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Ontological modeling and analysis 
of experimentally or clinically 
verified drugs against coronavirus 
infection
Yingtong Liu1, Junguk Hur  2, Wallace K. B. Chan  3, Zhigang Wang  4, Jiangan Xie5, 

Duxin Sun6, Samuel Handelman7,8, Jonathan Sexton7,8,9, Hong Yu10,11 & Yongqun He  1,12,13 ✉

Our systematic literature collection and annotation identified 106 chemical drugs and 31 antibodies 
effective against the infection of at least one human coronavirus (including SARS-CoV, SAR-CoV-2, 
and MERS-CoV) in vitro or in vivo in an experimental or clinical setting. A total of 163 drug protein 
targets were identified, and 125 biological processes involving the drug targets were significantly 
enriched based on a Gene Ontology (GO) enrichment analysis. The Coronavirus Infectious Disease 
Ontology (CIDO) was used as an ontological platform to represent the anti-coronaviral drugs, chemical 
compounds, drug targets, biological processes, viruses, and the relations among these entities. In 
addition to new term generation, CIDO also adopted various terms from existing ontologies and 
developed new relations and axioms to semantically represent our annotated knowledge. The CIDO 
knowledgebase was systematically analyzed for scientific insights. To support rational drug design, 
a “Host-coronavirus interaction (HCI) checkpoint cocktail” strategy was proposed to interrupt the 
important checkpoints in the dynamic HCI network, and ontologies would greatly support the design 
process with interoperable knowledge representation and reasoning.

Introduction
�e COVID-19 outbreak, caused by SARS-CoV-2, has become a pandemic and is now spreading worldwide. As 
of September 26, 2020, over 32,586,000 con�rmed cases with over 989,000 deaths, have been reported to WHO. 
In addition to COVID-19, two related betacoronavirus-induced diseases, including Severe Acute Respiratory 
Syndrome (SARS)1 and Middle East Respiratory Syndrome (MERS)2, had triggered public health crises. SARS 
emerged in China in November 2002, in an epidemic that lasted for 8 months and resulted in 8,098 con�rmed 
human cases in 29 countries with 774 deaths (case-fatality rate: 9.6%)1,3. Approximately 10 years later in June 
2012, the MERS-CoV, another highly pathogenic coronavirus, was isolated in Saudi Arabia from the sputum of 
a male patient who died from acute pneumonia and renal failure2. MERS-CoV outbreaks resulted in 2,260 cases 
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in 27 countries and 803 deaths (35.5%)4,5. To successfully �ght against future coronavirus infections, intensive 
studies are required to identify e�ective and safe measures against the current and past outbreaks.

Multiple studies6–9 aimed to discover and develop drugs targeted to these betacoronaviruses. �ese studies 
have achieved varying levels of success in vitro and in vivo. By integrating the results of these previous studies, 
we may �nd clues for the development and improvement of drugs to treat COVID19. Existing drugs might be 
repurposed for treating COVID-19, or patterns extracted from existing anti-coronavirus studies may lead to the 
development of new drugs.

In the informatics �eld, a formal ontology is a human- and computer-interpretable set of terms and relations 
that represent entities in a speci�c biomedical domain and their relationships. Ontology has played a signi�-
cant role in knowledge and data standardization, integration, and analysis10–13. Coronavirus Infectious Disease 
Ontology (CIDO) is a community-based open source biomedical ontology that systematically represents entities 
associated with coronavirus diseases, including their etiological causes, phenotypes, host-coronavirus interac-
tions, diagnosis, drugs, and vaccines14. For drug representation, CIDO reuses terms from three existing ontol-
ogies, including Chemical Entities of Biological Interest ontology (ChEBI)15, National Drug File – Reference 
Terminology (NDF-RT)16, and Drug Ontology (DrON)17, which have been frequently used for drug studies18,19. 
ChEBI is a database and ontology of over 56,000 molecular entities of biological signi�cance with a focus on small 
chemical compounds. ChEBI ontologically classi�es these compounds based on di�erent categories such as struc-
tural and functional features. Produced by the U.S. Department of Veterans A�airs, NDF-RT organizes drugs in 
a hierarchical and formal representation by modeling drug characteristics including ingredients, chemical struc-
ture, physiologic e�ect, mechanism of action, and pharmacokinetics. DrON provides an ontological representa-
tion of the drug contents on the RxNorm terminology20 that contains all medications available on the US market. 
Once a list of drugs is identi�ed, tools such as Ontofox21 can be used to extract these drugs and their related 
characteristics from an ontology and perform speci�c analyses22–25. �e extracted terms can also be imported 
into CIDO, and new axioms can also be generated to interlink di�erent terms as a way for computer-interpretable 
knowledge representation.

In this study, we report our systematic collection, annotation, and analysis of anti-coronavirus drugs from the 
biomedical literature. Over 130 chemical drugs and antibodies against human coronavirus diseases were identi-
�ed. We mapped the majority of these drugs to the ontologies ChEBI15, NDF-RT16, and DrON17, and imported 
these terms to CIDO for further modeling and analyses. We applied ontology to categorize these drugs and used 
ontology-based bioinformatics methods to further analyze various features of these drugs. �e gene/protein tar-
gets of these drugs were also retrieved, and drug-target networks were analyzed to identify hub drugs and drug 
targets. In the end, we will discuss how our results can be used to facilitate rational drug design for COVID-19.

Results
151 anti-coronavirus drug compounds effective against viral entry, replication, and/or in stimu-
lating host immunity. We manually collected and identi�ed 151 chemicals drug compounds, each of which 
was tested in various cell lines in vitro, or in vivo in either patients or animal models. �ese drugs were all found 
e�ective against the infection of at least one human coronavirus, most of which were SARS-CoV, SAR-CoV-2, or 
MERS-CoV. �ese 151 anti-coronavirus drugs include: (i) 106 active drug compounds that can be mapped to at 
least one of the three ontologies: ChEBI, DrON, and NDF-RT (Supplemental Table 1), (ii) 14 drugs that do not 
have any record in these ontologies, and (iii) 31 biological drugs (which are all monoclonal or polyclonal anti-
bodies) speci�cally targeting on coronavirus proteins (e.g., S protein) (Supplemental Table 2). �ese 106 drugs 
include many common drugs/chemicals for the treatment of SARS and MERS (Table 1). However, their protein 
targets are more diverse, which suggests potential diverse pathways to inhibit viral proliferation.

To better model and analyze the results collected, we �rst built a knowledge representation model (Fig. 1). 
Coronavirus infection lifecycle requires three processes: viral entry (or viral invasion), viral replication, and viral 
release. To �ght against coronaviruses, drugs can function to interrupt any one of these steps. For example, an 
anti-coronaviral drug can interrupt the binding between the SARS-CoV-2 S protein and human ACE2 receptor 
and thus block the entry of the SARS-CoV-2 to human cells. Coronaviral infection can also cause many dam-
ages to the human cells and induce a series of host responses. Some anti-coronaviral drugs can modulate the 
host immune responses such as cytokine storm, thus preventing severe outcomes induced by these overreactive 
responses (Fig. 1).

Our study found that 32 drugs inhibiting viral entry to host cells, 51 drugs that inhibit viral replications inside 
host cells, and 11 drugs modulating host immune responses to coronavirus infection (Supplemental Table 1).

# of antibodies
# of chemical 
drugs (DrON)

# of active chemical 
ingredients (ChEBI)

# of drug protein 
targets

SARS-CoV 7 49 68 93

MERS-CoV 19 43 62 83

SARS-CoV-2 5 10 14 17

Total* 31 67 99 165

Table 1. Summary of experimentally or clinically veri�ed results. *, the total numbers are not exactly the sums 
of the numbers in the columns since the total numbers do not count duplicates.

https://doi.org/10.1038/s41597-021-00799-w


3SCIENTIFIC DATA |            (2021) 8:16  | https://doi.org/10.1038/s41597-021-00799-w

www.nature.com/scientificdatawww.nature.com/scientificdata/

CIDO representation of individual anti-coronaviral drugs, drug compounds, and their associ-
ated properties. CIDO was used as an ontological platform to systematically represent the information of 
drugs, chemicals, viruses, diseases, and other related entities. �e knowledge was extracted from existing ontolo-
gies or annotated by our own literature mining and manual curation. Here, we represent how CIDO is being used 
to represent individual drugs, drug compounds, and other related properties. Remdesivir is used as a model drug 
for our presentation here.

As a drug used to successfully treat the �rst COVID-19 patient in the USA26, remdesivir has become a highly 
promising drug for treating COVID-19. Remdesivir is a nucleoside analog, which inhibits viral proliferation by 
inhibiting RNA-dependent RNA polymerase (RdRP, or Nsp12) (Fig. 1)6. It has been shown to e�ectively �ght 
against several kinds of viruses, including SARS-CoV and MERS-CoV in vitro7. Its anti-viral e�ects were also 
identi�ed in the rhesus macaque model infected with MERS-CoV8. A recent study showed remdesivir can inhibit 
SARS-CoV-2 infection in vitro6. Moreover, remdesivir has been evaluated in two clinical trials27,28, showing 
that the hospitalized COVID-19 patients receiving remdesivir treatment recovered faster than similar patients 
who received a placebo. As a result, the US Food and Drug Administration (FDA) has allowed remdesivir to 
be distributed and used to treat adults and children hospitalized with severe COVID-19 (https://www.fda.gov/
media/137564/download). However, the utility of remdesivir for treating COVID-19 may be limited only to hos-
pitalized patients due to rapid �rst-pass hepatic clearance when administered orally and thus requires infusion 
for adequate delivery29. Its usage may also require initiation before the peak of viral replication, which might not 
be feasible in the clinical situation30.

Figure 2 demonstrates how CIDO represents remdesivir as a drug and remdesivir as a chemical entity. We 
used ChEBI as the default ontology for chemical entity representation. Initially, remdesivir was not in ChEBI. 
�erefore, we submitted a request and provided needed remdesivir information to the ChEBI development team. 
Eventually, this term was added to ChEBI. We then imported this term and other anti-coronaviral chemical 
entity terms as described earlier to CIDO. As de�ned in ChEBI, remdesivir is a carboxylic ester and has antiviral 
and anti-coronaviral agent roles. Furthermore, we added a new role to this drug, termed ‘chemical role against 
SARS-CoV-2 replication’ (Fig. 2). To link the chemicals with chemical targets or viruses, we have also generated 
new relations, such as ‘chemical inhibits in vivo replication of virus’, and used it to represent the relation between 
remdesivir and SARS-CoV-2:

‘chemical inhibits in vivo replication of virus’ some SARS-CoV-2
�e above axiom shows that remdesivir can function to inhibit the replication of SARS-CoV-2 in vivo. As 

another example, CIDO uses the relation ‘chemical has protein target as inhibitor’ to represent how remdesivir is 
related to its protein target:

‘chemical has protein target as inhibitor’ some ‘Replicase polyprotein 1ab (SARS-CoV)’
�is axiom shows that remdesivir can function as an inhibitor to inhibit the role of SARS-CoV replicase 

polyprotein 1ab31.
To represent remdesivir as a drug, we �rst imported this term from DrON to CIDO and added more anno-

tations in CIDO (Fig. 2). Since this term from DrON is also labeled ‘remdesivir’, to avoid name duplication, 
we changed the name to ‘remdesivir drug’. A new axiom was added in CIDO to link the drug to its chemical 
ingredient:

‘has active ingredient’ some remdesivir
In addition, CIDO has generated new relations such as ‘drug e�ective in vivo against virus’ and ‘drug has pro-

tein target as inhibitor’ to link the drug to its viral targets or protein targets, respectively (Fig. 2).

CIDO representation of host-coronavirus interactions (HCIs) and their interactions with indi-
vidual drugs. Figure 3 shows how CIDO represents three drugs including camostat, umifenovir, and tocili-
zumab and how these drugs participate in the processes against SARS-CoV-2 infection, the cause of COVID-19. 
SARS-CoV-2 enters the host cells through the binding between the viral envelope spike (S) glycoprotein and the 
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Fig. 1 Modeling of the host-coronavirus interactions (HCIs) and HCI-drug interactions. �e viruses enter into, 
survive in, and replicate in host cells. Correspondingly, drugs are developed to inhibit viral entry, replication, or 
modulate host immune responses. Red circles, yellow Y-shaped signs, green triangles, and blue blocks represent 
viruses, host receptors, drugs, and host immune factors (e.g., cytokines), respectively.
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Fig. 2 CIDO ontological representation of Remdesivir drug, remdesivir chemical, and their properties. �e 
upper right screenshot is for the Remdesivir drug, which has the active ingredient of the remdesivir. �e bottom 
screenshot is for the remdesivir, which is under a chemical hierarchy de�ned by ChEBI. Axioms are provided to 
de�ne the relations between di�erent entities including viruses, proteins, and roles.

Fig. 3 Ontological representation of HCIs and drugs targeting the interactions. Camostat and umifenovir are 
capable of inhibiting the viral entry to host cells. Tocilizumab is capable of inhibiting IL-6, a driver interleukin 
that mediates cytokine storm.

https://doi.org/10.1038/s41597-021-00799-w
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host angiotensin-converting enzyme 2 (ACE2), and the S protein is primed by Transmembrane Serine Protease 2 
(TMPRSS2)32. Such relation between TMPRSS2 and the S protein is represented as:

TMPRSS2: ‘capable of priming activity of ’ some ‘S (SARS-CoV-2)’
Camostat, an inhibitor of TMPRSS2, can block the infection of SARS-CoV-2 in human lung cells32. Such 

action of camostat is then presented in CIDO as:
‘capable of inhibiting activity of ’ some ‘transmembrane protease serine 2 (human)’
Using a similar strategy, CIDO models and presents the actions by umifenovir and tocizumab (Fig. 3). 

Umifenovir also works at viral entry level to inhibit coronavirus in vitro33 by interrupting the binding of ACE2 
and the S protein.

To modulate host immune response, tocilizumab is capable of inhibiting the activity of IL-6, a critical medi-
ator of cytokine storm (Fig. 3), which is an overreactive immune response that o�en occurs a�er SARS-CoV-2 
infection9.

Instead of the CIDO representation using the Protégé-OWL editor (Fig. 3), Fig. 4 provides a more classical 
representation of the HCIs and their interactions with individual drugs such as the three drugs presented above. 
Such representation is more understandable by researchers with no ontology background. We have also ensured 
that all the terms and linkages presented in the �gure are also represented in CIDO.

Figure 4 also shows the mechanisms of many more drugs, including Lopinavir-Ritonavir, Ribavirin, and 
Interferon beta-1b. A triple combination of these three drugs in a clinical trial for treating mild to moderate 
COVID-19 patients was found to be safe and more e�ective than the usage of lopinavir-ritonavir alone34. �ese 
three drugs target di�erent aspects of the whole life cycle of the disease, including the inhibition of the proteolysis 
of coronavirus polypeptides by Lopinavir-Ritonavir, inhibition of viral RNA synthesis by Ribavirin, and cytokine 
storm inhibition by Interferon beta-1b (Fig. 4).

Drug-target network and ontological drug-target interactions analysis. A drug-target interaction 
network (Fig. 5) was generated to include all unique drugs and their known targeted proteins according to the 
records from DrugBank. �is network included 68 drugs with 163 known human protein targets with a total 
of 428 interactions. Multiple clusters were identi�ed from visual inspection of this network. �e biggest one 
included the majority of the drugs inhibiting viral replication (nodes in violet) and modulating immune response 
(nodes in green). Another one was centered on the drug chlorpromazine as well as many drugs with unknown 
mechanisms with respect to their usages in coronavirus treatment.

Three drugs with the most connections in Fig.  5 are chlorpromazine, dasatinib, and anisomycin. 
Chlorpromazine has a function or mechanism of action (MoA) as a dopamine antagonist and adrenergic-alpha 

Fig. 4 Ontological representation of host-coronavirus interactions and drugs targeting the interactions. 
�e boxes enclosed in red, black, and blue colors represent biological processes, material entities (e.g., cells, 
molecules, and drugs), and roles or phenotypes, respectively. Red text in bold represents drugs. �e text labeled 
in the middle of lines represents relations. �e knowledge was obtained by our manual annotation of peer-
reviewed publications.
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antagonist in NDF-RT. Our experimental study also found that metoclopramide and domperidone, both dopa-
mine d2 receptor antagonists, had excellent e�cacy against SARS-CoV-2 infection35. Chlorpromazine also inter-
acts with the serotonin receptors (HTRs) and histamine receptors (HRHs) (Fig. 5). Based on ontology analysis, 
chlorpromazine functions as an antagonist or inhibitor of multiple dopamine receptors, adrenergic receptors, and 
histamine receptors. Although how chlorpromazine exhibits anti-coronavirus properties is not fully understood, 
adrenergic antagonists and histamine antagonists have been shown to inhibit RNA viruses such as Ebola and 
Marburg viruses36. As another hub drug, dasatinib has been annotated for over 20 protein targets and approx-
imately half of them belong to tyrosine kinase proteins. Dasatinib, together as imatinib (another coronavirus 
drug), is an inhibitor of the Abelson murine leukemia viral oncogene homolog 1 (ABL1) pathway, a signaling 
pathway involved in cell di�erentiation, cell adhesion, and cellular stress response. Previous studies showed that 
dasatinib and imatinib can both inhibit BCR-ABL interaction and prohibit virus fusing with S protein of host 
cells37,38. As the 3rd hub, anisomycin has 13 annotated protein targets in our ontological representation. Although 
there are no annotations for the role it plays in these interactions, it may be involved in protein translation since 
10 of the protein targets are ribosomal proteins (Fig. 5).

Key drug-targeted biological pathways identified from GO term enrichment analysis. Our 
GO-based analysis on 147 human proteins identi�ed 125 GO biological process terms signi�cantly enriched 
at false discovery rate (FDR) < 0.05. Many signaling pathways such as signaling pathways mediated by ephrin 
receptor, steroid hormone, and serotonin were enriched (Fig. 6). Dopamine receptor signaling pathway appears 
important to the COVID-19 disease process, as indicated by enriched phospholipase C-activating, adenylate 
cyclase-activating, and adenylate cyclase-inhibiting dopamine receptor signaling pathways. Both positive and 
negative regulations of cytosol calcium concentrations were also identi�ed, suggesting the important role of cyto-
sol calcium in the disease progression. Cellular responses lipids and oxygen-containing compounds were also 
identi�ed in our study. Note that we also performed KEGG pathway enrichment analysis with similar results 
(Supplemental Fig. 1).

To support integrative representation and analysis, the 125 enriched GO biological process terms were also 
extracted from GO and imported to CIDO. Furthermore, tyrosine-protein kinase Lck (human), a protein target 
of the drug dasatinib, participates in the GO ‘release of sequestered calcium ion into cytosol’ (GO_0051209). 
CIDO logically represents the information using the following axioms:
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Fig. 5 Drug-host target network. �e network contains 48 unique drugs (hexagons) and 163 their known 
targets (circles collected primarily from DrugBank) with 428 interactions. Drugs without any known human 
protein targets were excluded. Node size corresponds to the number of connections each node has, also known 
as degree. Node color indicates di�erent types of drugs or drug targets (gray).
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dasatinib: ‘drug has protein target’ some ‘tyrosine-protein kinase Lck (human)’
tyrosine-protein kinase Lck (human): ‘participates in’ some ‘release of sequestered calcium ion into cytosol’
Using these axioms, CIDO allows the logical interconnection between drugs, drug targets, and biological 

processes that involve these drug targets. Such interlinks support more advanced data and knowledge query and 
analysis.

CIDO-based semantic query of anti-coronavirus drug knowledge. �e CIDO ontology is format-
ted using the Web Ontology Language (OWL; https://www.w3.org/OWL/), a computer-interpretable Semantic 
Web language designed to represent rich and complex knowledge about things and relations between them. �e 
CIDO ontology can be queried using di�erent approaches such as Description Logic (DL) queries or SPARQL 

Fig. 6 Hierarchical display of enriched GO biological process terms in drug targets. A total of 126 GO 
biological process terms were found signi�cant with a false discovery rate (FDR) cut-o� of 0.05 and di�erent 
colors of the circles indicate the p-values ranges. �e GOfox tool was used for the visualization. Only a selective 
set of terms are displayed here.

Fig. 7 A DL query example. �is query identi�ed 7 chemicals that are capable of inhibiting the invasion of 
three human coronavirus, and are able to inhibit some known protein(s) which participate in calcium ion 
homeostasis biological process.

https://doi.org/10.1038/s41597-021-00799-w
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Protocol and RDF Query Language (SPARQL; https://www.w3.org/TR/rdf-sparql-query/). Figure 7 demonstrates 
how we can apply DL-query to search from CIDO the drugs that �t our de�ned criteria. We narrowed our query 
range to chemicals that prohibit any one of SARS-CoV-2, MERS, and SARS by inhibiting at viral entry level, 
and that also have protein target(s) participating in calcium ion homeostasis. �is query identi�ed seven drugs, 
including dasatinib, chloroquine, chlorpromazine, hexachlorophene, imatinib, nilotinib, and ouabain (Fig. 7). 
�e DL query can also be updated depending on our needs, such as by constricting target viruses, target pro-
teins, chemical properties, drug properties, and experimental type (in vitro or in vivo). SPARQL can also be used 
(Supplemental Fig. 2).

Discussion
�ere are several aspects as to how the present study is novel. First, it presents the systematic collection and anal-
ysis of experimentally or clinically veri�ed drugs against the infection of human coronaviruses in vivo or in vitro. 
Second, we demonstrated how ontologies could be leveraged to systematically analyze the drug information. 
�ird, CIDO was used as an ontological platform to model and represent the complex and rich information about 
anti-coronaviral drugs, drug compounds, drug targets, biological processes, and the relations among these enti-
ties. Ontologies can logically, hierarchically, and systematically represent various drugs and their characteristics. 
�erefore, the usage of ontologies signi�cantly enhanced our analysis.

With di�erent chemical structures, targets and functions, our collected anti-coronavirus drugs target various 
aspects and stages of the viral life cycle and the interactions between coronaviruses and hosts (Fig. 1). �e viruses 
strive to invade host cells, replicate there, and then release outside to infect new cells. E�ective drugs usually tar-
get one or more stages of the viral cycle or alleviate overreactive host responses such as a cytokine storm.

While how drugs interact with hosts and viruses is complex, ontologies provide a scalable and interoperable 
platform for modeling, standardization, sharing, and analysis of the rich information. CIDO is an interoperable 
ontology that reuses many terms from existing ontologies including ChEBI, DrON, NDF-RT, PR, and GO, and 
seamlessly aligns and incorporates these many terms together into a comprehensive and integrative system. In 
addition to the ontology term import and reuse, CIDO also generated many new relations and axioms to build up 
computer-understandable knowledge for further reasoning and applications.

Given there are still no e�ective drugs for the robust treatment of COVID-19 patients, it is well recognized that 
drug combinations are needed to properly treat COVID-19. As an example of drug combinations, a triple combi-
nation of Interferon beta-1b, Lopinavir-Ritonavir, and Ribavirin in the treatment of mild to moderate COVID-19 
patients was found to be safe and superior to lopinavir-ritonavir alone in alleviating symptoms and shortening the 
duration of viral shedding34. Several studies have shown that lopinavir (an enzyme inhibitor) can have favorable 
outcomes in treating SARS and MERS in combination with ritonavir (another enzyme inhibitor) in human and 
nonhuman primates39,40. A case study showed that the lopinavir/ritonavir combination signi�cantly decreased 
viral load on one COVID-19 patient in Korea41. However, a clinical study with a total of 199 adult COVID-19 
patients showed no signi�cant bene�t in improving clinical outcomes42. Human coronaviruses can delay IFN 
induction and dysregulate Interferon-stimulated gene (ISG) e�ector functions in primary human lung epithelial 
cells43,44. IFN beta 1b was also found to decrease virus-induced lung �brosis in mice45. �e usage of IFN beta 1b 
appeared to have a synergistic role in combination with Lopinavir-Ritonavir and Ribavirin to treat COVID-19 
patients34. Such a cocktail therapy has been successful in treating HIV patients46,47. �e combination drug treat-
ment known as the “AIDS cocktail” or highly active antiretroviral therapy (HAART) was initiated in 1995, and 
since then has made AIDS a manageable disease.

Here we would like to propose an “HCI checkpoint cocktail” strategy that targets to interrupt the important 
checkpoints in the dynamic host-coronavirus interaction (HCI) network. Inspired by the immune checkpoint 
theory for cancer immunotherapy48, the checkpoint here denotes a key point in the dynamic HCI network where 
a major biological and/or regulatory process is performed. For COVID-19, the host-coronavirus interaction net-
work includes two parts: coronaviral pathogenesis and host immune responses; each part is indeed a network 
containing many checkpoints. Coronavirus pathogenesis results in the uncontrollable viral entry, replication, and 
release (Fig. 1). Host responses help many infected patients but fail to help susceptible patients. Overreactive host 
responses such as cytokine storm even harm patient health. Our checkpoint cocktail strategy requires our careful 
investigation of the checkpoints and identi�es ways to interrupt or block the major checkpoints under di�erent 
conditions.

Speci�c checkpoints of coronaviral pathogenesis can be found in the viral life cycle. �e major viral check-
points include: viral binding and entry to the host cell, release from lysosomes, RNA expressed to protein, viral 
assembly, and viral release from host cells. Many drugs can be used to block the major checkpoints in the viral life 
cycle. For example, camostat and umifenovir (sold under brand name Arbidol) can be used to block the S-ACE2 
binding, chlorpromazine inhibits viral entry from endosome, chloroquine, and hydroxychloroquine inhibit viral 
survival in lysosome, lopinavir inhibits the proteolysis of viral polypeptides and formation of non-structural 
proteins, and remdesivir inhibits RdRP and viral RNA synthesis (Fig. 4).

We further propose an ontology-based HCI checkpoint cocktail development strategy, in which ontology is 
signi�cantly important in advancing the rational design of the “HPI checkpoint cocktail” strategy. Ontology has 
its own unique advantages in systematically and logically representing the checkpoints and how they interact 
with other entities such as cells, drugs, biological processes, and diseases. Moreover, it can be greatly used to aid 
in the modeling, representation, integration, and analysis of the dynamic HCI network, HCI-drug interaction, 
and rational development of repurposed drugs against viral infections. Utilization of an ontology serves a unique 
role in providing standard and computer-understandable representation on entities in the host-virus interactions 
and logic relations among these entities. We plan to use CIDO to further analyze various entities and relations 
in the drug-coronavirus-host interaction network, intending to make it an ontology backbone of knowledge 
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representation and reasoning. We also look forward to developing new ontology-based algorithms and bioinfor-
matics tools that further support arti�cial intelligence-based data analysis, testable hypothesis generation, and 
rational design of drug cocktails for e�ective and safe treatment of COVID-19 and possible future coronavirus 
diseases.

To e�ectively apply the “HPI checkpoint cocktail” strategy for COVID-19 drug cocktail design, it would be 
good to develop a user-friendly dedicated tool so that non-experts can easily come up with their own cocktail 
hypotheses. We are currently in the process of developing such a tool. Before such a tool is available, the research-
ers can use our manually annotated results in Excel or CSV format, which has categorized the drug mechanisms 
in di�erent groups. Meanwhile, the COVID-19 literature is growing and the results are being updated at an 
unprecedented rate. We commit to periodical updates to provide an up-to-date version of the experimentally 
con�rmed and well-annotated results.

While SARS-CoV, SARS-CoV2, and MERS-CoV are all coronaviruses, their responses to drugs in humans 
may overlap but still di�er signi�cantly. For example, while they all use S protein as the ligand, SARS-CoV and 
SARS-CoV-2 S proteins bind to the ACE-249,50, but MERS-CoV S protein binds to human dipeptidyl peptidase 4 
(DPP4; CD26) receptors51. �erefore, ACE-2 receptor blockers become a therapeutic approach for COVID-1952, 
and anti-DPP4 (CD26) is a therapeutic option for �ghting MERS-CoV53,54. SARS-CoV and SARS-CoV-2 also have 
di�erent immune responses in humans. For example, compared with SAR-CoV, SARS-CoV-2 did not signi�cantly 
induce types I, II, or III interferons in ex vivo infected human lung tissues55. �e biological processes stimulated by 
these three viruses in the hosts also di�er in many ways56. �erefore, more research is required to further explore in 
depth the subtle di�erences of these viruses in their induced immune responses and drug e�ects.

�e drug targeted proteins participate in di�erent biological processes. To further identify those important bio-
logical processes having participants of the drug targeted proteins, we performed a GO enrichment analysis using 
the BioGRID interactome as the background. It is noted that the results of our GO enrichment analysis led to the dis-
covery of correlations that might not be causal. A recent study performed comparative viral-human protein-protein 
interaction (PPI) and viral protein localization analysis for SARS-CoV-2, SARS-CoV, and MERS-CoV, and detected 
host factors that functionally inhibit coronavirus proliferation56. �eir study identi�ed 332 SARS-CoV-2-human 
PPIs and 67 druggable human proteins targeted by 69 existing FDA-approved drugs, drugs in clinical trials, and 
preclinical compounds56,57. �e drugs collected by their study56,57 were based on protein-drug interactions, which is 
di�erent from our drug collection based on drug-virus interaction. We will systematically annotate and incorporate 
their results into our ontology-based representation and analysis in the future.

Methods
literature annotation and data extraction of anti-coronavirus drugs. Peer-reviewed articles in 
PubMed, Google Scholar, and PubMed Central literature databases were searched using relevant keywords, 
including coronavirus, SARS, MERS, COVID-19, drug, therapy, and medicine. Chemical or biological drugs that 
exhibited anti-coronavirus properties in lab settings were collected from research papers published until May 17, 
2020. To be included in our list, each drug was required to demonstrate a signi�cant level of viral inhibition in 
vitro or in vivo. For in vitro studies, all drugs exhibiting some extent of inhibition (EC50 > 0) are collected. Drugs 
in clinical studies showing statistical signi�cance (≤0.05) are included. For each identi�ed drug, we recorded its 
targeted virus, mechanism, experimental model, assay, and paper citation(s). Antibodies mentioned in this liter-
ature were also recorded with their types and antigens.

Ontology extraction and analysis. �e list of identi�ed anti-coronavirus drugs was mapped to ontology 
IDs from ChEBI15, NDF-RT16, and DrON17. �e Ontobee ontology repository58 was used for the mapping. Using 
the ontology IDs collected above as input, we extracted subsets of these three ontologies by the ontology extrac-
tion tool Ontofox21. �e output ontologies are in the format of OWL. Protégé 5.0 OWL ontology editor (http://
protege.stanford.edu/) was used for ontology editing and analysis. �e annotated data are stored at the GitHub 
website: https://github.com/CIDO-ontology/anti-coronavirus-drugs. �e GitHub website hosts the information 
of the community-based Coronavirus Infectious Disease Ontology (CIDO)14, which is targeted to include the 
annotated drug information out of this study. Since ontology is computer-understandable, we can query the 
ontology using di�erent approaches including SPARQL and Description Logic (DL) query.

Annotation of drug targets and drug-target network. �e known targets of the identi�ed drugs 
were collected from DrugBank59. For any drug without a matching DrugBank record, we relied on multiple 
other online resources, including ChEMBL and Wikipedia, to identify any known targets. Drug-target and 
protein-protein interactions among these targets, collected from the BioGRID interaction database60, were 
used to construct a drug-target interaction network and visualized using Cytoscape v3.7.261. �e collected drug 
targets were subjected to a pathway enrichment analysis using our in-house functional enrichment tool richR 
(http://hurlab.med.und.edu/richR) in terms of the Kyoto Encyclopedia of Genes and Genomes (KEGG) path-
ways62. �e FDR adjusted p-values were calculated, and the cuto� the 0.05 was applied for statistical signi�cance 
measurement.

Gene ontology (GO) term enrichment analysis and representation. DAVID Bioinformatics 
Resources63 was used for GO term enrichment analysis to �nd signi�cantly enriched biological processes by the 
drug-targeted proteins using the human interactome obtained from the BioGRID database as the background. 
BioGRID GOfox (http://gofox.hegroup.org/)64 was used to visualize the hierarchical results of the enriched 
GO terms. �e FDR adjusted p-values were calculated with the cuto� the 0.05 used for statistical signi�cance 
measurement.
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Further CIDO modeling and analysis of collected anti-coronavirus drugs. To systematically con-
nect all ontologies and include more information, we imported the Ontofox-extracted terms from ChEBI, DrON, 
and NDF-RT to CIDO and aligned these terms with the overall CIDO design14. In addition, CIDO includes newly 
identi�ed drug targets as de�ned in the Protein Ontology (PR)65, and the enriched biological processes as de�ned 
in the Gene Ontology (GO)10. New relations were also generated to interlink di�erent CIDO components includ-
ing diseases, drugs, chemicals, drug targets, and biological processes. Ontorat66 was used for the high-throughput 
generation of new relations in CIDO.

Data availability
�e data and materials introduced are all openly available in this article or at the GitHub website: https://github.
com/CIDO-ontology/anti-coronavirus-drugs. �e data �les are provided in Excel and CSV formats. �e data 
explanation is also provided on the GitHub website. Meanwhile, these data have also been stored in the OSF data 
repository (https://doi.org/10.17605/OSF.IO/7TD94)67.

Code availability
As an OBO library ontology (http://www.obofoundry.org/ontology/cido.html), the code of CIDO is openly 
available: http://purl.obolibrary.org/obo/cido.owl. �e license of the code is Creative Commons BY 4.0. �e 
source code uses the license CC-BY. CIDO has been deposited to the Ontobee ontology repository (http://www.
ontobee.org/ontology/CIDO), the BioPortal repository (https://bioportal.bioontology.org/ontologies/CIDO), 
and the OLS repository (https://www.ebi.ac.uk/ols/ontologies/cido).
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