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Abstract

Motivation: Long non-coding RNAs (lncRNAs) are an enormous collection of functional non-

coding RNAs. Over the past decades, a large number of novel lncRNA genes have been identified.

However, most of the lncRNAs remain function uncharacterized at present. Computational

approaches provide a new insight to understand the potential functional implications of lncRNAs.

Results: Considering that each lncRNA may have multiple functions and a function may be further

specialized into sub-functions, here we describe NeuraNetL2GO, a computational ontological func-

tion prediction approach for lncRNAs using hierarchical multi-label classification strategy based on

multiple neural networks. The neural networks are incrementally trained level by level, each per-

forming the prediction of gene ontology (GO) terms belonging to a given level. In NeuraNetL2GO,

we use topological features of the lncRNA similarity network as the input of the neural networks

and employ the output results to annotate the lncRNAs. We show that NeuraNetL2GO achieves the

best performance and the overall advantage in maximum F-measure and coverage on the man-

ually annotated lncRNA2GO-55 dataset compared to other state-of-the-art methods.

Availability and implementation: The source code and data are available at http://denglab.org/

NeuraNetL2GO/.

Contact: leideng@csu.edu.cn

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Long non-coding RNAs (lncRNAs), which have little or no potential

to encode for functional proteins (Mercer et al., 2009), have a wide

distribution in organisms. Large numbers of lncRNAs have been rec-

ognized in many organisms along with the development of DNA

sequencing technologies. The number of lncRNAs increased signifi-

cantly in recent years with the extensive utilization of experimental

technologies to annotate transcriptome (Mortazavi et al., 2008).

Large-scale analyses of the transcriptome have revealed that the

types and number of lncRNAs are far more than those of protein-

coding transcripts (Birney et al., 2007). Accumulating evidence

shows that lncRNAs are involved in many biological processes, such

as immune response, development, differentiation and gene imprint-

ing (Morris and Mattick, 2014; Tang et al., 2016; Turner et al.,

2014) and are associated with diseases and cancers (Wapinski and

Chang, 2011; Zhang et al., 2017; Zou et al., 2015a, b). However,

the functions of most lncRNAs and the underlying molecular mech-

anisms of gene regulation remain unclear. Hence, the annotation of
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lncRNA functions has become an area of focus in the fields of biol-

ogy and bioinformatics.

Currently, some biological schemes for determining the functions

of lncRNAs are as follows: analysis of lncRNA high-throughput

expression profiles (Liu et al., 2017), verification of high-

throughput data and exploring lncRNA function as part of inter-

actions. The high-throughput analysis of lncRNA expression

profiles is performed through microarrays and RNA-seq (Mortazavi

et al., 2008). Li et al. (2016) utilized quantitative RT-PCR to detect

the expression profiles of lncRNA TUG1 in glioma tissues and con-

ducted correlation analysis to reveal the relationship between TUG1

expression and different clinicopathologic parameters. They also

researched into the function and found the influence of TUG1 on

apoptosis and cell proliferation. In addition to expression-based

methods, the application of next-generation sequencing technology

opens up a new way for us to construct genome-wide interaction

maps for biomolecules (Garzón et al., 2016). The biological function

of lncRNAs in the cell could be considered as a function of biologi-

cal interactions mediated by lncRNAs with other biomolecules (e.g.

DNAs, RNAs, proteins). Some well-characterized lncRNAs (e.g.

HOTTIP, HOTAIR) carry out their function by interacting with

DNA (Mercer and Mattick, 2013). Many experimental methods to

investigate RNA–DNA interactions have been proposed in recent

years, such as chromatin isolation by RNA purification developed

by Jeffrey and his cooperators (Jeffrey and Chang, 2012) and

capture hybridization analysis of RNA targets designed by Simon

(2013). Apart from interaction with DNA, lncRNAs have been dem-

onstrated to interact with RNAs. Among various types of RNA,

interactions with miRNA are most well-studied (Paraskevopoulou

and Hatzigeorgiou, 2016), for example, lncRNA could act as a

sponge to regulate the behavior of regulatory miRNAs (Ebert and

Sharp, 2010). Besides with DNA and RNA, interactions with pro-

tein are pervasive and protein–RNA interactions are crucial aspects

of many cellular processes (Yu et al., 2017). Ferrè et al. addressed

the approaches to reveal the lncRNA–protein interactions (Ferrè

et al., 2016). To explore the function of lncRNAs, it is usually neces-

sary to combine one or more of the above-described interactions.

The experimentally identifying functions of lncRNAs are usually

expensive and progressing slowly. Computational methods for pre-

dicting lncRNA function become more and more important. Since

genes with identical or similar functions tend to have similar expres-

sion patterns across multiple different tissues (Lee et al., 2004), it is

an efficient approach to analyze the role of the lncRNAs by analyz-

ing the co-expression patterns shared with their neighboring coun-

terparts (Necsulea et al., 2014). Guttman et al. (2009) identified

some lincRNAs, then computed functional associations using gene

set enrichment analysis (GSEA). GSEA was based on co-expression

patterns, but the authors did not build a complete co-expression net-

work. In another study, the researchers constructed a coding and

non-coding gene co-expression network according to the abundant

expression profiles in the GEO database, then predicted the func-

tions of more than 300 mouse lncRNAs based on co-expression and

genomic co-location (Qi et al., 2011). Guo et al. (2013) developed

an approach named lnc-GFP to predict function for 1625 lncRNAs.

In lnc-GFP, a bi-colored biological network was constructed and

took into account both coding and non-coding co-expression pro-

files and protein–protein interactions. In 2015, Jiang et al. (2015)

computed the Pearson correlation coefficients (PCCs) of all

lncRNA-mRNA gene pairs according to the expressions of all

human lncRNAs and mRNAs in the 19 tissues and then annotated

9625 human lncRNAs by employing the hypergeometric test.

In this work, we propose NeuraNetL2GO, which uses multiple

neural networks to annotate probable function of lncRNAs at a

large scale (Cerri et al., 2014; Cerri et al., 2015; Ricardo et al.,

2016). First, we construct a lncRNA-lncRNA biological network

according to lncRNA co-expression data. Second, we generate the

topological feature vectors of the co-expression network by running

random walks with restart (RWR; Tong et al., 2006). Finally, we

build multiple neural networks, in which the topological feature vec-

tors are used as inputs, and the gene ontology (GO) terms are the

output labels of these neural networks. We generate 13 neural net-

works in total since the GO terms are distributed over the 13 levels

in the directed acyclic graph (DAG) hierarchy of GO and each neu-

ral network corresponds to the GO terms in one level. In the inde-

pendent test, we achieve a maximum F-measure of 0.336 on the

manually annotated 55 lncRNAs with 129 GO terms, which is sig-

nificantly better than that of the other two state-of-the-art methods:

lnc-GFP (Guo et al., 2013) and LncRNA2Function (Jiang et al.,

2015).

2 Materials and methods

As an overview, the flowchart of our method is depicted in Figure 1.

The primary processing is composed of several steps: (i) Construct

the lncRNA similarity network according to the lncRNA expression

profiles; (ii) diffusion component analysis (DCA) (Cho et al., 2015)

is adopted to obtain a low-dimensional vector representation of

each node in the lncRNA similarity network; (iii) Build the training

GO annotation dataset using neighbor counting method (Wong and

Chua, 2012); (iv) Train the multi-layer networks incrementally, level

by level, and apply the neural networks to the independent test data-

set and the human genome.

A

B

D

C

Fig. 1. Flowchart of NeuraNetL2GO. It includes four steps: (A) Construct the

lncRNA similarity network. (B) Extract topological features in the network

with the DCA approach. (C) Build the training dataset by employing the

Neighbor Counting method. (D) Training the multi-layer neural networks
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2.1 Construct the lncRNA similarity network
The construction of the lncRNA similarity network is based on the

assumption that transcripts which have similar expression patterns

have similar functions or share related biological pathways. We cal-

culate the PCC between the expression profiles of each pair of

lncRNAs. The PCC values are used as the weights of the similarity

networks.

2.2 Obtain a low-dimensional vector representation
In the lncRNA co-expression network, the nodes (lncRNAs) that are

similar in the topological structure may have similar functions. We

employ the DCA strategy to extract the low-dimensional topological

information of lncRNAs. First, the RWR algorithm is performed on

each node in the lncRNA similarity network. Since considering the

local and global topological information in the network, RWR can

select the relevant or similar nodes in the network.

Let Pt be a vector in which the i-th entry holds the probability of

the i-th node being visited at step t. The probability vector at step

tþ1 can be decided by

ptþ1 ¼ 1� rð ÞMTpt þ rp0: (1)

The parameter r is the restart probability which is a balancing param-

eter determining the importance of local and global topological infor-

mation; M is the transition probability of the network and MT is the

transpose matrix of M. After a large number of steps, the probabilities

will reach to a steady distribution which is called as the ‘diffusion

state’. The steady probability provides a measurement of the proxim-

ity to the seed nodes. When the two nodes harbor similar diffusion

states, it suggests that the two nodes are in similar positions in the net-

work to other nodes. This means they are similar in function.

However, the diffusion states are high-dimensional when the network

is large and may have noise information. To solve this problem, we

use singular value decomposition to reduce the dimensionality of dif-

fusion states (Cho et al., 2015; Wang et al., 2015).

2.3 Build the training dataset
At present, the fact that there are no public GO annotations of

lncRNAs limits the application of machine learning (Fan et al.,

2016). Hence, we use the neighbor counting method to annotate

some lncRNAs according to the known GO annotations of protein.

This approach is based on the fact that the target lncRNA may have

very similar functions as that of the direct neighbor proteins in the

lncRNA-protein association network.

For each target lncRNA l in the lncRNA-protein association net-

work, the frequency of appearance of each function fi 2 F is calcu-

lated based on the direct neighbors of l, where F is the set of functions

owned by all direct neighbors of l. The function is as follows:

Sf Lð Þ ¼
X

n2Nl
I n; fð Þ; (2)

where I n; fð Þ ¼ 1 if the neighbor n has the function f, 0 otherwise.

Nl is the set of direct neighbors of lncRNA l in the lncRNA-protein

association network. A proper minimum threshold frequency needs

to be selected to adjust the prediction for lncRNA.

2.4 Train the multi-layer networks
Since GO functions are organized as a DAG hierarchy (Deng and

Chen, 2015), the prediction of lncRNA functions can be considered

as a hierarchical multi-label classification. We associate one neural

network to each level of the class hierarchy. In this way, the complex

learning model is split into simpler models. The multiple neural net-

works are trained sequentially, level by level. After the training proc-

ess of one neural network for a certain level, both the predictions of

the network and the feature information extracted from the instan-

ces belonging to the next level are employed to train the next neural

network. The procedure keeps on until the last level.

The architecture of the multiple neural networks for a three-level

hierarchy is illustrated in Figure 2. Here, Xl is the feature vectors of

the instances corresponding to classes from level l; Hl and Ol repre-

sent the hidden layer and output layer of the neural network at level l,

respectively. The architecture of the neural network at each level

includes one hidden layer and one output layer to be trained. In our

work, the feature vectors of the instances are the low-dimensional

vector-space representations for all nodes in the lncRNA similarity

network. Since there are multiple GO terms at each level of the DAG

hierarchy, each output neuron corresponds to one class, namely one

GO term. First, the neural network corresponding to the first level 1

is trained (Fig. 2A), then the second neural network at level 2 follows.

Besides the feature vectors of the instances that are assigned to the

classes belonging to level 2 (X2), the output of the neural network of

level 1 is also the input of the network of level 2 (Fig. 2B). In the same

way, the third neural network at level 3 is trained after the training of

the neural network at level 2 is finished (Fig. 2C). The procedure of

incremental training does not end until the neural network at the last

level is trained. It should be pointed out that when a neural network

at level l is trained, the neural networks at the previous levels are not

re-trained since these networks have already been trained in the pre-

vious steps. The output of the network at level l – 1 only acts as a por-

tion of the input for the network at level l. In our networks, we use

the quadratic cost function and sigmoid function as the cost function

and activation function, respectively. In training, the famous back-

propagation is used to train the neural networks (Rumelhart et al.,

1986). The pseudocodes for the training procedures are presented in

Algorithm 1. We use a top-down strategy to predict the GO terms

according to the test instances. The test examples act as the input for

the neural network at the first level, and then the output from the first

network, combining the feature vector of test example, is fed to the

second neural network. The output values from the second network

will augment the feature vector of test example belonging to the third

level once again. The procedure is continued until the last network is

reached. The output values for each level are achieved in sequence.

When the procedure is finished, the output values of the output layers

A

B
C

Fig. 2. Architecture of the multiple neural networks for a three-level hierarchy.

(A) Train a neural network for the first level. (B) Train a neural network for the

second level, the input of which includes the features of the instances and the

output of the neural network of level 1. (C) Use the output of the neural net-

work of level 2 to augment the feature vectors for training the neural network

of level 3
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of the neural networks fall in the range [0, 1] since the sigmoid func-

tion is employed as activation function in the neurons. Different

thresholds are applied to the output neurons of the networks to

obtain the predicted GO terms for each level. If the output value of a

neuron in the output layer is equal to or larger than a given threshold,

the corresponding position of the class vector is set to 1. Otherwise,

the position is assigned 0.

3 Results

3.1 Datasets and pre-processing
3.1.1 lncRNA co-expression similarity

We extract the lncRNA expression profiles from NONCODE2016

database (Xie et al., 2014), which provides the expression profiles of

90 062 lncRNAs in 24 human tissues or cell types. PCC between the

expression profiles of each pair of lncRNAs is computed, and then

the lncRNA similarity network is built according to the PCC scores

between lncRNAs.

3.1.2 lncRNA-protein associations

The lncRNA-protein associations are computed based on the co-

expression data and the interactions between lncRNAs and proteins.

We downloaded all human lncRNA genes and protein-coding genes

from the GENCODE Release 24 (Derrien et al., 2012) and extracted

a total of 15 941 lncRNA genes and 20 284 protein-coding genes.

Then, we calculated the co-expressions and interactions:

• Co-expression data from COXPRESdb (Okamura et al., 2015).

We extracted three preprocessed co-expression datasets (Hsa.c4-

1, Hsa2.c2-0 and Hsa3.c1-0) with pre-calculated pairwise PCC

values for human from COXPRESdb. The correlations are calcu-

lated as follows:

CC l; pð Þ ¼ 1�
YD
d¼1

1�Cd l; pð Þð Þ if Cd l; pð Þ > 0; (3)

where C(l, p) is the overall correlation between gene l (lncRNA)

and protein-coding gene p, Cd l;pð Þ is the correlation score

between l and p in dataset d, D is the number of pairs (l and p)

with positive correlation scores.

• Co-expression data from ArrayExpress (Rocca-Serra et al.,

2003) and GEO (Barrett et al., 2007). We obtained the co-

expression data from the work of Jiang et al. (Jiang et al., 2015).

PCC values (denoted as CJ) are used to evaluate the co-

expression of lncRNA-protein pairs.
• LncRNA-protein interaction data. We extracted human

lncRNA-protein interactions from Npinter 3.0 (Hao et al.,

2016). The score I(l, p) is 1 if there exists an interaction between

lncRNA l and protein p, otherwise the score is 0.

Finally, we computed overall association score for each lncRNA-

protein pair by combining the three sources of co-expression and

interactions:

A l; pð Þ ¼ 1� 1�CCð Þ 1� CJ

� �
1� Ið Þ: (4)

3.1.3 Benchmarks

The neural networks are trained using a predicted GOA-lncRNA

dataset, which includes more than 4000 lncRNAs by employing the

Algorithm 1 NeuralNETLGO algorithm

Require: X: feature matrix of training instances, y: label

matrix of annotations, dataValid: feature matrix of validating

instances, Levels: level number of the GO hierarchy, epochs:

number of training epochs, g learning rate in Back-propaga-

tion, a: momentum factor in Back-propagation

Ensure: W: weights of the multiple neural networks

//Initialize the weights of the multiple neural networks

InitializeRandomWeights(W)

for i¼1 to epochs

for l¼1 to Levels

for x in X

//r is activation function

a1
1 ¼ rðW1

1 x1Þ
a1

2 ¼ rðW1
2 h1Þ

if l¼1

//Calculate error

err ¼ y1 � a1
2

//Calculate gradients

d1
2 ¼ err� r0ðW1

2 h1Þ
//Elementwise product

d1
1 ¼ ððW1

2 Þ
Td1

2Þ � r0ðW1
1 x1Þ

//Update weights

DW1
2 ¼ a2ðDW1

2 Þ
i�1 þ g2ðd1

2 � a1
1Þ

DW1
1 ¼ a1ðDW1

1 Þ
i�1 þ g1ðd1

1 � x1Þ
W1

2 ¼W1
2 þ DW1

2

W1
1 ¼W1

1 þ DW1
1

else

//Feedforward from level 2 to l

for j¼2 to l

xj ¼ xj�aj�1
2 //Concatenate vectors

aj
1 ¼ rðWj

1xjÞ
aj

2 ¼ rðWj
2aj

1Þ
end for

err ¼ yl � al
2

dl
2 ¼ err� r0ðWl

2hlÞ
dl

1 ¼ ððWl
2Þ

Tdl
2Þ � r0ðWl

1xlÞ
//Update weights in level l

DWl
2 ¼ a2ðDWl

2Þ
i�1 þ g2ðdl

2 � al
1Þ

DWl
1 ¼ a1ðDWl

1Þ
i�1 þ g1ðdl

1 � xlÞ
Wl

2 ¼Wl
2 þ DWl

2

Wl
1 ¼Wl

1 þ DWl
1

end if

end for

end for

Measure¼ validate(W, dataValid)

if Measure>bestMeasure

bestMeasure¼Measure

else

earlyStopþþ
if earlyStop¼=maxEpochs

break

end if

end if

end for

Return W
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neighbor counting method according to the lncRNA–protein inter-

actions. An lncRNA is annotated with a GO term if the number of

protein neighbors annotated with the GO term is larger than a

threshold N. In this paper, N is assigned 20. At last, a total of 4031

lncRNAs are annotated, 70% of which are randomly chosen as the

training data (2821 lncRNAs) and the rest are used as validation

data (1210 lncRNAs). In our method, each class needs to be defined

to a definite level. However, in DAG structures, which level a class

belongs to is determined by the hierarchical path chosen from the

root node to the class. In our method, the longest path (the deepest

hierarchy) from the class to the root node is treated as the level of a

class in the DAG structure. In this way, when a class is defined to a

level l, all its superclasses will be defined to levels shallower than l.

Since there is no available public database of lncRNA function

annotations, we manually curate a independent test set of 55

lncRNAs with 129 GO terms (lncRNA2GO-55) based on referen-

ces. The lncRNA2GO-55 dataset only includes lncNRAs that have

been functionally characterized through knockdown or over-

expression experiments.

3.2 Evaluation measures
The output of our method for each term in the GO is a score in the

interval [0, 1]. Hence, a threshold value is applied to determine the

final predictions. For a given example, if the output for a class is

equal to or greater than the threshold, the example is considered to

belong to the class, otherwise it is not. We use t to denote the

threshold value, P(t) to denote the set of predicted terms, and T to

denote a set of experimentally determined GO terms. TP, FP and

FN represent the number of true positives, false positives, and false

negatives, respectively. For each lncRNA i and threshold t, they

are given by

TPi ¼
X

f2O
I f 2 Pi tð Þ ^ f 2 Tið Þ (5)

FPi ¼
X

f2O
I f 2 Pi tð Þ ^ f 62 Tið Þ (6)

FNi ¼
X

f2O
I f 2 Ti ^ f 62 Pi tð Þð Þ: (7)

Here, f is a GO term and O is the set of GO terms in our experiment.

Function I(x) is an indicator function defined as:

I xð Þ ¼
1

0

x ¼ true

x ¼ false:

8<
: (8)

For a given threshold t, the overall precision and recall for all exam-

ple are defined as:

Prec ¼
P

iTPiP
iTPi þ

P
iFPi

(9)

Rec ¼
P

iTPiP
iTPi þ

P
iFNi

(10)

Low threshold engenders each example having many GO terms and

brings about high recall and low precision. On the other hand, large

threshold engenders few GO terms being assigned to each example

and brings about high precision and low recall. To cope with the

problem and provide a single-score for overall evaluation of differ-

ent methods, the maximum F-measure over all thresholds (all points

in the precision-recall curve) is calculated. The Fmax is written as:

Fmax ¼ max
t

2 � Prec tð Þ � Rec tð Þ
Prec tð Þ þRec tð Þ

� �
: (11)

Also, coverage is used to evaluate our method and compare it with

other methods. It is defined as the ratio of the portion of lncRNAs

annotated with GO annotations to the whole number lncRNAs.

3.3 Post processing
In NeuraNetL2GO, each neural network gives the predictions for

the examples at each level. Namely, the prediction value in a level is

not determined by the output of the neural network at other levels.

Hence, classification inconsistencies may occur in terms of the pre-

dictions, i.e. when a subclass is predicted but its superclass is not.

Figure 3 shows an example of the classification inconsistencies.

Figure 3A illustrates a small part of the GO hierarchy taxonomy.

The digits in the circles are the indices of the class in our experiment.

The GO terms next to the circles correspond to the indices, respec-

tively. The vector of prediction values is shown in Figure 3B, and the

vector of predicted classes is obtained after a threshold value of 0.5

is used (Fig. 3C). The class corresponding to 196 is assigned 1(the

red), but its superclass corresponding to 73 is assigned 0. The case is

considered to be an inconsistency. Therefore, the value of the posi-

tion is corrected to 0 (Fig. 3D).

Another post-processing step needs to be highlighted. In DAG,

there may be multiple paths from an ancestor to one descendant

node, i.e. there are three paths from the node with index 1 to the

node with index 361 in Figure 3A. The three paths are 1->19->73-

>195->361, 1->19->74->195->361 and 1->19->73->196->361.

If there is one path that has been correctly predicted, all the super-

classes will be set to 1. For example, if 1->19->73->195->361 is

correctly predicted, the superclasses of node with index 361,

namely, all the nodes in Figure 3A, will be assigned 1.

3.4 Parameter selection
There are many hyper parameters to be optimized, and parameter

optimization is a complicated problem to solve. The hyper parame-

ters utilized in our method are selected without exhaustive experi-

ments. The hyper parameters to be optimized are as follows:

i. Number of hidden neurons in each neural network. There are

13 neural networks in all, each corresponding to one level of

the GO hierarchy.

ii. Momentum factor and learning rate used in Back-propagation

with momentum algorithm.

iii. Initializations for the weights and biases in the neural networks.

A B

C

D

Fig. 3. Example of the classification inconsistencies. (A) an example of the GO

hierarchy. (B) the vector of predicted values. (C) the binary vector of predicted

classes when a threshold value of 0.5 is used. (D) the binary vector of pre-

dicted classes after post processing
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iv. Number of lncRNA features (Nfeature), namely, the number of

dimensions of low-dimensional vector representation of each

node in the lncRNA similarity network.

v. The threshold Nneighbor used to determine if a lncRNA has the

function of a GO term (the number of neighbors in the

lncRNA–protein interactions corresponding to a GO term).

The first three categories of hyper parameters are used in the neural

networks. We utilize the same values as Cerri et al.’s research (Cerri

et al., 2015). As the depth of the hierarchy in DAG becomes deep,

the training samples are gradually reduced. Therefore, to reduce

overfitting, we gradually decrease the number of hidden neurons as

the level is getting deeper. The number of hidden neurons is deter-

mined by setting the ratio of them to the number of neurons in input

layer. These ratios are as follows: 0.65/0.65/0.6/0.55/0.5/0.45/0.4/

0.35/0.3/0.25/0.2/0.15/0.1. The learning rate and momentum factor

utilized in Back-propagation for hidden layers and output layers are

0.05, 0.03 and 0.03, 0.01, respectively. The initial values of the

weights and biases in the neural networks in our experiment are

selected randomly from the range [�0.1, 0.1].

Besides the hyper-parameters related to neural networks, the

number of lncRNA features (Nfeature) and the threshold Nneighbor

also have significant influence on the prediction performance. In

order to evaluate the impact of the two hyper-parameters on the

functional annotations of lncRNAs, we vary their values and per-

form the independent test using the lncRNA2GO-55 dataset.

Table 1 shows the comparison of the Fmax when the two hyper-

parameters are assigned different values. It can be observed that the

Fmax value reaches the max value when the number of lncRNA fea-

tures (Nfeature) and the threshold Nneighbor are set to 50 and 20,

respectively. Hence, the two parameters, Nfeature and Nfeature, are set

to 50 and 20, respectively, in this work.

3.5 Performance
As described earlier, the computational methods that investigate the

functions of lncRNAs are mainly based on ‘guilt-by-association’

from co-expression patterns shared with their protein-coding coun-

terparts. Among these methods, Liao et al.’s module-based method

is based on a local strategy and only 340 lncRNAs have been func-

tionally characterized (Qi et al., 2011). Lnc-GFP (Guo et al., 2013)

is an important method that can annotate probable functions for

lncRNAs on a large scale. In Lnc-GFP, a coding-non-coding bi-col-

ored biological network is constructed according to gene expression

data and protein–protein interaction data. Then a global propaga-

tion algorithm on the bi-colored network is used to predict putative

functions for lncRNAs based on the known functions of proteins.

LncRNA2Function (Jiang et al., 2015) is a method based on statis-

tics. In LncRNA2Function, the hypergeometric test is employed to

infer the functions of lncRNAs of interest according to the expres-

sion correlation between lncRNAs and protein-coding genes across

19 human normal tissues. Our NeuraNetL2GO approach is based

on machine learning. We constructed multiple neural networks to

predict probable functions for all the lncRNAs characterized in the

lncRNA co-expression network.

In order to examine our method level by level, we calculated the

maximum F-measure when predicting function classes of lncRNAs

in different hierarchical levels. As shown in Figure 4, the perform-

ance of level 1 is the best and the maximum F-measure is 0.745. As

the depth of the hierarchy increases, the performance gradually dete-

riorates. In GO hierarchy, the parent terms are more generalized

and the child terms are more specific.

In this paper, we compare the performance of our method with

the two state-of-the-art methods (lnc-GFP and LncRNA2Function)

on the lncRNA2GO-55 dataset by an independent test. The GO

classifies functions on three aspects: molecular function, cellular

component and biological process. In our experiment, we compare

the biological process with the other two methods since many

lncRNAs participate in the biological process by lncRNA–protein

interactions and most annotations in lncRNA2GO-55 are biological

process terms. Performance comparison of the three methods is

shown in Figure 5. Our NeuraNetL2GO method shows a much bet-

ter performance in terms of maximum F-measure of 0.336, and lnc-

GFP and LncRNA2Function follow with the maximum F-measure

of 0.225 and 0.161. In precision and recall, our method also gains

competitive scores of 0.250 and 0.513, respectively. Also, we calcu-

late the numbers of lncRNAs that are annotated with at least one

biological process GO term (excluding the root GO: 0008150) by

0 2 4 6 8 10 12 14
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Fig. 4. Performance comparison of different levels in the GO hierarchy

Table 1. The Fmax values when using different combinations of the

two hyper-parameters

Nneighbor Nfeature

50 100 200

10 0.1455 0.1458 0.1841

20 0.3361 0.2799 0.2309

Fig. 5. Performance comparison with the methods of lnc-GFP and

LncRNA2Function
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the three methods. As shown in Figure 6, 50 lncRNAs are annotated

correctly by our method. The coverage of NeuraNetL2GO is much

higher than that of lnc-GFP and LncRAN2Function.

3.6 Case studies
In this section, two lncRNAs are used as instances to further demon-

strate the predictive performance and show the application of our

method. For each lncRNA, the predicted GO terms, GO names and

GO paths are listed in Supplementary tables.

Case study 1: HOTAIRM1. HOTAIRM1 is an lncRNA located

between the HOXA1 and HOXA2 genes in humans, and it is tran-

scribed antisense by RNA polymerase II. Researchers have demon-

strated that HOTAIRM1 may play a regulatory role in myeloid

transcriptional regulation and quantitatively impairs expression of

the genes HOXA1 and HOXA4 (Zhang et al., 2009). Marina et al.

(2015) found that HOTAIRM1 plays a role in normal hematopoie-

sis and leukemogenesis, including miR-196 b. The current studies

have revealed that members of the integrin families take part in

phagocytosis, leukocyte trafficking and signal transduction and are

regulated by HOX genes (Dupuy and Caron, 2008). Also,

HOTAIRM1 regulates genes encoding cell adhesion receptors.

Zhang et al. (2014) revealed that E2Fs, HOTAIRM1 and perhaps

protein-coding HOX genes might serve as a network to regulate cell

cycle progression during differentiation. And their results suggest

that an HOTAIRM1-regulated integrin switch mechanism involving

CD11c and CD49d may regulate the cell growth in NB4 acute pro-

myelocytic leukemia cells and hence modulate NB4 cell maturation.

We use NeuraNetL2GO to predict the functions of

HOTAIRM1. The GO terms assigned to the lncRNA HOTAIRM1

are shown in Supplementary Table S1. Most of them are related to

biological regulation, signal transduction and cellular process. These

functions have been demonstrated by the previous studies. The

results show that NeuraNetL2GO can successfully infer the func-

tions of lncRNA HOTAIRM1.

Case study 2: GAS5. GAS5 (growth arrest-specific transcript 5)

was originally identified from NIH3T3 cells using subtraction

hybridization (Schneider et al., 1988). There exist many different

patterns of alternative splicing in GAS5 transcripts. The open read-

ing frame in GAS5 exons is small and poorly conserved during even

relatively short periods of evolution (Schneider et al., 1988; Raho

et al., 2000). Some studies have shown that GAS5 is related to apop-

tosis and it could play a role in the progression of numerous human

cancers. For example, GAS5 has been shown to be a key regulator

of prostate cell survival, and its levels in cellular are quantitatively

related to cell death (Pickard et al., 2013). Mazar et al. (2017) found

multiple novel splice variants by further analysis of sequenced GAS5

clones, the two variants of which were called Full-Length (FL) and

Clone 2 (C2). The FL variant further promoted cell proliferation by

rescuing cell cycle arrest, while the C2 variant had only a minimal

effect on apoptosis. They also demonstrated that GAS5 expression

has a significant impact on neuroblastoma cell biology.

To further assess the performance, we run NeuraNetL2GO on

the lncRNA GAS5 according to the trained parameters. The GO

terms predicted are listed in Supplementary Table S2. As expected,

some of them are the apoptotic process, some regulation of cellular

process, some cell cycle and so on. These predicted functions of

GAS5 are consistent with the experimental results described earlier.

4 Discussion and conclusion

A huge number of lncRNAs have been recognized in the past few

years. However, most of the lncRNAs remain poorly functional

characterized. In this study, we propose a hierarchical multi-label

classification strategy to annotate the functions of lncRNAs. First,

we constructed an lncRNA similarity network according to the

lncRNA expression profiles and extracted a low-dimensional vector

representation of each node by running RWR on the network. Then

multiple neural networks are trained with the low-dimensional vec-

tor representations as features of inputs and GO terms as outputs.

After training these neural networks, the lncRNA2GO-55 dataset is

employed to evaluate the performance independently. Regarding the

experimental results, our NeuraNetL2GO method achieves the best

prediction results, when compared to the other two state-of-the-art

methods: lnc-GFP and LncRNA2Function. Moreover, 50 of the

manually annotated 55 are correctly annotated with at least one GO

term, which overwhelmingly outperforms the other two methods.

We would like to point out that our NeuraNetL2GO method

may have some limitations. First, we have to employ the neighbor

counting method to annotate some lncRNAs to train the neural net-

works because of the lack of experimentally determined lncRNA

function annotations. It would lead to a bias against the correct

annotations. Second, low-dimensional vector representation of each

node is extracted depending on the structure of lncRNA similarity

network. However, low-dimensional vector representation of each

node is inexact since the expressions of many lncRNAs are missing.

Third, it is challenging to set so many hyper-parameters to proper

values. In the future, we will integrate more biological data and

efficient machine learning algorithms to better predict lncRNA

functions.
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Ferrè,F. et al. (2016) Revealing protein-lncRNA interaction. Brief Bioinform.,

17, 106–116.

Garzón,J.I. et al. (2016) A computational interactome and functional annota-

tion for the human proteome. Elife, 5, e18715.

Guo,X. et al. (2013) Long non-coding RNAs function annotation: a global

prediction method based on bi-colored networks. Nucl. Acids Res., 41, e35.

Guttman, M. et al. (2009) Chromatin signature reveals over a thousand highly

conserved large non-coding rnas in mammals. Nature, 458, 223.

Hao,Y. et al. (2016) NPInter v3.0: an upgraded database of noncoding

RNA-associated interactions. Database J. Biol. Databases Curat., 2016,

baw057.

Jeffrey,Q. and Chang,H.Y. (2012) Chromatin isolation by RNA purification

(ChIRP). J. Vis. Exp., 61, 3912.

Jiang,Q. et al. (2015) LncRNA2Function: a comprehensive resource for func-

tional investigation of human lncRNAs based on RNA-seq data. BMC

Genomics, 16(Suppl 3), S2.

Lee,H.K. et al. (2004) Coexpression analysis of human genes across many

microarray data sets. Genome Res., 14, 1085.

Li,J. et al. (2016) LncRNA TUG1 acts as a tumor suppressor in human glioma

by promoting cell apoptosis. Exp. Biol. Med., 241, 644–649.

Liu,G. et al. (2017) Integrating genome-wide association studies and gene

expression data highlights dysregulated multiple sclerosis risk pathways.

Multi. Scler., 23, 205.

Marina,D.B. et al. (2015) The lincrnahotairm1, located in thehoxagenomic

region, is expressed in acute myeloid leukemia, impacts prognosis in patients

in the intermediate-risk cytogenetic category, and is associated with a dis-

tinctive microrna signature. Oncotarget, 6, 31613–31627.

Mazar,J. et al. (2017) The long non-coding RNA GAS5 differentially regulates

cell cycle arrest and apoptosis through activation of BRCA1 and p53 in

human neuroblastoma. Oncotarget, 8, 6589–6607.

Mercer,T.R. et al. (2009) Long non-coding RNAs: insights into functions.

Nat. Rev. Genet., 10, 155.

Mercer,T.R. and Mattick,J.S. (2013) Structure and function of long noncoding

rnas in epigenetic regulation. Nat. Struct. Mol. Biol., 20, 300.

Morris,K.V. and Mattick,J.S. (2014) The rise of regulatory rna. Nat. Rev.

Genet., 15, 423–437.

Mortazavi,A. et al. (2008) Mapping and quantifying mammalian transcrip-

tomes by RNA-seq. Nat. Methods, 5, 621.

Necsulea,A. et al. (2014) The evolution of lncrna repertoires and expression

patterns in tetrapods. Nature, 505, 635–640.

Okamura,Y. et al. (2015) Coxpresdb in 2015: coexpression database for ani-

mal species by dna-microarray and rnaseq-based expression data with mul-

tiple quality assessment systems. Nucl. Acids Res., 43, 82–86.

Paraskevopoulou,M.D. and Hatzigeorgiou,A.G. (2016) Analyzing mirna-lncrna

interactions. Methods Mol. Biol., 1402, 271.

Pickard,M.R. et al. (2013) Long non-coding RNA GAS5 regulates apoptosis

in prostate cancer cell lines. Biochim. Biophys. Acta, 1832, 1613–1623.

Qi,L. et al. (2011) Large-scale prediction of long non-coding RNA functions

in a coding-non-coding gene co-expression network. Nucl. Acids Res., 39,

3864.

Raho,G. et al. (2000) The gas 5 gene shows four alternative splicing patterns

without coding for a protein. Gene, 256, 13–17.

Ricardo,C. et al. (2016) Reduction strategies for hierarchical multi-label clas-

sification in protein function prediction. BMC Bioinform., 17, 373.

Rocca-Serra,P. et al. (2003) Arrayexpress: a public database of gene expres-

sion data at ebi. C. R. Biol., 326, 1075.

Rumelhart,D.E. et al. (1986) Learning Representations by Back-Propagating

Errors. Nature, 323, 533–536.

Schneider,C. et al. (1988) Genes specifically expressed at growth arrest of

mammalian cells. Cell, 54, 787–793.

Simon,M.D. (2013) Capture Hybridization Analysis of RNA Targets

(CHART). John Wiley & Sons, Inc, Hoboken, New Jersey.

Tang,W. et al. (2016) Which statistical significance test best detects

oncomirnas in cancer tissues? An exploratory analysis. Oncotarget, 7,

85613–85623.

Tong,H. et al. (2006) Fast random walk with restart and its applications. In:

International Conference on Data Mining, pp. 613–622.

Turner,M. et al. (2014) Noncoding RNA and its associated proteins as regula-

tory elements of the immune system. Nat. Immunol., 15, 484–491.

Wang,S. et al. (2015) Exploiting ontology graph for predicting sparsely anno-

tated gene function. Bioinformatics, 31, 357–364.

Wapinski,O. and Chang,H.Y. (2011) Long noncoding rnas and human dis-

ease. Trends in Cell Biol., 21, 354–361.

Wong,L. and Chua,H.N. (2012) Predicting Protein Functions from Protein

Interaction Networks. IGI Global.

Xie,C. et al. (2014) Noncodev4: exploring the world of long non-coding RNA

genes. Nucl. Acids Res., 42, D98.

Yu,G. et al. (2017) Newgoa: predicting new go annotations of proteins by

bi-random walks on a hybrid graph. IEEE/ACM Trans. Comput. Biol.

Bioinform., doi:10.1109/TCBB.2017.2715842.

Zhang,X. et al. (2009) A myelopoiesis-associated regulatory intergenic non-

coding rna transcript within the human HOXA cluster. Blood, 113,

2526–2534.

Zhang,X. et al. (2014) Long intergenic non-coding RNA HOTAIRM1 regu-

lates cell cycle progression during myeloid maturation in NB4 human pro-

myelocytic leukemia cells. Rna Biology, 11, 777–787.

Zhang,J. et al. (2017) Integrating multiple heterogeneous networks for novel

lncRNA-disease association inference. IEEE/ACM Trans. Comput. Biol.

Bioinform., doi:10.1109/TCBB.2017.2701379.

Zou,Q. et al. (2015a) Prediction of microrna-disease associations based on

social network analysis methods. Biomed. Res. Int., 2015, 810514.

Zou,Q. et al. (2015b) Similarity computation strategies in the microRNA-disease

network: a survey. Brief. Funct. Genomics, 15, 55–64.

NeuraNetL2GO 1757

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/34/10/1750/4774299 by guest on 20 August 2022


