n \le \left(1 - \frac{\varepsilon}{3}\right) u_n, \text{ and } p(\tau_n w_n) > 2^n p(w_n).$$
(14)

Since $1 \le \frac{u_n}{v_n} \le \frac{1}{\varepsilon}$, without loss of generality, if necessary we can pass to a subsequence, we assume that $\lim_{n \to \infty} \frac{u_n}{v_n} = b \ge 1$. Denote

$$\xi = \sup \{ \xi' > 0 : \overline{\lim}_{n \to \infty} \frac{p((1 - \frac{\varepsilon}{2})bv_n)}{p(\xi'v_n)} = \infty \}.$$

Obviously, $1 \le \xi \le (1 - \frac{\epsilon}{2})b$. In the following we discuss two cases.

$$\underline{\qquad (I) \quad \text{Let } \overline{\lim}_{n \to \infty} \frac{p((1 - \frac{\varepsilon}{2})bv_n)}{p(\xi v_n)} = \infty.$$

For any $\lambda > 1$,

$$\infty \leftarrow \frac{p((1-\frac{\varepsilon}{2})bv_n)}{p(\xi v_n)} = \frac{p((1-\frac{\varepsilon}{2})bv_n)}{p(\lambda \xi v_n)} \cdot \frac{p(\lambda \xi v_n)}{p(\xi v_n)}$$

Since on the right side of the identity the first quotient formula is bounded, $\overline{\lim_{n\to\infty}} \frac{p(\lambda \xi v_n)}{p(\xi v_n)} = \infty$. Passing to a subsequence if necessary, we assume that $p\left(\left(1+\frac{1}{n}\right)\right)\xi v_n > 2^n p(\xi v_n)$. Easily we know that for n large enough, $v_n \leq \xi v_n \leq \left(1-\frac{\varepsilon}{2}\right)bv_n \leq \left(1-\frac{\varepsilon}{3}\right)u_n$. For $w_n = \xi v_n$, $\tau_n = 1+\frac{1}{n}$, condition (14) is satisfied.

(II) Let
$$\lim_{n\to\infty} \frac{p((1-\frac{\varepsilon}{2}bv_n))}{p(\xi v_n)} < \infty$$
.

For any $\Theta_n < 1$,

$$\infty \leftarrow \frac{p((1-\frac{\varepsilon}{2})bv_i)}{p(\Theta_n\xi v_i)} \ = \ \frac{p((1-\frac{\varepsilon}{2})bv_i)}{p(\xi v_i)} \cdot \frac{p(\xi v_i)}{p(\Theta_n\xi v_i)} \quad \text{as} \quad i \to \infty.$$

Hence $\overline{\lim_{i\to\infty}} \frac{p(\xi v_i)}{p(\Theta_n v_i \xi)} = \infty$. Passing to a subsequence if necessary, we get $p(\xi v_n) > 2^n p(\Theta_n \xi v_n)$. Obviously $\Theta_n v_n \leq \Theta_n \xi v_n \leq \xi v_n \leq \left(1 - \frac{\varepsilon}{2}\right) b v_n < \left(1 - \frac{\varepsilon}{3}\right) u_n$. If we take $w_n = \Theta_n \xi v_n$, and $\tau_n = \frac{1}{\Theta_n}$, then (14) is satisfied.

By (14), we can choose disjoint subsets $G_n \subset G$, $G_n \cap G_m = \emptyset$ $(n \neq m)$ such that

$$N(p(w_n))\mu G_n = \frac{1}{2^{n+1}} \qquad (n = 1, \underline{2}, \ldots)$$

For n large enough,

$$N(p(u_n))\mu G_n > N(p(\tau_n w_n))\mu G_n > 2^n N(p(w_n))\mu G_n = \frac{1}{2}.$$

Pick out $\bar{G}_n \subset G_n$ satisfying

$$N(p(u_n))\mu \bar{G}_n = \frac{1}{2}$$
 $(n = 1, 2, ...)$

Now set

$$k_0 = 1 + \sum_{i=1}^{\infty} M(w_i) \mu G_i,$$

$$k_n = 1 + \sum_{i \neq n}^{\infty} M(w_i) \mu G_i + M(u_n) \mu \tilde{G}_n \qquad (n = 1, 2, ...)$$

By $M \in \nabla_2$, it yields that $\frac{up(u)}{N(p(u))} \leq d \ (u \geq u_0) \ (cf[6,3])$. Then

$$\sum_{i=1}^{\infty} M(w_i) \mu G_i \leq \sum_{i=1}^{\infty} w_i p(w_i) \mu G_i \leq d \sum_{i=1}^{\infty} N(p(w_i)) \mu G_i = \frac{d}{2},$$

$$M(u_n)\mu \bar{G}_n \leq u_n p(u_n)\mu \bar{G}_n \leq dN(p(u_n))\mu \bar{G}_n = \frac{d}{2}.$$

So $\{k_n\}_{n=1}^{\infty}$ is bounded. Passing to a subsequence if necessary, we assume that $k_n \to k$. From

$$M(u_n)\mu \bar{G}_n \geq \varepsilon u_n p(u_n)\mu \bar{G}_n \geq \varepsilon N(p(u_n))\mu \bar{G}_n = \frac{\varepsilon}{2}$$

we get that $k - k_0 \ge \frac{\varepsilon}{2}$. Define

$$x_0(t) = \frac{1}{k_0} \sum_{i=1}^{\infty} w_i \chi_{G_i}(t);$$

$$x_n(t) = \frac{1}{k_n} \left(\sum_{i \neq n} w_i \chi_{G_i}(t) + u_n \chi_{\bar{G}_n}(t) \right) \qquad (n = 1, 2, \ldots)$$

We have

$$\int_{G} N(p(k_{n}x_{n}(t))) d\mu = \sum_{i \neq n} N(p(w_{i}))\mu G_{i} + N(p(u_{n}))\mu \bar{G}_{n} < 1.$$

In addition, for any $\lambda > 1$, take $i_0 > n$ such that $\lambda > \tau_{i_0}$. Then

$$\int_{G} N(p(\lambda k_{n}x_{n}(t))) d\mu = \sum_{i \neq n} N(p(\lambda w_{i}))\mu G_{i} + N(p(\lambda u_{n}))\mu \bar{G}_{n}$$

$$> \sum_{i=i_0}^{\infty} N(p(\tau_i w_i)) \mu G_i > \sum_{i=i_0}^{\infty} 2^i N(p(w_i)) \mu G_i = \infty.$$

By Lemma 2, it follows that

$$||x_n|| = \frac{1}{k_n} (1 + R_M(k_n x_n)) = \frac{1}{k_n} (1 + \sum_{i \neq n} M(w_i) \mu G_i + M(u_n) \mu \bar{G}_n) =$$

$$= 1. \qquad (n = 1, 2, \ldots)$$

Similarly,

$$||x_0|| = \frac{1}{k_0} (1 + R_M(k_0 x_0)) = \frac{1}{k_0} (1 + \sum_{i=1}^{\infty} M(w_i) \mu G_i) = 1.$$

Since

$$\frac{k_n k_0}{k_n + k_0} \left(x_n(t) + x_0(t) \right) \ = \begin{cases} w_i & t \in G \quad (i \neq n) \\ \frac{k_n}{k_n + k_0} w_n & t \in G_n \backslash \bar{G}_n \\ \dots & \dots \\ \frac{k_n}{k_n + k_0} w_n + \frac{k_0}{k_n + k_0} u_n & t \in \bar{G}_n \\ 0 & \text{otherwise} \end{cases}$$

we derive that

$$\int_{G} N\left(p\frac{k_{n}k_{0}}{k_{n}+k_{0}} (x_{n}+x_{0})\right) d\mu < \sum_{i\neq n} N(p(w_{i}))\mu G_{i} + N(p(w_{n}))\mu (G_{n}\backslash \bar{G}_{n}) + N(p(u_{n}))\mu \bar{G}_{n} \le 1$$

But for any $\lambda > 1$,

$$\int_G N\left(p\left(\lambda \frac{k_n k_0}{k_n + k_0} \left(x_n + x_0\right)\right)\right) d\mu > \sum_{i \neq n} N(p(\lambda w_i)) \mu G_i = \infty.$$

Hence, by Lemma 2, it yields that

$$||x_n + x_0|| = \frac{k_n + k_0}{k_n k_0} (1 + R_M (\frac{k_n k_0}{k_n + k_0} (x_n + x_0))).$$

From (13), we get

$$M\left(\frac{u_n+w_n}{2}\right) \ge \left(1-\frac{1}{n}\right) \frac{M(u_n)+M(w_n)}{2}$$

By the remark after Lemma 1, we deduce that there exist $\delta_n \setminus 0$ with

$$M\left(\frac{k_n w_n + k_0 u_n}{k_n + k_0}\right) \ge (1 - \delta_n) \left(\frac{k_n}{k_n + k_0} M(w_n) + \frac{k_0}{k_n + k_0} M(u_n)\right).$$

Therefore,

$$||x_{n} + x_{0}|| = \frac{k_{n} + k_{0}}{k_{n} k_{0}} \left[1 + \sum_{i \neq n} M(w_{i}) \mu G_{i} + M\left(\frac{k_{n}}{k_{n} + k_{0}} w_{n}\right) \mu(G_{n} \setminus \bar{G}_{n}) + M\left(\frac{k_{n} w_{n} + k_{0} u_{n}}{k_{n} + k_{0}}\right) \mu \bar{G}_{n} \right]$$

$$> \frac{k_{n} + k_{0}}{k_{n} k_{0}} \left[1 + \sum_{i \neq n} M(w_{i}) \mu G_{i} + (1 - \delta_{n}) \left(\frac{k_{n}}{k_{n} + k_{0}} M(w_{n}) + \frac{k_{0}}{k_{n} + k_{0}} M(u_{n})\right) \mu \bar{G}_{n} \right]$$

$$> (1 - \delta_{n}) \left[\frac{1}{k_{0}} (1 + \sum_{i \neq n} M(w_{i}) \mu G_{i}) + \frac{1}{k_{n}} (1 + \sum_{i \neq n} M(w_{i}) \mu G_{i} + M(u_{n}) \mu \bar{G}_{n}) \right]$$

$$\rightarrow 2$$

Since $\mu G_n \to 0$, we have that

$$x_0(t) - x_n(t) \xrightarrow{w^*} \left(\frac{1}{k_0} - \frac{1}{k}\right) \sum_{i=1}^{\infty} w_i \chi_{G_i}(t)$$

which contradicts with the fact L_M is LW^*UR .

Finally we give an example of an N-function M that satisfies (i) and (ii), but not (iii). So L_N is separable and L_M is rotund, but not LW^*UR .

Let

$$p(t) = \begin{cases} t & 0 \le t < 1 \\ (k+1)^{k+1} + \frac{t-2^k}{2^{2k}} & 2^k \le t < 2^{k+1} \end{cases}$$
 $(k = 0, 1, 2, ...)$

and

$$M(u) = \int_0^{|u|} p(t) dt.$$

Then $M \in SC$, since p(t) is strictly increasing on the whole axis. And $M \in \nabla_2$. Indeed, from $q(s) = \sup_{p(t) \le s} t$ (cf § 2 of [1]), it yields that

$$g(s) = \begin{cases} s & 0 \le s < 1 \\ 2^k & k^k + \frac{1}{2^{k-1}} \le s \le (k+1)^{k+1} \\ \text{linear} & (k+1)^{k+1} \le s \le (k+1)^{k+1} + \frac{1}{2^k} \\ 2^{k+1} & (k+1)^{k+1} + \frac{1}{2^k} \le s \le (k+2)^{k+2} & (k=1,2,\ldots) \end{cases}$$

For any s, there is k such that $k^k+\frac{1}{2^{k-1}}< s\leq (k+1)^{k+1}+\frac{1}{2^k}$, so $2s\leq (k+2)^{k+2}$. Hence $\frac{q(2s)}{q(s)}\leq \frac{2^{k+1}}{2^k}=2$. By the Young inequality, it yields that $N(2s)\leq 2sq(2s)\leq 4sq(s)\leq 8sq\left(\frac{s}{2}\right)=16\frac{s}{2}q\left(\frac{s}{2}\right)\leq 16N(s)$, i.e., $M\in \nabla_2$.

But M does not satisfy (iii). In fact for $v_k = 2^k$, $u_k = 2^{k+1}$ (k = 1, 2, ...), we have

1)
$$u_k = 2v_k > v_k = \frac{u_k}{2} \ge 2 > (\frac{1}{2})^2$$
.

2)
$$\frac{M(u_k)}{u_k p(u_k)} \ge \frac{p(v_k)(u_k - v_k)}{u_k p(u_k)} = \frac{p(2^k)(2^{k+1} - 2^k)}{p(2^{k+1})2^{k+1}} = \frac{(k+1)^{k+1} \frac{1}{2}}{(k+1)^{k+1} + \frac{2^{k+1} - 2^k}{2^{2k}}} \to \frac{1}{2}$$

(where $2^{k+1}_{-} = 2^{k+1} - 0$).

3)
$$\frac{\frac{M(u_k)+M(v_k)}{2}}{M(\frac{u_k+v_k}{2})} \to 1. \text{ Indeed,}$$

$$\begin{split} M(u_k) + M(v_k) - 2M \left(\frac{u_k + v_k}{2} \right) &= \int_{\frac{u_k + v_k}{2}}^{u_k} p(t) \ dt - \int_{v_k}^{\frac{u_k + v_k}{2}} p(t) \ dt \\ &= \int_{\frac{u_k + v_k}{2}}^{u_k} p(t) - p \left(t - \frac{u_k - v_k}{2} \right) \ dt \le \frac{u_k - v_k}{2} \left(p(u_k) - p(v_k) \right) \\ &= \frac{2^{k+1} - 2^k}{2} \left[(k+1)^{k+1} + \frac{2^{k+1} - 2^k}{2^{2k}} - (k+1)^{k+1} \right] = \frac{2^k}{2} \frac{2^k}{2^{2k}} = \frac{1}{2}. \end{split}$$

Since $M\left(\frac{u_k+u_k}{2}\right)\to\infty$. It follows that 3) holds.

4)
$$p((1-\frac{1}{2})u_k) = p(\frac{u_k}{2}) = p(v_k) = (k+1)^{k+1} > (k+1)(k^k + \frac{2^k - 2^{k-1}}{2^{2(k-1)}})$$

 $> (k+1)p((1-\frac{1}{k})v_k) k = 1, 2, ...$

Combining 1) - 4), we see that M does not satisfy (iii).

References

- [1] Krasnoselskii, M.A., Rutickii, Ya.B. Convex functions and Orlicz spaces. Groningen, 1961.
- [2] Kaminska, A. The criteria for locally uniform rotundity of Orlicz spaces, Studia Math, 2 (1984), 201-215.
- [3] Chen, S. Some Rotundities of Orlicz Spaces with Orlicz Norm. Bull. Pol. Acad. Sci. Math., 34 (1988), 585-596.
- [4] Wang, T., Wu, Y., Zhang, Y. The criterion of W*UR of Orlicz Spaces, J. Heilongjiang Univ., (Nature), 3 (1991), 10-16, (Chinese)
- [5] Wu, C., Zhao, S., Chen, J. Formula of Orlicz Norm and Criteria of Rotundities of Orlicz Spaces, J. Harbin Inst. Tech., 2 (1978), 1-12, (Chinese).

[6] Wu, C. Wang, T. Theory and Applications of Orlicz Spaces, Harbin, H.I.T. Print. House, 1983, (Chinese)

P.O.Box 610,
Math. Dept.
Harbin Univ. Sci. Tech,
Harbin,
CHINA.

Recibido: 4 de julio de 1991 Revisado:20 de octubre de 1993