OntoEdit: Collaborative Ontology Development
for the Semantic Web

York Sure!, Michael Erdmann?, Juergen Angele?,
Steffen Staab!-2, Rudi Studer!-?:3, and Dirk Wenke?

! Institute AIFB, University of Karlsruhe, 76128 Karlsruhe, Germany
{sure, staab, studer}@aifb.uni-karlsruhe.de
http://www.aifb.uni-karlsruhe.de/WBS/

2 Ontoprise GmbH, Haid-und-Neu-Str. 7, 76131 Karlsruhe, Germany,
{angele, erdmann, wenke}@ontoprise.de
http://www.ontoprise.de/

3 FZI Research Center for Information Technologies,
Haid-und-Neu-Str. 10-14, 76131 Karlsruhe, Germany
http://www.fzi.de/wim/

Abstract. Ontologies now play an important role for enabling the semantic web.
They provide a source of precisely defined terms e.g. for knowledge-intensive
applications. The terms are used for concise communication across people and
applications. Typically the development of ontologies involves collaborative ef-
forts of multiple persons. OntoEdit is an ontology editor that integrates numerous
aspects of ontology engineering. This paper focuses on collaborative development
of ontologies with OntoEdit which is guided by a comprehensive methodology.

1 Introduction

The vision of the Semantic Web introduces the next generation of the Web by estab-
lishing a layer of machine-understandable data e.g. for software agents, sophisticated
search engines and web services. Ontologies play an important role for these knowledge-
intensive applications as a source of formally defined terms for communication. They
aim at capturing domain knowledge in a generic way and provide a commonly agreed
understanding of a domain, which may be reused, shared, and operationalized across
applications and groups. However, because of the size of ontologies, their complexity,
their formal underpinnings and the necessity to come towards a shared understanding
within a group of people, ontologies are still far from being a commodity.

In recent years, research aimed at paving the way for the construction of ontologies
by ontology development environments [DSW99NFMOO/ACFLGPOT]. Thereby, we
have seen different directions taken to support the engineering of ontologies.

1. Several seminal proposals for guiding the ontology development process by engi-
neering methodology have been described [UK9SILGPSS99], which influenced the
ontology development environments [ACFLGPO1].

2. Inferencing mechanisms for large ontologies have been developed and implemented
(e.g. [Hor98|) — also to support ontology engineering [BHGSO1].

1. Horrocks and J. Hendler (Eds.): ISWC 2002, LNCS 2342, pp. 221-233] 2002.
© Springer-Verlag Berlin Heidelberg 2002

222 York Sure et al.

3. Finally, the need to achieve consensus about an ontology was reflected by collabo-
rative environments [IS98IDom98ISPKR96.FFR96] for ontology engineering.

However, only few of these seminal approaches (e.g. [ACFLGPO1[]) have worked
towards combining all of these urgent desiderata. This observation seems to reflect our
own experience, viz. that it is far from trivial to offer a sound integration of these aspects.
Therefore, OntoEdit is an ontology engineering environment that is rather unique in its
kind as it combines methodology-based ontology development with capabilities for
collaboration and inferencing. This paper is about how methodology and collaboration
interact to support the ontology engineering processE]

Concerning the methodology, OntoEdit focuses on three main steps for ontology
development (our methodology is based on [SAAT99], a detailed description can be
found in [SSSSOT]), viz. requirements specification, refinement, and evaluation. Firstly,
all requirements of the envisaged ontology are collected. Typically for ontology engi-
neering, ontology engineers and domain experts are joined in a team that works together
on a description of domain and goal of the ontology, design guidelines, available knowl-
edge sources (e.g. reusable ontologies and thesauri etc.), potential users and use cases
and applications supported by the ontology. The output of this phase is a semi-formal
description of the ontology. Secondly, during the refinement phase the team extends the
semi-formal description in several iterations and formalizes it in an appropriate represen-
tation language. The output of this phase is a mature ontology (aka. “target ontology”).
Thirdly, the target ontology needs to be evaluated according to the requirement specifi-
cations. Typically this phase serves as a proof for the usefulness of developed ontologies
and may involve the engineering team as well as end users of the targeted application.
The output of this phase is an evaluated ontology, ready for the roll-out into a productive
environment.

Support for these collaborative development steps within the ontology development
methodology is crucial in order to meet the conflicting needs for ease of use and con-
struction of complex ontology structures. We will now introduce a case study, the de-
velopment of an ontology for a semantic portal about our institute AIFB. Based on the
process illustrated with this example, the remainder of the paper will be structured.

2 Case Study: SEmantic portAL (SEAL) at Institute AIFB

Based on our conceptual framework for “SEmantic portALs” (SEAL) we have developed
an ontology based portal for our own institute ATFB. The aim of the web application
is the presentation of information to human and software agents taking advantage of
semantic structures. The portal targets mainly students and researchers and presents typ-
ical information about persons, teaching-related topics and research-related topics. A
detailed description of SEAL can be found in [MSS™(2]. We briefly sketch the architec-
tural idea of SEAL and then focus on describing aspects of the collaborative ontology
development itself.

! In a recently submitted companion paper [SSA™02], we have described how methodology and
inferencing interact to support the ontology engineering process.
2 http://www.aifb.uni-karlsruhe.de

OntoEdit: Collaborative Ontology Development for the Semantic Web 223

/2 Universitat Karlsruhe: Institut AIFB - Microsoft Internet Explorer

N =1pd|
Datel Bearbetten Anscht Favoriten Extras 2
Adresse | http:/fwww aib ni-karlrue. de/] Pwechsenzu
D N w0 o.M
R Universitat Karlsruhe: Institut AIFB ~Intern - Microsoft I LL| Welcome at the Institute AIFB
Datel Bearbelten Anscht Eavoriten Extras 2. 5 :
Adresse [/pwww.ab.nikarlsrLhe de/ '_‘c Unlver5|ty of Karlsruhe (TH)
o Teaching/Exams Institute of Applied Informatics and Formal Description Methods
[leaching/Exams
E‘ Projects: People Prof. Dr. H. Schmeck, Prof. Dr. D. Seese, Prof. Dr. W. Stucky, Prof. Dr. R. Studer
o (KA
2 « OntoServer Rescarch .)
« OntolWeb Groups Shorteuts News
Teaching/Exams + On-To-Knowledge
o GETESS finects - ’
Beople ... Info for visitors... + About our Institute: Auf ein
Eepe g ...Dipl rt (g
Field of research: Reports Diploma Theses Wort (german)
Pesearch pasg ... Informatik B... o Vortrag im Rahmen des
Toﬁas - attfical intelligence | Events ... Angewandte Informatik | ... Hauptseminars , 15.02.2002,
e M %ﬁ% ... Programmieren I: Java... 14:00 Uhr. Raum 231, Geb.
i o development ot Koy Jobs 11.40, Daniel Merkle:
— » knowledge systems A 'i'RAIK Stof;ggm Ameisenalgorithmen -
« knowledge portals t «...Annual Report 1999... - :
Reports o semantic web gOn-line Services ... Optimierung und Modellierun
« ontology-based kno'| Contact ... Internal...
Events « ontology engineering .
» ontology engineerinc| Home B AFB 2001 About our SEmantic potAL Powered by Ontaprise
Jobs o Www systems -
] o semantic web infras {jrersg [Eikes
. TIETTC J
Contact o knowledge representation languages
Home =
Kl | B
& B8 Lokaes Intranet. 7

Fig. 1. The semantic portal at the institute AIFB

SEAL is a framework for managing community web sites and web portals based
on ontologies. The ontology supports queries to multiple sources, but beyond that it
also includes the intensive use of the schema information itself allowing for automatic
generation of navigational viewd] and mixed ontology and content-based presentation.
The core idea of SEAL is that Semantic Portals for a community of users that contribute
and consume information require web site management and web information integra-
tion. In order to reduce engineering and maintenance efforts SEAL uses an ontology for
semantic integration of existing data sources as well as for web site management and
presentation to the outside world. SEAL exploits the ontology to offer mechanisms for
acquiring, structuring and sharing information between human and/or machine agents.

For the AIFB ontology the ontology engineers had to deal mainly with (i) modeling
navigational structures, (ii) the research topics investigated by different groups of the
institute, (iii) topics related to teaching and last but not least (iv) personal information
about members of the institute. Figure [[]shows two screenshots from our portal, viz. the
entry point and parts of a researcher’s homepage. On the left side of the screenshots the
top-level navigational structure is shown. The right side of the researchers homepage
shows projects this researcher is involved in and his personal research topics.

During the requirements specification phase (cf. Section[3) the ontology engineers
set up the requirements specification for the ontology. To gather initial structures, they
took themselves as an “input source” and collected a large set of research topics, topics
related to teaching and personal information. Naturally, the ontology developers (viz.
the knowledge management group) were not able to come up with all relevant structures
by themselves and already in this phase they collaborated with domain experts, viz.

3 Examples are navigation hierarchies that appear as has -part trees or has-subtopic trees
in the ontology.

224 York Sure et al.

their colleagues from other research groups (information systems group, efficient algo-
rithms group and complexity management group). In this section we show OntoEdit’s
support for capturing the requirements specification and his brainstorming support for
the gathering of initial structures.

In the refinement phase (cf. Section @) the “first draft” of the ontology was refined
by structuring the concept hierarchy and addition of concepts, relationships and axioms.
Like in the early stage, a tight collaboration of all groups was needed to refine the
ontology, e.g. to formalize implicit knowledge like “someone who works in logic also
works in theoretical computer science”. In this section we present OntoEdit’s advanced
support for collaborative ontology engineering through transaction management.

Finally, in the evaluation phase (cf. Section[3) the ontology is evaluated according
to the previously set up requirement specifications. In a first step, each group evaluated
“their” requirements individually. In a second step the ontology as a whole was evaluated.
In this section we illustrate OntoEdit’s facilities for setting up test sets for evaluation,
avoiding and locating errors in the ontology, using competency questions for evaluation
and, last but not least, we describe how these components work together for support of
collaborative evaluation.

3 Requirements Specification Phase

Like in software engineering and as proposed by [LGPSS99], we start ontology devel-
opment with collecting requirements for the envisaged ontology. By nature this task
is performed by a team of experts for the domain accompanied by experts for model-
ing. The outcome of this phase is (i) a document that contains all relevant requirement
specifications (domain and goal of the ontology, design guidelines, available knowl-
edge sources, potential users and use cases and applications supported by the ontology)
(ii) a semi-formal ontology description, i.e. a graph of named nodes and (un-)named,
(un-)directed edges, both of which may be linked with further descriptive text.

To operationalize a methodology it is desirable to have a tool that reflects and sup-
ports all steps of the methodology and guides users step by step through the ontology
engineering process. Along with the development of the methodology we therefore ex-
tended the core functionalities of OntoEdit by two plug-ins to support first stages of the
ontology development, viz. OntoKick and Mind2Onta.

OntoKick targets at (i) creation of the requirement specification document and (ii)
extraction of relevant structures for the building of the semi-formal ontology description.
Mind2Onto targets at integration of brainstorming processes to build relevant structures
of the semi-formal ontology description. As computer science researchers we were fa-
miliar with software development and preferred to start with a requirement specification
of the ontology, i.e. OntoKick. People who are not so familiar with software design
principles often prefer to start with “doing something”. Brain storming is a good method
to quickly and intuitively start a project, therefore one also might begin the ontology
development process with Mind2Onto.

* Describing the plug-in framework is beyond the scope of this paper, it is described in [HanO1]].
In a nutshell, one might easily expand OntoEdit’s functionalities through plug-ins.

OntoEdit: Collaborative Ontology Development for the Semantic Web

Edit Question

In which profecis is a

concepts
projects

ENew competency questionnaire ﬁ
IConcept hierarchy Knowledge Engineer Domain Expert Edition Date
A+ -] e frarksure [Rudi Studer 2-14-2002
= [Root
- projects
. researcher
’; Match Pattern! 4 letters = [Activate stemming Reset

Relations

225

Add as relation of ROOT
Show similar concepts 3

ADD TO LIST
CHANGE
REMOVE
IMPORT.

Add as instance of ROOT

Ignare

\Wihat research projects is a research group involved in?
‘Whlch research groups existatthe msmute7

04| || [0

Fig. 2. OntoKick: Capturing of Competency Questions

OntoKick support for the collaborative generation of requirements specifications for on-
tologies. The collaborative aspect of OntoKick is not so much the support for distributed
work of team members, but rather the support for personal interaction of ontology en-
gineers and domain experts. This is a two step process. Firstly, OntoKick allows for
describing important meta-aspects of the ontology, viz.: domain and the goal of the on-
tology, design guidelines, the available knowledge sources (e.g. domain experts, reusable
ontologies etc.), potential users, use cases, and applications supported by the ontology.
OntoKick guides the engineering team stepwise through all relevant aspects and stores
these descriptions along with the ontology definitions.

Secondly, OntoKick supports the creation of a semi-formal ontology description.
Naturally, domain experts are a valuable knowledge source for structuring a domain.
A very common method for knowledge acquisition from domain experts are personal
interviews. To structure the interviews with domain experts we use competency questions
(CQ, cf. [UK93]). Each CQ defines a query that the envisaged ontology (respectively
the ontology-based application) should be able to answer and therefore defines explicit
requirements for the ontology. Typically, CQs are derived from interviews with domain
experts and help to structure knowledge. We take further advantage by using them to
create the initial version of the semi-formal description of an ontology and also for
evaluation of the ontology in a later stage (cf. Section[3). Based on the assumption that
each CQ contains valuable information about the domain of the ontology we extract
relevant concepts, relations and instances (cf. Figure [2)).

Figure [3] shows the main workbench of OntoEdit. It consists of several tabs, here
the tab Concepts & Relations is selected. The left frame of the tab contains a concept
hierarchy, the right frame contains relationd] with their ranges that have the currently
selected concept (here: Projekt) as domain. Further tabs include e.g. Instances for adding

3 Please note that for exporting and importing of RDF/S one would prefer to talk about properties
with domain and range restrictions instead of relations.

226

York Sure et al.

E& ontology Engineering Workbench GntoEdit V2.0

File Edit View Tools Windows Help

IB"J I J ¥]]I Seaame@ueryl.

40 https/iwwew. aifb.uni-Karlsruhe. de (C:home nntologiesiaifbaib.oxmi)
Disinint cancents | General Axioms | inferencing Identification | Metadata
Concepts & Relations Instances Relation axioms
IConcept hierarchy Relations Range
A+ ¢ | [peninn STRING
= qRUEﬂ = beschre!bung_de STRING
S ';Forachung besch.remung_en STRING
3 qmrschungsgemet Inanzied_von STRING
E8c [ZEED orschungsoebiet Forschunasoehiet
L el B - orrespondin | e
9 <ooperatio B g X
£ [PLene Expert Rudi Studer !
W Diplom ion
= fellLehrver :
- Diate; 2-14-2002
rsen
P sen Jriwihich research projects is a researcher involved?
T Tute chaftlicher_Mitarbeiter
rPuet
ool
o (e Pruetur, .
3 [projekiende TRTRG
el Stilenathal ".'J bubliziert_in Publikation
3 [N url van nroiektnace STRING

Fig. 3. OntoKick: Traceability of Competency Questions

and editing of instances or Relation axioms for adding and editing relational axioms like
transitivity, symmetry and inverseness of relations (e.g.).

OntoKick establishes and maintains links between CQs and concepts derived from
them. Figure 3] also includes the relevant CQ for the selected concept Projekt (provided
by a right-click context menu). This allows for better traceability of the origins of con-
cept definitions in later stages and improves quality assurance during the development
process, i.e. by documenting the origins and the context of concepts, relations and in-
stances. Therefore, a reached level of quality of the ontology can be reengineered by
other ontology engineers.

“Real life” ontology modeling is supported by OntoKick as the following example
illustrates with our SEAL scenario. First, the ontology engineer interviews an expert
(i.e. his colleague). Thereby they identify CQs, e.g. “In which research projects is a
researcher involved?” (cf. Figures 2Zland [B]). Based on these CQs the ontology engineer
creates a first draft of the semi-formal description of the ontology and already graphically
models it in OntoEdit. He identifies relevant concepts, relations and instances from of
the above-mentioned CQ, e.g. the concept Projekte (German for projects). The instances
might e.g. be prototypical instances that are used for evaluation purposes (cf. Section[5).
After capturing CQs and modeling the ontology with OntoEdit the ontology engineer is
able to retrieve corresponding CQs for each concept, relation, and instance. This helps
him and others to identify the context in which these elements were modeled.

Mind2Onto is a plug-in for supporting brainstorming and discussion about ontology
structures. Especially during early stages of projects in general, brainstorming methods
are commonly used to quickly capture pieces of relevant knowledge. A widely used
method are mind maps™ [Buz74], they were originally developed to support more ef-
ficient learning and evolved to a management technique used by numerous companies.
In general, a mind map™ provides information about a topic that is structured in a tree.

OntoEdit: Collaborative Ontology Development for the Semantic Web 227

Each branch of the tree is typically named and associatively refined by it’s subbranches.
Icons and pictures as well as different colors and fonts might be used for illustration
based on the assumption that our memory performance is improved by visual aspects.
There already exist numerous tools for the electronically creation of mind maps™. Many
people from academia and industry are familiar with mind maps™ and related tools —
including potential ontology engineers and domain experts. Therefore the integration of
electronic mind maps™ into the ontology development process is very attractive (cf. e.g.
[LSO02]).

We relied on a widely used commercial toofd for the creation of mind maps™. It
supports collaborative engineering of mind maps™ through peer-to-peer communication
and has advanced facilities for graphical presentations of hierarchical structures, e.g. easy
to use copy&paste functionalities and different highlighting mechanisms. It’s strength
but also it’s weakness lies in the intuitive user interface and the simple but effective
usability, which allows for quick creation of mind maps™ but lacks of expressiveness
for advanced ontology modeling. By nature, mind maps™ have (almost) no assumptions
for it’s semantics, i.e. branches are somehow “associatively related” to each other. This
assumption fits perfectly well during early stages of ontology development for quick
and effective capturing of relevant knowledge pieces and makes the mind map™ tool a
valuable add-on.

Mind2Onto integrates the mind map™ tool into the ontology engineering methodol-
ogy. Currently OntoEdit and the mind map™ tool interoperate through import and export
facilities based on XML (cf. Figure H). In our scenario we used the mind map™ tool to
facilitate discussions about the research topic hierarchy. Most of the domain experts were
already familiar with the tool, the other ones learned it’s usage very quickly. Initially all
workgroups of our institute created in joint sessions a mind map™ of relevant research
topics. The peer-to-peer communication of the mind map™ tool provided the necessary
workgroup functionalities for this effort.

4 Refinement Phase

The goal of this phase is to refine the semi-formal description of the ontology according
to the captured requirements into a mature ontology, which is the output of this phase.
Especially during the refinement phase, several teams were working simultaneously
with OntoEdit on developing the ontology for our AIFB portal. Several sessions were
necessary until e.g. the navigational structures were accepted by all members. In this
phase also numerous relationships were added to refine the ontology (a task that e.g.
the brainstorming tool is not capable of). After reaching a consensus, the created mind
map™ (see previous section) was restructured in cooperation with the ontology engineers
to facilitate the interoperability with OntoEdit, i.e. as a simple assumption we took the
elements of a mind map™ as concepts and branches as suBCONCEPTOF relationships
between concepts (cf. Figure). After several discussions we decided to model research
topics as subconcepts of the concept Forschungsgebiet (German for ResearchTopic) to
form a hierarchy of research topics. The final version of the research topic hierarchy
then was included into the ontology.

6 MindManager™ 2002 Business Edition, cf. http://www.mindjet.com

228

York Sure et al.

pnicCommerce /£ Business -
M-Business
Http:/iwww.aifb.uni-karlsruhe.de KnowiedgePortals J
14020m2-v3 "
+ Datenbank y A ®

@ ELearning

_Iolx]
\, < EffizienteAlgorithmen raphentheorie 4]

Graphminoren

ObjektarientierteProgrammierun;

tiveDatab:

B ontology Engineering Workberich OntoEdit V2.0

File Edit View Tools Windows Help

BEECEE Sosame cuon

conseps & Rlatos | ntances| Relaton atams]

A N SemanticWeblnftastructure

=lolx|

OntologiebasierteWMSysteme

Informationssysteme

| nferencing | tgentication | Metadata |

(Concept ierarchy

= (3gon
[R
= C¥rarihungegebic
Betiebiichelnformaiksyse]
Businessirieligence

[Relations.
loeschreibung
[kooperation
letre
Imitarbeiter

‘Wissensmanagementmethodik

[Range
ISTRING
IKooperation
lLenre
IMitarbeiter
ISTRING
[Projek.

Ontolagiemodellierun

ComputationalFinance Jpubikation

eranstaltung

L —1
~—]

fpublication
franstaltung
EfinzienteAlgorithmen
EvolutionaereAlgoritmen
Graphentecrie
Informationssysteme
Komplextaststhearie
Kuenstichelnteligenz
Semanticied
SottwareEnginering
wissensmanagement
eLearning
o 3Prien
3 osperson
Lotre
= (P organisation
Person

1222222222222
=1

' (S Publikation
& P Veranstaltung

Reaty. 5191 Okiree.

Fig. 4. Mind2Onto: Research topics as a mind map and in the ontology

In the current version of OntoEdit members of an engineering team can collaborate
even though they are geographically distributed and still modify the ontology at the
same time. We have developed a client/server architecture (cf. Figure [5) in which the
clients connect to an ontology server and can change or extend the ontology. All clients
are immediately informed of modifications the other ontologists do to the ontology.
Engineers can store comments (e.g. explaining design decisions) in a documentation
field for each concept and relation. By this way, one of the main features of ontologies,
i.e. their consensual character, is supported. Collaborating ontologists must agree on the
modeling decisions that are made. Therefore the possibility to monitor the development
process of all collaborators is essential for reaching the goal of a shared ontology.
Transaction Management. In a distributed development environment certain mecha-
nisms must be implemented to ensure safe development conditions, such as consistency
of the models and the provision of a minimum degree of concurrency. To reach this goal
we employed a locking and transaction protocol and implemented a distributed event
model on the basis of Java-RMI (remote method invocation).

To guarantee consistent models the clients are forced to obtain locks for each resource
(e.g. concept, instance, relation) that they want to modify (e.g. add a superconcept, add
an attribute-value pair to an instance, or change the arity of a relation)!] The server denies
the (write-) access to a resource if the resource is not locked by the client that attempts

" The grounding datamodel of OntoEdit is OXML 2.0. This frame-based model offers
a number of meta—classes, like ontology, concept, relation, but also predicate or ax-
iom, with a rich set of properties and associations to facilitate ontology modeling: cf.
http://www.ontoprise.de/download/oxml2.0.pdf for a reference manual.

OntoEdit: Collaborative Ontology Development for the Semantic Web 229

Client 3

Client 2 ‘ ‘ Client 4
Local view on W ﬁ ﬁ [* |f*

locking information

Local copy of

ontology a
Client 1 E E

[
:é;%:;; «—>

Ontology Server

Locking Information

=

» Ontology Datamodel

L
|
,\

Fig. 5. Client/server architecture of OntoEdit

to modify it. Clients can obtain locks either by explicitly locking these resources, or
more conveniently, by a begin of transaction (BOT) that is accompanied with a list of
needed resources. If not all resources can be assigned to the calling client the BOT
fails and the transaction is immediately aborted. Otherwise the server locks the needed
resources for the client, so that no other client can manipulate them until the end of
the transaction is reached. Now the client can manipulate the locked resources until it
commits the transaction. After a commit all locked resources are freed again and the
operations performed in the body of the transaction are actually applied to the datamodel.
Afterwards, events are created to inform the other clients of the modifications performed.
If the transaction needs to be aborted by the client all operations are undone, all locks
are removed, and no events are fired.

Transactions may be nested to make complex operations possible without the need
of rollback mechanisms. E.g. the datamodel procedure of moving a concept from one
superconcept to another one consists of two subtransactions (remove a superconcept-
relationship to the first superconcept and establish a new one for the second concept)
that must be performed all together or none at all. Because of the necessity of nested
transactions we implemented a strict two phase locking protocol (S2PL). In this protocol
additional resources can be achieved (and locked) within the body of a transaction. Our
implementation of the S2PL allows for arbitrarily nested transactions. The execution of
inner transactions and the release of all locked resources is postponed until the outermost
commit or abort is finally reached. Again, only after the final commit events are sent to
the other clients. We employ the S2PL because (i) it allows for nested transactions and
(ii) prevents cascading aborts. Thus, clients can be immediately informed if a planned
operation will commit or is prohibited due to unavailable resources. (iii) S2PL prevents
also deadlocks since resources are only locked in a BOT if all locks can be achieved.
Other locking protocols are either too inflexible (like conservative locking (C2PL) that
cannot lock resources in addition to the locks of the BOT and thus, is not suitable for
nested transactions) or provide chances of deadlocks that must be appropriately handled.

230

York Sure et al.

ﬂﬂntnlngy Engineeting Workbench OntoEdit ¥2.0

_F\Ie Edit View Tools Windows He__p
Als| B olo] 4|=E|

File Edit ¥iew Tools Windows Help

mﬂntulugy Engineering Workbench OntoEdit ¥2.0

Coneaats & Relations | instances | Relation adoms | Dis; EEyvmpmm—"

Concepts & Relations] Instances] Relation a)cinms{ Diajnintcnnceptsﬂ Inferencir

Concept hierarchy

A+ -]t

#-) EvolutionaereAlgorithmen
= (i Graphentheorie

#- [Informationssysteme

= P Komplexitaststhenrie

= 3 ® Kuenstichelnteligenz

£ q @ Ontologiemodellierung

~) ® Wissensmanagementmethodik

E ’; @ Wissensmanagementsysteme
- (el eLearning

+- [P Datenbank

- (e EffinzienteAllgotithmen
"';Evu\uliunaereAlgumhmen
+- [P Graphenthentie

+ ’;Informatmnssysteme

- [P Komplexitaststheorle

= T % Semanticitieh
& gSUﬂwareEngineering = [Kuenstichelntelligenz
= ¥ @ Wissensmanagement - [® Semanticied

3 @ KnowledgeFortals
£ ’; @ OntologiebasierteWWhSysteme
- ® Semanticiebinfrastructure
’;SuﬂwareEngmeering

Concept hierarchy Relations
= !aggg ; 4| +| - | e ||peschreibung
= (e Forschung kooperation
1= TP Forschungsgehist B g“””‘ lehre
- P BetrieblichelnformatikSysterne = [@Forschung tarbeit
= (P Businessinteligence = fForschunosgeblet i eI
& fRPComputationalFinance # - [BetrieblichelnfarmatikSysteme narme
= P Datenbank +- [P Businessinteliigence projekt
+ 1.'.,EI’ﬂnziente!—\\Igurilhmen + ";ComputanonalFmance Lblikation

reranstaltung

- e Projekt #- [X Wwissensmanagement
T Kooperation = ’;_eLeammg

- feLehre L@ qPrnlebjd

1 P Oranisation - [Kooperation

Fig. 6. Locked trees in OntoEdit

To reduce communication overhead, save bandwidth and because transactions are

relatively short lived no information about transactions (esp. not about locked objects
within a BOT) is communicated from the server to other clients, i.e. the local view
on locking information within a client (cf. Figure B) contains all resources that are
locked by this client (by a BOT) but none that have been locked by a BOT of any other
client. Nevertheless, another kind of locking information is distributed to all clients. An
ontologist can lock a whole subtree of the concept hierarchy. The server informs all
clients of this locking operation.
Locking Subtrees of the Concept Hierarchy. A common practice in ontology engi-
neering is to start with a top level structure and to refine it later on. Different parts of
an ontology can be refined by different ontologists or groups (cf. the research topics of
the AIFB ontology). These collaborators should be able to work on their parts of the
ontology with as few interference with other ontologists as possible. This is achieved
in OntoEdit by the possibility of locking a complete subtree of the concept hierarchy.
After the subtrees have been locked no conflicts can arise anymore, and what is equally
important, the need to check for locking information with the server is reduced drasti-
cally. Since most modeling operations will occur within the scope of the subtrees, i.e.
will mainly access already locked resources, the client can decide locally whether these
operations are permitted or not.

This (tree-) locking information is distributed to all other clients and visually indi-
cated in the GUI (cf. Figure[@)). Crosses mark concepts that are locked by other clients
and may not be edited. Bullets mark concepts that may be edited, altered and removed at

OntoEdit: Collaborative Ontology Development for the Semantic Web 231

will. Concepts without additional icons are currently not locked and therefore available
for locking by any user.

Due to the distribution of this information clients can often check locally whether a
transaction will be permitted or not. If all needed resources are marked as “locked by
me” in the local view on the locking information (cf. Figure B)) a BOT can be safely
accepted. If at least one resource is marked as being locked by another client the current
client can definitively reject a BOT (or a lockSubTree request). Only if resources are
requested in a BOT for which no information is locally available, the server has to be
consulted.

What Does Locking a Concept Mean? Locking resources in relational databases means
the DB administrators or application developers must decide whether to lock an attribute,
a tuple, or a complete table (i.e. relation). Since the basic datamodel for ontologies is
much richer (esp. due to hierarchical relationships between concepts, between relations,
and between instances and concepts) the decision of what a lock entails is more complex.

The most simple answer would be to lock the complete ontology with all its compo-
nents. But this solution is ruled out since it would disallow any kind of concurrency and
distributed collaboration. Another simple answer would be to lock the resources that are
to be modified within a transaction, e.g. the resource X in the transaction that states that
concept X has a superconcept Y. Apparently, for this transaction concept Y should also
be locked since a new subconcept for Y is defined. Thus, the second simple approach
seems to lock too few resources.

Due to hierarchical relationships between concepts locking a concept X implies
read-locks for all super-concepts of X and all their super-concepts, recursively. A read-
lock marks a resource as being read-only, i.e. modifications to it are currently disallowed.
If a read-lock for at least one superconcept cannot be achieved X will not be locked and
the BOT fails. Thus, no operations may modify X . Read-locks can be yielded to multiple
clients at the same time without conflict. If a client is the only one that read-locked a
resource the client can achieve a stricter (write-)lock. Other clients cannot.

The reason why a lock propagates from one resource to another in the ontology can
be seen in the following example scenario: Assume, X is a subconcept of Y and Y has
a slot A with range Y. Assume, we want to restrict the value range of A for X from Y’
to X. Thus, in the BOT we just lock the concept X and call the appropriate operation
on X. Before we send the commit another client (after locking Y') changes the name of
A to B and commits. If we now commit our transaction the semantics of the combined
operations is not defined. Does X now have two independent attributes A and B? Or
is attribute A totally lost as well as our newly defined range restriction? Both situations
are unsatisfactory. Thus, to prevent them superconcepts need to be read-locked.

The same holds for locking complete subtrees of the concept hierarchy. Here all
subconcepts are locked in the same way as the root of the subtree and all superconcepts
of the root. All superconcepts of the subconcepts of the root must be read-locked. This is
necessary only if multiple-inheritance is allowed. Because the same rules for computing
super- and subobjects of concepts etc. are available in the client and in the server some
decisions whether a transaction is allowed or not may be made on the client side without
connecting to the server. Thus the amount of queries sent over the network is reduced
and processing times are enhanced.

232 York Sure et al.
5 Evaluation Phase

The last step in ontology development is about evaluating the formal ontology. The
goal of the evaluation phase is to check whether the ontology fulfills the requirements
specified during the first stage of the methodology (cf. Section [3). OntoEdit tackles
several aspects for evaluation, i.e. (i) test sets of instances and axioms can be used for
the analysis of typical queries, (ii) a graphical axiom editor in combination with an
underlying inference engin allows for error avoidance and location, (iii) competency
questions might be formalized into queries and evaluated by using the facilities of (i)
and (ii) and, last but not least, (iv) a namespace mechanism allows for using the facilities
(1) — (iii) collaboratively.

Analysis of Typical Queries. The ontology engineer may interactively construct and
save instances and axioms. OntoEdit contains a simple instance editor and an axiom
editor that the ontology engineer can use to create test sets. A test set can be automatically
processed and checked for consistency. Once the ontology evolves and needs changes to
remain up-to-date, a test set may be re-used for checking validity of the ontology. This
basic functionality is e.g. needed during the usage of Competency Questions.

Error Avoidance and Location. While the generation and validation of test cases al-
lows for detection of errors, it does not really support the localization of errors. The set
of all axioms, class and instance definitions express sometimes complex relationships
and axioms often interact with other axioms when processed. Thus it is frequently very
difficult to overview the correctness of a set of axioms and detect the faulty ones. In
order to avoid problems, OntoEdit allows for defining several standardized properties
of relationships by clicking on the GUI (viz. symmetry, transitivity and inverseness of
relations) and a graphical rule editor for other types of axioms. In order to locate prob-
lems, OntoEdit takes advantage of the underlying inference engine, which allows for
introspection and also comes with a debugger. A very simple but effective method to test
axioms with test cases is e.g. to switch off and switch on axioms. A more sophisticated
approach uses visualizations of proof trees by tracking back the drawn inferences to the
test instances. Therefore semantic errors in rules may be discovered. A more detailed de-
scription of OntoEdit facilities for the “analysis of typical queries” and “error avoidance
and location” can be found in [SSAT02].

Usage of Competency Questions. Competency Questions may help in two ways for
evaluation. Firstly, they might provide prototypical instances for a test set (see above).
Secondly, CQs itself define requirements for the ontology (—based application), therefore
they provide a checklist of questions the ontology should be able to answer. E.g. from
the CQ “Who is head of a research workgroup?” the concept Workgroup and the rela-
tion HEADOFGRoUP (with domain Researcher and range Workgroup) are identified as
relevant elements and therefore modeled in the ontology. A prototypical instance is e.g.
an instance of Researcher, viz. “Rudi Studer”, who is HEADOFGROUP of an instance of
Workgroup, viz. the “Knowledge Management Group”. Each CQ may now be formal-
ized with the facilities described above into a query which is executed by the inference
engine. The query result may be used to check whether the requirements expressed by
the CQs are fulfilled by the current ontology.

8 The underlying inference engine used for processing of axioms is Ontobroker (cf. [DEFS99])

OntoEdit: Collaborative Ontology Development for the Semantic Web 233

Collaborative Evaluation. The three facilities above can be used collaboratively through
support from the backbone inference engine for the handling of multiple test sets. A
namespace mechanism allows for syntactically splitting up ontologies or ontology parts
(i.e. concepts, relations, instances and axioms) into modules that can be processed by a
single instance or separate instances of the inference engine. Members of the engineering
team usually have different requirements and use case scenarios, e.g. expressed by their
different CQs, therefore they typically need separate test sets for evaluation. In a two
step approach we (i) evaluate locally each test set, i.e. each member (or e.g. each pair of
ontology engineer and domain expert) evaluates his CQs, and (ii) evaluate globally the
conjunction of test sets.

6 Related Work

A good overview, viz. a comparative study of existing tools up to 1999, is given in
[DSW™99|. Typically the internal knowledge model of ontology engineering envi-
ronments is capable of deriving is-a hierarchies of concepts and attached relations.
On top of that we provide facilities for axiom modeling and debugging. Naturally, it
could not fully consider the more recent developments, e.g. Protégé [NFMOO], and We-
bODE [ACFLGPO1].

WebODE has a well-known methodological backbone, viz. METHONTOLOGY,
and is designed to integrate numerous aspects of an ontology lifecycle. [ACFLGPO1]
mentions that it offers inferencing services (developed in Prolog) and an axiom manager
(providing functionalities such as an axiom library, axiom patterns and axiom parsing
and verification), but the very brief mentioning of these functionalities is too short to
assess precisely. About collaboration, it is said that this is supported at the knowledge
level, but how this is achieved remains open.

Environments like Protégé [NEFMOO] or Chimaera [MFRWOO0] offer sophisticated
support for ontology engineering and merging of ontologies. Protégé also has a modular
plug-in design rational like OntoEdit, but lacks of sophisticated support for collaborative
engineering. They provide limited methodological and collaborative support for ontol-
ogy engineering. A system well-known for it’s reasoning support is OilEd [BHGSOI]
in combination with the description logics (DL) reasoner FaCT [BHGSOI]]. Their col-
laborative and methodological support is rather weak.

Some tools explicitly support collaboration during ontology engineering. APECKS
[TS98] is targeted mainly for use by domain experts, possibly in the absence of a knowl-
edge engineer, and its aim is to foster and support debate about domain ontologies. It
does not enforce consistency nor correctness, and instead allows different conceptuali-
sations of a domain to coexist. Tadzebao [Dom98| supports argument between users on
the ontology design, using text, GIF images and even hand drawn sketches. The strength
of these approaches lies in the advanced support for communication. In contrast we
provide a more sophisticated support for fine-granular locking of the ontology.

The web-based Ontosaurus [SPKR96] combines support for collaboration with rea-
soning and allow individuals to add to an ontology only when consistency is retained
within the ontology as a whole. This approach takes advantage of the underlying repre-
sentation language LOOM’s reasoning abilities and consistency checking. Ontosaurus

234 York Sure et al.

was inspired by the Ontolingua system [[FFR96], which does not integrate an inferenc-
ing support as integral part of the ontology development environment. Due to the simple
“state-less” HTML interaction, both systems have several limitations. E.g. does a server
not maintain any state information about users, i.e. clients. Nor is it possible for a server
to initiate an interaction on its own, e.g. alerting users to simultaneous changes by others.
In general, no other approach is known to us that implemented fine-granular locking of
ontologies like we do.

7 Conclusion

In this paper we presented (i) a motivational scenario, viz. the development of an ontology
for the semantic portal of our institute, (ii) the methodology for ontology development
that was applied in the scenario, (iii) the advanced collaborative tool support of OntoEdit
for each step of the methodology. OntoEdit also has some features that could not be
presented here, e.g. an extremely capable plug-in structure, a lexicon component, and
an ontology mapping plug-in.

For the future, OntoEdit is planned to be developed in several directions: (i) The
collaborative facilities will be further expanded, e.g. by adding a rights- and user-
management layer on top of the locking mechanism and integrating communication
and workgroup facilities (ii) new im- and exports will be developed, (ii) the integration
of ontology construction with requirements specification documents will be general-
ized by means of semantic document annotation and (iv) the mind map™ tool will be
integrated tighter into the ontology engineering process, e.g. through enabling direct
communication between the tool and an ontology server, to name but a few.

Acknowledgements

Research for this paper was partially funded by EU in the project IST-1999-10132 “On-
To-Knowledge”.

References

ACFLGPO1. J.C. Arprez, O. Corcho, M. Fernandez-Lopez, and A. Gomez-Perez. WebODE: a
scalable workbench for ontological engineering. In Proceedings of the First Inter-
national Conference on Knowledge Capture (K-CAP) Oct. 21-23, 2001, Victoria,
B.C., Canada, 2001.

BHGSO01. S. Bechhofer, I. Horrocks, C. Goble, and R. Stevens. OilEd: A reason-able ontology
editor for the semantic web. In KI-2001: Advances in Artificial Intelligence, LNAI
2174, pages 396—408. Springer, 2001.

Buz74. T. Buzan. Use your head. BBC Books, 1974.

DEFS99. S. Decker, M. Erdmann, D. Fensel, and R. Studer. Ontobroker: Ontology based
access to distributed and semi-structured information. In R. Meersman et al., editor,
Database Semantics: Semantic Issues in Multimedia Systems. Kluwer Academic,
1999.

Dom98. J. Domingue. Tadzebao and WebOnto: Discussing, browsing, and editing ontologies
on the web. In Proceedings of the 11th Knowledge Acquisition for Knowledge-Based
Systems Workshop, April 18th-23rd. Banff, Canada, 1998.

DSW™99.

FFR96.

HanOl1.

Hor98.

LGPSS99.

LS02.

MFRWO00.

MSS*02.

NFMO0.

SAAT99.

SPKR96.

SSA102.

SSSSO01.

TS98.

UKO95.

OntoEdit: Collaborative Ontology Development for the Semantic Web 235

A.J. Duineveld, R. Stoter, M. R. Weiden, B. Kenepa, and V. R. Benjamins. Won-
derTools? A comparative study of ontological engineering tools. In Proc. of the
Twelfth Workshop on Knowledge Acquisition, Modeling and Management. Banff,
Alberta, Canada. October 16-21, 1999, 1999.

A. Farquhar, R. Fickas, and J. Rice. The Ontolingua Server: A tool for collaborative
ontology construction. In Proceedings of the 10th Banff Knowledge Acquisition for
KnowledgeBased System Workshop (KAW’95), Banff, Canada, November 1996.
Siegfried Handschuh. Ontoplugins — a flexible component framework. Technical
report, University of Karlsruhe, May 2001.

I. Horrocks. Using an expressive description logic: FaCT or fiction? In Proceedings
of KR 1998, pages 636—649. Morgan Kaufmann, 1998.

M. F. Lopez, A. Gomez-Perez, J. P. Sierra, and A. P. Sierra. Building a chemical
ontology using Methontology and the Ontology Design Environment. Intelligent
Systems, 14(1), January/February 1999.

T. Lau and Y. Sure. Introducing ontology-based skills management at a large insur-
ance company. In Proceedings of the Modellierung 2002, Tutzing, Germany, March
2002.

D. McGuinness, R. Fikes, J. Rice, and S. Wilder. An environment for merging
and testing large ontologies. In Proceedings of KR 2000, pages 483-493. Morgan
Kaufmann, 2000.

A.Maedche, S. Staab, R. Studer, Y. Sure, and R. Volz. SEAL — Tying up information
integration and web site management by ontologies. IEEE-CS Data Engineering
Bulletin, Special Issue on Organizing and Discovering the Semantic Web, March
2002. To appear.

N. Fridman Noy, R. Fergerson, and M. Musen. The knowledge model of Protégé-
2000: Combining interoperability and flexibility. In Proceedings of EKAW 2000,
LNCS 1937, pages 17-32. Springer, 2000.

G. Schreiber, H. Akkermans, A. Anjewierden, R. de Hoog, N. Shadbolt, W. Van de
Velde, and B. Wielinga. Knowledge Engineering and Management — The Com-
monKADS Methodology. The MIT Press, Cambridge, Massachusetts; London, Eng-
land, 1999.

B. Swartout, R. Patil, K. Knight, and T. Russ. Toward distributed use of large-scale
ontologies. In Proceedings of the 10th Knowledge Acquisition Workshop (KAW’96),
Banff, Canada, November 1996.

Y. Sure, S. Staab, J. Angele, D. Wenke, and A. Maedche. OntoEdit: Guiding on-
tology development by methodology and inferencing. In Submitted to: Prestigious
Applications of Intelligent Systems (PAIS), in conjunction with ECAI 2002, July
21-26 2002, Lyon, France, 2002.

S. Staab, H.-P. Schnurr, R. Studer, and Y. Sure. Knowledge processes and ontolo-
gies. IEEE Intelligent Systems, Special Issue on Knowledge Management, 16(1),
January/Febrary 2001.

J. Tennison and N. Shadbolt. APECKS: A tool to support living ontologies. In Pro-
ceedings of the 11th Knowledge Acquisition Workshop (KAW’98), Banff, Canada,
April 1998.

M. Uschold and M. King. Towards a methodology for building ontologies. In
Workshop on Basic Ontological Issues in Knowledge Sharing, held in conjunction
with IJCAI-95, Montreal, Canada, 1995.

	1 Introduction
	2 Case Study: SEmantic portAL (SEAL) at Institute AIFB
	3 Requirements Specification Phase
	4 Refinement Phase
	5 Evaluation Phase
	6 Related Work
	7 Conclusion
	References

