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Joel Lúıs Carbonera
Edson Prestes
Andrea Aparecida Konzen
Federal University of Rio Grande do Sul, Brazil
E-mail: epfreitas@inf.ufrgs.br

Joanna Isabelle Olszewska
University of West of Scotland, UK

Alaa Khamis
General Motors, Canada

Veera Ragavan Sampath Kumar
Monash University, Malaysia.

Marcos E. Barreto
Federal University of Bahia, Brazil.

Maki K. Habib
The American University in Cairo, Egypt

Signe Redfield
US Naval Research Laboratory, USA

Abdelghani Chibani
Sandro R. Fiorini
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Abstract Recent research and developments in Cloud

Robotics (CR) require appropriate knowledge repres-
entation to ensure interoperable data, information, and

knowledge sharing within cloud infrastructures. As an
important branch of the Internet of Things (IoT), these
demands to advance it forward motivates academic and

industrial sectors to invest on it. The IEEE ‘Ontologies

for Robotics and Automation’ Working Group (ORA

WG) has been developing standard ontologies for differ-

ent robotic domains, including industrial and autonom-

ous robots. The use of such robotic standards has the
potential to benefit the Cloud Robotic Community (CRC)
as well, supporting the provision of ubiquitous intel-

ligent services by the CR-based systems. This paper

explores this potential by developing an ontological ap-

proach for effective information sharing in cloud robot-

ics scenarios. It presents an extension to the existing on-

tological standards to cater for the CR domain. The use

of the new ontological elements is illustrated through its

use in a couple of CR case studies. To the best of our

knowledge, this is the first work ever that implements

an ontology comprising concepts and axioms applicable

to the CR domain.

Keywords Knowledge-Based Systems · System
Interoperability · Automated Collaboration · Cloud

Robotics · Multi-Agent Systems · Autonomous

Robotics · Robotics and Automation

1 Introduction

Cloud Robotics (CR) has emerged, in the last decade,
as an important research area potentially enhancing

the usability and application areas of autonomous ro-

botic systems by integrating reconfigurable, computa-
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tional and storage resources, applications and services

into collaborative, shared cloud systems (Kehoe et al.,

2015a). Within the context of Internet of Things (IoT),

it is able to provide scalable ubiquitous intelligence by

means of networking robots beyond time and space

constraints (Rahimi et al., 2017) combining concepts

from robotics, service-oriented architecture (SOA), and

cloud computing, leading to important applications in
areas such as smart cities (Marques et al., 2019), se-
mantic sensor networks (Bruckner et al., 2012), smart

military networks (Leal et al., 2019), and cloud manu-

facturing (Lu and Xu, 2019).

In this context, the concept of autonomous robot

is understood as a goal-oriented intelligent system that

can function, decide, and interact autonomously within

a structured or unstructured, static or dynamic and

fully or partially observable environments without ex-
plicit human guidance (Bayat et al., 2016). As stated in
(Fiorini et al., 2017), the robot is considered as a type
of agent in the environment under concern. This un-

derstanding extends the idea of agents for cloud-based

systems, as described in (Sim, 2012), which considers

software agents only, and consistent with the abstract

concept of agent presented in (Fiorini et al., 2017), thus
making the proposed extension coherent for the CR do-
main.

CR eases the transition from networked robotics to

more advanced uses of multi-agents systems (Hu et al.,
2012) towards the provision of intelligent services in the

IoT context (Kunst et al., 2018). The rationale behind

CR is the possibility to take advantage of the benefits

of sharing data and processing resources provided by

cloud-based systems in order to enhance and to enlarge

the power and the usefulness of robotic systems, ac-

cording to their specific needs (Quintas et al., 2011).

When using the cloud, a robot could improve its cap-

abilities of image understanding, language translation,

speech recognition (Zinchenko et al., 2017), path plan-

ning, and/or 3D mapping (Guizzo, 2011).

Regarding the sharing of data and services (Xie et al.,
2017), standardized concepts are crucial to allow data

be easily interchanged among robots, and services be

unambiguously accessed within the cloud infrastruc-

ture. Standardized concept representation can facilit-

ate robot coordination and collaboration by providing

the basis for the deployment of collective intelligence al-
gorithms supported by the cloud. DavinCi (Arumugam

et al., 2010) and RoboEarth (Waibel et al., 2011) are

well-known efforts towards the provision of cloud-based
services to allow data sharing and management among
heterogeneous and autonomous multi-robot systems.
World’s largest tech giants Amazon, Google and IBM

recently released AWS RoboMaker, Google Cloud Ro-

botics Platform and IBM Watson Cloud Robot, re-

spectively, as cloud robotics platforms. Other cloud ro-
botics platforms emerged as spin-offs from research pro-
jects, like Rapyuta (a spin-off from RoboEarth and ETH

Zurich), or from university projects, like RoboTurk (Stan-

ford University) and RoboBrain (Cornell University).

Robot Operating System (ROS) also provides an eco-

system to support cloud robotics. Hence, industrial ap-

plications can also benefit from these advances toward

Cloud Robotic Systems (CRS), since an autonomous in-

dustrial robot can be viewed as a subclass of an autonom-

ous robot (Bayat et al., 2016).

Due to the importance of CR and the inherent need

for standards that support its growth, this work aims,

on the one hand, to focus on the identification and

formalization of some of CR notions that are important

for this area. On the other hand, as the proposed set

of concepts specifically developed for the CR domain

extends the Core Ontology for Robotics and Automa-

tion (CORA)ontology (Prestes et al., 2013b), it could

be potentially included in the standard ontology for

autonomous robots under development by the IEEE

Autonomous Robotics Working Group (AuR)1.

The main contributions of this work are: (1) the

formalization of additional concepts to the existing stand-

ard which could be used for CR as well as support the

development of further ones in this domain; and (2) sup-

port the effort being done by the IEEE ORA AuR in

defining ontological concepts for robotics applications.

Additionally, this paper brings a comprehensive over-

view of how ontologies can be used in the CR domain

to enhance machine-to-machine communication, and a
couple of useful and comprehensive case-study scenarios
using the defined concepts illustrating how practition-

ers could use ontologies in this domain.

This paper is structured as follows: Section 2 presents

the Cloud Robotics landscape and related work, dis-

cussing the need for ontologies in that domain. Sec-

tion 3 brings the ontological basis for the CR. Section

4 presents two CR usage scenarios and Section 5 de-

scribes their implementation, based on scenarios that

apply the proposed ontological approach to efficiently

share information in the considered CR. Finally, Sec-

tion 6 concludes the paper.

1 https://standards.ieee.org/develop/project/1872.

2.html

https://standards.ieee.org/develop/project/1872.2.html
https://standards.ieee.org/develop/project/1872.2.html
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2 Related Work

2.1 Cloud Robotics at a Glance

Cloud Robotics represents a branch of IoT that emerges
from joining the Cloud Computing (Mell and Grance,
2011) and Networked Robotics (Wang et al., 2015) para-

digms to provide an extended functionality to networked

robots and amplify the possibilities of cloud-based sys-

tems (Kehoe et al., 2015b).

On one hand, the large storage capacity provided by

centralized clouds can help unifying the large volume of

information about the environment that robots acquire,

such as the case in multidrone-based monitoring sys-

tems (de Moraes and Pignaton de Freitas, 2020). It can

also provide an extensive library of skills and behaviors

robots must comply with to perform specific tasks. This

allows robots to learn based on the experience of other

robots, leading to effective machine learning (Quintas

et al., 2011; Kehoe et al., 2015b).

The understanding of CR includes the definition of

its architecture, underlying communication, and exten-

sion of elastic benefits of cloud-based systems that it

uses (Hu et al., 2012). Typical cloud robotics archi-

tectures (Miratabzadeh et al., 2016) are organized into

two complementary levels: machine-to-machine (M2M)

and machine-to-cloud (M2C). The first level represents

a group of robots communicating wirelessly to form a

collaborative robotic unit. It provides an increased com-

puting capability and an interoperable exchange of in-

formation for collaborative decision making and tasks

execution in robot-related applications. The second level

centralizes the cloud infrastructure providing a pool of

shared computation and storage resources that can be

elastically allocated according to current demands.

Cloud Robotics benefits from the concept of elasti-

city in cloud computing (i.e. the degree to which a sys-

tem is able to adapt to workload changes by provision-

ing and re-provisioning resources in an autonomic man-

ner) (Herbst et al., 2013). This concept is realized by
enabling the provision of cloud-based resources to net-
worked robots, while extending the cloud by including

the network of robots into the pool of shared resources.

Exploring elasticity, all resources provided by the cloud

and by the robots can be allocated according to current

needs. Similarly, the concepts of Infrastructure as a Ser-

vice (IaaS), Platform as a Service (PaaS), and Software

as a Service (SaaS) represent elastic resources that ro-

bots may benefit from. Besides, the robots themselves

seen as resources substantiates the additional concept

of Robots as a Service (RaaS) (Kehoe et al., 2015b).

In the context of RaaS, as proposed by several re-

searchers (Quintas et al., 2011, 2017; Bozcuoğlu et al.,

2018; Yazdani et al., 2018), robots can be seen as service-

providers, transparently sharing their resources with
other robots. This resource sharing depends on a match
between what is being demanded and what are the ro-

bots’ capabilities to configure and accomplish a service

that meets the demands. This is particularly useful for

Industry 4.0 wireless networks (Kunst et al., 2019).

2.2 Ontologies in the Robotics Domain

An ontology defines a set of ontological elements as rep-

resentational primitives to model a domain of know-

ledge (Studer et al., 1998)). From this viewpoint, this

conceptualization includes the types of entities that are

supposed to exist in a given domain, shared by a com-

munity of people, i.e., an ontology captures a com-

mon understanding about a given domain (Nagarajan
et al., 2018). Therefore, ontologies can be used to pro-
mote semantic interoperability among stakeholders, be-

ing viewed as task-independent reusable and consensual
knowledge.

There have been several projects focusing on the

use of ontologies to express the vocabulary and know-
ledge acquired by robots in specific scenarios, such as

bioinformatics (Soldatova et al., 2006), kitting (Bal-

akirsky et al., 2012), manufacturing (Veera Ragavan

et al., 2019) rehabilitation (Dogmus et al., 2015), and

real-time video tracking (Liu et al., 2014). Other ex-

ample is an ontology representing the theory of obstacles

is described in (Bermejo-Alonso et al., 2010), provid-

ing the basis to identify and perform reasoning about

potential obstacles in the vehicle environment in or-

der to support navigation. In (Dogmus et al., 2015), a

formal ontology is introduced to represent information

about rehabilitation robots and their properties. A ma-

nipulation framework where physics-based motion plan-

ning is enhanced with ontological knowledge represent-

ation and reasoning is proposed in (Diab et al., 2019).

In (Quintas et al., 2018; Quintas, 2018), a human-machine
interaction framework is described as using an ontolo-
gical knowledge representation to formalize workflow

and context information that is used in the decision

processes of artificial social companions, including so-

cial robots. The work reported in (Okresa Duric et al.,

2019) presents MAMbO5, an ontology to model and to

manage intelligent virtual multi-agent systems environ-

ments. As the robots in CRS can be regarded as agents,

this work presents a useful tool for this domain, despite

not being specifically designed for networked robotics

systems, as CRS are. The lack of specific concepts for

CRS justify the works such the one presented in this

current paper.
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Recent works tackled the need to represent data in

robotics, including manipulation and mobile robotics.
For example, the definition of the pose concept is man-

datory and is defined in the IEEE 1872:2015 standard

(708, 2015; Prestes et al., 2013a), as well as related con-

cepts like translation, rotation, region and heading in

order to share unambiguously knowledge between ma-

chines, humans and human-machine. Data represent-
ation for robotics does not end with pose definition,
and at the same time, concepts for Robot Map Data

Representation for Navigation have been defined in the

IEEE 1873:2015 standard (730, 2015). This standard

also defines specifications for representing 2D metric

and topological maps to be used for exchanging map

data among robots, computers, and other devices, which

is an important challenge reported in the literature (Me-

nezes et al., 2018). The standard defined concepts for

static maps, and can be enhanced to deal with moving

objects and also with 3D representations of the real-

world maps, as seen by robots. On the other hand,

sensors and communication between them and robots

play a decisive role in any robotic scenario. Several

works were carried out to deal with them, using on-

tologies, in order to enhance the robotic perception. A

review is presented in (Schlenoff et al., 2013), where

SensorML (Sensor Markup Language2) and SSN (Se-
mantic Sensor Network ontology3) were discussed as

candidate knowledge sources to be included in a Cloud

Robotics Ontology.

Previous works not only formalized the concepts of

position, mapping, and sensors, but highlighted the im-

portance of using an ontological framework in robotic

applications (Olszewska et al., 2017). Such approach ad-

dresses important problems related to information shar-

ing in multi-robots systems performing heterogeneous
tasks, such as multidrones surveillance and communic-
ation relay systems (Saar de Moraes and Pignaton de

Freitas, 2018).

Other efforts regarding cloud robotic interoperabil-

ity exist, such as (Xie et al., 2017), suggesting the use

of a semantic model instead of ontologies to represent
an information resource service for cloud manufactur-
ing systems. Despite its soundness, a deeper analysis

of this approach reveals this model is not as general

as the ontological approach proposed in this paper. In

this sense, their approach is too bound to the applica-

tion under concern, while the one proposed here is more

general and application-independent, thus suitable for
different types of cloud robotics systems. Another ap-
proach named KnowRob (Tenorth and Beetz, 2013),

instead, is the most similar solution to the one presen-

2 http://www.sensorml.com/
3 https://www.w3.org/2005/Incubator/ssn/ssnx/ssn

ted in this current paper, since it is also based on an

ontology and MongoDB, as it will be further explained

in Section 5. From an implementation perspective, the

main difference is that the ontology of KnowRob is

based on DOLCE (Masolo et al., 2003), while CORA

is based on SUMO (Niles and Pease, 2001). On the

other hand, from a conceptual perspective, KnowRob

was designed to model robotic manipulation tasks only
(Olivares-Alarcos et al., 2019). The ontology proposed
in this current paper, instead, aims to be more gen-

eric and models an agent (robot) which is acting in a

workspace through the set of actions that the agent can

perform according to its capabilities.

2.3 The Need for Ontologies in Cloud Robotics

Considering RaaS, the gathered data and produced in-

formation by any robot unit can also be shared among

others through specific cloud services. This cloud based

sharing and services are crucial properties with the in-

creasing demand from government agencies and the private

sector alike to use autonomous systems, such as un-

manned aerial vehicles (UAVs), unmanned ground vehicles

(UGVs), and autonomous underwater vehicles (AUVs)

for homeland security, reconnaissance, search and res-

cue, surveillance, and urban planning among other tasks

(Bozcuoğlu et al., 2018; Yazdani et al., 2018).

In such RaaS scenarios, robots are expected to co-
operate and manage different types of data circulating

in the cloud (Quintas et al., 2017). Ontologies are im-

portant to formally specify the key concepts, properties,

relationships, and axioms within this context (Fiorini

et al., 2017). Particularly, as an IoT-based system provid-

ing services (RaaS), the establishment of a common

base of understanding is a key feature for the system

to work properly (Gyrard et al., 2018), allowing, for in-

stance, an efficient service discovery (Aziez et al., 2017).

Some benefits of using ontologies include the defin-

ition of a standard set of concepts and their mean-

ings, attributes and inter-relations, as well the possibil-

ity of knowledge capture and reuse, facilitating systems

specification, design and integration (Soldatova et al.,

2006). These benefits are also true to CRS. However, its

importance is even more stressed in this context due to

the heterogeneous and complex environment that CRS
represent. Thus, the need for standardization is man-
datory to allow these systems to work, and ontologies

can make it happen. Once the ontology is defined, the

concepts are understood in the same way by the differ-

ent robots (members) of the CRS. This common base of

knowledge enables the robots sharing data that is un-

derstandable for all robots, which makes possible not

 http://www.sensorml.com/
 https://www.w3.org/2005/Incubator/ssn/ssnx/ssn
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Figure 1: Main ontological concepts proposed (in blue)

in relation to existing concepts (in gray).

only sharing data about the environment, such an ob-

ject that is classified as an obstacle, but also data about

the capabilities of each robot and how they can help

each other in performing tasks in the environment.

3 Ontological Concepts for Cloud Robotics

For robots to work coherently as an associated sys-

tem, several ontological concepts should exist. Among
the set of concepts present in the CR domain, this pa-
per focuses on three: Action, Behavior, and Capability.

Subsection 3.1 presents the top-level concepts used for
modeling these three new concepts, further defined in
subsections 3.2, 3.3 and 3.4.

3.1 Top-level Entities

In this work, a simplified version of SUMO’s top-level

categories4 was adopted (Fig. 1), as previous IEEE stand-

ard ontology efforts (e.g. CORA) were based on it. The

proposed taxonomy first differentiate between Physical
and Abstract entities. Physical entities are those having

some physical existence (i.e. some location in time and

space), such as rocks, chairs and a soccer match. Ab-

stract entities, on the other hand, do not have physical

existence, such as ideas and numbers.

Physical entities are further divided into Objects and

Processes. Objects are wholly present every time (i.e.

they do not have temporal parts). Examples include

ordinary objects, such as animals, rocks, planets, etc.

Processes, on the other hand, happen in time, accu-

mulating temporal parts. Every time a process is hap-
pening, only one of its temporal parts is present at a
given moment. Examples include wars, soccer matches,

a presentation, an earthquake, etc. Among the objects,

two main classes are distinguished: Agent and Artifact.

4 http://www.adampease.org/OP/

An agent is an object performing actions by itself, such
as animals, humans, robots, etc. Artifacts are objects
created by some agent.

Three main abstract entities (Properties, Concepts,

and Situations) are defined, loosely influenced by the

Descriptions and Situations ontology (Gangemi, 2008).
Properties are existentially dependent entities (i.e. they

only exist if another entity exists) representing specific
qualities of other entities, e.g. weight, length, color, etc.
Concepts are abstract entities representing a class of

individuals such as the concepts of animal, human and

robot. Finally, situations are abstract entities represent-

ing the specific way an agent frames a specific fragment

of the reality in which it is interested in. For example,

the situation in which a robot is moving and collecting

images for surveillance purpose to share them within

the cloud. The main taxonomy of this proposed onto-

logy5 can be viewed in Fig. 1.

The following subsections present a formalization
and a discussion of the notions Action, Behavior, and

Capability. Definitions are expressed using First Order

Logics (Barwise, 1977).

3.2 Action

The first ontological concept is Action, which is is in-

tuitively a process initiated by an agent and capable of

changing the world. It can be formalized as follows:

Definition 1 An action is a process performed by an

agent.

∀x Action(x) →Process(x)∧

(∃a Agent(a) ∧ performs(a, x))
(1)

Actions may be something on or over the environ-

ment in which the agent is immersed, such as moving

from a location to another; or over another agent, such

as sending an information to this other agent. Accord-

ing to Definition 1, each occurrence of an action is ex-

istentially dependent on some agent. Thus, in order to

some action happen, it is necessary an agent that per-

forms it (1).

In a CR, robots may perform different actions to

reply to a given request, such as moving from one place

to another, gripping a payload, climbing a wall, provid-

ing and requesting data, sending commands. Although

there are controversies (Lowe, 2010) regarding if ac-

tions can be intentional or non-intentional, the presen-
ted formalization also considers the existence of non-

intentional actions. This allows to consider that agents

5 The OWL file with the complete ontology can
be found at https://drive.google.com/file/d/1Jx-KYa_

1hbYitYmEo4Lu7tV29qOKXHmU/view?usp=sharing

http://www.adampease.org/OP/
https://drive.google.com/file/d/1Jx-KYa_1hbYitYmEo4Lu7tV29qOKXHmU/view?usp=sharing
https://drive.google.com/file/d/1Jx-KYa_1hbYitYmEo4Lu7tV29qOKXHmU/view?usp=sharing
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can perform deliberate actions (which are always in-

tentional) as well as reactive actions (which are non-
intentional responses to stimuli). Please note that the

formalization of this distinction will be further invest-

igated.

While actions are the very essence of agents, the

notion of action is also important for defining the notion

of Capability (Definition 2) and Behavior (Definition 3).

3.3 Capability

The second ontological concept is Capability. The no-

tion of capability is related to the potential that an

agent (i.e. an active element in the system, such as a

robot) has to perform some type of action. It can be

formalized as follows:

Definition 2 A capability is a property of an agent
that allows it to perform or to participate in a certain

type of action.

∀c Capability(c) →Property(c)∧

∃a, t Agent(a)∧

capabilityOf(c, a)∧

ActionType(t)∧

allowsPerforming(c, t),

(2)

where

∀a Action(a) →∃t ActionType(t)∧

isClassifiedBy(a, t)
(3)

and

∀t ActionType(t) → Concept(t). (4)

In (2), ‘ActionType’ is a second order class, whose

instances are subclasses of ‘Action’ (3). ‘ActionType’ is

also considered a subclass of ‘Concept’ (4), which gen-

eralizes other similar notions, such as ‘Situation Type’.

Action types have to be considered in the ontology

because a given specific capability allows the agent to

perform a potentially infinite set of instances of a given

action type. Due to this, specific instances of capability

are related to instances of action types that, on the

other hand, are specific subclasses of Action (and can

have infinite instances).

The formalization of the second-order entity ‘Action

Type’ as a class ‘ActionType’ enables both to reify the
second-order entity ‘Action Type’ and to implement it
using languages such as OWL, which are based on first-

order logic.

Moreover, it is worth to notice that the relation-
ship ‘allowsPerforming’ is held between an individual

capability and a class of actions (an individual ‘Action
Type’). On the other hand, a capability is existentially
dependent on an agent. Thus, every specific capability
is a capability of a given individual agent. If a given

agent ceases to exist, its particular capabilities cease to

exist as well. Besides that, if an agent performs a given

action (5), this means it has the capability to do so:

∀a, x performs(a, x) →Agent(a) ∧ Action(x)∧

(∃c Capability(c)∧

capabilityOf(c, a)∧

allowsPerforming(c, t)∧

ActionType(t)∧

isClassifiedBy(x, t)).

(5)

An example is the execution of an action to detect

obstacles. In this case, the agent needs the capability

of object detection.

Capability differs from Purpose. Indeed, a device is

created with some explicit purpose and holds this pur-

pose during its whole life cycle, whereas an agent can

gain or lose some capability during its life cycle. It is

also important to distinguish between ‘a specific indi-

vidual capability’ and ‘a specific type of capability’. A

specific type of capability, like ‘jumping’, is a subclass

of ‘Capability’, which has several different instances.

On the other hand, a specific individual capability, like

‘my capability of jumping’, is an individual instance of

the class ‘jumping’, which is a specific type (subclass)

of capability.

3.4 Behavior

The third ontological concept is Behavior, which can
be viewed as patterns of active responses (actions) that

an agent exhibits to perceived situations. For example,

a robot can have the behavior of ‘Avoiding obstacles’.

This behavior relates a class of situations ‘Facing obstacle’

to a class of actions ‘Avoiding obstacle’, which is triggered

by the given situation.

In robotics and automation domain, behavior is dir-

ectly connected to ‘sense, reason and response/act’ and

‘interaction with the environment’. It can be formalized

as follows:

Definition 3 A behavior is a property of an agent that

makes it perform certain actions when it faces certain
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situations.

∀b Behavior(b) → Property(b)∧

(∃a, p, s Agent(a) ∧ hasBehavior(a, b)∧

ActionType(p) ∧ triggers(b, p)∧

SituationType(s) ∧ activates(s, b)),

(6)

where

∀c Situation(c) →∃t SituationType(t)

∧ isClassifiedBy(c, t),
(7)

and

∀t SituationType(t) → Concept(t). (8)

In (6), ‘SituationType’ is also a second order class,
whose instances are specific subclasses of ‘Situation’

(7). A ‘SituationType’ is also a ‘Concept’ (8). The no-
tion of ‘SituationType’ in the ontology follows the same
reasoning as the one for ‘ActionType’ (2). To posses a

behavior b, an agent a should have the capabilities of

performing the kinds of actions triggered by the beha-

vior b:

∀a, b hasBehavior(a, b) →

(∀t ActionType(t) ∧ triggers(b, t) →

(∃c Capability(c) ∧ hasCapability(a, c)∧

allowsPerforming(c, t))).

(9)

Next, these ontological concepts presented in this

section have been implemented and used in real-world

CR system as explained in Section 4.

4 Cloud Robotics Scenario

4.1 Cloud Robotic Context

The proposed case studies focus on the resolution of

Multi-Robot Task Allocation (MRTA) problems. These

problems clearly emphasize how robotic systems can

benefit from both a well-defined ontology (Bruckner

et al., 2012) and a cloud-based task allocation frame-

work to transfer the overall computation. Given a mis-

sion and a set of robots, MRTA aims to determine which

robots should execute which tasks in order to achieve

the overall system goal.

This problem can be seen as an optimal assignment
problem, where the objective is to optimally assign a

set of robots to a set of tasks while optimizing the

overall system performance subject to a set of con-

straints (Khamis et al., 2015). This decision is complex

as it usually comes to heterogeneous unreliable robots

equipped with different capabilities that should be op-

timally matched with different tasks requirements. The

complexity increases with addition of constraints re-

stricting the space of feasible solutions. For example,

there may exist proximity constraints specifying that a

task must be performed within a range such as in less

(or greater) than a certain distance.

In this context, robots can internally share data
through some specific policy and technology, while form-

ing a multi-agent system when considering the whole
scenario. They can form a Robotic Cloud (Mell and
Grance, 2011) to share and consume data about the
environment, to use resources, to perform computation-

ally intensive tasks, as well as to offer their resources to

other members within the cloud. As different task scen-

arios can share the same Robotic Cloud, it is possible

to state that this is a CR system. This being a hetero-

geneous system composed of different types of robots

with different capabilities, sensors, and actuators, se-

mantic coherent definitions of involved concepts should

be provided (Olszewska, 2017). The semantic coherence

of these definitions allows for sharing data represent-

ing a common knowledge of robotic experiences. In this

way, required tasks can be assigned to any robot with

ability to perform them, regardless of its type.

Besides data sharing, the cloud can solve the alloc-

ation problem by setting the tasks to be performed and

deciding which robot will perform which task (Mell and

Grance, 2011; Bruckner et al., 2012). The data sharing

process starts by the definition of the ontology that will

compose the common knowledge base. Once this know-

ledge base is set, it is disseminated among the robots

in the CRS, which make use of its concepts to commu-

nicate with the other robots in the system. This com-

munication is wirelessly done in one-hop or multi-hop.

Updates in the knowledge base are shared among all

robots in the system, for instance, the discovery of a
new obstacle in the environment that is informed by
one robot and informed to all other robots.

4.2 Example of Cloud Robotics Usage Scenarios

As concrete examples of this overall CR system ar-

chitecture, two scenarios are proposed (Tosello et al.,

2018a,b). The first scenario (Fig. 2) transports a pay-

load consisting of a set of pieces from a starting position

(top of a table) to a goal position (docking station far

from the table). Two robots participate in the mission:
one manipulator robot, equipped with a camera and a
gripper, and one mobile robot, with laser scans. The

former is fixed in front of the table and it can detect

and manipulate objects, but it cannot navigate towards

the goal region. The latter is not able to manipulate,

but it can move within the environment while avoiding

obstacles. Moreover, a container is located on its top,
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Figure 2: Scenario 1 - A mobile robot navigates towards

a docking station next to a manipulator robot, which

picks up some pieces from a table and places them on

the mobile robot. The mobile robot comes back.

Figure 3: Scenario 2 - A UGV and a UAV picking up a

green and a blue cube, respectively.

giving the mobile robot the capability of transporting

objects from a start pose to a goal.

Mission accomplishment requires that sub-tasks be

divided among the two robots according to their capab-

ilities: the mobile robot should dock near the manipu-

lator robot and the manipulator should pick the pieces

and place them on the top of the mobile robot. Finally,

the mobile robot should navigate to the goal station.

After deciding on robot-task allocation, a task planner

should compute the set of actions and the motion each

robot has to perform. For example, the motions that
the manipulator robot needs are: to approach the ma-
nipulation object, grasp it, and place it on the top of
the mobile robot.

Computing and processing this data require com-

putationally intensive algorithms such as Simultaneous
Location and Mapping (SLAM), sampling-based plan-

ning, adaptive planning under uncertainty and autonom-
ous exploration (Santos et al., 2018). Exploring cloud
computing facilities would be much faster than relying

on robots’ on-board computers, as each robot could re-

quest the cloud to allocate tasks, recognize objects and

compute the task and motion plan.

As mentioned in Section 4.1, besides taking into ac-
count robots capabilities, task allocators must also con-

sider other constraints, such as the robot reachability.

Moreover, multiple robots of different types can popu-

late the scene and both the scene and the mission can

change. The proposed CR system architecture should

be able to address these challenges.

Thus, a second scenario is proposed (Fig. 3): two
robots (UAV and UGV) populate the environment and

the mission is to collect two cubes (green and blue).

Both robots have the required capabilities: the UAV

is able to fly, manipulate (it has a gripper attached),

and perceive its surroundings, while the UGV is able

to navigate, manipulate, perceive and scan. However, as

seen from the figure, the reachability area of the UGV

does not allow it to manipulate the blue cube, hence

performs tasks involving green cube only.

Even in this situation, transferring the computation

to the cloud could minimize the workload. Moreover, if

all robots linked to the CR system share the same on-

tological concepts and vocabulary, the computed data

and information can be stored in the cloud. Once a task

is assigned, instead of computing a new allocation and a
new plan, the information can be retrieved in the cloud
and matched with the assignment. The overall compu-

tation is minimized and the disclosure of information

speeds up.

5 Cloud Robotic Ontological Implementation

The proposed ontology can be used to represent and

communicate behavioral triggers among agents (as de-

scribed in Section 4.2). Basically, it is possible to rep-

resent which robot capabilities are required to allocate

a task, as well which behavior (set of actions) should

be activated when performing a task under a certain

situation.

The implementation described here uses an ontology

together with a set of databases (MongoDB) to sup-

port the allocator. The ontology stores data that should

be easily modified and integrated, such as qualitative

and quantitative information about robots, performed

tasks, detected objects hypotheses, and explored en-

vironments. MongoDB stores data that needs integ-

rity, such as objects’ visual features, poses, robot de-

scription files and capabilities messages. MongoDB was

chosen because it is a NoSQL database, thus provid-

ing better performance and flexibility. Among NoSQL

databases, MongoDB is the most popular, the fastest-

growing, and it has a rich document-oriented structure

and deployed both as a fully managed cloud service and

on self-managed infrastructure. Its flexible data model

can be improved as the requirements change while data

collections are made out of individual documents, which

can be nested in complex hierarchies while remaining

easy to query and index (Davoudian et al., 2018)..

Furthermore, a reasoner is connected to the onto-

logy and both the set of databases and the ontology

(collectively referred as ’Knowledge Base’6 or ’KB’ from
now on) are located in the cloud. When a set of ro-

bots connects to the cloud and a mission is assigned,

6 The complete implementation of the knowledge base
and the case studies can be found at https://github.com/

CloudRobotics-TAMP/RTASK-KB.git

https://github.com/CloudRobotics-TAMP/RTASK-KB.git
https://github.com/CloudRobotics-TAMP/RTASK-KB.git
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the reasoner solves the MRTA problem while exploring

the information stored in the KB. Moreover, transfer-

ring the computation and the knowledge to the cloud

means that robots are no longer involved in decision

making, thus reducing the amount of local resources

needed. If an agent fails, the others are still working

on their own. If the failed agent sends a failure notice

to the cloud, it can reassign the tasks and/or ask for
cooperation among the remaining robots. In the same
way, new agents can be added as soon as they are avail-

able for accomplishing the mission.

The implemented case study uses a private cloud to

save both the knowledge base and the cloud engine. The
former stores the information; the latter retrieves and

generates data. The tests are performed in simulation:
as the implementation is based on the Robot Operat-
ing System (ROS) (Quigley et al., 2015), Gazebo (gaz,

2014) is used as a simulator. Every simulated agent

sends an HTTP request to the Cloud asking for the

initialization of a WebSocket connection to the engine.

In detail, the agent sends an identification message to

the Cloud and waits for the acknowledgement that the

connection is set up. After the connection has been ini-

tialized, the agent can start querying the knowledge

base by sending JSON WebSocket messages containing

the desired SPARQL queries. The engine starts retriev-

ing the requested data and, if no data is available, it

tries to generate data and stores it in the knowledge
base. The server sends back the result of the query via
a JSON message and, when the information exchange
is finished, an HTTP request closes the connection.

Once a scenario is initialized, the configuration of

the robots and their surroundings is sent to the cloud.
This allows the reasoner to understand the situation

in which robots are operating, and scene descriptions
to be stored in the KB for reuse. Taking into consid-
eration the second scenario, the scene can be formally
represented by the instances:

UGV(ugv1)
OpenArea(scenario2)
MovingAction(ugv1NavigatingThroughScenario2)
Performs(ugv1 , ugv1NavigatingThroughScenario2)

UAV(uav1)
OpenArea(scenario2)
MovingAction(uav1FlyingThroughScenario2)
Performs(ugv1 , uav1FlyingThroughScenario2)

Situation(situation1)
IsSettingFor(situation1 , ugv1)
IsSettingFor(situation1 , scenario2)
IsSettingFor(situation1 ,

ugv1NavigatingThroughScenario2)

Situation(situation2)
IsSettingFor(situation2 , uav1)
IsSettingFor(situation2 , scenario2)
IsSettingFor(situation2 ,

uav1FlyingThroughScenario2)

The first two sets of instances detail two specific

robots (ugv1 and uav1 ), their operating area, actions,
and relationship between the robots and the actions.

The other two sets of instances collect specific relevant

parts of reality such as the robots, their workspaces,

and actions it performs. Every robot of the scene sends

its description (name and its kinematic structure) to

the cloud. So, the reasoner can identify which robots

are available to perform the mission. Robot descrip-

tions and capabilities can also be stored in the KB. For

example, capabilities of the UAV of the second scenario

are explicitly represented as follows:

UAV(uav1)
Capability(uav1FlightCapability)
Capability(uav1ManipulationCapability)
Capability(uav1VisionCapability)
ActionType(typeFlyAction)
ActionType(typeVacuumGraspAction)
ActionType(typeSeeAction)

AllowsPerforming(uav1FlightCapability ,
typeFlyAction)

AllowsPerforming(uav1ManipulationCapability ,
typeVacuumGraspAction)

AllowsPerfotming(uav1VisionCapability ,
typeSeeAction)

CapabilityOf(uav1FlightCapability , uav1)
CapabilityOf(uav1ManipulationCapability , uav1)
CapabilityOf(uav1VisionCapability , uav1)

Capability was defined as a property allowing an

agent to perform an action. For the second scenario,
the definition specifies that uav1 is provided with a

set of capabilities such as fly, manipulate, and visually
perceive the environment.

Once information on the robots, their capabilities,
and their surroundings are stored in the cloud, a user
can assign a mission to the cloud. A mission M is a

set of sub-tasks {T1, T2, ..., Tn} where every sub-task Ti

is characterized by a certain domain Di. Di defines the

discrete actions the robot can take to solve Ti, including
their preconditions and effects. For example, the action

’pick-up’ may have the precondition that the object x

is ontable and the effect that the robot’s hand holds

the object x. The actions, preconditions and the effects

in the present case study are listed in Table 1. At the

same time, a set of requirements Ri = {R1, R2, ..., Rm}

is associated to every Ti, where requirements are the
capabilities that a robot must have to accomplish task

Ti. For example, in order to perform a manipulation

task with a pick-up action, the robot requires a gripper

capable of manipulating.

Mission, domains and requirements are sent to the

cloud and stored in the KB. If a manipulation of an

object is required, features of the manipulation object

are sent too. Features include the geometric and visual
description of the object, its mass, its affordance (e.g. a

cup is pickable), and its utility (e.g. a cup is useful for

drinking). The reasoner matches the capabilities of the
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Action Preconditions Effects

PickUp(?x) (and (clear ?x) (ontable ?x) (handempty))
(and (not(ontable ?x)) (not(clear ?x))
(not (handempty)) (holding ?x)))

Place(?x) (holding ?x)
(and (not(holding ?x)) (clear ?x)
(handempty) (ontable ?x)))

MoveArm(?from ?to) (and (pose ?from) (pose ?to) (isAt ?from)) (and (isAt ?to) (not (isAt ?from)))
Navigate(?from ?to) (and (pose ?from) (pose ?to) (isAt ?from)) (and (isAt ?to) (not (isAt ?from)))

Table 1: Set of primitive actions considered in the ontological implementation of Scenario-2.

robots with the requirements of the sub-tasks. Once a
first list of robots is assigned to every sub-task, a second

check is performed against additional constraints such
as the reachability area of the chosen robots. In the
end, every sub-task is assigned to one of the robots

connected to the cloud that gave its availability in ac-

complishing the mission.

Formally, when the robot starts executing a sub-

task, a certain behavior is activated. This behavior de-

pends on the robot’s situation. In the case of the UAV

of the second scenario, after flying over the blue cube,

it can start the manipulation of that object:

Behavior(manipulationBehavior)
HasBehavior(uav1 , manipulationBehavior)

Assuming that the manipulation behavior triggers

a specific action type, this fact can be expressed as:

triggers(manipulationBehavior ,
typeVacuumGraspAction)

It is worth noting that typeVacuumGraspAction is

linked with the UAV (uav1 ) and its capability (uav1Ma-

nipulationCapability) to the previously defined proper-

ties for the uav1 using ’ActionType’. During execution,

the system checks whether the behavior is achievable

by looking if the capability linked to the action type

is active or not. The scene of the first scenario can be
represented in a similar manner:

Manipulator(man1)
OpenArea(scenario1)
MovingAction(man1PickingInScenario1)
Performs(man1 , man1PickingInScenario1)

MobileRobot(mob1)
OpenArea(scenario1)
MovingAction(mob1NavigatingInScenario1)
Performs(mob1 , mob1NavigatingInScenario1)

Situation(sit3)
IsSettingFor(sit3 , man1)
IsSettingFor(sit3 , scenario1)
IsSettingFor(sit3 , man1PickingInScenario1)

Situation(sit4)
IsSettingFor(sit4 , mob1)
IsSettingFor(sit4 , scenario1)
IsSettingFor(sit4 , mob1NavigatingInScenario1)

In this scene, there is a manipulator robot able to

perceive visual information from its workspace and to

manipulate objects through a 3-finger gripper mounted

on its end-effector:

Manipulation(man1)
Capability(man1ManipulationCapability)
Capability(man1VisionCapability)
ActionType(typeFingerGraspAction)
ActionType(typeSeeAction)

AllowsPerforming(man1ManipulationCapability ,
typeFingerGraspAction)

AllowsPerforming(man1VisionCapability ,
typeSeeAction)

CapabilityOf(man1ManipulationCapability , man1)
CapabilityOf(man1VisionCapability , man1)

Once the object to be picked has been detected, the

manipulator robot can start the manipulation routine:

Behavior(manipulationBehavior)
HasBehavior(man1 ,

manipulationBehavior)

This manipulation behavior triggers the grasp of the
object through the 3-finger gripper:

triggers(manipulationBehavior ,
typeFingerGraspAction)

It is important to remember that all high-level in-

formation is stored in the cloud. This means that if a
robot connects to the cloud and is characterized by the
same kinematic properties of a robot seen in the past,

its capabilities has already been stored in the KB and

will not have to be processed again. The same is true

for a task that has already been assigned and an ob-

ject that has already been seen or manipulated. If the

stored information is incomplete, it can be integrated
with the new information while preserving ontological
consistency.

6 Conclusions

The convergence of cloud computing and autonomous
robot systems has brought to the fore an IoT emerging
technology named Cloud Robotics. The key feature of

CR is related to resource and data sharing among ro-

bots through the cloud, as well as the sharing of the ro-

bots themselves as resources within a CR system. Such

systems present a clear need for well-defined standards

to make possible a semantic, coherent, data sharing

among the robots and service provision. Hence, accord-

ing to the goals of the IEEE ORA Working Group, CR

is one of the domain areas that need a standard set of
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terms and definitions for consistent and coherent know-

ledge sharing.

This paper contributes to the efforts of ORA-WG

IEEE 1872.2 standard, by presenting the definition of

the ontological concepts of Action, Behavior, and Cap-

ability pivotal to the CR domain. For the benefit of

practitioners, using typical CR system scenarios, two

case studies are provided which help to verify the con-

cepts, relations, and vocabulary defined in this paper.

The case studies highlight the main contributions of

this work by prototyping the first ontology for cloud

robotics which seeks to enhance the interoperability in

these systems. As Cloud Robotics is a very new and

complex domain, there are many directions for future

works which demonstrate the potential of the proposed

ontological approach. A possible future work directly

related to what is presented in this paper is the defini-

tion of other concepts useful to the CR domain. Another
important direction of future investigations is the use
of Machine Learning methods to handle new acquired

skills that the robots may share knowledge of within

the cloud. Interface with other IoT systems is also an

important issue to be addressed.
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