
Ontological Approach to Generating

Personalized User Interfaces for Web Services

Deepali Khushraj and Ora Lassila

Nokia Research Center,
5 Wayside Road,

Burlington MA, USA

Abstract. Web services can be presented to end-users via user inter-
faces (UIs) that facilitate the invocation of these services. Standardized,
interoperable mechanisms for describing Web service interfaces enable
the generation of UIs automatically and dynamically, at least in prin-
ciple; the emergence of Semantic Web services opens the possibility of
improving the generation process. In this paper, we propose a scheme
that extends the OWL-S ontology, an emerging standard for Semantic
Web services, to better enable the creation of such dynamic interfaces.

Semantic Web services go beyond “classical” Web services in enabling
enhanced discovery, invocation and composition. In our scheme, the inte-
gration of semantic descriptions of Web services with semantic models of
the user’s locally available data enables context-based personalization of
dynamically created user interfaces, allowing us to minimize the number
of necessary inputs. The need for this is compelling on mobile devices
with limitations on input methods and screen size and where context
data is readily available. The use of an underlying semantic model en-
ables better accuracy than traditional form-filling techniques.

We propose an architecture for the creation and personalization of
dynamic UIs from Web service descriptions. The key idea is to exploit
the semantic relationships between type information of Web service input
fields, and their association with information the system has about the
user (such as the user’s current context, PIM data, context history, usage
history, corporate data etc.), in order to personalize and simplify the
invocation of Web services.

1 Introduction

We observe that Web service interfaces [1] and Web forms [2, Chapter 17] bear a
conceptual resemblance to one another: both specify a set of inputs and a method
whose invocation yields some results. It is therefore possible to transform descrip-
tions of Web services to form-based UIs (for invoking these services). Current for-
malisms for interface description, however, are not strong enough to communicate
the semantics of services, a prerequisite for generating personalized UIs.

The Semantic Web is a vision of the next generation of the World Wide Web,
characterized by the association of formally described semantics with content and
services [3].Workon realizing theSemanticWeb ismotivatedbypromises of greater

Y. Gil et al. (Eds.): ISWC 2005, LNCS 3729, pp. 916–927, 2005.
c© Springer-Verlag Berlin Heidelberg 2005



Ontological Approach to Generating Personalized User Interfaces 917

ease – and degree – of automation, as well as improved interoperability between in-
formation systems [4]. On the Semantic Web content and services are described us-
ing representation languages suchasRDF [5] andOWL[6].Representations refer to
ontologies, specifications of conceptualizations [7], which, in turn, enable reasoning
via the use of logic rules.

The application of Semantic Web technologies to Web services is referred to
as Semantic Web services [8]: Descriptions of service interfaces are associated with
formal semantics, allowing agents to describe their functionality, discover and “un-
derstand” other agents’ functionality and invoke services provided by other agents;
furthermore, it is possible to combine multiple services into new services. Work on
Semantic Web services is – again – drivenby the possibility to automate things that
formerly have required human involvement, consequently leading to improved in-
teroperability.

OWL-S [9,10] is one of the recently emerged ontologies for semantic annota-
tion of Web service descriptions. The OWL-S ontology is written in the ontology
language OWL. Web services annotated using OWL-S can be automatically dis-
covered, composed into new services, invoked, and their execution automatically
monitored. The process model of OWL-S is used to specify how a service works by
providing a semantic description of its inputs, outputs, preconditions, post condi-
tions and process flow. The OWL-S description can be grounded to a WSDL [1]
description (and possibly other standards). The grounding part of the ontology
enables mapping of OWL-S inputs and outputs to the corresponding inputs and
outputs in the WSDL description of the service. Hence OWL-S can be used with
SOAP based Web services, which provide a WSDL description, to create Semantic
Web services.

In the next section we present an approach to generating user interfaces auto-
matically from OWL-S profiles. These interfaces can be optimized and personalized
using semantic information about the user, collected in a semantic cache (as pre-
sented in section 3). Section 4 then outlines the overall architecture of our system.
Finally, we present a concrete example in the form of a simple usage scenario (sec-
tion 5).

2 Generating User Interfaces

Our approach is to use the OWL-S profile and process model of a service as the ba-
sic representation from which to generate a form-based UI. OWL-S provides a rich
vocabulary that can be used for describing not only the (call-)interface of a service,
but also other aspects that may be helpful in UI generation.There are, however, as-
pects ofUIs that are not “derivable” fromOWL-Sdescriptions; for this purpose,we
have extended the ontology with user interface annotations. The extensions pro-
vide cues about:

– display labels used for fields,
– preferred widget types for implementing fields (e.g. free-text input, checkbox),
– how to render fields with pre-determined value ranges (e.g., a selection list) as

well as the ordering of available values in such fields,



918 D. Khushraj and O. Lassila

– grouping of fields and subfields, and
– how to generate the serialized RDF data from inputs specified by the user (the

generation of serialized RDF is a requirement for invoking Semantic Web ser-
vices).

(The details of the extensions are presented below; an understanding of the OWL
Web ontology language as well as the OWL-S ontology is required to grasp the de-
tails.)

Every UIModel is associated with an OWL-S service and has associated pro-
cess UIs. Multiple UIs can be attached to a single process; hence each ProcessUI is
linked to a specific OWL-S process and a UIFieldMap that provides cues pertain-
ing to the input and output fields involved in the process interaction. UI-related
cues for fields are specified by creating an instance of the UIFieldMap class (note
that a set of related fields can then be grouped together by creating an instance of
the FieldMapList, which has individual UIFieldMap instances as members). Every
instance of the field map can specify the following properties:

– The parameterName property points to the input parameter resource used in
the OWL-S profile or process model. Since every input and output parameter
in OWL-S has an associated parameter type, it becomes easy to identify the
semantic type associated with the field using this property.

– TheparameterTypePathproperty specifies apath that is used to create anOWL
instance from the specified user inputs in the generated UI.

– The fieldType property provides cues about the type of UI widget that should
be used for the given field. For example, it could specify single select, multiple
select, check box, etc. Or, it could specify the widget type at a higher level, such
as “select one” or “select many” and a widget could then be chosen at run-
time based on available data about the field. Or, it could be of FieldSet type
to specify multiple subfields. For example, a currency converter service uses
inputs “price” and “currency” as input fields. Input price could further have
“amount” and “currency” as subfields. The subfields are specified using the
hasSubfieldMap property that has FieldMapList as range.

– The instanceDataLocation property along with instanceSelectionPath and dis-
playLabelPath are used for fields that have a pre-determined value range. The
instanceDataLocation property specifies the URL from where the value range
can be found. For example, a language translator service could specify possi-
ble values for input language and output language by pointing to an ontology
about languages supported by the service. Multiple locations for loading in-
stance data can be specified using this property. The instanceSelectionPath
property is then used to specify the path query required to select instance data
from the specified data locations. Finally, the path specified by the displayLa-
belPath property is used to find the label to be used to display the instance on
the UI widget.

In addition to the above properties, the UI Model fields could specify information
about how conservative the UI generation scheme must be. For example, using the



Ontological Approach to Generating Personalized User Interfaces 919

UI Model, strict ordering of input fields can be imposed, or strict ordering for ele-
ments in certain selection style widgets can be imposed.

When a Semantic Web service is accessed, the associated OWL-S description
along with the UIModel gets loaded. The rendering algorithm1 makes use of the
extended OWL-S description associated with the service to generate the UI. Once
the UI is generated and inputs are received from the user, an OWL instance is cre-
ated for every input parameter specified in the OWL-S description, by using the
parameterTypePath property. The data for creating an OWL instance could be re-
ceived from a single widget or from multiple widgets. The algorithm uses grouping
knowledge about fields along with the parameterTypePath to create a single OWL
instance from multiple widgets.2 Once the OWL instances are created, the OWL-S
grounding is used to invoke the service with the specified inputs. Finally, outputs
of the service invocation are presented to the user. A sample UIModel graph asso-
ciated with AltaVista’s “Babel Fish” language translator Web service along with
the generated UI is presented in Appendix A.

3 “Semantic Caching”

As illustrated in section 2, it is possible to generate form-based UIs from “plain”
OWL-S descriptions, and potentially better ones from OWL-S profiles augmented
with UI cues. Using additional information about the user – such as the current
context, history of actions, etc. – allows us to further improve the generated result.
The repository that stores information about the user is called the semantic cache.
The key idea is to exploit semantic relationships between type information of Web
service input (and output) fields and their association with data in the semantic
cache.

The semantic cache gets data from:

– User’s personal profile,
– PIM information such as address book entries, calendar entries, etc.,
– user’s current context and his context history, and
– the history of inputs/outputs in recently invoked services.
– corporate data, such as company phone book, organization hierarchies etc.

The data sources for the semantic cache could go beyond the ones above. The ba-
sic requirement for any data source is that it uses a semantic model to represent
data objects. In our case, we make use of semantic models that are created using
the OWL Web ontology language. Making use of all the available data would sig-
nificantly increase the response time for generating UIs, therefore a subset of data
objects from the sources are cached.

The semantic cache stores both semantic models and data annotated with these
models.A cachemanagement algorithmconstantly adds objects to and evicts them
1 Our rendering algorithm currently generates HTML forms based on UIModels, but the

renderer can easily be extended to create either XHTML or XForms based UIs.
2 A detailed discussion of this is beyond the scope of this paper.



920 D. Khushraj and O. Lassila

from the cache based on the usage patterns of the data objects in the cache. A
caching scheme that implements standard caching algorithms such asMRUorLRU
cannot be used directly. The scheme should also take into account the semantic re-
lationships between objects in the cache, since the addition or deletion of a set of se-
mantically similar objects could be done together. Additionally, the scheme should
take into account the nature of data sources involved. For example, the user’s cur-
rent context is transient, whereas his profile information mostly remains static.

While rendering a Semantic Web service, the type information associated with
the involved input fields is used to retrieve objects from the cache (in our case, the
parameterType property of OWL-S provides this information). The retrieved ob-
jects are essentially instances of the class specified as the type of the field.Bymaking
use of a reasoner, both explicit and implicit objects of a given type can be queried
for. The retrieved objects are given weights based on the nature of the data sources
involved and their frequency of occurrence. The semantic distance between pre-
specifiedobjects usedbyfields of the service anddata in the cache canalsobeused to
determine the relevance of a given instance. In the case of composite Web services,
the relevance of a semantic instance in the cache, can further be inferred based on
the atomic services that constitute the service and based on the control constructs
(such as Sequence, Split etc.) specified in the service’s process model. Weights are
additionally adjusted based on the current context. The cumulative weight of a
given object helps in determining the relevance of its use. Finally, customizations
are made using the objects retrieved:

– Eliminating user input widgets for fields where the answer is already known
with sufficient certainty,

– changing UI widgets where the input values can be predetermined (e.g. change
a free-text input widget to an editable selection list),

– providing intelligent default values for certain fields, and
– reordering or narrowing down element lists in widgets such as selection lists,

checkboxes, etc.

Semantic Web techniques (ontologies, reasoning, rich semantic models, etc.) can
also be used in determining the user’s current usage context and managing defini-
tions of contexts [11].Making the contextdefinitionsderivedvia semantic reasoning
available to the semantic cache, and consequently to the UI generationprocess, can
improve the system’s ability to discover implicit relationships between objects in
the cache. The user’s context can further be applied to limit the amount of data to
be considered when rendering a UI. For example, in case of location-based services,
only data relevant to the user’s current locationmaybe considered (or at least given
priority).Additionally, considering context inUI generationwill improve the user’s
perception that the system is behaving in a context-aware manner.

4 Component Architecture

Figure 1 shows the component architecture of our prototype implementation. The
Semantic Web services expose their service description using OWL-S and the ex-



Ontological Approach to Generating Personalized User Interfaces 921

Ex
te

nd
ed

 O
W

L-
S

D
es

cr
ip

tio
n

Semantic
Cache

UI Rendering &
Service Invocation

Engine

Semantic
Web Service

Web Service Proxy

P
IM

 D
at

a

C
on

te
xt

P
ro

fil
e

Data Sources

Transformation
Proxy

Reasoner

invoke

HTML

publish

Fig. 1. System Components

tended UIModel ontology (as presented in section 2). The UIModel for a Web ser-
vice could be provided by the Web service provider or by an intermediary such as
an enterprise that is making services available to employeeswithin an organization.
The enterprise could thusmakedecisions about the allowed level of personalization,
by appropriately configuring the UIModel.

When a service is to be invoked, the UI rendering engine uses the extended
OWL-S description to render a dynamic web-based UI (possibly using HTML,
XHTML or XForms). Additionally, it uses both explicit and implicit relationships
in the semantic cache to render a personalized UI appropriate to the current con-
text. Implicit relationships in the semantic cache are inferred using a reasoner. All
data sources that feed data into the semantic cache have type information associ-
ated with them. Commonly occurring types in the semantic cache include: profile
information, context history, PIM data, common sense information etc. The type
information is usedby the rendering algorithmto determinehowrelevant data from
a given source is.The system canalso support data originating from legacy applica-
tions using a transformational framework. In our system, the semantic cache along
with the rendering engine are implemented as part of a Web service proxy. After the
UI is rendered, user inputs are received to invoke the service. These inputs are used
to further change the contents of the semantic cache. Finally the service is invoked
and the outputs are presented as a UI.

5 Simple Usage Scenario

Our implementation was tested on a Nokia Series 60 phone with several atomic
and composite real-world Web services. Example test services include, AltaVista’s



922 D. Khushraj and O. Lassila

“BabelFish” language translator service,Barnes and Noble’s bookprice finder ser-
vice, zip code finder service etc. In order to test our system, theOWL-Sdescriptions
from the Mindswap Web site3 were adapted to have UI Model extensions. In this
section, we present an example usage scenario based on some of our test services.

A mobile user visiting India is shopping for a souvenir to take back home. He
makes use of the currency converter service on the phone to determine the price
of the souvenir in a familiar currency. The currency converter takes three inputs:
Input Price, Input Currency and Output Currency. The corresponding semantic
types in the OWL-S description for each of these fields are: XML Schema integer,
Currency type (represented as anOWLClassURI) andCurrency type, respectively.
The corresponding widget types in the UI Model are: free-text input, single select
drop-down list and multiple select drop-down list, respectively (see Figure 2).

Fig. 2. Currency Converter Fig. 3. Pages 1 & 2 of the currency list

Since the Input Price field uses a free-text input widget and has type XML
Schema, only values entered by the user to invoke the same service in the recent
past are used from the semantic cache. If the service was accessed recently, then
the field is displayed as an editable select list, with cached values, else a free-text
input widget is presented.

Since the Input Currency and Output Currency fields have the type Currency
and use drop-down list widgets (with pre-determined value ranges), the currencies
are ordered in the list so that relevant currencies appear on the top of the list. If any
instances of Currency are found in the cache then they are likely to occur higher up
on the list.

Additionally, the ordering of currencies is determined by using the semantic re-
lationship of the Currency type class with other classes in its ontology. From the
currency ontology, the rendering engine determines that every Currency object is
associated with one or more countries. Hence it determines all relevant countries in
the semantic cache to ascertain the ordering of currencies. In the rendered UI, USD
appears high on the list because the user’s profile indicates that he has an US res-
idential address. The user’s calendar information shows that he recently attended
a meeting in Helsinki, his context history indicates that he recently traveled via
3 www.mindswap.org



Ontological Approach to Generating Personalized User Interfaces 923

Fig. 4. Selected inputs & invocation results Fig. 5. Book Price Finder

Tokyo and the use of GPS coordinates suggest that the user’s current location is
Bombay. By using simple geo-spatial reasoning, the cache determines that the user
recently attended a meeting in Finland, that he recently traveled via Japan and
that he is currently located in India; hence the currencies used in these countries
(i.e. EUR, JPY and INR) appear high on the list. Similarly several other countries
appear high on the list based on data in the semantic cache (See Figure 3). In the
current context, the relevant inputs are INR as input currency and USD as output
currency (See Figure 4). Due to the reordering of currencies in the drop-down list,
based on data in the semantic cache, the hassle of browsing through a long list (of
98 currencies) is avoided in this case. Once the service is invoked, the results are
displayed to the user, as shown in Figure 5.

Now let us assume that the user wants to buy a book, from a local store, and
check its price in local currency before he gets to the store to pick it up. The user
makes use of the store’s book price finder service, which takes book name and out-
put currency as inputs. The corresponding types for these fields are: XML Schema
string and Currency. Since the INR object has semantic type Currency and was
recently used as an input for service invocation, it appears higher on the list, mak-
ing it easier to select (see Figure 5). Note that this service was never invoked in the
past, yet personalization is done based on the semantic types of fields.

Personalization of the rendered UI can further be done based on knowledge
about the atomic services involved. For example, the book price finder service, pre-
sented earlier, is a composite service based on three atomic services. It first makes
use of a book details grabber service, which takes a book name as input and pro-
vides the ISBN number along with other details as output. It then makes use of a
book price finder service, which takes the ISBN number and provides the price in
USD as output. And finally, it makes use of a currency converter service to trans-
late the price from USD to the desired currency. In the current scenario, knowledge
about the currency converter atomic service helps in further deciding the weights
given to individual currencies in the drop-down list.

We observe that the use of a semantic cache for rendering personalized UIs
makes form-filling easier on devices with limited text-input methods, specially for
the reduction in number of keystrokes used. Furthermore, it makes it easier to per-
sonalize the UI of services that were never invoked before or that are composed of
atomic services that were invoked in the past.



924 D. Khushraj and O. Lassila

6 Related Work

Definition and generation ofUIs for Web services has been addressed in manyways.
Some of the more notable approaches include Apple’s Sherlock application frame-
work4 which allows easy definition of Web service UIs using either JavaScript or
XQuery, as well as various industry specifications [12,13,14]. None of these fully
automates UI generation, but they are all attempts to provide a simple means of
specifying UIs for pre-existing Web service interfaces. The work byKassoff et al [15]
introduces a system for near-automatic generation of user interfaces from WSDL
profiles; in addition to a WSDL document, this system requires some additional
information to generate the UI. Furthermore, the approach to providing default
values requires authoring new “virtual” WSDL profiles which specify these values
explicitly.

Automated form-filling techniques are often used in the context of Web-based
forms. Published work in this area often addresses issues of building automated
Web robots (or “bots”) that need to access pages that are only reachable via vari-
ous (form-based) query interfaces [16,17, for example]. Furthermore, most modern
Web browsers offer some means of automatic filling or “completing” of Web forms.
Although these techniques make use of personal profile information and usage his-
tory, they cannot be used for rendering personalized Semantic Web service inter-
faces because they will not be able to exploit the associated semantic model. Due to
the lack of semantic processing capabilities, personalization based on the current
context, PIM information etc. will be limited.

In database research, semantic caching techniques are frequently used to cache
database queries and associated results [18, for example]. Subsequent queries are
then answered by determining their semantic locality with cached queries to im-
prove response time. As described earlier, the term “semantic caching” is used in
an entirely different manner in this paper; hence semantic caching techniques for
databases cannot be applied to render personalized UIs for Web services.

7 Conclusions

There is a striking resemblance between Web service descriptions and Web forms.
This strongly motivates the generation of dynamic UIs for Web service access. Our
work clearly establishes the need for a UI layer extension to Semantic Web ser-
vice descriptions and demonstrates the benefits of semantic caching techniques for
personalization of Web service UIs. The fundamental idea is to enable personaliza-
tion by exploiting the relationship of semantic objects in the user’s cache with type
information associated with Web service inputs. Additionally, the process model
associated with composite services can also be used. The use of caching is empha-
sized because all data about the user cannot be used while rendering personalized
UIs as this would considerably increase the time required for UI generation. Se-
mantic caching basedpersonalization enables automatic form-filling andother cus-
tomizations to UIs for services that have never been accessed before. The proposed
4 http://developer.apple.com/macosx/sherlock/



Ontological Approach to Generating Personalized User Interfaces 925

approach has great potential for access to services from mobile devices that have
limited text-input capabilities but have context information, such as current lo-
cation, social context etc., readily available. Our prototype implementation uses
a Web service proxy based architecture, which enables semantic processing to oc-
cur either remotely or locally on the user’s mobile device. The prototype imple-
mentation was tested using several real-world Web services and an evidence to the
practical benefits of the proposed approach was established. Several optimizations
can be performed on the algorithm used to query for semantic objects and manage
semantic objects in the cache; we would like to address this in the future.

References

1. Christensen, E., Curbera, F., Meredith, G., Weerawarana, S.: Web Services Descrip-
tion Language (WSDL) 1.1. W3C Note, World Wide Web Consortium (2001)

2. Raggett, D., Hors, A.L., Jacobs, I.: HTML 4.01 Specification. W3C Recommenda-
tion, World Wide Web Consortium (1999)

3. Berners-Lee, T., Hendler, J., Lassila, O.: The Semantic Web. Scientific American
284 (2001) 34–43

4. Lassila, O.: Serendipitous Interoperability. In Eero Hyvönen, ed.: The Semantic
Web Kick-off in Finland – Vision, Technologies, Research, and Applications. HIIT
Publications 2002-001. University of Helsinki (2002)

5. Lassila, O., Swick, R.R.: Resource Description Framework (RDF) Model and Syntax
Specification. W3C Recommendation, World Wide Web Consortium (1999)

6. McGuinness, D.L., van Harmelen, F.: OWL Web Ontology Language Overview.
W3C Recommendation, World Wide Web Consortium (February 2004)

7. Gruber, T.R.: A Translation Approach to Portable Ontology Specifications. Knowl-
edge Acquisition 5 (1993) 199–220

8. Payne, T., Lassila, O.: Semantic Web Services (guest editors’ introduction). IEEE
Intelligent Systems 19 (2004) 14–15

9. Ankolekar, A., Burstein, M., Hobbs, J.R., Lassila, O., McDermott, D., Martin, D.,
McIllraith, S.A., Narayanan, S., Paolucci, M., Payne, T., Sycara, K.: DAML-S: Web
Service Description for the Semantic Web. In Horrocks, I., Hendler, J., eds.: The
Semantic Web - ISWC 2002. Volume 2342 of Lecture Notes in Computer Science.,
Springer Verlag (2002) 348–363

10. Martin, D., Burstein, M., Hobbs, J., Lassila, O., McDermott, D., McIlraith, S.,
Narayanan, S., Paolucci, M., Parsia, B., Payne, T., Sirin, E., Srinivasan, N., Sycara,
K.: OWL-S: Semantic Markup for Web Services. W3C Member Submission, World
Wide Web Consortium (2004)

11. Khushraj, D., Lassila, O.: CALI: Context-Awareness via Logical Inference. In: ISWC
2004 workshop on Semantic Web Technology for Mobile and Ubiquitous Applica-
tions. (2004)

12. Anuff, E., Chaston, M., Moses, D., Kropp, A.: Web Service User Interface (WSUI)
1.0. Working Draft, Epicentric, Inc. (2001)

13. Kropp, A., Leue, C., Thompson, R.: Web Services for Remote Portlets Specifica-
tion. OASISStandard, Organization for the Advancement of Structured Information
Standards (OASIS) (2003)



926 D. Khushraj and O. Lassila

14. Arsanjani, A., Chamberlain, D., Gisolfi, D., Konuru, R., Macnaught, J., Maes, S.,
Merrick, R., Mundel, D., Raman, T., Ramaswamy, S., Schaeck, T., Thompson, R.,
Diaz, A., Lucassen, J., Wiecha, C.F.: (WSXL) Web Service Experience Language
Version 2. IBM Note, IBM Corporation (2002)

15. Kassoff, M., Kato, D., Mohsin, W.: Creating GUIs for Web Services. IEEE Internet
Computing 7 (2003) 66–73

16. Doorenbos, R.B., Etzioni, O., Weld, D.S.: A Scalable Comparison-Shopping Agent
for the World-Wide Web. In Johnson, W.L., Hayes-Roth, B., eds.: Proceedings of
the First International Conference on Autonomous Agents (Agents’97), Marina del
Rey, CA, USA, ACM Press (1997) 39–48

17. Liddle, S.W., Yau, S.H., Embley, D.W.: On the Automatic Extraction of Data from
the Hidden Web. In: Proceedings of the International Workshop on Data Semantics
in Web Information Systems (DASWIS-2001). (2001)

18. Dar, S., Franklin, M.J., Jónsson, B.T., Srivastava, D., Tan, M.: Semantic Data
Caching and Replacement. In Vijayaraman, T.M., Buchmann, A.P., Mohan, C.,
Sarda, N.L., eds.: VLDB’96, Proceedings of 22th International Conference on Very
Large Data Bases, September 3-6, 1996, Mumbai (Bombay), India, Morgan Kauf-
mann (1996) 330–341

A Example UI Model

AltaVista’s Babel Fish translator Web service is used to translate text between a
variety of languages. Figure 6 represents the RDF graph for the UI model of the

Fig. 6. Babel Fish Service & User Interface Model



Ontological Approach to Generating Personalized User Interfaces 927

service and the corresponding dynamic user interface generated by the rendering
engine. The model extends from concepts defined in the OWL-S description of the
service5. The UI model is supported by the TranslatorService and has an associ-
ated process UI. The specified process UI is created for the TranslatorProcess and
has several UI fields. Each UI field is specified as a mapping between the associated
parameter in the OWL-S description and other properties for rendering (and in-
voking) the UI. In the figure, we see three UI field map nodes, one for each of the
OWL-S input parameters, namely Input String, Input Language and Output Lan-
guage. A detailed explanation of all the properties emerging out of these nodes is
provided in section 2.

5 http://www.mindswap.org/2004/owl-s/1.0/BabelFishTranslator.owl


	Introduction
	Generating User Interfaces
	``Semantic Caching''
	Component Architecture
	Simple Usage Scenario
	Related Work
	Conclusions
	Example UI Model

