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Abstract 

1. Ontogenetic shifts in plants are ubiquitous, but their ecological and evolutionary 

significance remain largely unknown. Juveniles have few opportunities to accumulate 

sufficient biomass to withstand damage, whereas adults allocate resources to 

reproduction. Thus, age‐specific environmental filters are expected to drive selection 
towards specific resource‐investment strategies for each developmental stage. 

2. We tested whether species exhibited strategies that favour faster rates of biomass 

accumulation during early developmental stages to cope with vulnerability, shifting 

towards habitat‐dependent strategies to optimise resource acquisition and use later on. 

We also hypothesised that juveniles exhibit greater intraspecific variability of 

strategies than adults, as a result of continuous filtering of traits throughout the plant’s 
development towards adulthood. 

3. We measured key leaf traits—leaf area (LA), leaf dry matter content (LDMC) and 

specific leaf area (SLA)—and calculated scores for competitor (C), stress‐tolerator 
(S), ruderal (R) strategies of the CSR system for juveniles of 54 species and 

conspecific adults of 27 species naturally occurring either in unproductive (grassland) 

or productive (forest) habitats. 

4. Juveniles exhibited higher SLA and LA and lower LDMC, and thus a more R‐strategy 
in both habitats when compared with adults, but were not necessarily “R” in absolute 
terms. We also found smaller intraspecific variation for the R‐strategy in adults 
compared with juveniles in both habitats, whereas the variation of the other strategies 

was habitat dependent. 

5. Ontogenetic shifts in ecological strategies appear to have been selected as a response 

to ontogeny‐dependent filters. Thus, strategies that favour less costly leaves and faster 
growth rates (relatively R‐selected) in juveniles shift towards C and/or S strategies in 
adulthood, depending on habitat productivity. Nevertheless, habitat‐dependent 
specialisation seems to be a major driver of ecological strategy selection in juveniles. 

Our study reveals ontogeny‐dependent strategies, offering a new approach to integrate 
plant development and functional specialisation. 
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1 INTRODUCTION 

Variability in many plant traits reflects underlying universal trade‐offs in functioning that 

affect fitness, associated with environmental filtering, species distribution and community 

assembly (Díaz et al., 2016; Grime & Pierce, 2012; Grime et al., 1997; Lambers & Poorter, 

1992; Reich, 2014; Wright et al., 2004). Viable trait combinations evident world‐wide 
include, for example, large seeds on tall plants, but not large seeds on small plants (Díaz et al., 

2016). Trait syndromes can thus be interpreted as “strategies” reflecting fitness, often 
considered equivalent to life histories.  

While many definitions of “strategies” exist, Grime and Pierce (2012) emphasised the 

quantity of essential resources “acquired by an organism during its individual lifetime” and 
allocation between contrasting functions. However, this “lifetime allocation” view must be 

reconciled with the finding that resource allocation between functional traits changes during 

development (Mason, McGaughey, & Donovan, 2013). Also, different developmental stages 

experience contrasting environmental filters and natural selection pressures (i.e., occupy 

different niches), which may explain changes in allocation patterns throughout programmed 

development (i.e., ontogeny; Lasky et al., 2015). Resource allocation depends not only on 

prevailing environmental conditions, but also on the inherent capacities of the plant—and 

these change over time as the plant accrues biomass, accumulates internal resources, and 

augments its acquisitive ability beyond the limited capacities of the initial seedling. Ontogeny 

likely changes the relative importance of different functional traits throughout the plant life 

span. Thus, a “strategy” can also be defined as an instantaneous process of resource allocation 
between competing functions, maximising fitness across contrasting niches during 

development. In other words, when the strategy is considered as an operating process for 

resource allocation, the apparent strategy can be expected to shift from seedling to mature 

stages: viable strategies may exhibit different ontogenetic trajectories for different species 

according to environment. Similar adult functioning may arise from seedlings with different 

traits.  

To quantify ontogenetic shifts, strategies can be represented by suites of functional traits. 

Recent analyses of large trait databases demonstrate that small numbers of fundamental leaf 

traits—in particular specific leaf area (SLA; one‐sided area of a fresh leaf divided by dry 
mass), leaf dry matter content (LDMC; dry mass of a leaf divided by water‐saturated fresh 
mass) and leaf area (LA; one‐sided area)—concisely represent the major axes of global plant 

functioning (resource economics and size; Pierce, Brusa, Vagge, & Cerabolini, 2013; Pierce 

et al., 2017). Low values of SLA and high values of LDMC are associated with conservative 

growth, greater investment in leaf protection and increased leaf longevity, whereas the 

opposite holds for fast‐growing species (Lambers & Poorter, 1992). Leaf area largely 

determines capacity to intercept light, associated with competitive vigour, and constitutes a 

widely available indicator of the plant/organ size spectrum (Díaz et al., 2016).  

Pierce et al. (2017) used global trade‐offs in SLA, LDMC and LA to develop a strategy 

calculator tool (StrateFy) providing numerical quantification (scores) of the three primary 

strategies (competitor, C; stress‐tolerator, S; ruderal, R) of CSR theory (Grime, 1977). 

Strategies represent adaptation to the intensity of environmental filters involving competition, 

abiotic limitation to growth (stress) and periodic biomass destruction (disturbance). C‐selected 
“competitors” occupy stable, productive habitats with little disturbance, allocating resources 

to vegetative growth, large plant and organ size, thereby maximising resource acquisition. S‐
selected “stress‐tolerators” survive in resource‐poor or abiotically variable environments with 
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low disturbance by allocating biomass to persistent tissues and mechanisms favouring 

resource conservation. R‐selected “ruderal” species invest in rapid growth and completion of 
life cycle to avoid frequent lethal disturbance events, surviving in an inactive state as 

propagules. While much information can be gleaned from measurement of single traits, 

quantification of adaptive strategies integrates multiple traits, provides a theoretical 

(explanatory) background, and allows transferability of results and predictive power.  

As strategies determine the suites of traits functioning in concert to affect fitness, their 

quantification provides an overall metric of plant functioning in the same way that “net 
photosynthetic rate” represents the sum of single traits such as CO2 uptake and respiration 

rates. Grime’s system has proven useful to represent and compare functional strategies and 
community assembly across different ecological scales, from that of species (Pierce, Vagge, 

Brusa, & Cerabolini, 2014), populations (May, Warner, & Wingler, 2017), habitats 

(Negreiros, Le Stradic, Fernandes, & Rennó, 2014; Rosado & de Mattos, 2017), successional 

stages (Caccianiga, Luzzaro, Pierce, Ceriani, & Cerabolini, 2006) and biomes (Pierce et al., 

2017). The most recent, globally‐calibrated, CSR analysis method (Pierce et al., 2017) is 

supported experimentally (Li & Shipley, 2017). However, all previous investigation has 

involved adult plants, with no attempt to investigate whether CSR strategies change with 

ontogeny.  

Plant ontogeny may be divided into sequential stages, from seed to senile (Gatsuk, Smirnova, 

Vorontzova, Zaugolnova, & Zhukova, 1980), that interact differently with environmental 

factors and are subject to distinct sets of environmental filters (Grubb, 1977). Mounting 

evidence shows that environmental factors promote habitat specialisation, not only in 

adulthood, but also in early developmental stages (Metz, 2012; Poorter, 2007; Zalamea et al., 

2016), indicating that natural selection plays a major role in the evolution of ontogenetic 

patterns, despite developmental constraints (Barton & Boege, 2017). Ecological strategies are, 

therefore, expected to be habitat and stage specific (Grime & Pierce, 2012), but it is not clear 

how these factors interact.  

The susceptibility of seedlings to damage and stress is widely recognised across different 

vegetation types (Coelho, Capelo, & Figueira, 2008; Moles & Westoby, 2004; Stearns, 1976), 

being a major driver for the evolution of seed dormancy (Baskin & Baskin, 2014). Although 

species that are S‐selected as adults allocate resources to durable structures, their juveniles 
may not have sufficient biomass to produce structures that resist harsh environments (Coelho 

et al., 2008; Hallett, Standish, Jonson, & Hobbs, 2014), and thus a different adaptive strategy 

could be evident in juveniles. Similarly, while species that are C‐selected as adults invest in 
large leaves, their juveniles may invest either in less costly, short‐lived leaves that enable 
faster growth rates, or in long‐lived and well protected leaves that can resist damage caused 

by herbivores, pathogens and litterfall (Kitajima, Cordero, & Wright, 2013; Poorter & 

Bongers, 2006). However, adults must cope with the additional costs of reproduction (pollen, 

flowers, fruits, seeds) and efficiency in acquiring and using limiting resources can prove 

decisive for fitness (Cunningham, 1997; Stock, Pate, Kuo, & Hansen, 1989). Thus, we 

expected mean CSR scores to reflect the greater vulnerability of juveniles and the high costs 

of maintenance and reproduction in adults.  

Shifts in the strengths of ecological filters should affect not only the mean strategy, but also 

strategy variability (Jung, Violle, Mondy, Hoffmann, & Muller, 2010). Intraspecific trait 

variability should be restricted when habitat filtering is stronger, reflecting niche width 

(Grime & Pierce, 2012; Violle et al., 2012), and intraspecific variability of CSR scores can 
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therefore be used to assess the width of viable ecological strategies of species (May et al., 

2017; Pierce et al., 2013) and assess possible expansions or contractions in niche width during 

development. Specifically, because adult plants have undergone filtering across previous 

developmental stages (juvenile included), we expected adults to exhibit a smaller width of 

ecological strategies than juveniles, and for the extent to be habitat dependent.  

Here, we aimed to investigate developmental shifts in plant ecological strategies by assessing 

the mean and the variability of CSR scores of species at two developmental stages. We 

compared juvenile and adult stages of species in two adjacent habitats with contrasting levels 

of productivity: a nutrient‐impoverished grassland (unproductive habitat) and a forest 
(productive habitat). We tested predictions related to the following hypotheses (summarised 

in Figure 1): (a) the strategy signature of species tends to shift from ability to cope with high 

levels of disturbances (R‐selected) in juveniles towards C‐ or S‐selection in adults (in 
productive habitats and unproductive habitats, respectively); (b) the juvenile stage exhibits a 

larger width (greater variation) of CSR strategies than that of adults. We further explored 

adult and juvenile strategies evident between two adjacent habitats differing in productivity.  

 
Figure 1  
Hypotheses (H) represented in ternary plots. Developmental stages: juveniles (orange) and 

adults (dark blue) 
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2 MATERIALS AND METHODS 

2.1 Study area 

We measured functional traits in species from two neighbouring natural habitats with highly 

contrasting vegetation structure and composition at Serra do Cipó (19º17′S, 43º35′W, 
approximate altitude of 1,200 m a.s.l.), Southeast Brazil. The study site is part of the 

geographic barrier that represents an ecotone between two global biodiversity hotspots, the 

Cerrado and the Atlantic Rainforest ecoregions. The climatic regime in the region is 

characterised by dry winters and rainy summers (Brito et al., 2017). We studied the two main 

mountain top vegetation types: a grassland (known as campo rupestre) and a forest 

(Supporting Information Appendix S1).  

The campo rupestre is a megadiverse mosaic of grasslands associated with rocky outcrops 

which occurs on severely P‐impoverished, shallow, acidic and well‐drained quartzite‐derived 
soils (Oliveira et al., 2015). Campo rupestre species often experience strong winds, seasonal 

fires and water shortage, large fluctuations in daily temperature and high irradiance (Silveira 

et al., 2016) which results in a clear dominance of the stress‐tolerant strategy (Negreiros et al., 
2014).  

Patches of gallery forest and hilltop forest occur within the campo rupestre matrix (Coelho, 

Carlos, et al., 2018). These forests occur at moist locations, associated with springs and 

streams or with deeper soil patches that are less well drained than the surrounding grasslands 

(Coelho et al., 2016; Valente, 2009). Here, plants experience a range of milder environmental 

conditions compared with the grassland habitat, for example, slightly less nutrient‐poor soils 
and historically lower fire frequency (Coelho, Neves, Perillo, Morellato, & Fernandes, 2018; 

Valente, 2009).  

2.2 Ontogenetic stages and species selection 

We contrasted functional traits and ecological strategies of juvenile and adult stages. Juveniles 

were defined as structurally simple individuals with an unbranched shoot, mature leaves, no 

signs of resprouts or clonal origin (to make sure they represented individual genets) and 

absence of reproductive organs (Gatsuk et al., 1980). Since a few species demonstrated 

embryonic structures such as persistent cotyledons, our definition comprises both seedling 

and juvenile states (sensu Gatsuk et al., 1980). The average height of juvenile individuals 

sampled in the grassland was 38 ± 28 mm (mean ± SD, range 3–145 mm, n = 212) and in the 

forest 58 ± 27 mm (range 9–153 mm, n = 195).  

To compare the ontogenetic shifts in leaf traits and CSR strategies among contrasting habitats, 

we sampled five sites of grassland and five sites of forest to search for juveniles, and selected 

species whenever we found at least six juvenile individuals to serve as replicates. Since the 

low density of juveniles strongly limited availability of samples in both habitats, our selection 

criteria reflected local abundance of juveniles. 

In order to compare developmental stages, we also targeted conspecific adults whenever it 

was possible to sample at least six individuals in the area where juveniles were sampled. 

Altogether, we measured functional traits in juveniles of 27 species from grassland, and 27 

from forest, and adults of 20 species from grassland and seven from forest. Campo rupestre 
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species often have very narrow geographic ranges and patchy distributions (Echternacht, 

Sano, Trovó, & Dubuisson, 2011), and it is possible to find many conspecific adults at the 

same site. However, the forest species do not present the same pattern, and very few species 

had at least six individuals within our sampling area, which incurred a smaller sample size for 

forest adults. Juveniles of just one species were found in both habitats during our sampling 

efforts (Supporting Information Appendix S2—Table S1).  

2.3 Functional traits and CSR classification 

Leaf area, LDMC and SLA measurements were determined according to Pérez‐Harguindeguy 
et al. (2013) from February to early April 2016, mid and late rainy season, when leaves are 

fully expanded and mature, and juvenile survival is not compromised by the seasonal drought. 

We collected juveniles (whole individuals) and branches from adults. Samples were 

immediately saturated using a spray bottle, placed in moist paper bags, sealed in plastic bags 

and kept in a cooler until placed in a refrigerator for periods of 12 to 24 hr at 4°C (Pérez‐
Harguindeguy et al., 2013). Measurements were taken from two to eight undamaged, fully 

expanded leaves (including the petiole) per individual. We scanned leaves and used Leaf Area 

Measurement (LAM v1.3 by Andrew Askew; 

www.nucleodiversus.org/uploads/file/leafarea.zip) to determine LA. We used an analytic 

scale (precision of 0.01 mg) to obtain leaf fresh weight (from turgid leaves) and leaf dry 

weight (after leaves had dried to constant weight in an oven at 60°C).  

Leaf area, SLA and LDMC values were entered into “StrateFy” (Pierce et al., 2017; available 

at https://doi.org/10.1111/1365-2435.12722) to calculate C‐, S‐ and R‐selection scores for 
each individual. Briefly, Pierce et al. (2017) calibrated the CSR tool using data for 3,068 

species obtained from a global database by: (a) performing a principal component analysis 

(PCA) of the three key leaf traits (LA, LDMC and SLA); (b) regressing trait values against 

PCA axes; and (c) using these regression equations to produce a Microsoft Excel spreadsheet. 

This spreadsheet then uses the regression equations to compare any trait values entered 

against the global trade‐off among these traits. Extremely high values of SLA and LDMC are 
representative of extremes of fast and slow leaf economics, respectively. Leaf area is 

correlated with seed and whole plant size traits in a spectrum running orthogonal to the 

economics spectrum, and is also a fundamental determinant of the ability of species to 

intercept light (Díaz et al., 2016; Pierce et al., 2013). The CSR classification method does not 

use each trait to directly represent the extent of C, S and R‐selection: it is the trade‐off 
between them, integrated and compared against trade‐offs evident globally, from which CSR 
scores are calculated (Pierce et al., 2017). Thus, although only three traits are measured, they 

represent a wider range of plant functioning. Indeed, co‐inertia analysis demonstrates that this 
method can represent variation in 14 key leaf, reproductive and whole plant functional traits, 

including leaf nitrogen concentration, seed mass and flowering phenology (Pierce et al., 

2017). The method has been tested and supported experimentally (Li & Shipley, 2017).  

2.4 Data analyses 

In order to assess ontogenetic shifts and functional specialisation in juveniles, we tested 

whether developmental stages from both habitats exhibited different leaf trait values (SLA, 

LDMC and log‐transformed LA) and CSR scores using linear mixed‐effect models—LMMs 

(Pinheiro & Bates, 2000). These models contained fixed effects for developmental stages, 

habitat and their interaction, and random effects for plant species nested within location to 

avoid pseudo‐replication. Significance was estimated by comparing a minimal model with the 
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null model. The minimal adequate models were obtained by a stepwise deletion of 

nonsignificant parameters and their interaction, starting from a full factorial model (p > 0.05). 

For each model, residuals were visually inspected for heteroscedasticity. In the presence of 

heteroscedasticity, the variance structure of the data was modelled, with the best variance 

structure determined by comparing AICc and standardised residual plots (Zuur, Ieno, Walker, 

Saveliev, & Smith, 2009). The LMMs were performed using the “lme” function, and the 
variance structure of the data was modelled using the “weights” option within the “nlme” 
package (Pinheiro et al., 2017). The “effects” package (Fox, 2003) was used for further 

inspection of means and 95% confidence intervals (CI) to identify significant differences 

between developmental stages and habitats.  

Since a complete control for phylogenetic effects between habitats during species selection 

was not possible, we examined phylogenetic signal in leaf trait values to account for possible 

confounding effects of habitat and phylogeny. Briefly, species relationships were 

reconstructed using “Phylomatic” (http://phylodiversity.net/phylomatic/), topology was 

corrected and improved manually in “Mesquite” (http://mesquiteproject.org/) based on a 

number of recent studies of molecular phylogeny. To estimate branch lengths (i.e., time since 

divergence), we dated nodes according to previous studies (Supporting Information Appendix 

S3) and positioned undated nodes evenly in the tree with the “bladj” algorithm of Phylocom 
software (Webb, Ackerly, & Kembel, 2008). We then examined a phylogenetic signal in 

LDMC and log‐transformed SLA and LA separately for adults and juveniles, using the 

Blomberg’s K test with 100,000 randomisations (Blomberg, Garland, & Ives, 2003; 

Münkemüller et al., 2012) in the “picante” package (Kembel et al., 2010).  

We tested if the multivariate structure provided by LA, LDMC and SLA could effectively 

distinguish ontogeny‐ and habitat‐related functional differences. First, trait values of each 
species at each developmental stage were log‐transformed to provide distributions as close as 
possible to normality prior to PCA. A PCA of LA, LDMC and SLA values was then 

performed using the “principal” function, and varimax rotation was applied to the first two 
axes within the “psych” package (Revelle, 2017). We used LMMs as described above to 

assess differences in rotated components (PC1 and PC2) between groups.  

Finally, in order to assess ontogeny‐ and habitat‐related shifts in the width of ecological 
strategies, we developed a novel approach that uses the standard deviation (SD) of C‐, S‐ and 
R‐ scores of each species at each developmental stage as a measurement of variation in 

functional strategies within groups of adults or juveniles of each species. A higher SD in CSR 

scores indicates a broader range of strategies, whereas a lower SD indicates a smaller strategy 

width. Paired tests were used to compare developmental stages and unpaired test was used to 

compare juvenile plants from the two habitats. The nonparametric paired Wilcoxon rank sum 

test was used to assess differences between groups.  

All analyses were performed in the R environment (R Development Core Team, 2017) and 

graphs created with “ggplot2” package (Wickham, 2016). The relative contribution of the 

three CSR dimensions was represented in ternary plots, with each coordinate varying from 

0% to 100%, using the “ggtern” package (Hamilton, 2017). We used the mean of trait values, 

PCA scores and C‐, S‐ and R‐scores for each species at each developmental stage for all 
figures.  
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3 RESULTS 

Juveniles from both grassland and forest showed relatively acquisitive leaf economics trait 

values (higher SLA and lower LDMC; Figure 2a, b), and smaller leaves than adults (Figure 

2c; Supporting Information Appendix S2—Table S2). Distinct leaf trait patterns were also 

observed for contrasting habitats, as forest juveniles had higher SLA and larger leaves than 

grassland species (Figure 2a, c), but there was no significant difference in LDMC (Figure 2b). 

The full model including developmental stage, habitat and their interaction best explained LA 

and SLA values, whereas the final model for LDMC included only developmental stage 

(Table 1). The multivariate structure provided by our data clearly separated ontogeny‐ and 
habitat‐related functional differences (Figure 2d; Table 1; Supporting Information Appendix 

S4— Figure S2), and thus could represent functional variation in our system. We found a 

weak phylogenetic signal only in the LA of juveniles (K = 0.607; p = 0.001), and no 

significant signal for the other two traits or LA of adults (Supporting Information Appendix 

S4—Table S4).  

 
Figure 2  
Ontogenetic shifts in leaf traits of juveniles and adults from contrasting habitats in a forest‐
grassland boundary in Southeast Brazil. Comparisons of functional trait values between 

habitat and developmental stages of: (a) specific leaf area (SLA; mm2/mg), (b) leaf dry matter 

content (LDMC; %) and (c) leaf area (LA; mm2). Boxplots show medians (horizontal lines) 

with quartiles (box margins), the lowest and the highest values within 1.5‐interquartile range 
(whiskers) and outliers (filled circles). Within each individual plot, different letters indicate 

https://besjournals.onlinelibrary.wiley.com/doi/full/10.1111/1365-2435.13221#fec13221-fig-0002
https://besjournals.onlinelibrary.wiley.com/doi/full/10.1111/1365-2435.13221#fec13221-fig-0002
https://besjournals.onlinelibrary.wiley.com/doi/full/10.1111/1365-2435.13221#support-information-section
https://besjournals.onlinelibrary.wiley.com/doi/full/10.1111/1365-2435.13221#support-information-section
https://besjournals.onlinelibrary.wiley.com/doi/full/10.1111/1365-2435.13221#fec13221-fig-0002
https://besjournals.onlinelibrary.wiley.com/doi/full/10.1111/1365-2435.13221#fec13221-fig-0002
https://besjournals.onlinelibrary.wiley.com/doi/full/10.1111/1365-2435.13221#fec13221-tbl-0001
https://besjournals.onlinelibrary.wiley.com/doi/full/10.1111/1365-2435.13221#fec13221-fig-0002
https://besjournals.onlinelibrary.wiley.com/doi/full/10.1111/1365-2435.13221#fec13221-tbl-0001
https://besjournals.onlinelibrary.wiley.com/doi/full/10.1111/1365-2435.13221#support-information-section
https://besjournals.onlinelibrary.wiley.com/doi/full/10.1111/1365-2435.13221#support-information-section
https://besjournals.onlinelibrary.wiley.com/doi/full/10.1111/1365-2435.13221#support-information-section
https://besjournals.onlinelibrary.wiley.com/doi/full/10.1111/1365-2435.13221#support-information-section
https://wol-prod-cdn.literatumonline.com/cms/attachment/f20023b8-bfb6-4c9c-b17c-fadd4532a4bd/fec13221-fig-0002-m.jpg


significant differences between trait values based on 95% confidence intervals. (d) Principal 

component analysis of trait variation for adults and juveniles of plant species from grassland 

and neighbouring forest. The percentage of variation explained by PCA‐rotated component 1 
(PC1) and PCA‐rotated component 2 (PC2) is shown in parentheses  
Table 1. Results of a linear mixed‐effect model testing the effect of developmental stage and 
habitat type on specific leaf area (SLA), leaf dry matter content (LDMC), log‐transformed 
leaf area (LA), PCA scores—rotated component 1 (PC1) and PCA‐rotated component 2 (PC2) 
and C‐, S‐ and R‐scores in plants from Southeast Brazil  

Data Model 

ID 

Model K  Log L AICc ΔAICc P  

SLA 

(mm2/mg)  

MM SLA ~ stage * 

habitat, 

random = species 

11 −1765.01 3552.49 −655.03 <0.0001  

null SLA ~ 1, 

random = species 

4 −2099.73 4207.52 – – 

LDMC 

(%) 

MM LDMC ~ stage, 

random = species 

6 −1735.58 3483.30 −239.13 <0.0001  

null LDMC ~ 1, 

random = species 

4 −1857.18 3722.43 – – 

log LA 

(mm2)  

MM logLA ~ stage * 

habitat, 

random = species 

11 −156.71 335.89 −640.43 <0.0001  

null logLA ~ 1, 

random = species 

4 −484.12 976.32 – – 

PC1 (%) MM PC1 ~ stage * 

habitat, 

random = species 

10 −373.51 767.41 415.47 <0.0001  

null LA ~ 1, 

random = species 

4 −587.40 1182.88 – – 

PC2 (%) MM PC2 ~ stage * 

habitat, 

random = species 

10 −336.44 693.27 604.49 <0.0001  

null LA ~ 1, 

random = species 

4 −644.84 1297.76 – – 

C (%) MM C ~ stage * habitat, 

random = species 

10 −1718.22 3456.83 −819.65 <0.0001  

null C ~ 1, 

random = species 

4 −2134.20 4276.48 – – 

S (%) MM S ~ stage * habitat, 

random = species 

11 −2209.82 4442.11 −316.59 <0.0001  

null S ~ 1, 

random = species 

4 −2375.32 4758.70 – – 

R (%) MM R ~ stage +habitat, 

random = species 

7 −2291.08 4626.66 −453.32 <0.0001  

null R ~ 1, 

random = species 

4 −2520.80 5049.60 – – 

Note 



 Random intercepts per species were specified in the model. Significance was 

estimated by comparing minimal model (MM) with the null model (null). The 

Akaike's information criterion with a correction for finite sample sizes (AICc) 

represents the uncertainty of the model whereby lower AICc values represent the more 

parsimonious models. Δ AICc is the difference in AICc values between minimal and 

null models, Log L is the log‐likelihood and K is the number of parameters in each 

model. Significant P‐values (p < 0.05) are shown in bold.  

Juveniles from the grassland were mainly concentrated around the S/SR region of the triangle 

(mean C:S:R strategy = 2:64:34%; Figure 3a, c, d), whereas adults were mainly S (13:83:4%; 

Figure 3a, d). Juveniles from the forest exhibited a mean strategy of S/R (9:44:47%; Figure 

3b, c, d) and adults exhibited a mean strategy of C/S (34.6:48.8:16.6%; Figure 3b, d).  

 
Figure 3  
Ontogenetic shifts in CSR strategies in grassland and forest habitats in Southeast Brazil. 

Shifts in the relative proportion of C‐, S‐ and R‐selection represented by the direction of 

arrows in the ternary plot (juvenile species = orange end of arrows; conspecific adults = dark 

blue end) for plant species from: (a) grassland and (b) forest; small insets in (a) and (b) show 

the relative proportion of C‐, S‐ and R‐selection for each plant species from each habitat. (c) 

The relative proportion C‐, S‐ and R‐selection represented in a ternary plot for juveniles from 
grassland (red) and forest (light blue). (d) Comparison of C‐, S‐ and R‐scores between habitat 
and developmental stages. Within each individual panel, different letters indicate significant 
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differences between scores based on 95% confidence intervals from linear mixed‐effect 
models (Table 1)  

Ontogenetic shifts in ecological strategies were significant for all strategies from both 

habitats, except for the S‐selection in forest species (Figure 3a, b, d; Table 1; Supporting 

Information Appendix S5). In the grassland, juvenile‐to‐adult shifts were characterised mainly 
by changes from R‐ towards C‐ and S‐strategies (Figure 3d). In forest species, ontogenetic 

shifts were represented by changes from R‐ towards C‐selection (Figure 3d). Juveniles from 

the contrasting habitats also exhibited different ecological strategies, as forest juveniles had a 

higher C‐ and R‐score, and grassland juveniles showed a higher S‐score (Figure 3c, d). The 

full model including developmental stage, habitat and their interaction best explained C‐ and 
S‐selection. The final model for R‐selection included developmental stage and habitat, but not 
the effect of their interaction which shows that the magnitude of the ontogenetic shifts away 

from R‐selection was habitat‐independent (Table 1).  

Ecological strategy width was habitat and ontogeny dependent. In grassland, SD in S‐ and R‐
scores of juveniles was eight and 25 times greater, respectively, and C‐score was a third of 
that of adults (Figure 4a; Supporting Information Appendix S4—Table S5). The R‐strategy 
SD was four times greater for juveniles in the forest compared with that of adults, but SD of 

C‐ and S‐selection was not significantly different (Figure 4b; Supporting Information 

Appendix S4—Table S5).  

 
Figure 4  
Variation in CSR strategies between juveniles and adults. Standard deviation (SD) in C‐, S‐ 
and R‐scores compared between juveniles (orange) and adults (dark blue) for grassland and 
forest habitats separately. The lines connect SD values of conspecific juveniles and adults. 
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*Denotes significance at the p < 0.05, **p < 0.01, ***p < 0.001 level (Supporting Information 

Appendix S4—Table S5)  

4 DISCUSSION 

Despite the recent progress in trait‐based plant ecology, plant regeneration traits remain 
poorly understood (Larson & Funk, 2016), and this limits our knowledge of the assembly of 

natural and managed communities (Grubb, 1977; Paine et al., 2015). Our study shows 

ubiquitous ontogenetic shifts in plant ecological strategies amongst species, thereby 

suggesting the need to integrate plant development with functional specialisation to better 

predict assembly patterns and responses of plant communities to environmental changes 

(Larson & Funk, 2016). As we predicted, plants from both habitats exhibited strategies 

tending towards the R‐strategy in the juvenile stage, and shifts of a similar magnitude away 

from the R‐strategy into adulthood, possibly due to the greater vulnerability of early 
developmental stages to damage (Harms & Dalling, 1997; Moles & Westoby, 2004). Adults 

also showed smaller intraspecific variability for the R‐strategy than juveniles, indicating that 

adults from both habitats are strongly filtered against this strategy towards more conservative 

and/or competitive strategies. However, contrary to our expectations, in absolute terms the 

ecological strategies of juveniles were not strongly R‐selected (although juveniles tended to 
be relatively R‐selected when compared with adults, few were “ruderal” per se). R‐ and S‐
strategies were equally represented in forest juveniles, whereas the S‐strategy prevailed in 
grassland juveniles. We also found significant differences in mean strategies of juveniles 

between the two habitats which indicates that habitat filtering takes place during early 

developmental stages (Metz, 2012; Poorter, 2007). Altogether, our results suggest that despite 

the remarkable ontogenetic shifts in ecological strategies, a functional habitat‐dependent 
specialisation is the main driver of selection for ecological strategy in juveniles.  

According to CSR theory (Grime, 1977) and its underlying premise of trade‐offs in resource 
allocation (Lambers & Poorter, 1992; Lambers, Poorter, & Van Vuuren, 1998), the increased 

selection away from R in adults relative to juveniles suggests a greater investment in growth 

rate during early stages of development as a habitat‐independent strategy to cope with higher 
levels of disturbance. A strategy to accumulate biomass faster in juveniles should improve 

plant fitness if it enhances the chances of an individual reaching a functionally specialised 

stage that is less susceptible to disturbances such as fire and herbivory (Bond, 2000). 

However, our results show a large contribution of S‐selection to the juvenile mean strategy, 
suggesting that juveniles from both habitats are slow‐growing. We found that stress is the 
prevailing filter for plants in grassland, regardless of their developmental stage, possibly 

because even juveniles from unproductive habitats can be resistant to harsh conditions such as 

water deficit and nutrient deficiency (Milberg & Lamont, 1997; Negreiros, Fernandes, 

Efremova, Le Stradic, & Neves, 2016; but see Coelho et al., 2008). In the forest, juvenile 

mean strategy had similar contributions from S‐ and R‐components which seems to represent 
the mid‐point in a spectrum of microhabitat specialists, ranging from gap (poorly‐defended 
fast‐growing) to understorey (well‐defended slow‐growing) species (Kitajima et al., 2013; 

Poorter & Bongers, 2006). Therefore, during early developmental stages, plants invest in 

strategies that favour faster rates of biomass accumulation than adults do, but can still remain 

at the “slow” or conservative extreme of the plant economics spectrum (Reich, 2014) due to 

habitat filtering.  

Recent developments in trait‐based community ecology have highlighted the importance of 
intraspecific variation in understanding community structure and ecosystem functioning 
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(Violle et al., 2012). Ontogenetic changes are regarded as a major source of variation between 

conspecifics (González‐Varo & Traveset, 2016), but it is rarely assessed whether trait 

variability itself increases or decreases during development. Here, we used the SD of CSR 

scores to test our second hypothesis that variability in ecological strategies is lower in adults 

as a result of continuous filtering throughout ontogeny. We found that adults exhibited a much 

smaller SD for the R‐strategy than their conspecific juveniles. This, together with their overall 
low mean R‐scores, indicates that adults are strongly filtered against the R‐strategy during 
development. As less investment in one particular CSR component implies greater investment 

in another (Grime & Pierce, 2012), our results suggest a stronger habitat filtering in adulthood 

towards strategies of resource allocation towards competition and/or stress‐tolerance 
(Negreiros et al., 2014; Pierce et al., 2017), possibly due to the high costs imposed by 

reproduction activities in this later stage (Oñate & Munné‐Bosch, 2009; Thomas, 2011). We 

also found an intricate pattern for the SD of C‐ and S‐scores, which were habitat‐ and 
ontogeny‐dependent, further indicating that ontogenetic shifts in plant strategies are mainly 

driven by changes in the intensity of the disturbance filter.  

We show that the CSR framework provided additional information useful to assess the 

functional ecology of the regeneration niche than trait analyses alone. Indeed, juveniles 

exhibited relatively acquisitive leaf economics and smaller leaves than adults, confirming 

previous studies (Ishida, Yazaki, & Hoe, 2005; Mason et al., 2013). However, measuring 

functional traits alone could not have revealed differences in ontogenetic shifts between 

habitats, since the exact same pattern—that is, decrease in SLA, and increase in LDMC and 

LA from juveniles to adults—was observed for both habitats when only trait analyses were 

performed. Divergent ontogenetic shifts towards different ecological strategies in each habitat 

only emerged when plants were arranged according to the fundamental trade‐offs described 
by CSR theory. We argue that investigating the ontogenetic shifts in the context of CSR 

theory (Grime, 1977), combined with a careful analysis of the ecological and physiological 

significance of SLA, LDMC (Lambers & Poorter, 1992; Lambers et al., 1998) and leaf size 

(Cornelissen, 1999; Givnish, 1987; Parkhurst & Loucks, 1972), has brought fresh 

perspectives that were not captured by previous trait analyses, offering an explanation for why 

the ontogenetic shifts occur, and allowing the processes reported here to be compared with 

other settings.  

Although previous studies have reported phylogenetic nonindependence in leaf traits (Mason, 

Goolsby, Humphreys, & Donovan, 2016), we only found a weak significant phylogenetic 

signal for LA of juveniles in our dataset. Since juveniles of 15 (out of 29) grassland species 

and 19 (out of 21) forest species belong to families sampled in both habitats, and our samples 

involved 19 plant families, phylogenetic effects are unlikely to play a role in the observed 

patterns.  

In conclusion, we present the first quantitative assessment of development‐related shifts in 

plant ecological strategies. Our results show that early stages of development exhibit a 

relatively acquisitive strategy that favours faster biomass accumulation, and then shifts 

towards more conservative and/or competitive strategies at a later stage, depending on habitat. 

However, juveniles were not necessarily “ruderal” in absolute terms, exhibiting functional 
habitat‐related specialisation, which suggests that habitat conditions play a major role in 
driving strategies, starting at early stages of development. We found that ontogenetic shifts in 

the width of ecological strategies were habitat dependent, but that adults were strongly filtered 

against the R‐strategy, towards strategies that optimise resource acquisition and use in their 
habitats. Our approach unveiled potentially general relationships between strategies, 
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developmental stages and the environment, and provides an opportunity to further understand 

community assembly and the importance of functional specialisations during different stages 

of the plant life cycle. Finally, we contend that the ecology and evolution of plant strategies 

cannot be fully appreciated without integrating the full spectrum of functional ontogeny‐
dependent traits. 
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