
3

Ontological Commitments in Knowledge-Based

Design Software: A Progress Report

Filippo A. Salustri, P.Eng.

Department of Mechanical Engineering, Ryerson Polytechnic Institute, 350 Victoria Street,

Toronto, ON, M5B 2K3, Canada

Keywords: logic, ontological commitment, knowledge representation, design

Abstract: The increased sensitivity of engineered products to external forces requires new

computer-based design tools that can express the richness and complexity of

product knowledge. This paper is a progress report of the author's research

towards the development of such a knowledge-based design tool, called the

Design Knowledge Specification Language (DKSL). A key goal is to ensure the

maximum possible logical rigor. In order to do this, ontological commitments

are constructed to map logical structures to the domain of design knowledge.

The first part of the paper discusses a number of ontological commitments the

author has discovered for design. The second part of the paper presents the

current, incomplete implementation of D KSL. An example of the structural and

steady-state thermal analysis of a wall is used to present DKSL's capabilities.

Although much work remains to be done, it appears that DKSL may be able to

accurately and rigorously describe any design knowledge.

1. INTRODUCTION

As engineered products and engineering processes become more sensitive

to economic, social, and technological forces, CAE tools must be made to

express the richness and complexity of the information used in engineering

environments. To treat the complexity, CAE systems are moving towards a

knowledge-based approach, that is distributed transparently over intranets and

S. Finger et al. (eds.), Knowledge Intensive Computer Aided Design

© Springer Science+Business Media New York 2000

42 Knowledge lntensinve Computer Aided Design

the Internet. One of the author's on-going research projects is the design

and implementation of a network-centric knowledge-based system (KBS) for

engineering design applications.

There are many other research efforts aiming at the same or similar goals.

For general knowledge representation (KR) applications, KIF, Onto lingua, and

KQML (Genesereth and Fikes, 1992; Gruber, 1992), developed at Stanford

University, and the KL-ONE family of languages (Brachman et aI., 1991) are

the most well-developed. These are very large systems able to represent general

knowledge in a number of domains. In engineering domains, KIF has found

some applications (Hurst, 1991; Hakim and James H. Garrett, 1993). Systems

specific to engineering have also been developed (Alberts, 1994; Eastman et al.,

1991b).

In the author's view, there are two problems with these approaches. Those

efforts aimed at general KR (such as KIF) have to manage "common sense"

knowledge, which is substantially different than the technical knowledge typical

in engineering environments. On the other hand, those efforts specific to

engineering tend to have relatively informal foundations. The author believes

that it is possible to develop logical systems for CAE tools that are more rigorous

than those currently available, yet are targeted specifically to engineering. The

key to achieving this is in developing a proper set of ontological commitments,

which formalize the correspondence between logical structures and the domain

of engineering design.

This paper gives an overview of the current status of the project, starting

with a discussion of the ontological commitments that have been established to

date. The second part ofthe paper covers the implementation of DKSL (Design

Knowledge Specification Language), which embeds those commitments in a

frame-based KR system.

2. BACKGROUND

The author's research involves the development of logical theories of the

various aspects of engineering design. The author's current focus is in the

development of a language for the description of products. In the previous KIC

workshop, the author presented a formal theory of product description, called

AIM-D (Salustri, 1996). This paper will discuss the ongoing development of

a specification language, DKSL, which implements AIM-D in the form of a

programming language environment with knowledge base (KB) capabilities.

Because D KSL depends on AIM -D, a brief summary of the theory is presented

here.

AIM-D is an interpretation of Zpl axiomatic set theory (Copi, 1979). Set

theory is a basic tool of logic, used in fields like number theory to prove the

existence of the integers (Bernays, 1968). Though its validity is not provable

Ontological Commitments in Knowledge-Based Design SofhVare 43

due to Godel's Theorems, it is quite robust - robust enough, the author contends,

to provide a degree of rigor for design theories that has heretofore been lacking.

Specifically, AIM-D uses the ZFaxioms to define formally the information

needed to model products. Currently, AIM-D covers quantities, features, parts,

and assemblies, as well as sub-assemblies and systems, and types of all these

entities. It does so by imposing a fixed semantics on the ZFaxioms. This

kind of interpretation amounts to making ontological commitments about the

nature of designed products. Insofar as the author is ultimately interested in

implementing a KBS for designed products, it is not so much the axioms as the

ontological commitments that must be embedded in the KBS; the axiomatic

theory demonstrates the (degree of) validity and rigor.

In closing, there are two particular points of interest about AIM-D that are

noteworthy here. First, not all the axioms of ZF were used in developing AIM

D. This opens the interesting possibility that there is a logic, simpler than set

theory and perhaps even demonstrably valid, that may be sufficient for design

purposes.

The second point regards the ease with which ZF can formalize otherwise

intuitive notions universal to design, leading to more robust computable al

gorithms. For example, the ZFAxiom of Foundation limits the notion of a

set to those entities for which set membership is antisymmetric. That is, if A

contains a set B, then A can only be a set if B does not contain A. This has

a clear correspondence to the intuition that an assembly a cannot have b as a

subassembly if b already contains a as a subassembly.

3. ONTOLOGICAL COMMITMENTS

An ontological commitment is a mapping between a language and a structure

that systematically axiomatizes the forms and modes of being in a domain; this

allows only certain intended meanings of models to be captured (Guarino

et al., 1994). In other words, an ontological commitment is a decision to

adhere to a certain interpretation of a language in a some domain; it is a

mechanism to help ensure that a given model written in a given language

communicates exactly and only what was intended by the model developer. For

example, mathematical algebra includes ontological commitments regarding

what variables such as x and y mean, what operators such as + do, etc.

Meaning can be ascribed to algebraic statements only when there is agreement

on its underlying ontological commitments. Similarly, in design, there exist

ontological commitments regarding the meaning of the various symbols used

in blueprints. The meaning of the blueprint is lost if ontological commitments

are missing or inconsistent.

The general problem of KR is that it admits a domain so broad that it is

considered inappropriate to make ontological commitments about it. This is

44 Knowledge Intensinve Computer Aided Design

especially difficult in representing "common sense" knowledge held by the

average individual, which is often incomplete, inconsistent, or even incorrect.

This means that such KR systems must be able to treat the incompleteness,

inconsistencies, and outright errors, which in turn greatly complicates the

whole problem.

On the other hand, in the highly technical and relatively restricted domain

of engineering design, we strive to minimize these problems. Here, some

ontological commitments can be used as simplifying assumptions to improve

the robustness, complexity, and computability of knowledge representations of

designed products.

Though this occurs at the expense of expressiveness, a restricted solution

today is in some ways better than the promise of a more general solution

tomorrow; also, such a solution for design may provide a stepping stone to more

general solutions by providing experience needed to develop more powerful

KBSs in the future.

In developing any KBS, some ontological commitments must be made to

limit the models possible in the system to only those models intended by the

developers of the models and the users of the KBS. Often, these commitments

are only implied, opening the possibility of misinterpretation. A fundamental

goal of the author's work is to find the basic ontological commitments needed

to define product models. To this end, the ontological commitments made in

the development of DKSL are discussed in this section. So far, only some arise

directly from AIM-D, which is a work-in-progress; some other, more tentative

commitments must be made to allow continued development of DKSL while

the theory is being developed. These other commitments deal specifically

with modeling aspects of product function, of the various kinds of part-whole

relationship (mereology), and of contexts.

3.1 COMMITMENTS ARISING FROM AIM-D

AIM -D maps ZF set theory to the domain of product modeling via ontological

commitments that constrain DKSL. These ontological commitments result in

a hierarchy of fundamental types. At the most primitive level are quantities,

which are tuples of a value and a dimensional metric; 5 ft, 100 N are examples

of quantities. A feature defines a geometrically and functionally relevant

entity that is not necessarily realizable (e.g. a hole, or a fillet); features are

compositions of interrelated quantities. Parts are aggregates of interrelated

features, that are realizable through non-assembly manufacturing processes

(casting, machining, etc.). Finally, an assembly is an aggregate of interrelated

parts that are realizable only through assembly processes. These four domains

of entities are disjoint, and are fundamental for product modeling because each

domain covers a unique and distinctive class of entity in a designed product.

Ontological Commitments in Knowledge-Based Design Software 45

Additionally, AIM-D supports the concepts of both sub-assemblies and sys

tems, but as entity domains existing outside the hierarchy described above.

While sub-assemblies are essential conceptual entities in any design or man

ufacturing process, the author does not believe they constitute "real-world"

entities. For example, an automobile engine may be considered an assembly

by the engineers that design the engine, but as a subassembly by the engi

neers that design the whole automobile. But whether the engine is actually

in an automobile (i.e. a subassembly) or not (i.e. an assembly) does nothing

to alter the essential nature of the engine. If the notion of subassembly is

context-dependent, then it cannot be fundamental to AIM-D, which is intended

to capture the essential nature of the product. Thus, assemblies in AIM-D are

composed of manufactured (non-assembled) parts; sub-assemblies are useful,

perhaps even essential, constructs for both designing and manufacturing pro

cesses, but are only ancillary with respect to description of products as real

objects.

This approach contradicts the relatively common intuition exemplified by

statements such as "The automobile is an assembly of the following sub

assemblies . .. ", which suggests that sub-assemblies have a substantive nature.

However, once assembled, the distinction between sub-assemblies disappears

without prior knowledge of the assembly process. This argument should not

be taken as one diminishing the importance of sub-assemblies in engineering;

it is intended only to distinguish the notion of subassembly as an artificial one,

and to incorporate and formalize that distinction into AIM-D.

The more generic notion of a system is also formalized in AIM-D, due

to its relevance in engineering. But, as with sub-assemblies, systems are

ancillary. Indeed, it was found during the development of AIM-D that the

only substantive difference between sub-assemblies and subsystems was that

system components need not be in direct contact with each other, whereas

direct contact is required for sub-assemblies; otherwise, the formalizations for

systems and for assemblies are the same.

Another aspect of the ontological commitments of AIM-D regards the rep

resentation of type information. An extremely popular commitment is to the

existence of explicit classes (as in object-oriented languages) or concepts (as

in description logics such as CLASSIC). Classes and concepts are meta-level

information units; this raises issues of reflection and its computational coun

terpart, recursion.

While there are modeling problems that can be solved efficiently with classes,

there is also evidence that the human mind works more "by example" than by

abstraction (Jaynes, 1976; Damasio and Damasio, 1992), and that design is one

area where the generally accepted semantics of classes and types can impede

the development of accurate, flexible, and robust models (Johnson and Zweig,

1991; Eastman and Fereshetian, 1994). For example, there is a tendency in

46 Knowledge lntensinve Computer Aided Design

automotive engineering to regard a blueprint of an automobile as a model of a

typical automobile and not as the set or class of automobiles of a certain make

and model. Also, the tolerancing of dimensions can be viewed as the definition

of a "vaguely" defined prototype: any item whose dimensions fit within the

limits described by the tolerances can be thought of as a specific version of

the more general prototype. That is, designers tend to use an exemplar-based,

rather than a class-based, approach to model products. In keeping with this

observation, AIM-D admits no notion of class or concept, but rather uses the

notion of an exemplar, an entity typical of items in a collection. Collections

themselves exist only intentionally. (It is noted that it is possible to develop

class-based systems from prototype-based ones.)

In order to structure collections of entities, AIM-D uses notions of gen

eralization of entity attributes. Generalization occurs in AIM-D by ignoring

certain aspects of entity attributes. Specifically, three kinds of generalization

are defined within AIM-D: ignoring whole attributes, ignoring the values of

attributes, and ignoring the number of values of attributes.

3.2 COMMITMENTS DUE TO PRODUCT FUNCTION
AND BEHAVIOR

There is a difference of opinion in the research community regarding the

meaning function and behavior; no standardized, consistent model of these

terms exists. Some researchers consider function as a description of the actions

a product can perform (e.g. (Qian and Gero, 1996», while others treat it as a

description of a subset of behaviors (i.e. intended behavior or "purpose", as in

(Sturges et aI., 1996». Various other definitions are given in (Chittaro et aI.,

1994; Chakrabarti, 1993).

The current author defines behavior as the response of a system to predefined

inputs which are not necessarily quantified; it describes the role played by a

product in a larger system. The behavioral perspective takes the product being

designed to be a "black box" whose internal function is not visible (or even

known); the inputs, outputs, and operational environment of the product, on the

other hand, are "transparent" (see Figure 3.2b). Insofar as behavior describes

the response of a product, it is seen as answering the question "What does the

product do?" Behavior is described without commitment to the form of the

product.

Function, on the other hand, is a description of how a product works rather

than what it does (Figure 3.2a), where the environment is now opaque, and the

product is "transparent," and is composed of a series of black box subsystems

whose interaction describes how the product comes to exhibit a certain behavior,

but without necessarily making commitments about product form.

Ontological Commitments in Knowledge-Based Design Software 47

Environment

Input Output

Figure 3.la Example of the functional per

spective.

Figure 3.1 b Example of the behavioral per

spective.

These perspectives are meant to demark the different kinds of tasks that can

be performed with functionallbehavioral information. At the behavioral level,

design is systems-based, concerned with identifying functional requirements

to be met by a product. At the functional level, on the other hand, design

consists of a configuring components and their interrelationships. So-called

"top-down" design proceeds by alternating between behavioral and functional

perspectives at ever increasing levels of details. Identifying these perspectives

is used below to demonstrate that behavioral and functional descriptions are

essentially the same; they are just viewed in different contexts.

It is noted here that the definitions of function and behavior adopted by

the other are the opposite of those commonly used in the literature. While

the need for terminological consistency is aknowledged, the author believes his

definitions are more in keeping with those conventionally implied by practicing

engineers. In any event, it matters little in the long run since the distinction

between function and behavior is shown (below) to be an artificial one only.

In order to explore this matter further, consider the following three state

ments:

1. The refrigerator keeps food cold.

2. The refrigerator keeps things cold.

3. The refrigerator preserves food.

Any of these statements in isolation can be considered a behavior of a

refrigerator. If statement I is considered a behavior, then we may ask How is

this behavior achieved? The answer involves the functions of a refrigerator

(isolating a region of space, transferring heat from that space by some means,

etc.). However, we may also ask Why does the refrigerator keep food cold?

One answer to this question is statement 3. Now, considering statements 1 and

3 together, statement 1 is afunction rather than a behavior. Thus ,whether the

statements are taken as functional or behavioral, context plays a crucial role

48 Knowledge Intensinve Computer Aided Design

in (a) providing terminological information about the words appearing in the

statements, and (b) implying information about the operating environment. For

example, in statement 1, the terms "cold" and "keeps" are relative to the context

of refrigerators.

Function and behavior are thus relative to the reference frame of an agent

making assertions about a product; that is, they are not intrinsic properties of

designed products. Nonetheless, functional and behavioral information about

a product is very important, especially during the product's design. Therefore

it is essential that it be representable in the author's system.

It is often possible to represent both functions and behaviors in single nat

ural language clauses that seem quite intuitive to humans (e.g. " ... to support

a load in bending "); both behavior ("to support a load") and function ("in

bending") are intimately connected in a single phrase. The fact that both the be

havior and function can be described in a single natural language statement only

obscures their distinction. This constitutes, in the author's opinion, a signifi

cant problem with the use of natural language, or any other informal language,

to precisely define the nature of designed products. Natural language is used

herein only for expository purposes; the author intends this research to lead

eventually to a more formal specification of functionallbehavioral information.

In order to avoid this confusion while maintaining a sense of connection

between them, the author uses the term predicative description to include both

function and behavior descriptions. This term captures the sense of activity, as

well as the complexity of the concepts.

The basic relation that connects function and behavior is the "how/why"

relation: given a function, the why relation describes its behavior; and given

a behavior, the how relation describes the function that results in it. The

how/why relations are disjoint and intransitive with other relations, particularly

with respect specialization. In figure 3.2 four predicative statements about a

refrigerator are given, and both the how/why and specialization/generalization

relations are shown. It may be argued that the why relation is a kind of

generalization: in comparing statements 1 and 3 in the figure, it is sensible to

think of "preserving food" as a generalization of "keeping food cold". But this

is a generalization based on the intent the statement as a whole, rather than one

associated with the components of the statements. A similar argument can be

made about the specialization and how relations. The key differences between

function and behavior in the author's work can be summarized as in the table

in Table 3.1.

Predicative descriptions are complex in that their expression tends to be

formed as predicate clauses consisting of verb/object pairs (VOPs). That is,

they describe actions performed by an entity upon some other entity, indepen

dent of the phrasing in natural language.

Ontological Commitments in Knowledge-Based Design Software 49

why

1) The refrigerator keeps food cold "'E~----"- 3) The refrigerator preserves food

ge=""~l j """"""" how g~""li"'l j ,,,,,ci~i'"
why

2) The refrigerator keeps things cold "'E~----"'- 4) The refrigerator preserves things

how

Figure 3.2 Example of abstraction of predicative descriptions. Numbered statements are

assertions about a product. Labeled arrows indicate predicative and taxonomic relations between

assertions.

This apparent verb/object structure of both functions and behaviors has been

used as the root of various formalizations, such as in (Umeda et aI., 1996); the

current author also employs this approach. Consider again the statements in

Figure 3.2: statements I and 3 are related through how/why relations. Statement

2 is related to statement 1 by generalization on the object of the YOP. A similar

generalization carried out on statement 2 (yielding statement 4) is virtually

meaningless. The author believes that generalizations will not generally transfer

through how/why relations; in other words, abstraction relations and predicative

relations are not transitive. Also, that the abstraction occurred only on the object

part of the YOP suggests that in the general case, abstraction can occur on either

the verb or the object parts independently.

Table 3.1 Differences between Function and Behavior

Behavior Function

role-dependent operational

goal-oriented process-oriented

what a system does how a system does it

based on purpose/usage based on physical properties

The key to abstraction of predicative relations is the verb part of the YOPs.

But since a YOP can be both a functional and a behavioral description (depend

ing on the context), any generalization rules for the verb parts of YOPs must

be based on the definition of the verb term itself rather than on its functional or

behavioral connotations.

Finally, these definitions of function and behavior deal only with the reactions

expected of products for given sets of inputs; that is, no notion of intended, or

designed-in, function or behavior, or of purpose is implied.

50 Knowledge Intensinve Computer Aided Design

3.3 COMMITMENTS DUE TO MEREOLOGY

Mereology is a branch of logic that uses part-whole relationships to de

scribe entities. For example, in a conventional ontology, one might model

an automobile as having the property of having four wheels; in a mereologi

cal perspective, a relation is defined between the automobile and the wheels

themselves. Obviously, in engineering design, both the conventional and the

mereological approaches are relevant. Surprisingly, little work appears in the

recent literature outside Europe on mereology in AI, and there is almost no

work on mereology as such in the engineering literature.

The basic problem of mereology as a field of study is that there appear to be

various, often inconsistent, semantics associated with the term "part of". For

example, consider the following three statements.

1. A piston is a part of an engine.

2. An engine is a part of an automobile.

3. An automobile is a part of a fleet.

Each statement, on its own, is perfectly reasonable. Furthermore, from the

first two statements, we can reasonably deduce that "A piston is a part of an

automobile." But from all three statements, can we reasonably deduce that

"A piston is a part of a fleet"? The problem is that there are two different

meanings of the term "part of," and that transitivity is not preserved between

them. Mereology's main concern is establishing an overall structure to reason

reliably with all the possible part-whole relationships.

There appear to be two schools of thought regarding the treatment of mere

ology. One school advocates a single, universal, and transitive part-of relation,

based on the assumption that all distinctions about types of parts are really

conceptualizations and are not rooted in reality. In order to address the para

doxes that result, first-order predicate calculus is used to introduce sufficient

predicates to distinguish between kinds things. This approach is taken by the

developers of Onto lingua and KIF (Gruber, 1992) and the logics of Lesniewski

(Srzednicki et aI., 1984).

The other school of thought contends the cognitive distinctions must be

represented; in other words, a proper mereology must handle the transitivity

problem directly by admitting distinctions between different part-of relations.

This approach is supported by the work of Artale et ai. (Artale et aI., 1996b;

Artale et aI., 1996a) and Simons (Simons, 1987). In this approach, different

part-of relations are explicitly defined to handle different conceptualizations

(e.g. assembly/component versus space/region), and transitivity is not preserved

across them. Also, the part-of relation is seen as complex, rather than primitive,

which requires the development of specialized logics that integrate mereology

with topology and morphology as in, for example, (Borgo et aI., 1996).

Ontological Commitments in Knowledge-Based Design Software 51

A fundamental problem with this approach is that there is no way to enu

merate all the different "primitive" part-of relations. For example, in (Winston

et al., 1987) six primitive part-ofrelations are defined; they are summarized in

Table 3.2. It has been shown «Artale et al., 1996b)) that (a) it is impossible to

decide if these constitute a complete set of part-of primitive relations, and (b)

some of these relations (such as stuff/object) are more linguistic artifacts than

actual cognitive or other constructs of knowledge.

Table 3.2 Summary of part-of relations in (Winston et aI., 1987).

RELATION EXAMPLE

component/integral-object "wheels are parts of cars"

member/collection "a product is part of a batch"

portion/mass "3 ft. of stock rod"

stuff/object "a car is partly aluminum"

feature/activity "grasping is part of carrying"

place/area "the front of the car"

Rather than siding with one school or the other, the author proposes a new

mereological framework, wherein the part-of relation is a well-defined function

mapping triplets of arguments to the boolean values. That is:

P(p, W, 11") ::::} {T, F} (3.1)

where p is a part, W is a whole, and 11" is a property or properties used by the

P part-of function.

This approach is based on the observation that parthood is related to some

sort of overlapping between the values of at least one property of a part on the

values of the same properties of a whole. For example, to establish a part-of

relation for regions of a space, 11" is the set of properties defining the size and

position of a spatial region. P, then, asserts that p is wholly contained by TiT if

its volume is contained in l'V's volume.

This approach addresses a variety of open issues. First, by "deferring"

uniqueness of different part-of relations to the properties 11", P itself remains a

single universal, ternary predicate, which is logically elegant. Second, primitive

part-of relations can be defined as those whose properties 11" are fundamental

in AIM-D (e.g. properties of length, mass, time, etc.); complex part-of rela

tions are constructed by composing primitive ones; this suggests an abstraction

hierarchy of part-of relations which would be useful for automated reasoning

52 Knowledge Intensinve Computer Aided Design

processes, such as case-based reasoning and decision support. Third, transi

tivity is preserved to the degree that different properties are used in different

part-of relations.

This last point deserves some explanation. Transitivity is preserved entirely

in reasoning processes where different instances of P use the same properties

IT. On the other hand, different instances of P that use properties that have no

commonality in the abstraction hierarchy are not transitive at all. These two

cases correspond to the typical behavior of other approaches. For example,

transitivity is preserved over different instances of the group/member relation,

but not between a group/member relation and an assembly/component relation.

However, the author's approach allows partial transitivity to be recognized.

In the example at the beginning of this section, it was shown that one may

reason that a piston is a part of a rental fleet of automobiles if there is only one

part-of relation. While there is clearly something wrong with such a conclusion

for most conventional uses, there is still a certain sense in which it is reasonable.

The author believes that this "partial" sense of the conclusion results from the

partial subsumption of the properties with which part-of is used in the example.

Being able to represent this kind of partial parthood opens the possibility of

substantially different reasoning processes that can be automated in a KBS, and

should allow for a richer representation of design knowledge.

Specific mereological axioms using the formalism presented above are cur

rently under development for the next "version" of AIM-D. The current version

of AIM-D (Salustri, 1996) contains only an implied notion of mereology as

captured by the four levels of product composition defined therein. That is,

AIM-D has specific axioms for the construction of assemblies from parts, parts

from features, and features from quantities. Equation 3.2 gives an example: the

axiom relating parts and assemblies. It states that a part p consists of features

f that are in the set of all features F, and that satisfy a predicate </>, which is

taken to be any possible mereological relation between features f.

3p [V f [(f E p) == (f E F) • </>(f)]] (3.2)

Each axiom implies a different parthood relation between the whole (e.g.

assemblies) and its parts (e.g. parts). The next version of AIM-O will have a

more explicit formulation of parthood relations based on the material presented

herein.

3.4 COMMITMENTS FOR CONTEXT-SENSITIVITY

Engineering terms can often have different meanings depending on the vari

ous contexts in which they are used. A context is essentially a mapping between

terms and denotations. An assertion may be found true in one context but false

Ontological Commitments in Knowledge-Based Design Software 53

in another. Contexts may also include special rules for carrying out those rea

soning processes. For example, consider: "the block deck height of the engine

includes the thickness of the engine gasket." If the designer in charge of the

engine block believes this assertion, but the designer in charge of the cylinder

head does not believe it, the designers will disagree about the answer to the

question "What is the total height of the engine?"; the two designers are work

ing in two slightly different contexts. Contexts have various uses ranging from

encapsulation of parts of a KB, to providing a shorthand notation for omitting

common arguments (such as location, time, etc.) and separating meta levels of

languages (Sowa, 1992). Contexts are currently a topic of significant interest,

especially in the KR community, where the issues raised in their treatment im

pacts on distributed computing and AI. Some of the possible uses of contexts

include (Sowa, 1992):

• partitioning a knowledge base into more manageable modules;

• encapsulating parts of a knowledge base, as in so-called object-oriented

systems;

• providing a shorthand for omitting common arguments, such as location,

time, etc.;

• providing a way to resolve indexical referents, such as "this", "I", and

definite noun phrases beginning with "the;"

• representing environments whose modality, level of certainty, or hypo

thetical existence is different from that of other environments;

• supporting propositional attitude verbs, such as "believe;" and

• separating a meta level of language that is used to talk about the language

in a nested context.

There are also several ongoing efforts to formalize notions of context. Ak

man and Surav (Akman and Surav, 1996) give an excellent overview of the

various approaches.

Contexts are clearly relevant to product modeling, since typically many

designers are involved in concurrently developing a single product. In this kind

of environment, an unintentional contextual difference can lead to disastrous

results.

The author is currently working to incorporate contexts into AIM-D. The

general approach is most similar to that of McCarthy and Buvac (McCarthy

and Buvac, 1994), wherein contexts are essentially namespaces binding terms

to semantics. Contexts can be nested, and various predicates are provided to

test the truth value of a statement in a particular context, and to "lift" terms

commonly defined in different contexts to higher, more universal contexts.

54 Knowledge lntensinve Computer Aided Design

One very important aspect of contexts in AIM-D regards the terms used to

name entity attributes. This is best illustrated with a simple example.

Consider the statements: (a) "The color o/the car is green," and (b) "Green is

a color." Linguistic idiosyncrasies aside, the term color is used in two distinct,

but related, ways: as the name of an entity attribute, and as a generalized

relation entity. It is possible to capture the relation between the various uses of

a term without recourse to linguistic constructs.

In AIM-D, the names of entity attributes are the names of relations between

entities, and are themselves terms defined in some context. This means that a

term such as color must be used consistently throughout a given context where

it is defined, and in all its sub-contexts. This is different from the approach

taken in object-oriented modeling, where the semantics of an instance variable

are consistent only across the instances of a given class. By making the

universality of attribute name definitions explicit, (semi-)automated reasoning

about attributes, and the relations they represent, is now possible.

Contexts also matter in terms of managing mereological relations. For

example, (Gerstl and Pribbenow, 1996) suggest that a primary characteristic

of item that leads to different mereological relations is whether the item is

homogeneous (having no parts), uniform (consisting of like parts only), or

heterogeneous (having various different parts). However, it depends on the

context of a particular task how a particular item will be regarded. For example,

in the context of engine assembly, an aluminum part may be regarded as a

homogeneous item; but from a context of materials engineering, aluminum is

at least uniform if not heterogeneous. Clearly, the interactions between context

and mereology still need further exploration.

3.5 SUMMARY

Ontological commitments can be regarded as decisions about the interpre

tation of statements in a given language. A variety of commitments have been

presented in this section that pertain to the description of designed products.

Clearly, significant work remains to be done; there are many other commitments

about designed products that can be found or deduced from other research ef

forts. However, to help ensure rigor, the only commitments currently part of

AIM-D are those that apparently allow a consistent logic to exist.

4. IMPLEMENTATION OF DKSL

In this section, the design and implementation of DKSL is discussed, includ

ing how the ontological commitments made thus far have been, or are being,

embedded within it. Generally, the commitments amount rules that DKSL must

satisfy in order to preserve logical rigor: no model should be representable in

DKSL if the model violates the ontological commitments.

Ontological Commitments in Knowledge-Based Design Software 55

For example, AIM-D defines sub-assemblies in terms of subsets of the

set of all parts of a product, rather than as parts of those products. This

implies that DKSL must be able to distinguish automatically between parts,

sub-assemblies, and product assemblies. Furthermore, DKSL has restrictions

on how assemblies are formed through the merging of defined sub-assemblies.

The author has not yet investigated the changes that would have to occur in

DKSL if different ontological commitments were made; this issue remains an

open one for future research.

4.1 UNDERLYING KNOWLEDGE
REPRESENTATION

The current implementation of DKSL is as a small, stand-alone program

with a text-based user interface. It is a "concept-proving" implementation, to

allow the author to study internal structures and algorithms needed to represent

and manipulate design information effectively.

SCM, an implementation of the Scheme programming language by Aubrey

Jaffer, is currently used to implement DKSL. SCM is small, robust, and true

to the IEEE standard for Scheme (IEEE, 1991); it also has a number of exten

sions that facilitate rapid software prototyping (e.g. POSIX-compliant file 110

operations).

DKSL is implemented using aframe-based KR scheme. Frame systems are

similar to object-based systems, but introduce a finer level of representation.

Object systems are based on object-attribute-value triplets: objects contain

attributes which have values. Frames, on the other hand, use frame-slot-facet

value quadruplets. Slots are composed of possibly many facets, which allows

a richer representation of attributes. Furthermore, functions called procedu

ral attachments can be associated with slot facets. These functions may be

triggered automatically or at a user's request to carry out various management

tasks such as constraint checking and inverse relation maintenance. A proce

dural attachment that fires automatically is called a demon. Generally, demons

execute in three cases: when a new value is (a) added to or (b) removed from a

slot, and (c) when a slot's value needs to be calculated rather than retrieved.

Frame systems as described above are common in KR systems such as

CLASSIC (Brachman et aI., 1991). However, the system implemented in

DKSL is substantially different from these others. These differences arise from

the ontological commitments, and are presented here.

Context-sensitivity. Conventional frame systems make no particular com

mitments about the contexts in which terms are resolved into frames. However,

DKSL supports the notion of a context as a "dictionary" mapping terms to

frames, implementing the ontological commitments regarding context sensitiv

ity (Section 3.4). Contexts in DKSL may be created by the user, and may be

56 Knowledge fntensinve Computer Aided Design

nested. A System Context contains basic definitions needed by DKSL, and a

User Context, which is a sub-context of the System Context stores user-defined

frames. Other application-specific contexts are under development. Lifting of

terms (per (McCarthy and Buvac, 1994)) is achieved by a simple comparison

of different frames with the same name in different contexts. Furthermore, a

slot is viewed as a relation having a uniform semantics over a whole context.

No Classes. There are no explicit classes or "meta-frames" in DKSL. Rather,

a prototype-based approach is used, wherein any entity can be an exemplar with

which other frames can be cloned. The use of prototypes is consistent with

the ontological commitments made in Section 3.1: AIM-D entity types are not

explicit, and neither are those in DKSL.

Inheritance through specialization. Without classes, a different kind of

inheritance mechanism is needed. Specialization of individual frames is used:

an exemplar generalizes its clones. Specialization information is used only

during frame construction; no specialization information is kept in frames. The

most important reason for this is that it allows an exemplar and its clones to

change with time without requiring complex change management to preserve

that relation beyond a frame's construction.

Calculated type compatibility. Type similarity between frames is calcu

lated as needed. Two frames are type-compatible if there are some slots in one

frame with the same names as some slots in the other frame. Since slot names

have uniform semantics in a given context, no checks are needed once a value

is added to a slot. A frame is a specialization of another if the one has at least

as many slots as the other, and if every slot in the other has a type-compatible

correspondent in the one. Generalization is just the converse of specialization.

Although this clearly imposes a heavier computational load than conven

tional type systems, it also increases the expressiveness of the language to

represent varying degrees of type similarity. For example, it is possible to

determine if one frame could be a specialization of another. This allows the

system to "guess" type compatibility of frames, which could be very useful for

exploratory algorithms such as case-based reasoning. Also, it is possible to de

velop automatically normalized abstraction hierarchies of arbitrary collections

of frames. This raises the possibility of transmitting KBs between systems

or agents in forms that are reliably re-constructible in different environments.

This kind of type-compatibility is consistent with the ontological commitments

in AIM-D.

Location and Names of Demons. DKSL supports two kinds of if - added

demons, called pre/put and post/put demons. The pre/put demons

are predicates that check the validity of the new values before they are added

to slots. If a pre /put demon fails, either a warning message is displayed and

the assignment continues, or an error is triggered and the assignment does not

occur; which of these actions occurs depends on whether the demon is hard or

Ontological Commitments in Knowledge-Based Design Sojtrvare 57

soft (discussed below). The post/put demons are run after new information

is inserted into a KB; these demons perform conventional management tasks

such as maintenance of inverse relationships.

The location of demons is standardized in DKSL, and takes advantage of

the uniform semantics rule for slots. This allows a well-defined, yet extensible

technique for searching, storing, and checking the validity of data, as well

as maintaining interrelationships between the data. Demons may be stored

in the frame that defines the semantics of a slot, in which case they will be

triggered wherever that slot is used; they may alternatively be stored in facets

of a particular instance of a slot, in which case they are only triggered for that

slot instance.

Hard and soft constraints. Demons can implement constraints on the

knowledge stored in the system. These constraints can be either hard, violation

of which causes an error to be triggered, or soft, in which case a warning

message is displayed for the user only. This distinction accounts for the

different implications of a constraint violation with regards to KB integrity.

Hard constraints preserve the basic integrity of the KB, whereas soft constraints

indicate an inconsistency in the product being modeled. Since design can be

regarded as driven by the need to eliminate such inconsistencies, it is important

to represent them differently than those arising from the KBS itself.

Partial meta-information. DKSL also allows some kinds of meta-level

information about entities to be stored. For example, one constrain the number

of values that a slot can have, and the types of values that a slot can contain

by associating exemplars representative of those types with particular facets.

This kind of information can be used by pre/put and post/put demons to

perform a variety of checks and other operations automatically.

There is other useful meta-information that could be stored, but one must be

careful when adding meta-level information to a KBS: one may create termino

logical cycles and other semantic artifacts for which even simple computations

are intractable. Work on DKSL is intentionally proceeding slowly in this

regard, so that sufficient care is taken to avoid these problems.

5. DKSL FOR ENGINEERING DESIGN

An example of a simple DKSL product model is introduced to demonstrate

its applicability. The example involves the structural and steady-state thermal

modeling of a wall. It is based on one presented in (Eastman et aI., 199Ia),

but is lacking in some details. Its use will facilitate a comparison of DKSL to

various other modeling schemes discussed in (Eastman et al., 1991a).

We begin with an overview of the model's structure; this will be followed

by a description of some of the frames needed to describe the model in DKSL,

and some of the operations possible on that model.

58 Knowledge lntensinve Computer Aided Design

5.1 STRUCTURAL MODELING CONSIDERATIONS

The reader is referred to Figure 3.3, which shows schematically a wall,

labeled with the major structural components as described below.

D

Segment

Figure 3.3 Structure of a wall.

Window (Opening)

Door

(Opening)

In order to model a wall's structure and steady-state thermal behavior, both

the geometry and composition of the wall must be considered. Since the

example only models an isolated wall, the width and height of the wall are

arbitrarily defined values. Had the model included many attached walls, width

and height would have been determined by the overall structures of which

they were a part. Wall thickness, however, depends on the wall's composition.

A wall is composed of various layers, each serving a specific purpose - load

bearing, insulation, covering, and so on. Each layer consists of a single material,

is of constant thickness, and contributes to the overall thickness of the wall.

Complex wall shapes can be described as compositions of area-wise seg

ments; a small collection of regular planar shapes can be combined to produce

quite complex geometries. Each segment is composed of layers, and all layers

in a segment have the same surface area.

Finally, a wall may contain various kinds of openings or passages. In this

model, openings lie within single wall segments and must pass entirely through

the wall. For simplicity, only windows and doors are considered. An opening

is a kind of segment: it occupies an area and may be composed of many layers

(e.g. multi-paned windows); however, openings are not allowed to contain other

openings.

5.2 STEADY-STATE THERMAL MODELING

CONSIDERATIONS

The following mathematical model of the steady-state heat behavior of a

wall is assumed. The physical relationships are drawn from (Eastman et aI.,

1991a) and a standard thermodynamics text (Reynolds and Perkins, 1977).

The steady-state heat flow through a wall is given approximately by the

following equations, where tiT is the change in temperature through the wall,

Ontological Commitments in Knowledge-Based Design Software 59

tw and Aware the thickness and area of the wall respectively, and kw is the

overall of coefficient thermal conductivity of the wall (calculated by analogy

with electrical systems). The thermal resistance of the ith layer of the wall is

by rio

1
kw =--,

Ei ri
(3.3)

5.3 DEFINITION OF WALL EXEMPLAR OBJECTS

Given this conceptual model, DKSL frames can now be constructed to

represent it. The frames defined here are simplified versions, intended to focus

only on the particular example being presented. In a "real" implementation,

many more slots and facets would be defined. All quantities are in SI units.

First, we establish a context for this application; this is shown in Figure 3.4.

The simple-walls context is defined as a sub-context of contexts for 2.5D

geometry, SI units for physical systems, and physical assemblies. Setting the

context to simple-walls ensures that all subsequent assertions are made in

that context; this information becomes persistent so that future queries to the

information defined in this context will be evaluated within it. (It is assumed

that a user intends for knowledge to be used always in the same context, unless

that knowledge is intentionally "lifted" into other contexts.) Setting the value

of coordinate-type establishes a term in the new context that will be used

by other frames related to geometry to determine the kind of coordinates to be

used in this context.

(define-context simple-walls
(2.5d-geometry
si-physical-units
physical-assemblies))

(set-context! simple-walls)
(set! coordinate-type

cartesian-coordinate-system)

Figure 3.4 A context for the example wall model.

A material exemplar is defined in Figure 3.5; for brevity, only one

necessary property, thermal conductivity, and one instance is included. Thermal

conductivity data is from (Reynolds and Perkins, 1977).

Wall layers are modeled in Figure 3.6.

A derived attribute (one whose value is calculated from other attributes)

for thermal resistance is also included. The region exemplar, defined in

60 Knowledge lntensinve Computer Aided Design

{define-frame material

{new (the-frame)

{thermal-conductivity

(watt/meter-degree 1.0))))

{define-frame glass, window

{new (material)

{thermal-conductivity

(watt/meter-degree 0.78))))

Figure 3.5 Material exemplar and instances.

the physical-attributes context, indicates that layer can take part in

region/space mereological relationships.

{define-frame layer

{new (region)

{material (new material))

{thickness (centimeter 1.0))

{thermal-resistance

{derived-from (thickness material)

{/ thickness
(material 'thermal-conductivity))))))

Figure 3.6 Layer objects.

A wall-atom frame is defined to model the kinds of properties common

to both openings and wall segments (see Figure 3.7). It too is a kind of region.

The (all layer) construct returns all slot values in the current frame that

are of type layer. The thermal-conduc ti vi ty slot models the overall

coefficient of thermal conductivity per unit area, calculated according to the

mathematical model in Section 5.2.

Now wall-atom can be used to define exemplars for openings and seg

ments (Figure 3.8). The spec({ic heat flow of an opening is the rate of heat

flow per degree of temperature difference at steady-state. Also, a distinction

is made between the solid wall area of the segment and the area of any open

ings in the segment. The specific heat flow of a segment is the sum of the

specific heat flows of the openings and of the rest of the segment. Finally,

the hea t - f I ow slot models the heat flow through a wall segment for a given

temperature difference (de I ta - t).

No geometric (shape) information has been embedded in segment and

opening; shape information will be provided when specific segments and

Ontological Commitments in Knowledge-Based Design Software 61

(define-frame wall-atom
(new (region)

(thickness
(derived-from ((layers (all layer»)

(apply + (for ((1 layers»

(1 'thickness»»)
(thermal-conductivity

(derived-from ((layers (all layer»)
(/ 1.0

(apply +
(for ((1 layers»

(1 'thermal-resistance»»»»

Figure 3.7 Atomic wall components for openings and segments.

openings are created (see below). This does not, however, prevent us from

referencing attributes such as area when defining frames so long as they are

defined by the time they are used.

The opening frame is specialized for doors and windows (Figure 3.9).

The door exemplar specializes both opening (for composition and thermal

analysis) and rectangle (for geometric characteristics). It also specializes

part, provided by the physical-assemblies context, to signify that it

can enter into a part/assembly relation (which is different from a region/space

relation). The rectangle exemplar and other geometric information is

defined in the 2 . 5d-geometry context.
The window exemplar is further specialized into one- and two-paned win

dows. Finally, two specific kinds of windows are created: a single-paned

window with a 5 millimeter pane of glass, and a double-paned window with

two 5 millimeter panes separated by a 4 millimeter air gap. Note that shape

has not yet been assigned to the window objects. The cardinali ty facet is

used to limit the number of panes in each kind of window.

The last exemplar, for the wall itself, just gathers segments (see Figure

3.10), since all the important functions for thermal analysis have been defined

elsewhere. The heat-flow slot calculates the total heat flow through a wall

for a given temperature difference. The wall enters into both part/whole and

region/space relations.

This completes the DKSL model. It is not a model of a particular wall, but

a template from which various models can be built. The model is intended to

be as general as possible, so that it may be used for other purposes that just

steady-state thermal analysis. It would have been substantially simpler had we

targetted it specifically and exclusively for thermal analysis, but it would also

have been of very limited use.

62 Knowledge Intensinve Computer Aided Design

(define-frame opening
(new (wall-atom)

(specific-heat-flow

(derived-from (thermal-conductivity area)

(* thermal-conductivity area»»)

(define-frame segment
(new (wall-atom)

(opening-area

(derived-from «openings (all opening»)

(apply + (for «0 openings»

(0 ' area)))))

(segment-area

(derived-from (area opening-area)
(- area opening-area»)

(specific-heat-flow
(derived-from «openings (all opening»

thermal-conductivity
segment-area)

(+ (apply +

(for «0 openings»
(0 'specific-heat-flow»)

(* thermal-conductivity
segment-area))))

(heat-flow
(derived-from (specific-heat-flow)

(using (delta-t»

(* specific-heat-flow delta-t»»)

Figure 3.8 Exemplar for wall openings and segments.

Ontological Commitments in Knowledge-Based Design Software 63

(define-frame door
(new (part opening rectangle)

(layer (new layer))))

(define-frame pane
(new (part layer)

(material glass,window)))

(define-frame window
(new (part opening)

(pane (new pane))))

(define-frame window,lpane
(new (window)

(pane cardinality 1)))

(define-frame window,2pane
(new (window)

(pane cardinality 2)
(gap (new (layer) (material air»»)

(define-frame window,lpane,5
(new (window,lpane)

(pane (thickness (centimeter 0.5»»)

(define-frame window,2pane,5-4-5
(new (window,2pane)

(pane (new (layer)
(thickness (centimeter 0.5»)

(new (layer)

(thickness (centimeter 0.5»»
(gap (thickness (centimeter 0.4»»)

Figure 3.9 Exemplars for doors and windows.

64 Knowledge Intensinve Computer Aided Design

(define-frame wall

(new (part region)

(segment (new (segment)))

(area
(derived-from ((segments

(all parts segment)))

(apply + (for ((s segments))

(s ' area)))))

(opening-area
(derived-from ((segments

(all parts segment)))

(apply + (for ((s segments))

(s 'opening-area)))))
(heat-flow

(derived-from ((segments
(all parts segment)))

(using (delta-t))
(* (apply +

(for ((s segments))
(s 'specific-heat-flow)))

delta-t)))))

Figure 3.10 Exemplar for walls.

Ontological Commitments in Knowledge-Based Design Software 65

The goals for developing the model this way are: (a) for demonstration

purposes, to showcase the flexibility of DKSL, and (b) to define a model that

is not necessarily restricted to thermal analyses only.

5.4 USAGE OF THE WALL MODEL

This section defines a particular wall and calculates the heat flow through it.

The sample wall (Figure 3.11); consists of two segments, a large rectangular

segment with a door and a window, and a triangular segment with no openings.

Figure 3.12 defines the necessary segment and wall frames.

-EE:::..----- Segment 2

DooEE-I-- Window

Door _____ r-~~ -EE:::..----- Segment 1

Figure 3.11 Geometry of sample wall.

Figure 3.13 shows three messages sent to the wall w, and the values that

are returned. The third message returns the heat flow through the wall for a

temperature difference of 20 degrees.

The specific wall model defined here contains all the information needed

for a preliminary thermal analysis, even though the geometric relationships

between the components have not yet been specified. For example, the door

and window have not been positioned in segmentl; nor have the segments

been positioned with respect to each other. The operations to do this are shown

in Figure 3.14. The forms in the figure take advantage of methods defined in

the 2 . 5d-geornetry context that translate and scale objects.

Topological relations, such as the physical connection between wall seg

ments, are not yet supported by DKSL. These kind of relations are currently a

topic of study of the author.

Let us say that too much heat was being lost through the wall as defined

above. One alternative is to change the single-paned window to a double-paned

window. This is shown in Figure 3.15. We find that a double-paned window

improves the overall thermal insulation of the wall.

66 Knowledge lntensinve Computer Aided Design

(define-frame segment1

(new (segment rectangle)

(width (meter 4.0))

(height (meter 2.5))

(door (new (door)

(layer (material wood, pine, white)

(thickness (meter 0.06)))

(width (meter 1.0))

(height (meter 2.0))))

(window (new (window,lpane,5 rectangle)

(width (meter 1.0))

(height (meter 0.5))))
(outer (new (layer)

(material brick, face)

(thickness (meter 0.1))))

(core (new (layer)

(material wool, rock)

(thickness (meter 0.1))))

(inner (new (layer)

(material plaster, gypsum)

(thickness (meter 0.01))))))

(define-frame segment2
(new (segment triangle)

(width (meter 4.0))
(height (meter 1.5))

(outer-face (new (layer)
(material wood,pine,white)
(thickness (meter 0.005))))

(outer (new (layer)
(material brick, common)

(thickness (meter 0.1))))

(core (new (layer)

(material wool, rock)

(thickness (meter 0.1))))

(inner (new (layer)

(define-frame w

(new (wall)

(material wood, pine, yellow)

(thickness (meter 0.005))))))

(segments segment1 segment2)))

Figure 3.12 Synthesis of sample wall.

Ontological Commitments in Knowledge-Based Design Software 67

(w ' area)
(w 'opening-area)

(w 'heat-flow 20)

~ 13
~ 2.5

~ 1712.554

Figure 3.13 Queries and actions for the sample wall.

iii position window and door within segment 1.
(((w 'sl) 'wdw) translate 0.75 1.5 0)

(((w 'sl) 'door) translate 2 0 0)

iii position segment 2 with respect
iii to segment 1 in the wall.
(((w 's2) 'scale 0 -1 0) 'translate 4 2.5 0)

Figure 3.14 Positioning objects in the sample wall.

((w ' sl) 'wdw (combine ((w ' sl) 'wdw)

Wdw,2Pane,5-4-5))

(w 'heat-flow 20) ~ 213.065

Figure 3.15 Altering the window.

The combine form creates a new frame that is a clone of its first argu

ment (the window in segment1) with any extra slots in its other arguments

(wdw, 2pane, 5-4-5 in this case). The resulting window has the same posi

tion and orientation as the original window, but will have two panes instead of

one.

We close this section with two examples of assertions (see Figure 3.16),

which can be regarded either as constraints on data, or as the statement offacts

from which reasoning may then proceed. The first assertion may be read as

"For all segments in wall w, the heat flow through the segment for a temperature

difference of 20 degrees is less than 300". Similarly, the second example may

be read as "There exists at least one door in wallw". The forall and exists

constructs correspond to the two logical quantifiers in propositional logic.

5.5 EVALUATION OF DKSL

Only a preliminary evaluation of DKSL is possible at this time, since it is

still under development. However, it appears that DKSL has the potential to

compare favorably to other approaches.

68 Knowledge lntensinve Computer Aided Design

(forall s (all w segment)

« (s 'heat-flow 20) 300))

(exists p (all w part)

(is-a? p door))

Figure 3.16 1\vo examples of assertions.

Table 3.3 Evaluation criteria of Eastman and Fereshetian

full abstract data types multiple specializations

composite objects relations within compositions

relations on object structure relations between variables

variant relations defined operationally variant relations

external applications integrity mgmt management of partial integrity

schema evolution refinement versus classes/instances

Currently, the author uses the criteria established by Eastman and Fereshetian

(Eastman and Fereshetian, 1994) to evaluate DKSL; they are summarized in

Table 3.3. These criteria were established to compare data models rather than

KR schemes, so some mismatches are expected. In particular, the external

applications integrity management criterion is inappropriate for DKSL. Also,

there are other efforts to establish criteria (such as Ward's criteria of precision,

density, and naturalness (Ward, 1992» that are worth pursuing. The author

is currently working towards a set of criteria for KR systems that incorporate

these efforts and others.

Abstract data types are supported in that (a) frame interfaces are imple

mentation independent, (b) the type comparison predicates operate uniformly

on all frames, and (c) frame behavior is specified via methods. Multiple

specializations (without name-clash resolution) and composite frames are ob

viously supported. Since compositions are inherent to DKSL, relations both

within compositions and on object structure are supported. Relations between

variables can also be represented, but due to the strictly representational na

ture of DKSL, the dynamics of manipulating those relations are not treated.

Nonetheless, a user is free to develop Scheme procedures that use the relational

information for any purpose.

DKSL is deficient with respect to the last three criteria: variant relations,

schema evolution, and management of partial integrity. Since DKSL is in-

Ontological Commitments in Knowledge-Based Design SofMare 69

tended to be representational only, it does not directly support the active, dy

namic management of the information it represents. In real design situations,

the management of change, of which these three criteria are all examples, is

essential. But before these issues can be addressed, the author must generate

suitable theory to supplement the current formal underpinnings of DKSL; this

is a point of on-going research.

6. FUTURE WORK

There are many aspects of DKSL and its underlying ontological commit

ments that remain to be explored. This section mentions a few of the more

important ones.

Only the ontological commitments made by AIM-D are currently supported

by a formalization. Other commitments mentioned in this paper are currently

the subject of formalization efforts by the author. It is unclear that DKSL will

not require alteration as those formalizations are achieved.

DKSL currently only advises the user about violated constraints that do not

jeopardize the integrity of the KB. However, it is exactly the need to resolve such

constraints that drives design processes. Therefore, some way of representing

the status of constraints must be added to DKSL.

Function modeling has not been incorporated into DKSL yet.

Although an algorithm for automatic categorization of DKSL entities has

been devised, it is of little usefulness in "real" application domains. Automatic

categorization allows a user to develop DKSL models in isolation, yet allows

the system to normalize those models with respect to other contexts. This

removes the onus from the user to understand fully the potentially extensive

libraries that may be available, yet still allows the system to take advantage

of them to organize design knowledge. Automatic categorization may also be

very relevant to certain reasoning systems, such as case-based reasoning, in

that it facilitates comparing user-provided entities to case libraries.

The user interface to DKSL clearly needs to be made substantially more

usable by people unfamiliar with Scheme or Lisp. Currently, the author is

considering a combined graphical/textual interface written in Java to take ad

vantage of web-based functionality. The use of Java is also expected to bear

on the ability to distribute DKSL entities on the Internet. Comparatively little

work has been done in this regard so far, but it seems clear that substantial

performance and functionality improvements may be possible.

7. CONCLUSIONS

This paper has presented a progress report on the author's efforts to construct

a KBS for engineered products that is rooted in logical foundations. Various

70 Knowledge Intensinve Computer Aided Design

ontological commitments have been suggested. These commitments are nec

essary to establish a fundamental basis for the development of the system.

An overview of the Design Knowledge Specification Language (DKSL) has

also been presented. Though still under development, DKSL appears to provide

a sufficiently rich representational form for product knowledge can be stored so

as to be useful in design, analysis, and even manufacturing areas. Significant

work remains to be done to more fully demonstrate the system's adequacy, and

to provide an interface that is useful to typical practicing designers. However,

the author believes that, based on the contents of the paper, there is reason to

be optimistic that these goals can be achieved.

Acknowledgments

The author gratefully acknowledges the National Sciences and Engineering Research Council

of Canada for funding this work under grant number OGPO 194236.

Notes

1. The name ZF comes from its originators, Zermelo and Fraenkel.

References

Akman, V. and Surav, M. (1996). Steps toward formalizing context. AI Maga

zine, 17(3):55-72.

Alberts, L. K. (1994). Ymir: A sharable ontology for the formal representation

of engineering design knowledge. In Gero, J. S. and Tyugu, E., editors, For

mal Design Methods for CAD, IFIP Transactions, pages 3-32, Amsterdam.

North Holland.

Artale, A., Franconi, E., and Guarino, N. (1996a). Open problems with part

whole relations. In Proceedings of 1996 International Workshop on Descrip

tion Logics, pages 70-73, Boston, MA.

Artale, A., Franconi, E., Guarino, N., and Pazzi, L. (1996b). Part-whole relations

in object-centered systems: An overview. Data and Knowledge Engineering,

20:347-383.

Bemays, P. (1968). Axiomatic Set Theory. North-Holland Publishing Company,

Amsterdam.

Borgo, S., Guarino, N., and Masolo, C. (1996). A pointless theory of space

based on strong connection and congruence. In Aiello, L. C. and Doyle,

J., editors, Principles of Knowledge Representation and Reasoning - KR96.

Morgan Kaufmann.

Brachman, R. J., McGuinness, D. L., Patel-Schneider, P. F., and Resnick, L.

(1991). LIVING WITH CLASSIC: When and How to Use a KL-ONE-Like

Language, chapter 14, pages 401-456. Morgan Kaufmann Series in Repre

sentation and Reasoning. Morgan Kaufmann Publishers, Inc., San Mateo.

Ontological Commitments in Knowledge-Based Design Software 71

Chakrabarti, A. (1993). Towards a theory for functional reasoning in design.

In Roozenburg, N. F. M., editor, Proceedings of ICED 93, 9th International

Conference on Engineering Design, volume 1, pages 1-8, Zurich, Switzer

land. Heurista.

Chittaro, L., Tasso, C., and Toppano, E. (1994). Putting functional knowledge

on firmer ground. Applied Artificial Intelligence, 8:239-258.

Copi, I. M. (1979). Symbolic Logic. Macmillan.

Damasio, A. R. and Damasio, H. (1992). Brain and language. Scientific Amer

ican, 267(3):89-95.

Eastman, C. M., Bond, A. H., and Chase, S. C. (1991a). Application and

evaluation of an engineering data model. Research in Engineering Design,

2:185-207.

Eastman, C. M., Bond, A. H., and Chase, S. C. (1991b). A formal approach for

product model information. Research in Engineering Design, 2:65-80.

Eastman, C. M. and Fereshetian, N. (1994). Information models for use in

product design: a comparison. Computer-Aided Design, 26(7):551-572.

Genesereth, M. R. and Fikes, R. E. (1992). Knowledge interchange format ref

erence manual, version 3.0. Technical Report Logic-92-1, Computer Science

Department, Stanford University, Stanford, California.

Gerstl, P. and Pribbenow, S. (1996). A conceptual theory of part-whole relations

and its applications. Data and Knowledge Engineering, 20:305-322.

Gruber, T. R. (1992). Ontolingua: A mechanism to support portable ontolo

gies. Technical report, Knowledge Systems Laboratory, Stanford University,

Stanford, tA.
Guarino, N., Carrara, M., and Giaretta, P. (1994). Formalizing ontological

commitments. In Proceedings of the 12th National Conference on Artificial

Intelligence, volume 1, pages 560-568, Seattle, WA, USA. AAAI Press.

Hakim, M. M. and James H. Garrett, J. (1993). A description logic approach

for representing engineering design standards. Engineering with Computers,

9(2): 108-124.

Hurst, T. N. (1991). Automated model generation using the kif declarative lan

guage. In Gupta, G. and Shoup, T. E., editors, Proceedings of the 1991 ASME

Computers in Engineering Conference, pages 137-144. ASME, American

Society of Mechanical Engineers.

IEEE (1991). Ieee standard for the scheme programming language. IEEE Std

1178-1990. Institute of Electrical and Electronic Engineers.

Jaynes, J. (1976). The Origin of Consciousness in the Breakdown of the Bicam

eral Mind. University of Toronto Press.

Johnson, R. E. and Zweig, 1. M. (1991). Delegation in c++. Journal of Object

Oriented Programming, 4(7):31-34.

72 Knowledge Intensinve Computer Aided Design

McCarthy, J. and Buvac, S. (1994). Formalizing context (expanded notes).

Technical Note STAN-CS-TN-94-13, Computer Science Department, Stan

ford University, Stanford, CA.

Qian, L. and Gero, S. (1996). Function-behavior-structure paths and their role in

analogy-based design. Artificial Intelligence for Engineering Design, Anal

ysis and Manufacturing, lO:289-312.

Reynolds, W. C. and Perkins, H. C. (1977). Engineering Thermodynamics.

McGraw-Hill.

Salustri, F. A. (1996). A formal theory for knowledge-based product model

representation. In Knowledge-Intensive CAD II: proceedings of the IFIP

WG 5.2 workshop. Chapman & Hall.

Simons, P. (1987). Parts, A Study in Ontology. Clarendon Press, Oxford.

Sowa, J. (1992). Discussions about kif and related issues. Interlingua Mailing

List, 20 July.

Srzednicki, J. T. 1., Rickey, V. F., and Czelakowski, J., editors (1984). Lesniewski's

Systems: Ontology and Mereology. Nijhoff International Philosophy Series

13. Martinus Nijhoff Publishers, The Hague.

Sturges, R. H., O'Shaughnessy, K., and Kilani, M. I. (1996). Computational

model for conceptual design based on extended function logic. Artificial

Intelligence for Engineering Design, Analysis and Manufacturing, 10:255-

274.

Umeda, Y., Ishii, M., Yoshioka, M., Shimomura, Y., and Tomiyama, T. (1996).

Supporting conceptual design based on the function-behavior-state modeler.

Artificial Intelligence for Engineering Design, Analysis and Manufacturing,

lO:275-288.

Ward, A. C. (1992). Some language-based approaches to concurrent engineer

ing. International Journal of Systems Automation: Research and Applica

tions, 2(4):335-351.

Winston, M. E., Chaffin, R., and Herrmann, D. (1987). A taxonomy of part

whole relations. Cognitive Science, 11 :417--444.

