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Abstract: The increased sensitivity of engineered products to external forces requires new 

computer-based design tools that can express the richness and complexity of 

product knowledge. This paper is a progress report of the author's research 

towards the development of such a knowledge-based design tool, called the 

Design Knowledge Specification Language (DKSL). A key goal is to ensure the 

maximum possible logical rigor. In order to do this, ontological commitments 

are constructed to map logical structures to the domain of design knowledge. 

The first part of the paper discusses a number of ontological commitments the 

author has discovered for design. The second part of the paper presents the 

current, incomplete implementation of D KSL. An example of the structural and 

steady-state thermal analysis of a wall is used to present DKSL's capabilities. 

Although much work remains to be done, it appears that DKSL may be able to 

accurately and rigorously describe any design knowledge. 

1. INTRODUCTION 

As engineered products and engineering processes become more sensitive 

to economic, social, and technological forces, CAE tools must be made to 

express the richness and complexity of the information used in engineering 

environments. To treat the complexity, CAE systems are moving towards a 

knowledge-based approach, that is distributed transparently over intranets and 
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the Internet. One of the author's on-going research projects is the design 

and implementation of a network-centric knowledge-based system (KBS) for 

engineering design applications. 

There are many other research efforts aiming at the same or similar goals. 

For general knowledge representation (KR) applications, KIF, Onto lingua, and 

KQML (Genesereth and Fikes, 1992; Gruber, 1992), developed at Stanford 

University, and the KL-ONE family of languages (Brachman et aI., 1991) are 

the most well-developed. These are very large systems able to represent general 

knowledge in a number of domains. In engineering domains, KIF has found 

some applications (Hurst, 1991; Hakim and James H. Garrett, 1993). Systems 

specific to engineering have also been developed (Alberts, 1994; Eastman et al., 

1991b). 

In the author's view, there are two problems with these approaches. Those 

efforts aimed at general KR (such as KIF) have to manage "common sense" 

knowledge, which is substantially different than the technical knowledge typical 

in engineering environments. On the other hand, those efforts specific to 

engineering tend to have relatively informal foundations. The author believes 

that it is possible to develop logical systems for CAE tools that are more rigorous 

than those currently available, yet are targeted specifically to engineering. The 

key to achieving this is in developing a proper set of ontological commitments, 

which formalize the correspondence between logical structures and the domain 

of engineering design. 

This paper gives an overview of the current status of the project, starting 

with a discussion of the ontological commitments that have been established to 

date. The second part ofthe paper covers the implementation of DKSL (Design 

Knowledge Specification Language), which embeds those commitments in a 

frame-based KR system. 

2. BACKGROUND 

The author's research involves the development of logical theories of the 

various aspects of engineering design. The author's current focus is in the 

development of a language for the description of products. In the previous KIC 

workshop, the author presented a formal theory of product description, called 

AIM-D (Salustri, 1996). This paper will discuss the ongoing development of 

a specification language, DKSL, which implements AIM-D in the form of a 

programming language environment with knowledge base (KB) capabilities. 

Because D KSL depends on AIM -D, a brief summary of the theory is presented 

here. 

AIM-D is an interpretation of Zpl axiomatic set theory (Copi, 1979). Set 

theory is a basic tool of logic, used in fields like number theory to prove the 

existence of the integers (Bernays, 1968). Though its validity is not provable 
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due to Godel's Theorems, it is quite robust - robust enough, the author contends, 

to provide a degree of rigor for design theories that has heretofore been lacking. 

Specifically, AIM-D uses the ZFaxioms to define formally the information 

needed to model products. Currently, AIM-D covers quantities, features, parts, 

and assemblies, as well as sub-assemblies and systems, and types of all these 

entities. It does so by imposing a fixed semantics on the ZFaxioms. This 

kind of interpretation amounts to making ontological commitments about the 

nature of designed products. Insofar as the author is ultimately interested in 

implementing a KBS for designed products, it is not so much the axioms as the 

ontological commitments that must be embedded in the KBS; the axiomatic 

theory demonstrates the (degree of) validity and rigor. 

In closing, there are two particular points of interest about AIM-D that are 

noteworthy here. First, not all the axioms of ZF were used in developing AIM

D. This opens the interesting possibility that there is a logic, simpler than set 

theory and perhaps even demonstrably valid, that may be sufficient for design 

purposes. 

The second point regards the ease with which ZF can formalize otherwise 

intuitive notions universal to design, leading to more robust computable al

gorithms. For example, the ZFAxiom of Foundation limits the notion of a 

set to those entities for which set membership is antisymmetric. That is, if A 

contains a set B, then A can only be a set if B does not contain A. This has 

a clear correspondence to the intuition that an assembly a cannot have b as a 

subassembly if b already contains a as a subassembly. 

3. ONTOLOGICAL COMMITMENTS 

An ontological commitment is a mapping between a language and a structure 

that systematically axiomatizes the forms and modes of being in a domain; this 

allows only certain intended meanings of models to be captured (Guarino 

et al., 1994). In other words, an ontological commitment is a decision to 

adhere to a certain interpretation of a language in a some domain; it is a 

mechanism to help ensure that a given model written in a given language 

communicates exactly and only what was intended by the model developer. For 

example, mathematical algebra includes ontological commitments regarding 

what variables such as x and y mean, what operators such as + do, etc. 

Meaning can be ascribed to algebraic statements only when there is agreement 

on its underlying ontological commitments. Similarly, in design, there exist 

ontological commitments regarding the meaning of the various symbols used 

in blueprints. The meaning of the blueprint is lost if ontological commitments 

are missing or inconsistent. 

The general problem of KR is that it admits a domain so broad that it is 

considered inappropriate to make ontological commitments about it. This is 
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especially difficult in representing "common sense" knowledge held by the 

average individual, which is often incomplete, inconsistent, or even incorrect. 

This means that such KR systems must be able to treat the incompleteness, 

inconsistencies, and outright errors, which in turn greatly complicates the 

whole problem. 

On the other hand, in the highly technical and relatively restricted domain 

of engineering design, we strive to minimize these problems. Here, some 

ontological commitments can be used as simplifying assumptions to improve 

the robustness, complexity, and computability of knowledge representations of 

designed products. 

Though this occurs at the expense of expressiveness, a restricted solution 

today is in some ways better than the promise of a more general solution 

tomorrow; also, such a solution for design may provide a stepping stone to more 

general solutions by providing experience needed to develop more powerful 

KBSs in the future. 

In developing any KBS, some ontological commitments must be made to 

limit the models possible in the system to only those models intended by the 

developers of the models and the users of the KBS. Often, these commitments 

are only implied, opening the possibility of misinterpretation. A fundamental 

goal of the author's work is to find the basic ontological commitments needed 

to define product models. To this end, the ontological commitments made in 

the development of DKSL are discussed in this section. So far, only some arise 

directly from AIM-D, which is a work-in-progress; some other, more tentative 

commitments must be made to allow continued development of DKSL while 

the theory is being developed. These other commitments deal specifically 

with modeling aspects of product function, of the various kinds of part-whole 

relationship (mereology), and of contexts. 

3.1 COMMITMENTS ARISING FROM AIM-D 

AIM -D maps ZF set theory to the domain of product modeling via ontological 

commitments that constrain DKSL. These ontological commitments result in 

a hierarchy of fundamental types. At the most primitive level are quantities, 

which are tuples of a value and a dimensional metric; 5 ft, 100 N are examples 

of quantities. A feature defines a geometrically and functionally relevant 

entity that is not necessarily realizable (e.g. a hole, or a fillet); features are 

compositions of interrelated quantities. Parts are aggregates of interrelated 

features, that are realizable through non-assembly manufacturing processes 

(casting, machining, etc.). Finally, an assembly is an aggregate of interrelated 

parts that are realizable only through assembly processes. These four domains 

of entities are disjoint, and are fundamental for product modeling because each 

domain covers a unique and distinctive class of entity in a designed product. 
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Additionally, AIM-D supports the concepts of both sub-assemblies and sys

tems, but as entity domains existing outside the hierarchy described above. 

While sub-assemblies are essential conceptual entities in any design or man

ufacturing process, the author does not believe they constitute "real-world" 

entities. For example, an automobile engine may be considered an assembly 

by the engineers that design the engine, but as a subassembly by the engi

neers that design the whole automobile. But whether the engine is actually 

in an automobile (i.e. a subassembly) or not (i.e. an assembly) does nothing 

to alter the essential nature of the engine. If the notion of subassembly is 

context-dependent, then it cannot be fundamental to AIM-D, which is intended 

to capture the essential nature of the product. Thus, assemblies in AIM-D are 

composed of manufactured (non-assembled) parts; sub-assemblies are useful, 

perhaps even essential, constructs for both designing and manufacturing pro

cesses, but are only ancillary with respect to description of products as real 

objects. 

This approach contradicts the relatively common intuition exemplified by 

statements such as "The automobile is an assembly of the following sub

assemblies . .. ", which suggests that sub-assemblies have a substantive nature. 

However, once assembled, the distinction between sub-assemblies disappears 

without prior knowledge of the assembly process. This argument should not 

be taken as one diminishing the importance of sub-assemblies in engineering; 

it is intended only to distinguish the notion of subassembly as an artificial one, 

and to incorporate and formalize that distinction into AIM-D. 

The more generic notion of a system is also formalized in AIM-D, due 

to its relevance in engineering. But, as with sub-assemblies, systems are 

ancillary. Indeed, it was found during the development of AIM-D that the 

only substantive difference between sub-assemblies and subsystems was that 

system components need not be in direct contact with each other, whereas 

direct contact is required for sub-assemblies; otherwise, the formalizations for 

systems and for assemblies are the same. 

Another aspect of the ontological commitments of AIM-D regards the rep

resentation of type information. An extremely popular commitment is to the 

existence of explicit classes (as in object-oriented languages) or concepts (as 

in description logics such as CLASSIC). Classes and concepts are meta-level 

information units; this raises issues of reflection and its computational coun

terpart, recursion. 

While there are modeling problems that can be solved efficiently with classes, 

there is also evidence that the human mind works more "by example" than by 

abstraction (Jaynes, 1976; Damasio and Damasio, 1992), and that design is one 

area where the generally accepted semantics of classes and types can impede 

the development of accurate, flexible, and robust models (Johnson and Zweig, 

1991; Eastman and Fereshetian, 1994). For example, there is a tendency in 
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automotive engineering to regard a blueprint of an automobile as a model of a 

typical automobile and not as the set or class of automobiles of a certain make 

and model. Also, the tolerancing of dimensions can be viewed as the definition 

of a "vaguely" defined prototype: any item whose dimensions fit within the 

limits described by the tolerances can be thought of as a specific version of 

the more general prototype. That is, designers tend to use an exemplar-based, 

rather than a class-based, approach to model products. In keeping with this 

observation, AIM-D admits no notion of class or concept, but rather uses the 

notion of an exemplar, an entity typical of items in a collection. Collections 

themselves exist only intentionally. (It is noted that it is possible to develop 

class-based systems from prototype-based ones.) 

In order to structure collections of entities, AIM-D uses notions of gen

eralization of entity attributes. Generalization occurs in AIM-D by ignoring 

certain aspects of entity attributes. Specifically, three kinds of generalization 

are defined within AIM-D: ignoring whole attributes, ignoring the values of 

attributes, and ignoring the number of values of attributes. 

3.2 COMMITMENTS DUE TO PRODUCT FUNCTION 
AND BEHAVIOR 

There is a difference of opinion in the research community regarding the 

meaning function and behavior; no standardized, consistent model of these 

terms exists. Some researchers consider function as a description of the actions 

a product can perform (e.g. (Qian and Gero, 1996», while others treat it as a 

description of a subset of behaviors (i.e. intended behavior or "purpose", as in 

(Sturges et aI., 1996». Various other definitions are given in (Chittaro et aI., 

1994; Chakrabarti, 1993). 

The current author defines behavior as the response of a system to predefined 

inputs which are not necessarily quantified; it describes the role played by a 

product in a larger system. The behavioral perspective takes the product being 

designed to be a "black box" whose internal function is not visible (or even 

known); the inputs, outputs, and operational environment of the product, on the 

other hand, are "transparent" (see Figure 3.2b). Insofar as behavior describes 

the response of a product, it is seen as answering the question "What does the 

product do?" Behavior is described without commitment to the form of the 

product. 

Function, on the other hand, is a description of how a product works rather 

than what it does (Figure 3.2a), where the environment is now opaque, and the 

product is "transparent," and is composed of a series of black box subsystems 

whose interaction describes how the product comes to exhibit a certain behavior, 

but without necessarily making commitments about product form. 
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Environment 

Input Output 

Figure 3.la Example of the functional per

spective. 

Figure 3.1 b Example of the behavioral per

spective. 

These perspectives are meant to demark the different kinds of tasks that can 

be performed with functionallbehavioral information. At the behavioral level, 

design is systems-based, concerned with identifying functional requirements 

to be met by a product. At the functional level, on the other hand, design 

consists of a configuring components and their interrelationships. So-called 

"top-down" design proceeds by alternating between behavioral and functional 

perspectives at ever increasing levels of details. Identifying these perspectives 

is used below to demonstrate that behavioral and functional descriptions are 

essentially the same; they are just viewed in different contexts. 

It is noted here that the definitions of function and behavior adopted by 

the other are the opposite of those commonly used in the literature. While 

the need for terminological consistency is aknowledged, the author believes his 

definitions are more in keeping with those conventionally implied by practicing 

engineers. In any event, it matters little in the long run since the distinction 

between function and behavior is shown (below) to be an artificial one only. 

In order to explore this matter further, consider the following three state

ments: 

1. The refrigerator keeps food cold. 

2. The refrigerator keeps things cold. 

3. The refrigerator preserves food. 

Any of these statements in isolation can be considered a behavior of a 

refrigerator. If statement I is considered a behavior, then we may ask How is 

this behavior achieved? The answer involves the functions of a refrigerator 

(isolating a region of space, transferring heat from that space by some means, 

etc.). However, we may also ask Why does the refrigerator keep food cold? 

One answer to this question is statement 3. Now, considering statements 1 and 

3 together, statement 1 is afunction rather than a behavior. Thus ,whether the 

statements are taken as functional or behavioral, context plays a crucial role 
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in (a) providing terminological information about the words appearing in the 

statements, and (b) implying information about the operating environment. For 

example, in statement 1, the terms "cold" and "keeps" are relative to the context 

of refrigerators. 

Function and behavior are thus relative to the reference frame of an agent 

making assertions about a product; that is, they are not intrinsic properties of 

designed products. Nonetheless, functional and behavioral information about 

a product is very important, especially during the product's design. Therefore 

it is essential that it be representable in the author's system. 

It is often possible to represent both functions and behaviors in single nat

ural language clauses that seem quite intuitive to humans (e.g. " ... to support 

a load in bending .... "); both behavior ("to support a load") and function ("in 

bending") are intimately connected in a single phrase. The fact that both the be

havior and function can be described in a single natural language statement only 

obscures their distinction. This constitutes, in the author's opinion, a signifi

cant problem with the use of natural language, or any other informal language, 

to precisely define the nature of designed products. Natural language is used 

herein only for expository purposes; the author intends this research to lead 

eventually to a more formal specification of functionallbehavioral information. 

In order to avoid this confusion while maintaining a sense of connection 

between them, the author uses the term predicative description to include both 

function and behavior descriptions. This term captures the sense of activity, as 

well as the complexity of the concepts. 

The basic relation that connects function and behavior is the "how/why" 

relation: given a function, the why relation describes its behavior; and given 

a behavior, the how relation describes the function that results in it. The 

how/why relations are disjoint and intransitive with other relations, particularly 

with respect specialization. In figure 3.2 four predicative statements about a 

refrigerator are given, and both the how/why and specialization/generalization 

relations are shown. It may be argued that the why relation is a kind of 

generalization: in comparing statements 1 and 3 in the figure, it is sensible to 

think of "preserving food" as a generalization of "keeping food cold". But this 

is a generalization based on the intent the statement as a whole, rather than one 

associated with the components of the statements. A similar argument can be 

made about the specialization and how relations. The key differences between 

function and behavior in the author's work can be summarized as in the table 

in Table 3.1. 

Predicative descriptions are complex in that their expression tends to be 

formed as predicate clauses consisting of verb/object pairs (VOPs). That is, 

they describe actions performed by an entity upon some other entity, indepen

dent of the phrasing in natural language. 
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why 

1) The refrigerator keeps food cold "'E~----"- 3) The refrigerator preserves food 

ge=""~l j """"""" how g~""li"'l j ,,,,,ci~i'" 
why 

2) The refrigerator keeps things cold "'E~----"'- 4) The refrigerator preserves things 

how 

Figure 3.2 Example of abstraction of predicative descriptions. Numbered statements are 

assertions about a product. Labeled arrows indicate predicative and taxonomic relations between 

assertions. 

This apparent verb/object structure of both functions and behaviors has been 

used as the root of various formalizations, such as in (Umeda et aI., 1996); the 

current author also employs this approach. Consider again the statements in 

Figure 3.2: statements I and 3 are related through how/why relations. Statement 

2 is related to statement 1 by generalization on the object of the YOP. A similar 

generalization carried out on statement 2 (yielding statement 4) is virtually 

meaningless. The author believes that generalizations will not generally transfer 

through how/why relations; in other words, abstraction relations and predicative 

relations are not transitive. Also, that the abstraction occurred only on the object 

part of the YOP suggests that in the general case, abstraction can occur on either 

the verb or the object parts independently. 

Table 3.1 Differences between Function and Behavior 

Behavior Function 

role-dependent operational 

goal-oriented process-oriented 

what a system does how a system does it 

based on purpose/usage based on physical properties 

The key to abstraction of predicative relations is the verb part of the YOPs. 

But since a YOP can be both a functional and a behavioral description (depend

ing on the context), any generalization rules for the verb parts of YOPs must 

be based on the definition of the verb term itself rather than on its functional or 

behavioral connotations. 

Finally, these definitions of function and behavior deal only with the reactions 

expected of products for given sets of inputs; that is, no notion of intended, or 

designed-in, function or behavior, or of purpose is implied. 
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3.3 COMMITMENTS DUE TO MEREOLOGY 

Mereology is a branch of logic that uses part-whole relationships to de

scribe entities. For example, in a conventional ontology, one might model 

an automobile as having the property of having four wheels; in a mereologi

cal perspective, a relation is defined between the automobile and the wheels 

themselves. Obviously, in engineering design, both the conventional and the 

mereological approaches are relevant. Surprisingly, little work appears in the 

recent literature outside Europe on mereology in AI, and there is almost no 

work on mereology as such in the engineering literature. 

The basic problem of mereology as a field of study is that there appear to be 

various, often inconsistent, semantics associated with the term "part of". For 

example, consider the following three statements. 

1. A piston is a part of an engine. 

2. An engine is a part of an automobile. 

3. An automobile is a part of a fleet. 

Each statement, on its own, is perfectly reasonable. Furthermore, from the 

first two statements, we can reasonably deduce that "A piston is a part of an 

automobile." But from all three statements, can we reasonably deduce that 

"A piston is a part of a fleet"? The problem is that there are two different 

meanings of the term "part of," and that transitivity is not preserved between 

them. Mereology's main concern is establishing an overall structure to reason 

reliably with all the possible part-whole relationships. 

There appear to be two schools of thought regarding the treatment of mere

ology. One school advocates a single, universal, and transitive part-of relation, 

based on the assumption that all distinctions about types of parts are really 

conceptualizations and are not rooted in reality. In order to address the para

doxes that result, first-order predicate calculus is used to introduce sufficient 

predicates to distinguish between kinds things. This approach is taken by the 

developers of Onto lingua and KIF (Gruber, 1992) and the logics of Lesniewski 

(Srzednicki et aI., 1984). 

The other school of thought contends the cognitive distinctions must be 

represented; in other words, a proper mereology must handle the transitivity 

problem directly by admitting distinctions between different part-of relations. 

This approach is supported by the work of Artale et ai. (Artale et aI., 1996b; 

Artale et aI., 1996a) and Simons (Simons, 1987). In this approach, different 

part-of relations are explicitly defined to handle different conceptualizations 

(e.g. assembly/component versus space/region), and transitivity is not preserved 

across them. Also, the part-of relation is seen as complex, rather than primitive, 

which requires the development of specialized logics that integrate mereology 

with topology and morphology as in, for example, (Borgo et aI., 1996). 
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A fundamental problem with this approach is that there is no way to enu

merate all the different "primitive" part-of relations. For example, in (Winston 

et al., 1987) six primitive part-ofrelations are defined; they are summarized in 

Table 3.2. It has been shown «Artale et al., 1996b)) that (a) it is impossible to 

decide if these constitute a complete set of part-of primitive relations, and (b) 

some of these relations (such as stuff/object) are more linguistic artifacts than 

actual cognitive or other constructs of knowledge. 

Table 3.2 Summary of part-of relations in (Winston et aI., 1987). 

RELATION EXAMPLE 

component/integral-object "wheels are parts of cars" 

member/collection "a product is part of a batch" 

portion/mass "3 ft. of stock rod" 

stuff/object "a car is partly aluminum" 

feature/activity "grasping is part of carrying" 

place/area "the front of the car" 

Rather than siding with one school or the other, the author proposes a new 

mereological framework, wherein the part-of relation is a well-defined function 

mapping triplets of arguments to the boolean values. That is: 

P(p, W, 11") ::::} {T, F} (3.1) 

where p is a part, W is a whole, and 11" is a property or properties used by the 

P part-of function. 

This approach is based on the observation that parthood is related to some 

sort of overlapping between the values of at least one property of a part on the 

values of the same properties of a whole. For example, to establish a part-of 

relation for regions of a space, 11" is the set of properties defining the size and 

position of a spatial region. P, then, asserts that p is wholly contained by TiT if 

its volume is contained in l'V's volume. 

This approach addresses a variety of open issues. First, by "deferring" 

uniqueness of different part-of relations to the properties 11", P itself remains a 

single universal, ternary predicate, which is logically elegant. Second, primitive 

part-of relations can be defined as those whose properties 11" are fundamental 

in AIM-D (e.g. properties of length, mass, time, etc.); complex part-of rela

tions are constructed by composing primitive ones; this suggests an abstraction 

hierarchy of part-of relations which would be useful for automated reasoning 
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processes, such as case-based reasoning and decision support. Third, transi

tivity is preserved to the degree that different properties are used in different 

part-of relations. 

This last point deserves some explanation. Transitivity is preserved entirely 

in reasoning processes where different instances of P use the same properties 

IT. On the other hand, different instances of P that use properties that have no 

commonality in the abstraction hierarchy are not transitive at all. These two 

cases correspond to the typical behavior of other approaches. For example, 

transitivity is preserved over different instances of the group/member relation, 

but not between a group/member relation and an assembly/component relation. 

However, the author's approach allows partial transitivity to be recognized. 

In the example at the beginning of this section, it was shown that one may 

reason that a piston is a part of a rental fleet of automobiles if there is only one 

part-of relation. While there is clearly something wrong with such a conclusion 

for most conventional uses, there is still a certain sense in which it is reasonable. 

The author believes that this "partial" sense of the conclusion results from the 

partial subsumption of the properties with which part-of is used in the example. 

Being able to represent this kind of partial parthood opens the possibility of 

substantially different reasoning processes that can be automated in a KBS, and 

should allow for a richer representation of design knowledge. 

Specific mereological axioms using the formalism presented above are cur

rently under development for the next "version" of AIM-D. The current version 

of AIM-D (Salustri, 1996) contains only an implied notion of mereology as 

captured by the four levels of product composition defined therein. That is, 

AIM-D has specific axioms for the construction of assemblies from parts, parts 

from features, and features from quantities. Equation 3.2 gives an example: the 

axiom relating parts and assemblies. It states that a part p consists of features 

f that are in the set of all features F, and that satisfy a predicate </>, which is 

taken to be any possible mereological relation between features f. 

3p [V f [(f E p) == (f E F) • </>(f)]] (3.2) 

Each axiom implies a different parthood relation between the whole (e.g. 

assemblies) and its parts (e.g. parts). The next version of AIM-O will have a 

more explicit formulation of parthood relations based on the material presented 

herein. 

3.4 COMMITMENTS FOR CONTEXT-SENSITIVITY 

Engineering terms can often have different meanings depending on the vari

ous contexts in which they are used. A context is essentially a mapping between 

terms and denotations. An assertion may be found true in one context but false 
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in another. Contexts may also include special rules for carrying out those rea

soning processes. For example, consider: "the block deck height of the engine 

includes the thickness of the engine gasket." If the designer in charge of the 

engine block believes this assertion, but the designer in charge of the cylinder 

head does not believe it, the designers will disagree about the answer to the 

question "What is the total height of the engine?"; the two designers are work

ing in two slightly different contexts. Contexts have various uses ranging from 

encapsulation of parts of a KB, to providing a shorthand notation for omitting 

common arguments (such as location, time, etc.) and separating meta levels of 

languages (Sowa, 1992). Contexts are currently a topic of significant interest, 

especially in the KR community, where the issues raised in their treatment im

pacts on distributed computing and AI. Some of the possible uses of contexts 

include (Sowa, 1992): 

• partitioning a knowledge base into more manageable modules; 

• encapsulating parts of a knowledge base, as in so-called object-oriented 

systems; 

• providing a shorthand for omitting common arguments, such as location, 

time, etc.; 

• providing a way to resolve indexical referents, such as "this", "I", and 

definite noun phrases beginning with "the;" 

• representing environments whose modality, level of certainty, or hypo

thetical existence is different from that of other environments; 

• supporting propositional attitude verbs, such as "believe;" and 

• separating a meta level of language that is used to talk about the language 

in a nested context. 

There are also several ongoing efforts to formalize notions of context. Ak

man and Surav (Akman and Surav, 1996) give an excellent overview of the 

various approaches. 

Contexts are clearly relevant to product modeling, since typically many 

designers are involved in concurrently developing a single product. In this kind 

of environment, an unintentional contextual difference can lead to disastrous 

results. 

The author is currently working to incorporate contexts into AIM-D. The 

general approach is most similar to that of McCarthy and Buvac (McCarthy 

and Buvac, 1994), wherein contexts are essentially namespaces binding terms 

to semantics. Contexts can be nested, and various predicates are provided to 

test the truth value of a statement in a particular context, and to "lift" terms 

commonly defined in different contexts to higher, more universal contexts. 
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One very important aspect of contexts in AIM-D regards the terms used to 

name entity attributes. This is best illustrated with a simple example. 

Consider the statements: (a) "The color o/the car is green," and (b) "Green is 

a color." Linguistic idiosyncrasies aside, the term color is used in two distinct, 

but related, ways: as the name of an entity attribute, and as a generalized 

relation entity. It is possible to capture the relation between the various uses of 

a term without recourse to linguistic constructs. 

In AIM-D, the names of entity attributes are the names of relations between 

entities, and are themselves terms defined in some context. This means that a 

term such as color must be used consistently throughout a given context where 

it is defined, and in all its sub-contexts. This is different from the approach 

taken in object-oriented modeling, where the semantics of an instance variable 

are consistent only across the instances of a given class. By making the 

universality of attribute name definitions explicit, (semi-)automated reasoning 

about attributes, and the relations they represent, is now possible. 

Contexts also matter in terms of managing mereological relations. For 

example, (Gerstl and Pribbenow, 1996) suggest that a primary characteristic 

of item that leads to different mereological relations is whether the item is 

homogeneous (having no parts), uniform (consisting of like parts only), or 

heterogeneous (having various different parts). However, it depends on the 

context of a particular task how a particular item will be regarded. For example, 

in the context of engine assembly, an aluminum part may be regarded as a 

homogeneous item; but from a context of materials engineering, aluminum is 

at least uniform if not heterogeneous. Clearly, the interactions between context 

and mereology still need further exploration. 

3.5 SUMMARY 

Ontological commitments can be regarded as decisions about the interpre

tation of statements in a given language. A variety of commitments have been 

presented in this section that pertain to the description of designed products. 

Clearly, significant work remains to be done; there are many other commitments 

about designed products that can be found or deduced from other research ef

forts. However, to help ensure rigor, the only commitments currently part of 

AIM-D are those that apparently allow a consistent logic to exist. 

4. IMPLEMENTATION OF DKSL 

In this section, the design and implementation of DKSL is discussed, includ

ing how the ontological commitments made thus far have been, or are being, 

embedded within it. Generally, the commitments amount rules that DKSL must 

satisfy in order to preserve logical rigor: no model should be representable in 

DKSL if the model violates the ontological commitments. 
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For example, AIM-D defines sub-assemblies in terms of subsets of the 

set of all parts of a product, rather than as parts of those products. This 

implies that DKSL must be able to distinguish automatically between parts, 

sub-assemblies, and product assemblies. Furthermore, DKSL has restrictions 

on how assemblies are formed through the merging of defined sub-assemblies. 

The author has not yet investigated the changes that would have to occur in 

DKSL if different ontological commitments were made; this issue remains an 

open one for future research. 

4.1 UNDERLYING KNOWLEDGE 
REPRESENTATION 

The current implementation of DKSL is as a small, stand-alone program 

with a text-based user interface. It is a "concept-proving" implementation, to 

allow the author to study internal structures and algorithms needed to represent 

and manipulate design information effectively. 

SCM, an implementation of the Scheme programming language by Aubrey 

Jaffer, is currently used to implement DKSL. SCM is small, robust, and true 

to the IEEE standard for Scheme (IEEE, 1991); it also has a number of exten

sions that facilitate rapid software prototyping (e.g. POSIX-compliant file 110 

operations). 

DKSL is implemented using aframe-based KR scheme. Frame systems are 

similar to object-based systems, but introduce a finer level of representation. 

Object systems are based on object-attribute-value triplets: objects contain 

attributes which have values. Frames, on the other hand, use frame-slot-facet

value quadruplets. Slots are composed of possibly many facets, which allows 

a richer representation of attributes. Furthermore, functions called procedu

ral attachments can be associated with slot facets. These functions may be 

triggered automatically or at a user's request to carry out various management 

tasks such as constraint checking and inverse relation maintenance. A proce

dural attachment that fires automatically is called a demon. Generally, demons 

execute in three cases: when a new value is (a) added to or (b) removed from a 

slot, and (c) when a slot's value needs to be calculated rather than retrieved. 

Frame systems as described above are common in KR systems such as 

CLASSIC (Brachman et aI., 1991). However, the system implemented in 

DKSL is substantially different from these others. These differences arise from 

the ontological commitments, and are presented here. 

Context-sensitivity. Conventional frame systems make no particular com

mitments about the contexts in which terms are resolved into frames. However, 

DKSL supports the notion of a context as a "dictionary" mapping terms to 

frames, implementing the ontological commitments regarding context sensitiv

ity (Section 3.4). Contexts in DKSL may be created by the user, and may be 
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nested. A System Context contains basic definitions needed by DKSL, and a 

User Context, which is a sub-context of the System Context stores user-defined 

frames. Other application-specific contexts are under development. Lifting of 

terms (per (McCarthy and Buvac, 1994)) is achieved by a simple comparison 

of different frames with the same name in different contexts. Furthermore, a 

slot is viewed as a relation having a uniform semantics over a whole context. 

No Classes. There are no explicit classes or "meta-frames" in DKSL. Rather, 

a prototype-based approach is used, wherein any entity can be an exemplar with 

which other frames can be cloned. The use of prototypes is consistent with 

the ontological commitments made in Section 3.1: AIM-D entity types are not 

explicit, and neither are those in DKSL. 

Inheritance through specialization. Without classes, a different kind of 

inheritance mechanism is needed. Specialization of individual frames is used: 

an exemplar generalizes its clones. Specialization information is used only 

during frame construction; no specialization information is kept in frames. The 

most important reason for this is that it allows an exemplar and its clones to 

change with time without requiring complex change management to preserve 

that relation beyond a frame's construction. 

Calculated type compatibility. Type similarity between frames is calcu

lated as needed. Two frames are type-compatible if there are some slots in one 

frame with the same names as some slots in the other frame. Since slot names 

have uniform semantics in a given context, no checks are needed once a value 

is added to a slot. A frame is a specialization of another if the one has at least 

as many slots as the other, and if every slot in the other has a type-compatible 

correspondent in the one. Generalization is just the converse of specialization. 

Although this clearly imposes a heavier computational load than conven

tional type systems, it also increases the expressiveness of the language to 

represent varying degrees of type similarity. For example, it is possible to 

determine if one frame could be a specialization of another. This allows the 

system to "guess" type compatibility of frames, which could be very useful for 

exploratory algorithms such as case-based reasoning. Also, it is possible to de

velop automatically normalized abstraction hierarchies of arbitrary collections 

of frames. This raises the possibility of transmitting KBs between systems 

or agents in forms that are reliably re-constructible in different environments. 

This kind of type-compatibility is consistent with the ontological commitments 

in AIM-D. 

Location and Names of Demons. DKSL supports two kinds of if - added 

demons, called pre/put and post/put demons. The pre/put demons 

are predicates that check the validity of the new values before they are added 

to slots. If a pre /put demon fails, either a warning message is displayed and 

the assignment continues, or an error is triggered and the assignment does not 

occur; which of these actions occurs depends on whether the demon is hard or 
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soft (discussed below). The post/put demons are run after new information 

is inserted into a KB; these demons perform conventional management tasks 

such as maintenance of inverse relationships. 

The location of demons is standardized in DKSL, and takes advantage of 

the uniform semantics rule for slots. This allows a well-defined, yet extensible 

technique for searching, storing, and checking the validity of data, as well 

as maintaining interrelationships between the data. Demons may be stored 

in the frame that defines the semantics of a slot, in which case they will be 

triggered wherever that slot is used; they may alternatively be stored in facets 

of a particular instance of a slot, in which case they are only triggered for that 

slot instance. 

Hard and soft constraints. Demons can implement constraints on the 

knowledge stored in the system. These constraints can be either hard, violation 

of which causes an error to be triggered, or soft, in which case a warning 

message is displayed for the user only. This distinction accounts for the 

different implications of a constraint violation with regards to KB integrity. 

Hard constraints preserve the basic integrity of the KB, whereas soft constraints 

indicate an inconsistency in the product being modeled. Since design can be 

regarded as driven by the need to eliminate such inconsistencies, it is important 

to represent them differently than those arising from the KBS itself. 

Partial meta-information. DKSL also allows some kinds of meta-level 

information about entities to be stored. For example, one constrain the number 

of values that a slot can have, and the types of values that a slot can contain 

by associating exemplars representative of those types with particular facets. 

This kind of information can be used by pre/put and post/put demons to 

perform a variety of checks and other operations automatically. 

There is other useful meta-information that could be stored, but one must be 

careful when adding meta-level information to a KBS: one may create termino

logical cycles and other semantic artifacts for which even simple computations 

are intractable. Work on DKSL is intentionally proceeding slowly in this 

regard, so that sufficient care is taken to avoid these problems. 

5. DKSL FOR ENGINEERING DESIGN 

An example of a simple DKSL product model is introduced to demonstrate 

its applicability. The example involves the structural and steady-state thermal 

modeling of a wall. It is based on one presented in (Eastman et aI., 199Ia), 

but is lacking in some details. Its use will facilitate a comparison of DKSL to 

various other modeling schemes discussed in (Eastman et al., 1991a). 

We begin with an overview of the model's structure; this will be followed 

by a description of some of the frames needed to describe the model in DKSL, 

and some of the operations possible on that model. 
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5.1 STRUCTURAL MODELING CONSIDERATIONS 

The reader is referred to Figure 3.3, which shows schematically a wall, 

labeled with the major structural components as described below. 

D 

Segment 

Figure 3.3 Structure of a wall. 

Window (Opening) 

Door 

(Opening) 

In order to model a wall's structure and steady-state thermal behavior, both 

the geometry and composition of the wall must be considered. Since the 

example only models an isolated wall, the width and height of the wall are 

arbitrarily defined values. Had the model included many attached walls, width 

and height would have been determined by the overall structures of which 

they were a part. Wall thickness, however, depends on the wall's composition. 

A wall is composed of various layers, each serving a specific purpose - load 

bearing, insulation, covering, and so on. Each layer consists of a single material, 

is of constant thickness, and contributes to the overall thickness of the wall. 

Complex wall shapes can be described as compositions of area-wise seg

ments; a small collection of regular planar shapes can be combined to produce 

quite complex geometries. Each segment is composed of layers, and all layers 

in a segment have the same surface area. 

Finally, a wall may contain various kinds of openings or passages. In this 

model, openings lie within single wall segments and must pass entirely through 

the wall. For simplicity, only windows and doors are considered. An opening 

is a kind of segment: it occupies an area and may be composed of many layers 

(e.g. multi-paned windows); however, openings are not allowed to contain other 

openings. 

5.2 STEADY-STATE THERMAL MODELING 

CONSIDERATIONS 

The following mathematical model of the steady-state heat behavior of a 

wall is assumed. The physical relationships are drawn from (Eastman et aI., 

1991a) and a standard thermodynamics text (Reynolds and Perkins, 1977). 

The steady-state heat flow through a wall is given approximately by the 

following equations, where tiT is the change in temperature through the wall, 
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tw and Aware the thickness and area of the wall respectively, and kw is the 

overall of coefficient thermal conductivity of the wall (calculated by analogy 

with electrical systems). The thermal resistance of the ith layer of the wall is 

by rio 

1 
kw =--, 

Ei ri 
(3.3) 

5.3 DEFINITION OF WALL EXEMPLAR OBJECTS 

Given this conceptual model, DKSL frames can now be constructed to 

represent it. The frames defined here are simplified versions, intended to focus 

only on the particular example being presented. In a "real" implementation, 

many more slots and facets would be defined. All quantities are in SI units. 

First, we establish a context for this application; this is shown in Figure 3.4. 

The simple-walls context is defined as a sub-context of contexts for 2.5D 

geometry, SI units for physical systems, and physical assemblies. Setting the 

context to simple-walls ensures that all subsequent assertions are made in 

that context; this information becomes persistent so that future queries to the 

information defined in this context will be evaluated within it. (It is assumed 

that a user intends for knowledge to be used always in the same context, unless 

that knowledge is intentionally "lifted" into other contexts.) Setting the value 

of coordinate-type establishes a term in the new context that will be used 

by other frames related to geometry to determine the kind of coordinates to be 

used in this context. 

(define-context simple-walls 
(2.5d-geometry 
si-physical-units 
physical-assemblies)) 

(set-context! simple-walls) 
(set! coordinate-type 

cartesian-coordinate-system) 

Figure 3.4 A context for the example wall model. 

A material exemplar is defined in Figure 3.5; for brevity, only one 

necessary property, thermal conductivity, and one instance is included. Thermal 

conductivity data is from (Reynolds and Perkins, 1977). 

Wall layers are modeled in Figure 3.6. 

A derived attribute (one whose value is calculated from other attributes) 

for thermal resistance is also included. The region exemplar, defined in 
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{define-frame material 

{new (the-frame) 

{thermal-conductivity 

(watt/meter-degree 1.0)))) 

{define-frame glass, window 

{new (material) 

{thermal-conductivity 

(watt/meter-degree 0.78)))) 

Figure 3.5 Material exemplar and instances. 

the physical-attributes context, indicates that layer can take part in 

region/space mereological relationships. 

{define-frame layer 

{new (region) 

{material (new material)) 

{thickness (centimeter 1.0)) 

{thermal-resistance 

{derived-from (thickness material) 

{/ thickness 
(material 'thermal-conductivity)))))) 

Figure 3.6 Layer objects. 

A wall-atom frame is defined to model the kinds of properties common 

to both openings and wall segments (see Figure 3.7). It too is a kind of region. 

The (all layer) construct returns all slot values in the current frame that 

are of type layer. The thermal-conduc ti vi ty slot models the overall 

coefficient of thermal conductivity per unit area, calculated according to the 

mathematical model in Section 5.2. 

Now wall-atom can be used to define exemplars for openings and seg

ments (Figure 3.8). The spec({ic heat flow of an opening is the rate of heat 

flow per degree of temperature difference at steady-state. Also, a distinction 

is made between the solid wall area of the segment and the area of any open

ings in the segment. The specific heat flow of a segment is the sum of the 

specific heat flows of the openings and of the rest of the segment. Finally, 

the hea t - f I ow slot models the heat flow through a wall segment for a given 

temperature difference (de I ta - t). 

No geometric (shape) information has been embedded in segment and 

opening; shape information will be provided when specific segments and 
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(define-frame wall-atom 
(new (region) 

(thickness 
(derived-from ((layers (all layer») 

(apply + (for ((1 layers» 

(1 'thickness»») 
(thermal-conductivity 

(derived-from ((layers (all layer») 
(/ 1.0 

(apply + 
(for ((1 layers» 

(1 'thermal-resistance»»»» 

Figure 3.7 Atomic wall components for openings and segments. 

openings are created (see below). This does not, however, prevent us from 

referencing attributes such as area when defining frames so long as they are 

defined by the time they are used. 

The opening frame is specialized for doors and windows (Figure 3.9). 

The door exemplar specializes both opening (for composition and thermal 

analysis) and rectangle (for geometric characteristics). It also specializes 

part, provided by the physical-assemblies context, to signify that it 

can enter into a part/assembly relation (which is different from a region/space 

relation). The rectangle exemplar and other geometric information is 

defined in the 2 . 5d-geometry context. 
The window exemplar is further specialized into one- and two-paned win

dows. Finally, two specific kinds of windows are created: a single-paned 

window with a 5 millimeter pane of glass, and a double-paned window with 

two 5 millimeter panes separated by a 4 millimeter air gap. Note that shape 

has not yet been assigned to the window objects. The cardinali ty facet is 

used to limit the number of panes in each kind of window. 

The last exemplar, for the wall itself, just gathers segments (see Figure 

3.10), since all the important functions for thermal analysis have been defined 

elsewhere. The heat-flow slot calculates the total heat flow through a wall 

for a given temperature difference. The wall enters into both part/whole and 

region/space relations. 

This completes the DKSL model. It is not a model of a particular wall, but 

a template from which various models can be built. The model is intended to 

be as general as possible, so that it may be used for other purposes that just 

steady-state thermal analysis. It would have been substantially simpler had we 

targetted it specifically and exclusively for thermal analysis, but it would also 

have been of very limited use. 
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(define-frame opening 
(new (wall-atom) 

(specific-heat-flow 

(derived-from (thermal-conductivity area) 

(* thermal-conductivity area»») 

(define-frame segment 
(new (wall-atom) 

(opening-area 

(derived-from «openings (all opening») 

(apply + (for «0 openings» 

( 0 ' area) ) ) ) ) 

(segment-area 

(derived-from (area opening-area) 
(- area opening-area») 

(specific-heat-flow 
(derived-from «openings (all opening» 

thermal-conductivity 
segment-area) 

(+ (apply + 

(for «0 openings» 
(0 'specific-heat-flow») 

(* thermal-conductivity 
segment-area) ) ) ) 

(heat-flow 
(derived-from (specific-heat-flow) 

(using (delta-t» 

(* specific-heat-flow delta-t»») 

Figure 3.8 Exemplar for wall openings and segments. 
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(define-frame door 
(new (part opening rectangle) 

(layer (new layer)))) 

(define-frame pane 
(new (part layer) 

(material glass,window))) 

(define-frame window 
(new (part opening) 

(pane (new pane)))) 

(define-frame window,lpane 
(new (window) 

(pane cardinality 1))) 

(define-frame window,2pane 
(new (window) 

(pane cardinality 2) 
(gap (new (layer) (material air»») 

(define-frame window,lpane,5 
(new (window,lpane) 

(pane (thickness (centimeter 0.5»») 

(define-frame window,2pane,5-4-5 
(new (window,2pane) 

(pane (new (layer) 
(thickness (centimeter 0.5») 

(new (layer) 

(thickness (centimeter 0.5»» 
(gap (thickness (centimeter 0.4»») 

Figure 3.9 Exemplars for doors and windows. 
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(define-frame wall 

(new (part region) 

(segment (new (segment))) 

(area 
(derived-from ((segments 

(all parts segment))) 

(apply + (for ((s segments)) 

(s ' area) ) ) ) ) 

(opening-area 
(derived-from ((segments 

(all parts segment))) 

(apply + (for ((s segments)) 

(s 'opening-area))))) 
(heat-flow 

(derived-from ((segments 
(all parts segment))) 

(using (delta-t)) 
(* (apply + 

(for ((s segments)) 
(s 'specific-heat-flow))) 

delta-t)) ))) 

Figure 3.10 Exemplar for walls. 
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The goals for developing the model this way are: (a) for demonstration 

purposes, to showcase the flexibility of DKSL, and (b) to define a model that 

is not necessarily restricted to thermal analyses only. 

5.4 USAGE OF THE WALL MODEL 

This section defines a particular wall and calculates the heat flow through it. 

The sample wall (Figure 3.11); consists of two segments, a large rectangular 

segment with a door and a window, and a triangular segment with no openings. 

Figure 3.12 defines the necessary segment and wall frames. 

-EE:::..----- Segment 2 

DooEE-I-- Window 

Door _____ r-~~ -EE:::..----- Segment 1 

Figure 3.11 Geometry of sample wall. 

Figure 3.13 shows three messages sent to the wall w, and the values that 

are returned. The third message returns the heat flow through the wall for a 

temperature difference of 20 degrees. 

The specific wall model defined here contains all the information needed 

for a preliminary thermal analysis, even though the geometric relationships 

between the components have not yet been specified. For example, the door 

and window have not been positioned in segmentl; nor have the segments 

been positioned with respect to each other. The operations to do this are shown 

in Figure 3.14. The forms in the figure take advantage of methods defined in 

the 2 . 5d-geornetry context that translate and scale objects. 

Topological relations, such as the physical connection between wall seg

ments, are not yet supported by DKSL. These kind of relations are currently a 

topic of study of the author. 

Let us say that too much heat was being lost through the wall as defined 

above. One alternative is to change the single-paned window to a double-paned 

window. This is shown in Figure 3.15. We find that a double-paned window 

improves the overall thermal insulation of the wall. 
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(define-frame segment1 

(new (segment rectangle) 

(width (meter 4.0)) 

(height (meter 2.5)) 

(door (new (door) 

(layer (material wood, pine, white) 

(thickness (meter 0.06))) 

(width (meter 1.0)) 

(height (meter 2.0)))) 

(window (new (window,lpane,5 rectangle) 

(width (meter 1.0)) 

(height (meter 0.5)))) 
(outer (new (layer) 

(material brick, face) 

(thickness (meter 0.1)))) 

(core (new (layer) 

(material wool, rock) 

(thickness (meter 0.1)))) 

(inner (new (layer) 

(material plaster, gypsum) 

(thickness (meter 0.01)))))) 

(define-frame segment2 
(new (segment triangle) 

(width (meter 4.0)) 
(height (meter 1.5)) 

(outer-face (new (layer) 
(material wood,pine,white) 
(thickness (meter 0.005)))) 

(outer (new (layer) 
(material brick, common) 

(thickness (meter 0.1)))) 

(core (new (layer) 

(material wool, rock) 

(thickness (meter 0.1)))) 

(inner (new (layer) 

(define-frame w 

(new (wall) 

(material wood, pine, yellow) 

(thickness (meter 0.005)))))) 

(segments segment1 segment2))) 

Figure 3.12 Synthesis of sample wall. 
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(w ' area) 
(w 'opening-area) 

(w 'heat-flow 20) 

~ 13 
~ 2.5 

~ 1712.554 

Figure 3.13 Queries and actions for the sample wall. 

iii position window and door within segment 1. 
(((w 'sl) 'wdw) translate 0.75 1.5 0) 

(((w 'sl) 'door) translate 2 0 0) 

iii position segment 2 with respect 
iii to segment 1 in the wall. 
(((w 's2) 'scale 0 -1 0) 'translate 4 2.5 0) 

Figure 3.14 Positioning objects in the sample wall. 

((w ' sl) 'wdw (combine ((w ' sl) 'wdw) 

Wdw,2Pane,5-4-5)) 

(w 'heat-flow 20) ~ 213.065 

Figure 3.15 Altering the window. 

The combine form creates a new frame that is a clone of its first argu

ment (the window in segment1) with any extra slots in its other arguments 

(wdw, 2pane, 5-4-5 in this case). The resulting window has the same posi

tion and orientation as the original window, but will have two panes instead of 

one. 

We close this section with two examples of assertions (see Figure 3.16), 

which can be regarded either as constraints on data, or as the statement offacts 

from which reasoning may then proceed. The first assertion may be read as 

"For all segments in wall w, the heat flow through the segment for a temperature 

difference of 20 degrees is less than 300". Similarly, the second example may 

be read as "There exists at least one door in wallw". The forall and exists 

constructs correspond to the two logical quantifiers in propositional logic. 

5.5 EVALUATION OF DKSL 

Only a preliminary evaluation of DKSL is possible at this time, since it is 

still under development. However, it appears that DKSL has the potential to 

compare favorably to other approaches. 
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(forall s (all w segment) 

« (s 'heat-flow 20) 300)) 

(exists p (all w part) 

(is-a? p door)) 

Figure 3.16 1\vo examples of assertions. 

Table 3.3 Evaluation criteria of Eastman and Fereshetian 

full abstract data types multiple specializations 

composite objects relations within compositions 

relations on object structure relations between variables 

variant relations defined operationally variant relations 

external applications integrity mgmt management of partial integrity 

schema evolution refinement versus classes/instances 

Currently, the author uses the criteria established by Eastman and Fereshetian 

(Eastman and Fereshetian, 1994) to evaluate DKSL; they are summarized in 

Table 3.3. These criteria were established to compare data models rather than 

KR schemes, so some mismatches are expected. In particular, the external 

applications integrity management criterion is inappropriate for DKSL. Also, 

there are other efforts to establish criteria (such as Ward's criteria of precision, 

density, and naturalness (Ward, 1992» that are worth pursuing. The author 

is currently working towards a set of criteria for KR systems that incorporate 

these efforts and others. 

Abstract data types are supported in that (a) frame interfaces are imple

mentation independent, (b) the type comparison predicates operate uniformly 

on all frames, and (c) frame behavior is specified via methods. Multiple 

specializations (without name-clash resolution) and composite frames are ob

viously supported. Since compositions are inherent to DKSL, relations both 

within compositions and on object structure are supported. Relations between 

variables can also be represented, but due to the strictly representational na

ture of DKSL, the dynamics of manipulating those relations are not treated. 

Nonetheless, a user is free to develop Scheme procedures that use the relational 

information for any purpose. 

DKSL is deficient with respect to the last three criteria: variant relations, 

schema evolution, and management of partial integrity. Since DKSL is in-
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tended to be representational only, it does not directly support the active, dy

namic management of the information it represents. In real design situations, 

the management of change, of which these three criteria are all examples, is 

essential. But before these issues can be addressed, the author must generate 

suitable theory to supplement the current formal underpinnings of DKSL; this 

is a point of on-going research. 

6. FUTURE WORK 

There are many aspects of DKSL and its underlying ontological commit

ments that remain to be explored. This section mentions a few of the more 

important ones. 

Only the ontological commitments made by AIM-D are currently supported 

by a formalization. Other commitments mentioned in this paper are currently 

the subject of formalization efforts by the author. It is unclear that DKSL will 

not require alteration as those formalizations are achieved. 

DKSL currently only advises the user about violated constraints that do not 

jeopardize the integrity of the KB. However, it is exactly the need to resolve such 

constraints that drives design processes. Therefore, some way of representing 

the status of constraints must be added to DKSL. 

Function modeling has not been incorporated into DKSL yet. 

Although an algorithm for automatic categorization of DKSL entities has 

been devised, it is of little usefulness in "real" application domains. Automatic 

categorization allows a user to develop DKSL models in isolation, yet allows 

the system to normalize those models with respect to other contexts. This 

removes the onus from the user to understand fully the potentially extensive 

libraries that may be available, yet still allows the system to take advantage 

of them to organize design knowledge. Automatic categorization may also be 

very relevant to certain reasoning systems, such as case-based reasoning, in 

that it facilitates comparing user-provided entities to case libraries. 

The user interface to DKSL clearly needs to be made substantially more 

usable by people unfamiliar with Scheme or Lisp. Currently, the author is 

considering a combined graphical/textual interface written in Java to take ad

vantage of web-based functionality. The use of Java is also expected to bear 

on the ability to distribute DKSL entities on the Internet. Comparatively little 

work has been done in this regard so far, but it seems clear that substantial 

performance and functionality improvements may be possible. 

7. CONCLUSIONS 

This paper has presented a progress report on the author's efforts to construct 

a KBS for engineered products that is rooted in logical foundations. Various 
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ontological commitments have been suggested. These commitments are nec

essary to establish a fundamental basis for the development of the system. 

An overview of the Design Knowledge Specification Language (DKSL) has 

also been presented. Though still under development, DKSL appears to provide 

a sufficiently rich representational form for product knowledge can be stored so 

as to be useful in design, analysis, and even manufacturing areas. Significant 

work remains to be done to more fully demonstrate the system's adequacy, and 

to provide an interface that is useful to typical practicing designers. However, 

the author believes that, based on the contents of the paper, there is reason to 

be optimistic that these goals can be achieved. 
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Notes 
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