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Onto better TRAILs for cancer treatment

D de Miguel*,1,2, J Lemke3,5, A Anel1,2, H Walczak3 and L Martinez-Lostao*,1,2,4,6

Tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL), also known as Apo-2 ligand (Apo2L), is a member of the

TNF cytokine superfamily. By cross-linking TRAIL-Receptor (TRAIL-R) 1 or TRAIL-R2, also known as death receptors 4 and 5 (DR4

and DR5), TRAIL has the capability to induce apoptosis in a wide variety of tumor cells while sparing vital normal cells. The

discovery of this unique property among TNF superfamily members laid the foundation for testing the clinical potential of TRAIL-R-

targeting therapies in the cancer clinic. To date, two of these therapeutic strategies have been tested clinically: (i) recombinant

human TRAIL and (ii) antibodies directed against TRAIL-R1 or TRAIL-R2. Unfortunately, however, these TRAIL-R agonists have

basically failed as most human tumors are resistant to apoptosis induction by them. It recently emerged that this is largely due to

the poor agonistic activity of these agents. Consequently, novel TRAIL-R-targeting agents with increased bioactivity are currently

being developed with the aim of rendering TRAIL-based therapies more active. This review summarizes these second-generation

novel formulations of TRAIL and other TRAIL-R agonists, which exhibit enhanced cytotoxic capacity toward cancer cells, thereby

providing the potential of being more effective when applied clinically than first-generation TRAIL-R agonists.
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Facts

� On its discovery, TRAIL was described to be capable of

inducing apoptosis selectively in cancer cells. However,

soon afterwards it was found that many cancer cell lines as

well as primary cancer cells are either intrinsically TRAIL-

resistant, or become resistant upon TRAIL treatment.

� The results from TRAIL using clinical trials have been

disappointing, showing little antitumor efficacy. All these

clinical trials have used a soluble form of the protein, which

is known to be rather unstable and to have poor

physicochemical properties.

� TRAIL has four receptors that are expressed at the plasma

membrane, of which two can trigger apoptosis. Little is

known about the relative contribution or differential roles of

these two pro-apoptotic TRAIL receptors (TRAIL-Rs).

� Physiologically, TRAIL is expressed as a transmembrane

protein. This fact may be exploitable therapeutically since

membrane-bound as well as artificially cross-linked TRAIL

is by several orders of magnitude more active than

conventional soluble trimeric TRAIL.

� New TRAIL formulations with increased bioactivity due to

improved stability and/or cross-linking efficiency have been

developed. Besides, new approaches trying to combine

inherent TRAIL pro-apoptotic ability with delivery systems

based on nanoparticles are also being explored.

Open Questions

� Could new forms of TRAIL or other TRAIL-R agonist

formulations with increased bioactivity, improved pharma-

cokinetic and targeting properties contribute to overcoming

TRAIL resistance without causing systemic toxicity?

� Could such novel TRAIL-R-targeting biotherapeutics exert

improved synergy with known TRAIL-sensitizing agents,

over TRAIL-R agonists used clinically to date?

Despite remarkable advances in understanding the biology of

cancer and the development of novel diagnostic and

therapeutic strategies, cancer still remains one of the major

causes of death. To date, in addition to surgical resection of the

tumor, conventional radio- and chemotherapy constitute the

central pillars of cancer treatment. These therapies aim to limit

proliferation and/or induce the death of cancer cells. However,

they mostly lack cancer specificity and, therefore, also

damage normal, healthy tissues resulting in often severe side

effects that constitute the dose-limiting toxicities. In addition,

many cancers acquire resistance to these therapies, render-

ing them ineffective in consecutive treatment rounds. Hence,

during the past decades great efforts have been made to

develop new therapeutic approaches, aiming to improve the

specific targeting of cancer cells and to overcome resistance

to current therapies.1,2
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The better understanding of tumor biology, tumor immuno-

logy and how cancer cells interact with the tumor micro-

environment, sparked the development of cancer

immune-therapeutics as well as so-called targeted cancer

therapeutics.2–5 The identification of the tumor necrosis factor

(TNF)-related apoptosis-inducing ligand (TRAIL), also

referred to as Apo-2 ligand (Apo2L),6,7 and most importantly,

the discovery of TRAIL’s capacity to kill cancer cells while

sparing all the vital normal cells,8 appeared to represent a

promising step forward in the development of targeted

anticancer therapies. TRAIL belongs to the TNF superfamily

(SF) of cytokines and is capable of inducing apoptosis in cells

by binding to either of two cognate death receptors (DRs),

TRAIL-R1/DR4 (ref. 9) and TRAIL-R2/DR5.10–14 Physiologi-

cally, TRAIL has been implicated in the function of cytotoxic

effector cells15,16 and the homeostasis of the lymphoid

compartment by being a mediator of activation-induced cell

death (AICD) in effector immune cells.17

Given the cancer-selective apoptosis-inducing potential

of TRAIL and the fact that TRAIL-R1 and, even more

so, TRAIL-R2 are often highly expressed in different

malignancies,9,13,14,18–23 the use of TRAIL or other agonists

for TRAIL-R1/R2 for cancer therapy appeared an attractive

concept. Consequently, TRAIL-R agonists were developed for

clinical application. The results of the clinical studies

performed with these first-generation TRAIL-R agonists so

far have been rather disappointing, however, with limited

patient benefit despite promising pre-clinical results.24–26 The

fact that many human tumors are partially or completely

resistant to monotherapy with TRAIL and other TRAIL-R

agonists likely contributed to the limited therapeutic activity

observed in these studies. However, another—perhaps

decisive—factor for the lack of clinical efficacy of the specific

TRAIL-R agonists that have been tested clinically most likely is

that their agonistic capacity was simply not sufficiently potent.

This is exemplified by a recent study in which it was shown

that, only when used in combination, two of the above-

mentioned clinically developed TRAIL-R agonists exerted

virtually the same agonistic activity as isoleucine zipper-

TRAIL (iz-TRAIL),27 a highly active form of TRAIL that has

been in use for some time28–30 and is based on the original

leucine-zipper form of TRAIL (LZ-TRAIL) used in the study in

which TRAIL’s tumor-selective apoptosis-inducing potential

was discovered, importantly, in the absence of systemic

toxicity.8 Unfortunately, this fact went largely unnoticed and

because of safety concerns with certain more potent forms of

TRAIL,31 several TRAIL-R agonists with, as it turned out,

insufficient agonistic activity and consequently pro-apoptotic

potency were developed for clinical use. Yet, the fact that to

date no sufficiently potent TRAIL-R agonist that lacks systemic

toxicity has been clinically validated, has led to the develop-

ment of novel formulations of TRAIL and other TRAIL-R

agonists with improved bioactivity, with the aim to overcome

TRAIL resistance in combination with improved sensitization

strategies and patient-selection criteria.32

This review summarizes themain novel formulations of such

TRAIL-R agonists that are currently being tested or developed

to improve biological attributes such as stability, delivery,

targeting and cytotoxic activity against tumor cells as well as

their potential for applications in cancer therapy.

TRAIL signaling

Physiologically, TRAIL is expressed as a type 2 transmem-

brane protein that can be cleaved, resulting in the release of a

24 kDa extracellular portion comprising amino acids 114–281

of the protein. The C-terminal extracellular domain of TRAIL

shares high homology with other members of the TNF SF and

is composed of two anti-parallel β-sheets.33–35 As shown by

the crystal structure of TRAIL interacting with TRAIL-R2,

TRAIL forms a trimer and each receptor molecule interacts

with the crevice formed by two monomers of the trimer.

Thereby, the TRAIL trimer can engage three receptors

simultaneously. Interestingly, unlike other TNF SF members,

the ligand trimer appears to be stabilized by an internal zinc

atom, which interacts non-covalently with three cysteine

residues, one from each TRAIL monomer. This interaction is

thought to be crucial for the stability, solubility and bioactivity of

trimeric TRAIL.33–35

TRAIL can bind to four transmembrane receptors: TRAIL-

R1, TRAIL-R2, TRAIL-R3, also known as decoy receptor 1

(DcR1) and TRAIL-R4 (DcR2), as well as to the soluble

receptor osteoprotegerin (OPG).9,13,36–39 Among them, only

TRAIL-R1 and TRAIL-R2 are able to trigger apoptosis as

TRAIL-R3, TRAIL-R4 and OPG lack the functional cyto-

plasmic death domain (DD) that is required for apoptosis

induction.40,41 On the basis of overexpression experiments,

TRAIL-R3 and TRAIL-R4 have been suggested to act as

decoy receptors that inhibit apoptosis induction by TRAIL as a

consequence of ligand scavenging.23,42 In addition, TRAIL-R4

has been proposed to be capable of inhibiting TRAIL-induced

apoptosis by forming ligand-independent inactive complexes

with TRAIL-R2 or the induction of pro-survival pathways such

as NF-κB.43–45 However, there is still controversy concerning

the physiological role of TRAIL-R3 and TRAIL-R4, and their

function might depend on the cell type. For example, and in

contrast to the mentioned studies, these receptors have also

been described not to function as DcRs in the human

hepatocellular carcinoma cell lines Hep3b and a TRAIL-

resistant variant of HepG2 (HepG2-TR).46

TRAIL triggers the extrinsic apoptosis pathway upon

binding of the TRAIL trimer to TRAIL-R1 and/or TRAIL-R2,

resulting in receptor trimerization, which in turn leads to

recruitment of the adaptor protein Fas-associated DD (FADD)

via homotypic DD-DD interaction between the DDs of the

ligand cross-linked receptors and FADD, respectively. FADD,

in turn, recruits pro-caspase-8 and pro-caspase-10 via

homotypic interactions of death-effector domains (DED)

present both in FADD and caspase-8 and -10, respectively.

This multi-protein complex formed by TRAIL-DRs, FADD and

caspase-8/10 is called death-inducing signaling complex

(DISC).47–51 On recruitment to the DISC, the pro-caspases-8

and -10 form homodimers. This induces a conformational

change that exposes their proteolytically active sites, resulting

in auto-activation and subsequent cleavage of additional pro-

caspase-8 and -10 molecules leading to full caspase activa-

tion at the DISC.52–55

TRAIL can activate both branches of the apoptosis pathway

by caspase-8-mediated cleavage and activation of the effector

caspase-3 and the BH3-only protein Bid. In so-called type I

cells, cleavage and activation of caspase-3 by activated
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caspase-8 is sufficient to induce apoptosis, whereas in type II

cells, activation of the mitochondrial pathway is required for

apoptosis induction as a consequence of TRAIL DISC

activation.56,57 The latter is triggered by caspase-8-mediated

cleavage of Bid, which results in the formation of truncated Bid

(tBid) as the active fragment of this protein.58–61Subsequently,

tBid activates the mitochondrial pathway by enabling the

pro-apoptotic Bcl2-family members Bax and Bak to insert in

the mitochondrial outer membrane (MOM), resulting in MOM

permeabilization (MOMP) and release of cytochrome C and

Smac/DIABLO (second mitochondrial activator of caspases/

direct inhibitor of apoptosis-binding protein with low pI)62,63

from the mitochondrial intermembrane space into the

cytosol.64,65

Although TRAIL-R1 and TRAIL-R2 bear high structural

similarity and both are able to trigger apoptosis upon

TRAIL-induced cross-linking, functional differences bet-

ween them have been reported. First, TRAIL-R2 has higher

affinity for TRAIL than TRAIL-R1.66Yet, higher affinity does not

necessarily result in enhanced DISC activation as although

TRAIL-R2 can be engaged by the soluble ligand, this

interaction only triggers a comparably weak DISC

formation.67 This result supports the notion that TRAIL-R2

may require further cross-linking of soluble TRAIL (sTRAIL),

whereas stimulation of TRAIL-R1 by sTRAIL appears to be

able to trigger apoptosis independently of further cross-

linking.68,69 However, recently it was shown that oligomerized

TRAIL versions can also activate TRAIL-R1 more efficiently

than sTRAIL.70 Altogether, it seems clear that TRAIL presents

a much stronger activity when it is presented in its

transmembrane form than their soluble counterparts, and this

enhanced activity is directly linked to its ability to cluster and

arrange their specific receptors in supramolecular structures.

In line with this, several studies showed that clustering of two

trimers was sufficient to improve their activity to optimal levels

for the other members of the TNF family ligands.71,72 The

requirement for oligomerization for optimal agonistic activity

has also been proposed for the other members of the TNF SF,

including CD95L (also known as FasL or APO-1L) whose

ability to induce apoptosis is dramatically increased (up to

1.000-fold) on clustering of soluble trimers.73,74 Once clus-

tered, the receptors adopt a supramolecular hexagonal

organization, similar to a ‘honeycomb’ structure.75 In line with

this, several studies showed that dimerization of two trimers

was sufficient to improve their activity to optimal or near-

optimal levels.71,72 The clustering of DRs achieved thereby

most likely facilitates and stabilizes DISC assembly.75–77

Along these lines, a new way to improve sTRAIL bioactivity

by enhancing TRAIL-R2 clustering was described very

recently.27,78 In these studies, sTRAIL was used in combina-

tion with the TRAIL-R2-specific agonistic antibody AMG-655/

Conatumumab. Of note, both sTRAIL and AMG-655 had been

developed to be used individually as novel anticancer

biotherapeutics and had already been tested in clinical trials

as discussed in more detail below. Co-administration of

AMG-655 and sTRAIL was able to greatly enhance the

inherent ability of sTRAIL to activate TRAIL-R2, even sensiti-

zing certain cancer cell lines that are resistant to sTRAIL. This

synergistic effect was due to secondary TRAIL-R2 cross-

linking exerted by the antibody, which acted in cooperation

with the normal engagement of TRAIL-R2 exerted by sTRAIL.

In a similar way, a recent work has used another specific

TRAIL-R2 antibody in combination with sTRAIL, obtaining the

same synergistic effect.67

It is, however, still largely unresolved what the relative

contribution of the two individual TRAIL-DRs to apoptosis

induction in a given cancer is. Although TRAIL-R1 has been

described to mediate cell death in chronic lymphocytic

leukemia cells, acute myelogenous leukemia cells and

pancreatic tumors,79–82 TRAIL-R2 appears to be the main

contributor to apoptosis induction in several other epithelial-

derived cancers.83,84 This differential pro-apoptotic perfor-

mance of TRAIL-R1 and TRAIL-R2 depending on the cell/

cancer type may be exploitable therapeutically by specifically

targeting the receptor that is preponderant at inducing

apoptosis in the particular cancer type in question. Such

targeting may increase the specific cytotoxic effect by sparing

non-apoptotic interactions with other TRAIL-Rs. Apart from

antibody-based biotherapeutics, such receptor-specific TRAIL

constructs can be generated by inducing point mutations in

residues within the TRAIL sequence that are required for

interaction with particular TRAIL-Rs and not others. A number

of such TRAIL variants have been devised and have become

valuable tools for assessing specific roles of the different

TRAIL-Rs, and, moreover, have recently been shown to bear

the potential of improving the efficacy of specifically activating

TRAIL-R1 and TRAIL-R2, respectively.45,80,83,85–87

TRAIL-induced apoptosis is tightly regulated at different

stages to prevent excessive cell death in normal cells. These

mechanisms are exploited by tumor cells to evade TRAIL-

induced apoptosis. At the level of expression of the TRAIL-Rs

it has been suggested that, as mentioned above, the non-

apoptotic receptors TRAIL-R3, -R4 and/or OPGmaymodulate

sensitivity to TRAIL. At the DISC level, the main regulator

protein is cellular FLICE-Like Inhibitory Protein (cFLIP), that

closely resembles caspase-8 but lacks the protease activity

required for apoptosis induction.88,89 Two main variants of

cFLIP are expressed on the protein level: a short isoform

(cFLIPS) and a long isoform (cFLIPL).
90 Both cFLIP isoforms

contain two DEDs that are structurally similar to the DEDs

present in the N-terminal portion of pro-caspase-8 and -10 and

allow recruitment to the DISC. The cFLIPS isoform can inhibit

caspase-8 activation in a dominant-negative manner by

competing with it for binding to FADD. The role of cFLIPL is,

however, more complex and seemingly depends on the ratio

between caspase-8 and cFLIPL.
91–93 Although cFLIPL was

first reported to act as an anti-apoptotic protein in a manner

similar to cFLIPS,
88 later studies demonstrated that the

cFLIPL/caspase-8 heterodimer, apart from retaining enzy-

matic activity, also displays an enhanced and more localized

activity toward certain substrates when compared with

the caspase-8 homodimer, somehow modulating caspase-8

substrate specificity.94–96 In fact, the activity of the FLIPL/

caspase-8 heterodimer is required to prevent necrop-

tosis.91–93,97,98 Nevertheless, it should be noted that, when

expressed at high levels, cFLIPL can also completely prevent

DR-induced apoptosis. Several studies have demonstrated

that cancer cells exploit overexpression of cFLIP to

evade TRAIL-induced apoptosis99–101 and, consequently,
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downregulation of cFLIP may sensitize certain cancers to

TRAIL-induced apoptosis.46,102–105

Another important checkpoint in the apoptotic cascade is

exerted by XIAP (X-linked inhibitor of apoptosis protein), a

molecule that can bind caspases 3, 7 and 9, thereby inhibiting

their pro-apoptotic activity.106 Several additional mechanisms

of different nature can modulate TRAIL signaling. Post-

translational modifications such as O-glycosylation, which

promotes ligand-stimulated clustering of TRAIL-DRs and

recruitment/activation of procaspase-8,107 ubiquitination reg-

ulating the full activation of caspase-8 upon TRAIL

stimulation108 and endocytosis of the DISC upon TRAIL

binding109 are just a few examples of several mechanisms

proposed to be implicated in the modulation of TRAIL

signaling.

Apart from inducing apoptosis, TRAIL can also trigger non-

apoptotic signaling such as necroptosis and the activation of

pro-inflammatory pathways (via NF-κB, Akt, MAPK and JNK

activation). Induction of these non-apoptotic pathways

depends on the cell type and is often triggered in scenarios

when apoptosis induction is inhibited.40,110–112 The induction

of pathways resulting in gene activation has been suggested

to be mediated by the formation of a secondary complex

following DISC activation. This secondary complex also

contains the DISC components FADD, caspase-8 and

cFLIP113 and, additionally, recruits receptor interacting protein

1 (RIP1), TNF receptor-associated factor 2 (TRAF2) and the

NF-κB essential modulator (NEMO).114 Initially, TRAIL-

induced activation of pro-inflammatory pathways was pro-

posed to be mainly a mechanism to negatively regulate

apoptosis induction by TRAIL. However, activation of these

pathways, such as NF-κB, AKT and MAP kinases can also

enhance the malignancy of cancer cells by increasing their

proliferation, migration, invasion and/or metastasis.115–117

In addition, both exogenous TRAIL and FasL were shown to

induce proliferation and to promote migration in KRAS-

mutated cancer cells upon external administration.118 These

findings led to the recent discovery of a pro-invasive role for

endogenous TRAIL in KRAS-mutated cells. In these cells,

autocrine endogenous TRAIL stimulates cancer cell-

expressed TRAIL-R2 to activate Rac1 which, in turn, activates

PI3K to induce cell migration.119 Interestingly, activation of this

signaling pathway was independent of TRAIL-R2’s DD but

instead required its membrane proximal domain (MPD).119

TRAIL-R agonists as anticancer therapeutics

So far, two main TRAIL-DR-targeting therapeutic strategies

have being pursued in clinical trials: (i) a recombinant form

of human sTRAIL (Apo2L.0 or AMG-951/Dulanermin) and

(ii) agonistic antibodies that specifically target TRAIL-R1 or

TRAIL-R2.32 Although these TRAIL-R agonists have been

shown to be safe and well tolerated in patients, their respective

anticancer activities have been largely disappointing24–26

(extensively reviewed by Lemke et al.32 and Holland120). The

fact that most primary tumor cells are intrinsically resistant

to TRAIL or may acquire resistance during the course of

treatment121–125 has most likely contributed to this failure.

In addition to these considerations, non-apoptotic signaling

induced by TRAIL has been shown to be exploited by tumor

cells, at least in certain cases, to their own advantage. For

example, it has been shown that TRAIL promotes the

development of liver metastasis in a pancreatic adenocarci-

noma xenograft model, pointing toward potentially harmful

effects of monotherapy with TRAIL-R agonists.116 In this

context, it is noteworthy to mention that TRAIL-R1 expression

positively correlates with tumor grade in patients with breast

cancer.126,127

To avoid the undesired pro-tumorigenic effects of mono-

therapy with TRAIL-R agonists in TRAIL-resistant cancers,

it has been proposed to combine them with sensitizing

agents (reviewed in Lemke et al,32). However, regardless of

the promising results obtained with such combinatorial

approaches, careful evaluation, both pre-clinically and in early

clinical testing, is needed as it may bear the risk of sensitizing

a vital normal cell type to TRAIL-induced cell death.28–30,46

It is now clear that, besides adding more potent sensitizing

agents to a TRAIL-R-agonist-comprising therapy, improve-

ment of the agonistic capacities of TRAIL-R agonists is

imperative to render TRAIL-based therapies effective. To

enhance the therapeutic potential of TRAIL, different short-

comings of currently used TRAIL-R agonists need to be

addressed. In the specific case of Apo2L.0/AMG-951/Dula-

nermin, the disappointing results obtained in clinical trials are

most likely due to the combination of its short plasma half-life

and rapid clearance from circulation128,129 with its limited

ability to cluster TRAIL-DRs. It should be noted that antibodies

directed to TRAIL-DRs have a comparably long half-life in

serum, whereas their in vivo activity is hampered by the

fact that they require external cross-linking to induce

effective TRAIL-DR clustering and, hence, TRAIL-DR-

mediated apoptosis.130,131 To overcome these shortcomings

and pharmacological downsides, novel TRAIL formulations

have been developed with the aim to increase the efficiency of

TRAIL-DR-targeting therapies (Figure 1).

These novel formulations improve the activity of TRAIL-R

agonists by tackling the following two main aspects: (i)

increasing stability and valency and (ii) enhancing cancer-

specific delivery. A wide variety of experimental approaches

are currently engineered to address these aspects, resulting in

novel versions of TRAIL-R agonists with promising attributes,

which will hopefully prove useful to cancer treatment in the

future.

Increasing the stability of TRAIL

The correct conformation and stability of TRAIL has a crucial

role for its biological activity since trimerization of TRAIL

monomers is pivotal to induce TRAIL-R clustering on the cell

surface. The physical and chemical changes can, however,

result in the collapse of TRAIL’s trimeric structure.31,33,34,132

Furthermore, TRAIL monomers can easily form disulfide-

linked dimers that impairs its apoptotic potential by up to 90-

fold.34

The first recombinant versions of TRAIL comprised

the extracellular portion of the protein or its TNF homology

domain (THD) with an N-terminally added poly-Histidine tag

(His-TRAIL6) or FLAGepitope tag (FLAG-TRAIL7). These tags

were added merely to facilitate the purification process.

Noteworthy, FLAG-TRAIL alone was poorly active, and
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required further cross-linking by the FLAG-specific anti-

body M2.7 These constructs rendered promising results

in vitro and also provided promising in vivo safety profiles in

the different animal models, mainly rodents and nonhuman

primates.8,31,133 However, both His-TRAIL and cross-linked

FLAG-TRAIL were capable of killing freshly isolated primary

human hepatocytes (PHH) in vitro.30,134,135 Most likely, the

main reason for this hepatotoxicity was the formation of

aberrant supramolecular aggregates owing to the interactions

between the added tags. In particular, in the case of His-

TRAIL, metal analysis showed an abnormally low molar ratio

between zinc and the TRAIL trimer, implying that anomalous

supramolecular structures may have formed.31 These findings

suggested that TRAIL trimer stability may impact hepato-

toxicity in vivo and turned the focus on potential liver toxicity of

systemic TRAIL administration.

Figure 1 TRAIL formulations with increased bioactivity for cancer treatment. Different formulations of TRAIL using distinct experimental approaches have been developed to
increase its therapeutic potential. These formulations are mainly based in fusion proteins with single-chain variable antibody fragments (scFv), conjugation with nanoparticles and,
cell-based methods to express and/or secrete Apo2L/TRAIL. The main properties improved with these highly bioactive formulations are the increase of the molecule stability,
tumor targeting and the possibility of combination with other antitumor agents in a unique formulation. References: 1: leucine zipper-TRAIL;8,142 2: Isoleucine zipper-TRAIL
homotrimer;30 3: PEG-HZ-TRAIL;150,152 4: APG350;209 5: Fn14:TRAIL;192,193 6: TRAIL HSA-NPs;153 7: PEG-TRAIL microspheres;152,169 8: TRAIL-PEG-NPs;154 9: TRAIL-
LPs;173,174,176 10: PEG-TRAIL/Dox microspheres;151 11: TRAIL/Dox HSA-NPs;167 12: magnetic NPs-TRAIL;170 13: LUV-TRAIL;67,171,172,212 14: LUV-Apo2L.0;213 15: sTRAIL-
targeted stealth liposome;179 16: TRAIL/Tf/Dox HSA-NPs;168 17: immuno-LipoTRAIL;177 18: Anti-CD3:TRAIL K12:TRAIL;196 19: leukocytes coated with LUV-TRAIL-ES;178

20: granulocytes coated with CLL1:TRAIL;202 21: MBOS4:TRAIL;69 22: scFv425:sTRAIL;189,190 23: scFvCD19:sTRAIL;185 24: Db
αEGFR-scTRAIL;

145 25: scFvCD33:sTRAIL;186

26: Anti-MCSP:TRAIL;188 27: scFv-EHD2-scTRAIL;211 28: scFvG28:TRAILmutRs;195 29: scFvCD70:TRAILmutRs;70 30: RGD-L-TRAIL;203 31: CD40ed:TRAILed;214 32: MSC.
scFvCD20-sTRAIL;187 33: ANG-CLP/PTX/pEGFP-hTRAIL;176 34: sTRAIL-expressing E. coli DH5α215
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The only recombinant form of TRAIL approved for use in

clinical trials to date has been an untagged version of the

molecule comprising residues 114–281 of TRAIL. This

version, known as the aforementioned Apo2L.0 or AMG-951/

Dulanermin, appeared to be both active and safe as it worked

well in several xenotransplant cancer models8,84,128,133 but did

not kill freshly isolated PHH and was well tolerated by

cynomolgus monkeys and chimpanzees.30,31,128,136 Conse-

quently, Apo2L.0/Dulanermin was tested in the cancer

patients where it indeed proved to be safe, though also

disappointingly inactive.25,26,137–141 Apo2L.0/Dulanermin is

rather unstable, presenting low pharmacokinetic profiles,

especially concerning its serum half-life with an extended

distribution half-life (t1/2α) of only 3–5 min and an elimination

half-life (t1/2β) of 20 min.8,128 In addition, as previously

mentioned, Apo2L.0/Dulanermin mainly induces activation of

TRAIL-R1 and appears to be unable to potently activate

TRAIL-R2.68,69

To address these issues, improved versions of TRAIL have

been engineered to enhance its stability while retaining the

proper trimer structure. The first approach that, interestingly,

even predated the engineering of Apo2L.0/Dulanermin, was

the inclusion of a specific trimerization domain, a modified

leucine zipper motif (LZ-TRAIL)8 followed by the use of an

isoleucine zipper (iz-TRAIL)30 at the N terminus of the

extracellular domain. The addition of these trimerization motifs

achieves robust stabilization of the TRAIL trimer by specific

interactions between the modified leucine or isoleucine zipper

domains that form stable triple helices. These first high-activity

recombinant forms of TRAIL were significantly more active

than Apo2L.0/Dulanermin, both in vitro and in vivo, and also

exhibited better pharmacokinetic profiles in rodents with an

extended distribution half-life (t1/2α) of 1.3 h and an elimination

half-life (t1/2β) of 4.8 h. Most importantly, however, these

proteins showed neither specific toxicity on PHH ex vivo nor

systemic toxicity in vivo in mice.8,142

More recently, Berg et al.143 developed a new highly stable

version of TRAIL by the incorporation of the tenascin-C (TNC)

oligomerization domain (TNC-TRAIL), which stabilized the

trimeric conformation in a similar fashion to LZ-TRAIL and iz-

TRAIL. Besides, several groups recently developed novel

versions of highly stable TRAIL trimers that build upon a

single-chain TRAIL (scTRAIL) trimer.144,145 Contrarily to

‘classic’ approaches in which TRAIL is expressed from a

monomer-encoding cDNA, scTRAIL is expressed as a single

amino-acid sequence encoding a TRAIL trimer as three

consecutive extracellular TRAIL domains that are fused in a

head-to-tail configuration, inserting a short linker between

each domain. Hence, once correctly folded, scTRAIL already

forms an active TRAIL trimer, reducing the risk of unspecific

aggregation of the monomers. The common feature of these

constructs is their more stable trimerization, which enhances

their pro-apoptotic potential so that they are even able to kill

some of the cancer cell lines that are resistant to the less-

active Apo2L.0/Dulanermin.8,30,142–145 In addition, these

forms of recombinant TRAIL also exhibit increased in vivo

half-lives, whereas the formation of higher-order, aberrant

protein oligomers that can result in hepatotoxicity and

systemic toxicity31 appears not to occur.8,30,142,144,145

Another strategy to improve the in vivo performance of

TRAIL is based on covalently linking TRAIL to molecules

known to have favorable pharmacokinetic properties such as

human serum albumin (HSA)146 or polyethylene glycol (PEG).

PEGylation is a process by which polymer chains of PEG are

added covalently to biomolecules such as peptides, proteins

or antibodies. The resulting PEGylated biomolecules usually

present improved pharmacokinetic properties and, conse-

quently, enhanced therapeutic efficacy.147–149 Hence, PEGy-

lated versions using site-specific N-terminal PEGylation of iz-

TRAIL showed widely improved pharmacokinetic profiles

in vivo and, furthermore, greatly augmented stability and

solubility under physiological conditions.150–154 In addition,

PEGylation improved TRAIL’s efficacy at targeting cancer cells

owing to the enhanced permeability and retention (EPR)

effect, which will be discussed in more detail below.

Targeting TRAIL to cancer cells

An important obstacle when treating primary tumors effectively

with TRAIL is that they are often intrinsically TRAIL-resistant,

or acquire resistance when treated with TRAIL. Several

studies have shown that co-administration of certain che-

motherapeutic drugs can sensitize the cancer cells to TRAIL-

induced apoptosis.155–159 However, chemotherapeutics lack

cancer cell selectivity and cause severe adverse effects by

also targeting normal cells. Thus, this obstacle could be

overcome by improving the specificity of TRAIL for cancer cells

when used in combination with chemotherapeutics or other

sensitizing compounds. Furthermore, targeted delivery of

TRAIL specifically to the tumor would increase the local

concentration and minimize dilution of the drug in circulation.

Mainly two approaches of targeting methods have been

pursued: (i) passive targeting based on the EPR effect and (ii)

active targeting by using antibody fragments or peptides that

target TRAIL to specific tumor-enriched antigens.

Passive targeting: combining TRAIL with nanoparticles.

The nanoparticle (NP)-based systems have emerged as a

promising means to improve drug delivery in vivo.160–162

Structurally, NPs have a diameter in the range of 50–150 nm

and can be composed of a wide variety of compounds,

including lipids and polymers. These compounds can be

combined with different therapeutic molecules trapped inside

the NPs and/or presented on the NP surface. Independent of

the NP composition, they possess interesting and desirable

general features such as improved pharmacokinetics,

pharmacodynamics and in vivo stability of the therapeutic

molecules encapsulated by them (Figure 2). Another impor-

tant characteristic of NPs is the aforementioned EPR effect.

Depending on the size and surface property of the NP in

question, and given that blood and lymph vessel systems in

tumors are thought to be leaky to macromolecules, NPs

readily spill from capillaries and lymph vessels that vascular-

ize tumor tissue. Consequently, the EPR effect allows the

NPs to better target tumors than the therapeutic molecules

alone.162–166 The optimal diameter of the NPs to take

advantage of the EPR effect is in the range of 10–150 nm.

Regarding the EPR effect, many anticancer drug-containing

nano-systems such as micelles, microspheres and liposomes
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have been developed, and several NP products such as

Doxil (Centocor Ortho Biotech Products, Horsham, PA, USA),

DaunoXome (Diatos, Paris, France) and Genexol-PM

(Samyang, Seoul, Korea) have already been approved for

clinical use or are currently tested in clinical trials.

As summarized in Table 1, a number of TRAIL-containing

NPs are currently being developed. To engineer the NP-core,

different chemical compositions have been used such as

human serum albumin,153,167,168 poly (lactic-co-glycolic) acid

(PLGA) microspheres,151,152,169 a combination of PEGylated

heparin and poly-L-lysine,154 magnetic ferric oxide170 or

liposomes.67,171–179 Among them, thanks to their versatility,

liposomes have emerged as the most versatile of these

platforms. Moreover, liposomes can be easily modified size-

and composition-wise depending on the desired physico-

chemical properties. In addition, they represent a safe choice

as liposomes have been widely studied and used in the clinic

as drug carriers.180,181

Concerning the manner in which TRAIL is integrated with

the NPs, there are two different strategies: (i) to encapsulate

TRAIL inside the particles so that they are released from the

particle in a constant and stable manner;151–154,169,173–176

or (ii) to attach TRAIL to the surface of the nanoparticles

so that TRAIL gets immobilized, resembling the physio-

logical membrane-bound protein, increasing its bio-

activity.168,170–172,177–179

An additional benefit of both strategies is the possibility to

load NPs with additional drugs that could act in concert

with TRAIL thereby enhancing its pro-apoptotic effect. In fact,

the combination of TRAIL with doxorubicin151,168,173,174 or

paclitaxel76 in NPs has already been reported. In all the cases,

the therapeutic effect was greatly enhanced by co-delivery

of the chemotherapeutic agents with TRAIL, whereas no

systemic toxicity was detected in vivo.

Besides the EPR effect, some authors have boosted

the intrinsic tumor-targeting ability of NPs by functionalizing

them with targeting molecules such as single-chain variable

fragments (scFv),177 transferrin, allowing transferrin-mediated

endocytosis of the NPs,168 or angiopep-2,176 a molecule that

specifically targets the low-density lipoprotein receptor-related

protein, which is highly expressed on the blood–brain barrier

and glioma cells.182 Furthermore, angiopep-2 has recently not

only been used for enhanced delivery across the blood–brain

barrier, but also for targeting brain tumors by the so-called

‘dual targeting effect’.176

Active targeting: antigen-restricted activation of TRAIL

receptors. An additional strategy to enhance TRAIL target-

ing is the use of domains or motifs that specifically target

cancer cells or cells of the tumor stroma. Several groups have

developed novel TRAIL constructs that have been fused to

such domains. The resulting fusion proteins are intrinsically

bivalent, maintaining the ability to engage TRAIL-DRs and

simultaneously combining this with the specific targeting of an

antigen expressed on the surface of particular tumor cells or

cells in the tumor microenvironment.

Although antibodies would be an obvious choice to provide

such targeting ability, whole immunoglobulins have a mole-

cular weight of approximately 150 kDa, rendering them

sterically less than ideal to be used as fusion domains.

Single-chain variable-fragment (scFv) domains, by contrast,

bear the advantage of maintaining antigen-specificity of full

immunoglobulins, while presenting a much smaller size

(around 25 kDa) allowing them to be readily fused recombi-

nantly to other biotherapeutic such as TRAIL.183,184 Various

such scFv:TRAIL constructs have been developed (Table 2),

targeting surface antigens known to be highly expressed by

the cells of certain tumor types. These include FAP,69

CD19,185 CD33,186 CD20,187 MCSP (melanoma-associated

chondroitin sulfate proteoglycan),188 ErbB2 (ref. 144) or

epidermal growth factor receptor (EGFR).145,189–191 A variant

of this experimental approach is the use of the Fn14:TRAIL

fusion protein.192,193 In this case, the protein fused with TRAIL

is not an scFv, but a peptide corresponding to the extracellular

domain of Fn14, the receptor for TWEAK/Apo3L (TNF-related

weak inducer of apoptosis/Apo3L). TWEAK is a multifunc-

tional cytokine involved in many cellular activities including

proliferation, migration, differentiation, apoptosis, angiogen-

esis and inflammation, which is not only expressed by normal

cells but also in tumor tissue (reviewed in ref. 194). An Fn14:

Figure 2 Main effects of nanoparticle-based formulations of TRAIL. Different
formulations of TRAIL using nanoparticle-based methods have been recently
developed, including liposomes. These experimental approaches show a variety of
advantages that help to improve the therapeutic potential of TRAIL in cancer.
Conjugation with nanoparticles increases the stability of TRAIL therefore increasing
its half-life and allowing a sustained release in the tumor. The so-called enhanced
permeability and retention (EPR) effect allows the nanoparticles to be more specific
targeting tumors than the antitumor molecules alone. This passive targeting may be
improved including different molecules in the nanoparticle composition that
specifically target them to the tumor. Finally, nanoparticles loaded with other drugs
than TRAIL, which specifically sensitize tumor cells to TRAIL and enhance its pro-
apoptotic effect, may have a synergistic effect killing tumor cells
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TRAIL fusion protein that showed increased bioactivity in an

experimental model of multiple sclerosis193 also showed

enhanced antitumor activity in vitro and in vivo against

hepatocellular carcinoma.192 This activity relies on the ability

of Fn14:TRAIL to interfere with TWEAK-Fn14 signaling in

cancer cells and simultaneously trigger TRAIL-induced

apoptosis. It is worth pointing out that some authors have

constructed such fusion proteins using novel versions of

TRAIL such as TNC-TRAIL and scTRAIL to improve trimer

stability.70,144,145,195

An interesting additional variation to this approach, which

has again been developed by several groups independently, is

the targeting of TRAIL not to the surface of tumor cells but to

that of immune cells via specific antigens expressed on their

Table 2 Main formulations of TRAIL fusion proteins

Fusion protein Target Main effects Experimental testing Ref.

MBOS4:TRAIL FAP Increased bioactivity
Active targeting

Fibrosarcoma cell lines in vitro 69

CD40ed:TRAILed CD40 Increased bioactivity
Active targeting

Fibrosarcoma cell lines in vitro 214

scFv425:sTRAIL EGFR Increased drug bioavailability
Active targeting
Absence of side effects

Pharmacokinetic studies in vivo
Tumor xenograft model (RCC) in vivo

189

Increased antitumor activity Hematologic and solid tumor cell lines in vitro 190

scFvCD19:sTRAIL CD19 Active targeting
Absence of side effects
Increased antitumor activity

Hematologic tumor cell lines and B-CLL primary cells in vitro
Tumor xenograft model (B-ALL) in vivo

185

scFvCD33:sTRAIL CD33 Active targeting
Increased antitumor activity

Hematologic tumor cell lines and AML primary cells in vitro 186

Anti-MCSP:TRAIL MCSP Active targeting
Absence of side effects
Increased antitumor activity

Melanoma cell lines and normal primary cells in vitro
Tumor xenograft model (melanoma) in vivo

188

DbaEGFR-scTRAIL EGFR Active targeting
Absence of side effects
Increased antitumor activity

HCC and CRC cell lines in vitro
Tumor xenograft model (CRC) in vivo

145

Anti-CD3:TRAIL
K12:TRAIL

CD3
CD7

Enhanced T-cell activity
Increased antitumor activity

Hematologic, solid tumor cell lines and tumor primary cells
in vitro
Tumor xenograft model (CRC) in vivo

196

scFvCD70:TRAILmutRs CD70 Increased bioactivity
Active targeting

Hematologic and solid tumor cell lines in vitro 70

scFv:G28-TRAIL CD40 Increased bioactivity
Active targeting
Induction of DC maturation

Fibrosarcoma cell lines in vitro 195

MSC.scFvCD20-sTRAIL CD20 Active targeting
Absence of side effects
Increased antitumor activity

Hematologic tumor cell lines and normal primary cells in vitro
Tumor xenograft model (NHL) in vivo

187

CLL1:TRAIL CLL1 Enhanced T-cell activity
Increased antitumor activity
Absence of side effects

Hematologic and solid tumor cell lines in vitro 202

RGD:TRAIL Integrins Active targeting
Increased antitumor activity

BC and CRC cell lines in vitro
Tumor xenograft model (NHL) in vivo

203

scTRAIL: Fc (APG350) — Increased antitumor activity Several cell lines in vitro
Tumor xenograft model (CRC) in vivo

209

scFv-EHD2-scTRAIL — Increased antitumor activity
Active targeting

Several cell lines in vitro
Tumor xenograft model (CRC) in vivo

211

FN14:TRAIL TWEAK Increased antitumor activity
Absence of side effects

HCC cell lines in vitro
Tumor xenograft model (HCC) in vivo

192

Increased anti-inflammatory effect Multiple sclerosis experimental model in vivo 193

Abbreviations: AML, acute myeloid leukemia; B-ALL, B-cell acute lymphoblastic leukemia; BC, breast cancer; B-CLL, B-cell chronic lymphocytic leukemia;
CRC, colorectal carcinoma; DC, dendritic cell; EGFR, epidermal growth factor receptor; HCC, hepatocellular carcinoma; MCSP, melanoma-associated chondroitin
sulfate proteoglycan; MSC, mesenchymal stem cells; NHL, non-Hodgkin’s lymphoma; RCC, renal cell carcinoma; RGD, peptide with the sequence ACDCRGDCFC;
scFv, single-chain variable region.
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surface. In this regard, de Bruyn et al.196 use TRAIL fusion

proteins with anti-CD3 or anti-CD7 scFv fragments. The aim is

to improve the tumoricidal activity of T cells ex vivo by

expanding their cytotoxic arsenal and to thereby potentially

overcome the shortcomings of conventional adoptive T-cell

therapies in achieving the desired therapeutic effect.197–201

With the intention to increase the tumoricidal capacity of

another type of immune cells, a TRAIL fusion protein with

CLL1 (C-type lectin-like molecule-1), has recently been

developed. This fusion protein targets human granulocytes,

attaching TRAIL to their surface. These granulocytes artificially

armed with TRAIL not only increased TRAIL induced

apoptosis but also potentiated antibody-mediated cytotoxicity

of several therapeutic antibodies.202 In this line, El-Mesery

et al.195 generated aCD40-directed scFv-TRAIL fusion protein

using the above-mentioned TNC-TRAIL, which results in

enhanced TRAIL-mediated apoptosis and robust induction of

CD40-mediatedmaturation of dendritic cells that, in turn, could

serve to potentiate immune response against tumors. Along

similar lines, Trebing et al.70 developed scFv:lαhCD70-TNC-

TRAIL, a fusion protein, which showed strongly enhanced

apoptosis with CD70-restricted activity. In this case, the fusion

protein would act via both, blocking the immunosuppressive

activity of tumor cells expressing CD70 and stimulating their

cell death. Another variation to this theme has been developed

by Cao et al.203 who fused TRAIL to the peptide

ACDCRGDCFC, which has high affinity for αvβ3 and αvβ5
integrins. Thereby, the authors aimed to target blood-forming

capillaries within solid tumors as these highly express the αvβ3
integrin.204 Furthermore, αvβ3 andαvβ5 integrins are highly

expressed on many tumor cells including on melanoma,205

colon,206 breast207 and ovarian 208 cancer cells. The resulting

construct showed specificity for the tumor neovasculature and

enhanced apoptosis-inducing activity, both in vitro and in vivo.

In general, all of the above-described constructs have demon-

strated improved activity over non-fused versions of TRAIL or

‘mock’ versions that were unable to bind the respective

specific surface antigens. Of note, some of these targeted

constructs have been built using TRAIL constructs specific for

TRAIL-R1 or TRAIL-R2, which allows for selective activation to

maximize the efficiency of the apoptosis induction and

minimize possible undesired activation of non-tumoral

TRAIL-DRs.70

In addition, there has been a recent wave of ‘second

generation’ TRAIL-based constructs, centered on the concept

of TRAIL trimer dimerization via domains that enable this in an

appropriate spatial configuration. The first description of such

a fusion protein (DbaEGFR-scTRAIL,
144) used a diabody as

dimerization domain. In this case, the diabody had a dual role

as it both stabilized the structure by acting as dimerization

domain and provided targeting properties by recognizing

EGFR, directing the molecule to EGFR-expressing cells.144 In

a structurally similar manner, Gieffers et al.209 developed a

dimer of TRAIL trimers by using the Fc-portion of human IgG1

as dimerization domain. In this case, the resulting recombinant

protein lacks a specific targeting domain but, importantly, the

authors showed that its apoptosis-inducing capacity, in

contrast to that of TRAIL-DR-targeting antibodies, was indeed

independent of Fcɣ receptor expression on proximal cells.210

Seifert et al.,211 in turn, developed a new ‘tetravalent’

TRAIL-based scFv-containing formulation that is composed

of two TRAIL trimers and two scFv regions fused together

through the dimerization domain of IgE heavy chain domain 2

(EHD2). Physiologically, this domain acts by connecting the

two heavy chains of an IgE molecule. The scFvs used in this

construct recognize EGFR. Of note, all of these TRAIL-based

constructs have been built as single-chain fusion proteins.

An additional effect of several of these constructs is that they

bind to surface antigens through the N-terminal part of the

protein, while the C-terminal, pro-apoptotic domain of TRAIL,

is exposed, thereby mimicking membrane-bound TRAIL.

Thereby, these constructs also gain the ability to efficiently

cross-link and activate TRAIL-DRs, consequently enhancing

the pro-apoptotic effect. Cell surface antigen-bound TRAIL not

only acts in an autocrinemanner, by recognizing an antigen on

a cancer cell and triggering TRAIL-induced apoptosis in that

same cell, but can also act in a paracrine fashion: once the

fusion protein is attached to a surface antigen on one cell, the

TRAIL domain can induce apoptosis in neighboring cells, even

though they may not express the surface antigen, minimizing

the tumor’s opportunities to evade treatment. However,

whether this effect will always turn out to be beneficial, or

may in certain cases specifically enhance unwanted effects

beyond an acceptable level, remains to be determined.

Another characteristic of these constructs, thought to be

advantageous in most cases, is the interaction with their

specific cell surface receptors/targetswhich, depending on the

construct in question, can lead to activation or inhibition of

the signals normally transduced by these targets. Thus,

depending on the type of cancer and regarding its phenotype,

targeting of the cancer cell can be rationalized by choosing

a specific antigen expressed by the tumor cells in question.

This tumor antigen can be targeted, not only with directing

purposes but also with the purpose of either activating or

blocking it. Such an activity may synergize with the pro-

apoptotic effect exerted by TRAIL-DR cross-linking via the

TRAIL component of the recombinant protein in question.

Conclusions and perspectives

The ability of TRAIL to specifically kill tumor cells makes this

cytokine a promising antitumor agent. In fact, numerous

clinical trials using TRAIL-based therapies have been

conducted.32 However, the anticancer activities of the

TRAIL-R agonists that have been tested in patients so far

has been limited to disappointing. Moreover, recent research

has demonstrated that TRAIL can induce, by far, more diverse

effects than merely apoptosis, some of which being rather

undesirable in the context of cancer therapy. Hence, it is of

crucial importance to evaluate the different TRAIL-based

therapies and how they differentially affect signaling very

carefully before delivering them to patients. Moreover, the poor

stability of untagged soluble TRAIL in vivo is not helpful with

regard to its pharmacokinetic properties. These problems are

currently being addressed by the development of a plethora

of new formulations and ways of administration of novel

recombinant forms of TRAIL and other TRAIL-R agonists as

explained in this review. Yet, the promising results that have

been obtained in vivo with some of these new formulations of

TRAIL must be further endorsed over the next years in a wider
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range of cancer types, and in more complex models, such as

genetically engineered mouse models as well as in tumor

models representing the heterogeneity of human cancers and,

ultimately, in the cancer clinic.
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