
Ontological Query Answering with Existential Rules

Marie-Laure Mugnier

University Montpellier 2, France

Abstract. The need for an ontological layer on top of data, associated with ad-
vanced reasoning mechanisms able to exploit the semantics encoded in ontolo-
gies, has been acknowledged both in the database and knowledge representation
communities. We focus in this paper on the ontological query answering prob-
lem, which consists of querying data while taking ontological knowledge into
account. To tackle this problem, we consider a logical framework based on ex-
istential rules, also called Tuple-Generating Dependencies or Datalog+/- rules.
This framework can also be defined in graph terms. Query entailment with exis-
tential rules is not decidable, thus a crucial issue is to define decidable classes of
rules as large as possible. This paper is a survey of decidable classes of rules, in-
cluding a review of the main complexity results. It mostly relies on previous work
presented at IJCAI’2009 [BLMS09] and KR’2010 [BLM10] (and developed in a
journal paper [BLMS11]), updated to include very recent results.

1 Introduction

In this paper, we consider rules that have the ability of generating new unknown indi-
viduals, an ability called value invention in databases [AHV95]. These rules are of the
form body → head, where the body and the head are conjunctions of atoms (without
functions) and variables that occur only in the head are existentially quantified, hence
their name ∀∃-rules in [BLMS09,BLM10] or existential rules in [BMRT11,KR11].

Example 1. Consider the existential rule R = ∀x(Human(x) → ∃y(isParent(y, x) ∧
Human(y))) and a fact F = Human(A), where A is a constant. The application of R to
F produces new factual knowledge, namely ∃y0(isParent(y0, A) ∧ Human(y0), where
y0 is a variable denoting an unknown individual. Note that R could be applied again to
Human(y0), which would lead to create another existentially quantified variable, and
so on.

Existential rules are known in databases as Tuple-Generating Dependencies (TGDs)
[BV84]. TGDs have been extensively used as a high-level generalization of differ-
ent kinds of constraints, e.g., for data exchange [FKMP05]. They also correspond to
rules in conceptual graphs, a graph-based knowledge representation formalism [Sow84]
[CM09]. Recently, there has been renewed interest for these rules in the context of on-
tological query answering, a topical problem both in knowledge representation and in
databases.

Given the complexity and ever increasing amounts of data nowadays available, the
need for an ontological layer on top of data, associated with advanced querying mech-
anisms able to exploit the semantics encoded in ontologies, has been acknowledged

2 Marie-Laure Mugnier

both in the database and knowledge representation communities. In this paper, we will
reserve the term “ontology” to general domain knowledge—sometimes also called ter-
minological knowledge—in order to clearly distinguish it from the data—or assertional
knowledge—called here facts. Given a knowledge base (KB) composed of an ontology
and of facts, and a query, the ontological query problem consists in computing the set
of answers to the query on the KB, while taking implicit knowledge represented in the
ontology into account. This problem is also known as ontology-based data access. E.g.,
on Example 1: the Boolean query ∃x isParent(x,A) (“does A have a parent ?”) has
a negative answer on F alone, but a positive answer when the knowledge encoded in
the rule R is taken into account. Queries are supposed to be at least as expressive as
(Boolean) conjunctive queries in databases, which can be seen as existentially closed
conjunctions of atoms.

In the Semantic Web, ontological knowledge is often represented with formalisms
based on description logics (DLs). However, DLs traditionally focused on reasoning
tasks about the ontology itself (the so-called TBox), for instance classifying concepts;
querying tasks were restricted to ground atom entailment. Conjunctive query answering
with classical DLs has appeared to be extremely complex (e.g., for the classical DL
ALCI, it is 2EXPTIME-complete, and still NP-complete in the size of the data). Hence,
less expressive DLs specially devoted to conjunctive query answering on large amounts
of data have been designed recently, namely DL-Lite [CGL+07], EL [BBL05,LTW09],
and their generalization to Horn-logics (see e.g., [KRH07]). These DLs are the basis of
the so-called tractable profiles of the Semantic Web language OWL 2.

On the other hand, querying large amounts of data is the fundamental task of databases.
Therefore, the challenge in this domain is now to access data while taking ontological
knowledge into account. The deductive database language Datalog allows to express
some ontological knowledge. However, in Datalog rules, variables are range-restricted,
i.e., all variables in the rule head necessarily occur in the rule body, which does not
allow for value invention. This feature has been recognized as crucial in an open-world
perspective, where it cannot be assumed that all individuals are known in advance. This
motivated the recent extension of Datalog to TGDs (i.e., existential rules), which gave
rise to the Datalog +/- family [CGK08,CGL09,CGL+10b].

Existential rules have some particularly interesting features in the context of the
Web. On the one hand, they cover the core of lightweight DLs dedicated to query an-
swering, while being more powerful and flexible [CGL09,BLM10,BMRT11]. In par-
ticular, they have unrestricted predicate arity (while DLs consider unary and binary
predicates only), which allows for a natural coupling with database schemas, in which
relations may have any arity; moreover, adding pieces of information, for instance to
take contextual knowledge into account, is made easy by the unrestricted predicate ar-
ity, since these pieces can be added as new predicate arguments. On the other hand,
existential rules cover Datalog, while allowing for value invention.

Let us mention that our own work on existential rules is related to our earlier studies
on conceptual graphs [CM09]. Indeed, the logical translation of conceptual graph rules
yields exactly existential rules [SM96]. Inspired by conceptual graphs, we have devel-
oped a knowledge representation framework, which can be seen both as logic-based and
graph-based, i.e., the knowledge constructs can be also be seen as graphs, with a logical

Ontological Query Answering with Existential Rules 3

translation, and reasoning mechanisms are based on graph-theoretic notions, while be-
ing sound and complete with respect to entailment in the associated logical fragments
[CM09].

In the following, we will focus on the fundamental decision problem associated
with query answering based on existential rules, namely Boolean conjunctive query
answering, or conjunctive query entailment: given a knowledge base K composed of a
set of existential rules and facts and a (Boolean) conjunctive query Q, does K give rise
to an answer to Q, i.e., is Q entailed by K (noted K |= Q)? The ability to generate
existential variables, associated with arbitrarily complex conjunctions of atoms, makes
this problem undecidable in general [BV81,CLM81]. Since the birth of TGDs, and
recently within the Datalog+/- and existential rule frameworks, various conditions of
decidability have been exhibited.

This paper is a survey of decidable classes of rules, including a review of the main
complexity results in terms of combined and data complexities. An important issue is
whether these decidable classes can be combined while keeping decidability. We recall
that the rough union of decidable sets of rules almost always leads to undecidability, and
present a tool, the graph of rule dependencies, which allows to define new decidability
conditions by constraining possible interactions between rules.

This survey mostly relies on previous papers presented at IJCAI’2009 [BLMS09]
and KR’2010 [BLM10] (and developed in a journal paper [BLMS11]), updated to in-
clude very recent results [CGP10a,CGP10b,KR11,BMRT11].

Section 2 provides basic notions on existential rules. Section 3 outlines the asso-
ciated graph-based framework. Section 4 reports decidability and complexity results.
Section 5 is devoted to combining decidable paradigms via the graph of rule dependen-
cies. We conclude with some open issues.

2 Preliminaries

We consider first-order logical languages with constants but no other function symbols.
A term is thus a variable or a constant. An atom is of the form p(t1, . . . , tk) where p is
a predicate with arity k, and the ti are terms. A ground atom contains only constants. A
conjunct C[x] is a finite conjunction of atoms, where x is the set of variables occurring
in C. A fact is the existential closure of a conjunct.1 A (Boolean) conjunctive query
(CQ) has the same form as a fact, thus we identify both notions. We also see conjuncts,
facts and CQs as sets of atoms. Given an atom or a set of atoms A, vars(A), consts(A)
and terms(A) denote its set of variables, of constants and of terms, respectively. First-
order semantic entailment is denoted by |= and semantic equivalence by ≡.

Given conjuncts F and Q, a homomorphism π from Q to F is a substitution of
vars(Q) by terms(F) such that π(Q) ⊆ F (we say that Q maps to F by π; Q and F are

1 In the literature, a fact is traditionally a ground atom. Since existential rules produce atoms
with variables that are existentially quantified, we generalize the notion of a fact to an existen-
tially closed conjunction of atoms. Moreover, this allows to cover naturally languages such as
RDF/S, in which a blank node is logically translated into an existentially quantified variable,
or basic conceptual graphs.

4 Marie-Laure Mugnier

respectively called the source and the target of the homomorphism). It is well-known
that, given two facts F and Q, F |= Q iff there is a homomorphism from Q to F .

Definition 1 (∀∃-Rule). A ∀∃-rule (existential rule, or simply rule when not ambigu-
ous) is a formula R = ∀x∀y(B[x,y] → (∃zH[y, z])) where B = body(R) and
H = head(R) are conjuncts, resp. called the body and the head of R. The frontier of
R, noted fr(R), is the set of variables vars(B) ∩ vars(H) = y.

In the following, we will omit quantifiers in rules as there is no ambiguity.
Note that an existential rule is not a Horn clause because of existential variables in

its conclusion. However, both are closely related, since by skolemisation (i.e., replacing
each existential variable by a Skolem function) an existential rule can be transformed
into a set of Horn clauses with functions.

Definition 2 (Application of a Rule). A rule R is applicable to a fact F if there is a
homomorphism π from body(R) to F ; the result of the application of R on F w.r.t. π is
a fact α(F, R, π) = F ∪ πsafe(head(R)) where πsafe is a substitution of head(R), that
replaces each x ∈ fr(R) with π(x), and each other variable with a “fresh” variable
not introduced before; this application is said to be redundant if α(F, R, π) ≡ F .

Example 2. Consider the following predicates, with their arity mentioned in parenthe-
ses; unary predicates can be seen as concept names, i.e. types of entities, and the other
predicates as relation names: Area(1), Project(1), Researcher(1), isProject(3), hasEx-
pertise(2),isMember(2)
Here are some examples of rules composing the ontology:
“The relation isProject associates a project, the area of this project and the leader of
this project, who is a researcher”
R0 = isProject(x, y, z) → Project(x) ∧ Area(y) ∧ Researcher(z) [signature of
isProject]
“Every leader of a project is a member of this project”
R1 = isProject(x, y, z) → isMember(z, x)
“Every researcher expert in an area is member of a project in this area”
R2 = Researcher(x)∧hasExpertise(x, y) → isProject(p, y, z)∧isMember(x, p)

Let F = {Researcher(A), hasExpertise(A,KR), Area(KR)} be a fact. R2 is ap-
plicable to F , which yields F ′ = F ∪ {isProject(p1,KR, z1), isMember(A, p1)}.

Definition 3 (Derivation Sequence). Let F be a fact, and R be a set of rules. An R-
derivation of F is a finite sequence (F0 = F), . . . , Fk s.t. for all 0 ≤ i < k, there is
Ri ∈ R and a homomorphism πi from body(Ri) to Fi s.t. Fi+1 = α(Fi, Ri, πi).

Theorem 1 (Completeness of Forward Chaining). Let F and Q be two facts, and R
be a set of rules. Then F,R |= Q iff there exists an R-derivation (F0 = F), . . . , Fk

such that Fk |= Q.

It follows that a breadth-first forward chaining mechanism yields a positive answer
in finite time when F,R |= Q. This mechanism, called the saturation hereafter (and
the chase in databases) works as follows. Let F0 be the initial fact F . Each step consists

Ontological Query Answering with Existential Rules 5

of checking if Q maps to the current fact, say Fi−1 at step i (i ≥ 1), and otherwise
producing a fact Fi from Fi−1, by computing all new homomorphisms from each rule
body to Fi−1, then performing all corresponding rule applications. A homomorphism
is said to be new if it has not been already computed at a previous step, i.e., it uses at
least an atom added at step i− 1 (i ≥ 2). The fact Fk obtained after the step k is called
the k-saturation of F and is denoted by αk(F,R).

A knowledge base (KB) K = (F,R) is composed of a finite set of facts (seen
as a single fact) F and a finite set of rules R. The (Boolean) CQ entailment problem
(denoted ENTAILMENT hereafter) is the following: given a KB K = (F,R) and a
(Boolean) CQ Q, does F,R |= Q hold ?

This framework can be extended to equality rules and constraints. An equality rule
is a rule of the form B → x = t, where x and t are distinct terms, x ∈ vars(B) and
t ∈ vars(B) or is a constant. When the unique name assumption is made, i.e., dis-
tinct constants refer to distinct individuals, the application of an equality rule is said to
fail if it leads to set the equality between distinct constants. This kind of failure corre-
sponds to an inconsistency of the knowledge base. Equality rules generalize functional
dependencies, which are widely used in data modeling and ontologies. Constraints are
another kind of construct specifically devoted to the definition of the consistency or in-
consistency of the knowledge base. A negative constraint is a rule of the form C → ⊥,
where ⊥ denotes the absurd symbol (i.e., a propositional atom whose value is false),
or equivalently ¬C. It is satisfied if C is not entailed by (F,R). A positive constraint
has the same form as an existential rule. It is satisfied if every homomorphism from its
body to a fact F ′ entailed by (F,R), where R may include equality rules, is extend-
able to a homomorphism from its head to F ′. Negative constraints are typically used to
express disjointness of concepts/classes or incompatibility of relations, while positive
constraints require some pieces of knowledge to be present or entailed (cf. the classical
use of TGDs in databases). See [CGL09] and [BLMS11] for the integration of equal-
ity rules and negative constraints in the existential rule framework. See [BM02] for a
framework including existential rules (without equality) and both negative and positive
constraints. In this paper, we will only consider existential rules.

The two classical ways of processing rules are forward chaining, introduced above,
and backward chaining. Instead of using rules to enrich the facts, the backward chaining
proceeds in the “reverse” manner: it uses the rules to rewrite the query in different ways
with the aim of producing a query that maps to the facts. The key operation in this mech-
anism is the unification operation between part of a current goal (a conjunctive query
or a fact in our framework) and a rule head. This mechanism is typically used in logic
programming, with rules having a head restricted to a single atom, which is unified with
an atom of the current goal. Since the head of an existential rule has a more complex
structure (it may contain several atoms and possibly existentially quantified variables),
the associated unification operation is also more complex. It allows to process heads
and goals without decomposing them into single atoms, using a graph notion called a
piece (see Section 5.2). The operator that rewrites the query is denoted by β and is in-
formally defined as follows (for a formal definition see [BLMS09][BLMS11]): given a
conjunct Q, a rule R = B → H and a piece-unifier µ of (part of) Q with (the head of)

6 Marie-Laure Mugnier

R, β(Q,R, µ) = Qµ ∪Bµ where Qµ is a specialization of the non-unified subset of Q
(determined by µ), and Bµ is a specialization of the body of R (also determined by µ).

Definition 4 (Rewriting sequence). Let Q be a conjunct andR be a set of rules. AnR-
rewriting of Q is a finite sequence (Q0 = Q), Q1, . . . , Qk s. t. for all 0 ≤ i < k, there is
Ri ∈ R and a piece-unifier µ of Qi with (the head of) Ri such that Qi+1 = β(Qi, R, µ).

The soundness and completeness of the backward chaining mechanism can be proven
via the following equivalence with the forward chaining: there is an R-rewriting from
the query Q to a query Q′ that maps to the initial fact F iff there is an R-derivation
from F to a fact F ′ such that Q maps to F ′.

3 Graphical View of the Framework

Although we present our framework in a logical setting, it is is also graph-based. Indeed,
we also view facts, queries, rules (and constraints) as labeled graphs or hypergraphs; en-
tailment between facts/queries is computed by a graph or hypergraph homomorphism,
which corresponds to the homomorphism notion defined on formulas; entailment us-
ing rules (and constraints) relies on homomorphism in the same way as in the logical
framework. In this section, we will first briefly present this graphical framework.

Generally speaking, seeing formulas as graphs or hypergraphs allows to focus on
their structure: notions like paths, cycles, tree decompositions are then natural. For in-
stance, in this paper, the bts decidable class of rules or the piece notion used to define
unifiers both rely on a graph view of the formulas. Moreover, the graph setting allows
to benefit from techniques and results in graph theory, and other areas such as con-
straint programming (indeed, there are straightforward reductions between the problem
of the existence of a homomorphism between two labeled graphs/hypergraphs and the
problem of the consistency of a constraint network). 2

A fact, or simply a set of atoms, F can be naturally seen as an ordered labeled
hypergraph, whose nodes and hyperedges respectively encode the terms and the atoms
from F . More precisely, in the hypergraph F = (X, E , l) assigned to F , X is a set of
nodes in bijection with terms(F), E is a multiset 3 of hyperedges, which are tuples on X ,
in bijection with the set of atoms in F , and l is a labeling function of nodes and edges. A
node is labeled by c if the corresponding term in F is a constant c (otherwise, the term
is not labeled, or, equivalently, labeled by a “blank” label). A hyperedge corresponding
to an atom p(t1, . . . , tk) in F is labeled by p and is equal to the tuple (vt1 , . . . , vtk

),
where vti is the node assigned to ti.

One may also consider F as a graph, which is exactly the incidence graph of F
(called here a “basic graph”): it is a bipartite undirected multigraph (i.e., there may be
several edges between two nodes), with one set of nodes representing the terms (i.e., the
nodes in F), called term nodes, and the other set of nodes representing the atoms (i.e.,
the hyperedges in F), called relation nodes. For each atom p(t1, . . . , tk) in F , instead

2 The constraints are supposed to be defined in extension, which corresponds to the basic “con-
straint satisfaction problem (CSP)”.

3 In a multiset, the same element may appear several times.

Ontological Query Answering with Existential Rules 7

of a hyperedge, there is a relation node labeled by p and this node is incident to k edges
linking it to the nodes assigned to t1, . . . , tk. Each edge is labeled by the position of the
corresponding term in the atom. See Figure 1. Note that this graph can be seen as the
basic conceptual graph assigned to the formula [CM09].

A

Res

hasExp KR

isProject

isMember

Area

1

1

2

2

1

3

2 F ′ =
{Researcher(A), hasExpertise(A, KR), Area(KR), isProject(p1, KR, z1), isMember(A, p1)}

Fig. 1. Basic graph corresponding to F ′ (Example 2)

The bipartite graph view is more suitable for drawing, while the hypergraph view
is often more efficient from an algorithmic viewpoint (as it yields a global view of an
atom as a hyperedge).

Generally speaking, a homomorphism maps a relational structure to another rela-
tional structure, while preserving the information encoded in the first structure. When
the structures are sets of atoms, the homomorphism maps terms to terms, while pre-
serving the information encoded in the terms (the constants here) and atoms. When the
structures are labeled hypergraphs (resp. graphs), it maps nodes to nodes while pre-
serving the information encoded in the labels and hyperedges (resp. edges). Thus, a
homomorphism π from a hypergraph H = (X, E , l) to a hypergraph H′ = (X ′, E ′, l′)
is a mapping from X to X ′ such that: (1) for each node v ∈ X , l(v) = l(π(v)) if
l(v) is a constant; (2) for each hyperedge e = (v1 . . . vk) ∈ E , there is a hyperedge
e′ = (π(v1) . . . π(vk)) ∈ E ′ such that l(e) = l′(e′). If we consider bipartite graphs
instead of hypergraphs, a homomorphism π from G to G′ is a mapping such that: (1)
the node bipartition is preserved, i.e., π maps term nodes from G to term nodes from
G′ and relation nodes from G to relation nodes from G′; (2) for each term node v in
G labeled by a constant and for each relation node in G, π(v) has the same label as v;
(3) for each edge (r, t) labeled by i in G, (π(r), π(t)) is an edge labeled by i in G′.
Condition (3) can be equivalently expressed as follows: for each relation node a in G
with list of neighbors (v1 . . . vk) –where vi is the extremity of the ith edge incident to
a– π(a) has list of neighbors (π(v1) . . . π(vk)).

It is immediately checked that there is a one-to-one correspondence between homo-
morphisms of two formulas and homomorphisms of their corresponding hypergraphs.
Moreover, there is a one-to-one correspondence between homomorphisms of two hy-
pergraphs and homomorphisms of their corresponding bipartite graphs if we consider
only term nodes (otherwise, if duplicate atoms are allowed in the target conjunct F ′,
there may be several graph homomorphisms for a single hypergraph homomorphism).

8 Marie-Laure Mugnier

A rule can be seen as a bicolored basic graph (and similarly as a bicolored hyper-
graph), with the first color for the body and the second color for the other elements;
then, the head is composed of the subgraph induced by nodes of the second color plus
the nodes corresponding to the frontier of the rule. See Figure 2, where the body of
the rule is colored in white and the other nodes in gray. Rule application and other
homomorphism-based notions can be translated in a straightforward way.

Res

hasExp
1

1

2

2

1

2

isMember 3

isProject

R2 = Researcher(x) ∧ hasExpertise(x, y) → isProject(p, y, z) ∧ isMember(x, p)

Fig. 2. Graph rule corresponding to R2 (Example 2)

4 The Landscape of Decidable Classes

The ENTAILMENT problem is known to be non-decidable ([BV81,CLM81] on TGDs),
even if the set of rules is restricted to a single rule [BLM10].

4.1 Abstract Characterizations

Decidable classes found in the literature are based on various syntactic properties of
existential rules. In order to classify them, three abstract properties related to the be-
havior of reasoning mechanisms are considered in [BLMS09][BLM10]: the forward
chaining halts in finite time; the forward chaining may not halt but the facts generated
have a tree-like structure; the backward chaining mechanism halts in finite time. These
properties yield three abstract classes of rules, respectively called finite expansion sets,
bounded treewidth sets and finite unification sets. These classes are said to be abstract
in the sense that they do not come with a syntactic property that can be checked on
rules or sets of rules. As a matter of fact, none of these classes is recognizable, i.e., the
problem of determining whether a given set of rules fulfills the abstract property is not
decidable [BLM10].

We first specify these three notions. A set of rules R is said to be a finite expansion
set (fes) if, for every fact F , there exists an integer k such that αk(F,R) ≡ αk+1(F,R),
i.e., all rule applications to αk(F,R) are redundant [BM02]. Weaker versions, in the
sense that they allow to stop in less cases, can be considered. For instance the halting
condition may be αk(F,R) = αk+1(F,R), i.e., no new rule application can be per-
formed on αk(F,R); the saturation algorithm with this halting condition corresponds

Ontological Query Answering with Existential Rules 9

to the so-called oblivious chase in databases (note that the chase variant called the re-
stricted chase is still weaker than fes). If R is a fes, then the termination is guaranteed
for any forward chaining that (1) builds a derivation sequence until the halting condition
is satisfied (the order in which rules are applied does no matter), then (2) checks if the
query maps to the obtained fact.

Bounded-treewidth sets of rules form a more general class, which was essentially
introduced in [CGK08]. The following definition of the treewidth of a fact corresponds
to the usual definition of the treewidth of a graph, where the considered graph is the
primal graph of the hypergraph of the fact (this graph has the same set of nodes as
the hypergraph and there is an edge between two nodes if they belong to the same
hyperedge).

Definition 5 (Treewidth of a fact). Let F be a fact. A tree decomposition of F is an
undirected tree T with set of nodes X = {X1, . . . , Xk} where:

1.
⋃

i Xi = terms(F);
2. for each atom a in F , there is Xi ∈ X s.t. terms(a) ⊆ Xi;
3. for each term e in F , the subgraph of T induced by the nodes Xi that contain e is

connected (“running intersection property”).

The width of a tree decomposition T is the size of the largest node in T , minus 1.
The treewidth of a fact is the minimal width among all its possible tree decompositions.

A set of rules R is called a bounded treewidth set (bts) if for any fact F there exists
an integer b such that, for any fact F ′ that can be R-derived from F (for instance with
the saturation algorithm), treewidth(F ′) ≤ b. A fes is a bts, since the finite saturated
graph generated by a fes has a treewidth bounded by its size.

Proving the decidability of ENTAILMENT with bts is not as immediate as with fes.
Indeed, the proof relies on a theorem from Courcelle [Cou90], that states that classes of
first-order logic having the bounded treewidth model property are decidable. This proof
does not (at least not directly) provide a halting algorithm.

Very recently, a subclass of bts has been defined, namely greedy bts (gbts), which is
equipped with a halting algorithm [BMRT11]. This class is defined as follows. A deriva-
tion is said to be greedy if, for every rule application in this derivation, all the frontier
variables not being mapped to the initial fact are jointly mapped to terms added by a
single previous rule application. This allows to build a tree decomposition of a derived
fact in a greedy way: let T0 be the set of terms occurring in the initial fact F and of all
constants occurring in the rules; the root of the tree, X0, is equal to T0; all other nodes
in the tree will contain T0 as well; the ith rule application of a rule R with homomor-
phism π leads to create a node Xi = πsafe(head(R))∪T0 and an edge between Xi and
the node Xj such that j is the smallest integer for which πsafe(fr(R)) ⊆ terms(Xj)
(since the derivation is greedy, there is such Xj). This yields a tree decomposition of
width bounded by |T0| ∪max(vars(head(R))R∈R).

The third class, finite unification set (fus) [BLMS09], requires that the number of
rewritings of Q using the rules is finite for any fact. More precisely, one considers only
the “most general” rewritings of Q, the other rewritings being useless for the querying
task. Indeed, let Q1 and Q2 be two rewritings such that Q1 maps to Q2 (i.e., Q1 is

10 Marie-Laure Mugnier

“more general” than Q2): if Q1 does not map to F , neither does Q2. A set of rules R
is called a fus if for every fact Q, there is a finite set Q of R-rewritings of Q such that,
for any R-rewriting Q′ of Q, there is an R-rewriting Q′′ in Q that maps to Q′. Note
that it may be the case that the set of the most general rewritings is finite while the set
of rewritings is infinite.

If R is a fus, then a backward chaining algorithm that builds rewritings of Q in a
breadth-first way, while maintaining a setQ of the most generalR-rewritings built, and
answers yes if an element of Q maps to F , necessarily halts in finite time.

The fes and fus classes are not comparable, neither are bts (resp. gbts) and fus.

4.2 Concrete Decidable Classes

Let us now enumerate the main concrete classes. Most of them implement one of the
three preceding abstract behaviors; however, some concrete classes that are not bts nei-
ther fus have been exhibited very recently [CGP10a], we will mention them in this
section.

The typical fes concrete class is plain Datalog, where rules do not have any existen-
tial variable in their head, i.e., for any Datalog rule R, vars(head(R)) ⊆ vars(body(R)).
Other names for this class are range-restricted rules (rr) [AHV95], full implicational
dependencies [CLM81] and total tuple-generating dependencies [BV84]. These rules
typically allow to express specialization relationships between concepts or relations in
ontological languages, as well as properties of relations such as reflexivity, symmetry
or transitivity.

A special class is that of disconnected (disc) rules, which have an empty frontier
[BM02]. A disconnected rule needs to be applied only once: any further application of
it is redundant; this is why these rules are both fes and fus. Moreover, disc-rules have
the nice property of being compatible with any other decidable class (see Section 5).
The body and the head of a disc-rule may share constants, which allows to express
knowledge about specific individuals. Apart from this use, this class is mostly useful in
technical constructions.

Other fes cases are obtained by restricting possible interactions between rules. These
interactions have been encoded in two different directed graphs: a graph encoding vari-
able sharing between positions in predicates and a graph encoding dependencies be-
tween rules. In the first graph, called (position) dependency graph [FKMP03] [FKMP05],
the nodes represent positions in predicates, i.e., the node (p,i) represents a position i in
predicate p. Then, for each rule R and each variable x in body(R) occurring in posi-
tion (p, i), edges with origin (p, i) are built as follows: if x ∈ fr(R), there is an edge
from (p, i) to each position of x in head(R); furthermore, for each existential variable
y in head(R) (i.e., y ∈ vars(head(R)) \ fr(R)) occurring in position (q, j), there is
a special edge from (p, i) to (q, j). A set of rules is said to be weakly acyclic (wa)
if its position dependency graph has no circuit passing through a special edge. Intu-
itively, such a circuit means that the introduction of an existential variable in a given
position may lead to create another existential variable in the same position, hence
an infinite number of existential variables. The weak-acyclicity property is a sufficient
condition (but of course not a necessary condition) for the forward chaining to be fi-
nite [FKMP03][DT03]. Recently, weak-acyclicity has been independently generalized

Ontological Query Answering with Existential Rules 11

in various ways, namely safety [MSL09], super-weak-acyclicity [Mar09] and joint-
acyclicity [KR11], while keeping the forward chaining finiteness property. Note that
joint-acyclicity (ja) is obtained by simply shifting the focus from positions to existential
variables, hence replacing the position dependency graph by the existential dependency
graph, where the nodes are the existential variables occurring in rules; this yields a finer
analysis of potentially infinite creations of existential variables.

In the second graph, called graph of rule dependencies (GRD), the nodes represent
rules and the edges represent dependencies between rules. The GRD is precisely defined
in Section 5.2. The acyclicity of the GRD, noted aGRD in Figure 4.2, ensures that the
forward chaining, as well as the backward chaining, is finite, thus aGRD is both a fes and
a fus class (see Section 5.2). More generally, when all strongly connected components
of the GRD have the property of being weakly-acyclic sets of rules (noted wa-GRD),
then the forward chaining is finite (special case of Theorem 4 in Section 5.2); this class
corresponds to the notion of a stratified chase graph in [DNR08].

Let us now review gbts classes, which, intuitively, ensure that the derived facts have
a tree-like structure that can be built in a greedy way.

The notion of a guarded rule is inspired from guarded logic [AvBN96]. A rule R is
guarded (g) if there is an atom a in its body (called a guard) that contains all variables
from the body, i.e., vars(body(R)) ⊆ vars(a). A generalization of guarded rules is
obtained by relaxing the guardedness property: a set of rules is weakly guarded (wg) if,
for each rule R, there is a ∈ body(R) (called a weak guard) that contains all affected
variables from body(R). The notion of an affected variable is relative to the rule set: a
variable is affected if it occurs only in affected predicate positions, which are positions
that may contain a new variable generated by forward chaining (see [FKMP05] for a
precise definition). The important property is that a rule application necessarily maps
non-affected variables to terms from the initial fact.

A rule R is frontier-one (fr1) if its frontier is of size one (note that rules restricted to
a frontier of size two still lead to undecidability). By noticing that the shape of derived
facts depends only on how the frontier of rules is mapped (and not on how the whole
body is mapped, since only the images of the frontier are used to apply a rule), one
obtains a generalization of both fr1- and guarded-rules: a rule R is frontier-guarded
(fg) if there is an atom a in its body that contains all variables in its frontier, i.e.,
vars(fr(R)) ⊆ vars(a). The same remark as for guarded rules can be made: only af-
fected variables need to be guarded. One then obtains a generalization of both wg and fg:
a set of rules is weakly-frontier-guarded (wfg) if, for each rule R, there is a ∈ body(R)
that contains all affected variables from fr(R). In a very recent paper [KR11], the class
w(f)g is further generalized into jointly-(frontier)-guarded (j-(f)g), by refining the notion
of affected variable.

Interestingly, [KR11] exhibits a class that is bts but neither fes nor gbts, namely glut-
frontier-guarded (glut-fg). This class generalizes both notions of joint-acyclicity (which
itself generalizes weak-acyclicity) and joint-(frontier)-guardedness: a set of rules is
glut-(frontier)-guarded if each rule has an atom in its body that contains all glut vari-
ables (occurring in its frontier). This class relies on a special method for eliminating
existential quantifiers; instead of being replaced by functional terms as in skolemisa-
tion, existential quantifiers are replaced by “flattened” functional terms encoded as ad-

12 Marie-Laure Mugnier

ditional arguments in predicates. Briefly, the glut variables are the variables that remain
affected after this rule rewriting.

Whether the gbts class is concrete, i.e. recognizable, is not known yet. Note that
guarded rules and wg-rules were already provided with an algorithm [CGK08][CGL09],
but that it was not the case for fr1-rules and their generalizations up to (j-(f)g)-rules,
which can now benefit from the algorithm for gbts. A glut-fg set of rules can be trans-
lated into an exponentially large j-fg set of rules, thus the glut-fg class is also provided
with an algorithm.

About fus concrete cases, two classes are exhibited in [BLMS09]. The first class
is that of atomic-hypothesis rules (ah) –where “hypothesis” stands for “body”– whose
body is restricted to a single atom; these rules are also called linear TGDs [AHV95].
Since ah-rules are fus, there is a halting algorithm based on backward chaining, but,
since they are also special guarded rules, there is also a halting algorithm based on
forward chaining. Atomic-hypothesis rules are useful to express necessary properties
of concepts or relations in ontological languages, without any restriction on the form
of the head, i.e., by rules of the form C(x) → P or r(x1, . . . , xk) → P , where C
is a concept, r a k-ary relation and P any set of atoms. Specific ah-rules translate the
so-called inclusion dependencies (ID) in databases: the body and the head of these rules
are each composed of a single atom, whose arguments are pairwise distinct variables.

The second class of rules, domain-restricted rules (dr), constrains the form of the
head: each atom in the head contains all or none of the variables in the body. For in-
stance, a domain-restricted rule can express the so-called concept-product, argued to be
a useful constructor for description logics in [RKH08]: this operator allows to compute
the cartesian product of two concepts by rules of the form p(x) ∧ q(y) → r(x, y) (e.g.,
elephant(x) ∧mouse(y) → bigger-than(x, y)).

In [CGP10a], another concrete fus class is defined: sticky rules, which are incompa-
rable with ah-rules and dr-rules. The stickyness property restricts multiple occurrences
of variables (in the same atom or in distinct atoms —i.e., in joins) in the rule bodies.
Variables that occur in rule bodies are marked according to the following procedure:
(1) for each rule R, for each variable x in body(R), if there is an atom in head(R) that
does not contain x, then mark every occurrence of x in body(R); (2) repeat the follow-
ing step until a fixpoint is reached: for each rule R, if a marked variable in body(R)
appears at position (p, i) then, for every rule R′ (including R = R′) and every variable
x appearing in position (p, i) in head(R′), mark every occurrence of x in body(R′). A
set of rules R is said to be sticky if there is no rule R ∈ R such that a marked vari-
able occurs in body(R) more than once. The above mentioned concept-product rule is
obviously sticky since no variable occurs twice in the rule body.

Several generalizations of sticky rules are defined in [CGP10b]. All these classes are
obtained by more sophisticated variable-marking techniques. Weakly-sticky (w-sticky)
sets are a generalization of both weakly-acyclic sets and sticky sets: intuitively, if a
marked variable occurs more than once in a rule body, then at least one of these po-
sitions has to be safe, i.e., only a finite number of terms can appear in this position
during the forward chaining. Sticky join (sticky-j) sets generalize sticky sets. Finally,
weakly-sticky-join (w-sticky-j) sets generalize both weakly-sticky sets and sticky-join
sets. These classes are still incomparable with dr.

Ontological Query Answering with Existential Rules 13

Figure 4.2 synthesizes inclusions between the preceding concrete decidable classes.
All inclusions are strict and classes not related in the schema are indeed incomparable.
Each class belongs to at least one of the abstract classes fes, fus, gbts and bts, except for
the two recent classes weakly-sticky and weakly-sticky-join: indeed, they generalize
both a fes but not fus nor gbts class, namely wa, and a fus but not bts class, namely
sticky.

fus

gbts

fes

aGRD

Datalog (rr)

bts

ID

guarded frontier−1

wfg

ah (linear)

wa−GRD wg fgja

sticky

w−sticky−j

w−sticky

dr

wa

sticky−j

j−fg

glut−fg

Moreover, disc is included in wa, dr and fg

Fig. 3. Inclusions between decidable cases

4.3 Complexity

Two complexity measures are classically considered for query problems: the usual com-
plexity, called combined complexity, and data complexity. With combined complexity,

14 Marie-Laure Mugnier

all components of the problem instance, here K = (F,R) and Q, are considered as
input. With data complexity, only the data, here F , are considered as part of the input,
thus the sizes of R and Q can be seen as bounded by constants. For instance, check-
ing homomorphism from a query to a fact is NP-complete in combined complexity and
polynomial in data complexity. The latter complexity is relevant when the data size is
much larger than the size of the rules and the query. An intermediate notion of com-
plexity is found in the literature, namely knowledge base complexity: in this case, not
only the data is considered as input, but the whole knowledge base, i.e.,K in our frame-
work. However, we can translate Q into a rule RQ = Q → match where match is a
fresh nullary predicate, with the entailment question becoming F,R∪{RQ} |= match.
Thus, knowledge base complexity is often less relevant in our framework: each time
this translation can be done while keeping the wanted property of the initial rule set,
knowledge base complexity and combined complexity coincide.

Table 4.3 summarizes the combined and data complexity results for the main con-
crete classes mentioned in Section 4.2. Note that combined complexity is here without
bound of the predicate arity (putting an upper-bound on the arity of predicates may
decrease the complexity). By definition, all fus classes have polynomial data complex-
ity, since the number of rewritten queries is not related to the data size. They are even
first-order rewritable, which means that every query Q can be rewritten as a first-order
query Q′ using the set of rules, such that the evaluation of Q on the initial KB (R, F)
produces the same set of answers as the evaluation of Q′ on F . An interest of first-order
queries is that they can be encoded in SQL, which allows to use relational database sys-
tems, thus benefiting from their optimizations. Obviously, any Boolean query over a fus
class can be rewritten as a first-order query, which is the union (i.e., disjunction) of all
most general queries in the set Q. It is well-known in databases that deciding whether
a first-order query is entailed by a database belongs to the class AC0 in data complex-
ity (AC0 is a subclass of LSpace –for logarithmic space– itself included in PTime).
Several non-fus classes have polynomial data complexity: some gbts classes, namely
fg (and its subclasses fr1 and guarded), some fes classes, namely wa-GRD and ja (and
subclasses aGRD, wa and Datalog) and some non-bts classes, namely w-sticky-j (and
its subclass w-sticky). Note that relaxing guardedness into weak-guardedness leads to
EXPTIME-complete data complexity.

5 Combining Decidable Classes

In the previous section, we have reviewed the main concrete classes of rules found in
the literature. These rules rely on different criteria ensuring decidability and sometimes
tractability in data complexity. The question now is whether these criteria can be com-
bined to make larger decidable classes. The answer to this question is also of interest if
we want to use jointly two ontologies, possibly provided by an alignment also expressed
as a set of rules; assume that each ontology is known to correspond to a decidable class,
as well as the alignment; the question is whether these ontologies can be safely com-
bined. In this section, we will first present negative results showing that the rough union
of two classes is almost never decidable, then introduce a technique allowing to com-
bine decidable classes and decidability paradigms under some conditions.

Ontological Query Answering with Existential Rules 15

Class Combined Data
Complexity Complexity

gbts in 3EXPTIME [BMRT11] (1) EXPTIME-c [BMRT11]
glut-fg 3EXPTIME-c [KR11] EXPTIME-hard
j-fg 2EXPTIME-c [KR11] EXPTIME-c [KR11]
wfg 2EXPTIME-c [BMRT11] EXPTIME-c [BMRT11]
fg 2EXPTIME-c [BMRT11] PTIME-c [BMRT11]
fr1 2EXPTIME-c [BMRT11] PTIME-c [BMRT11]
wg 2EXPTIME-c [CGK08] EXPTIME-c [CGL10a]
guarded 2EXPTIME-c [CGK08] PTIME-c [CGL09]
Datalog (rr) EXPTIME-c e.g., [CLM81] PTIME-c [DEGV01]
j-a 2EXPTIME-c [KR11] PTIME-c [KR11]
wa, wa-GRD (2) 2EXPTIME-c [CGP10b](LB) [FKMP05](UB) PTIME-c [DEGV01](LB) [FKMP05](UB)
linear (ah) PSPACE-c [CGL10a] FO-rewritable [CGL09]
sticky EXPTIME-c [CGP10a] FO-rewritable [CGP10a]
sticky-j EXPTIME-c [CGP10b] FO-rewritable [CGP10b]
w-sticky 2EXPTIME-c [CGP10b] PTIME-c [CGP10b]
w-sticky-j 2EXPTIME-c [CGP10b] PTIME-c [CGP10b]

(1) 2EXPTIME-completeness is proven in an extended yet unpublished version of [BMRT11]
(2) These complexities have been proven for wa, but hold also for wa-GRD

Table 1. Combined and Data Complexities for the main concrete decidable classes

Let us mention the specific case of disconnected rules, which are universally com-
patible: if a set of rulesR is decidable, then the union ofR and any set of disconnected
rules remains decidable [BLM10].

5.1 Rough Union

We say that two sets of rulesR1 andR2 are equivalent w.r.t. a vocabulary V composed
of a set of predicates and a set of constants, if, for any fact F built on V , the sets of
facts on V entailed respectively by knowledge bases (F,R1) and (F,R2) are equals.
We consider here two simple transformations from a rule into an equivalent pair of rules
namely τ1 and τ2:

– τ1 rewrites a rule R into two rules:
R1 = body(R) → R(x1 . . . xp) and
R2 = R(x1 . . . xp) → head(R), where {x1, . . . , xp} = vars(body(R)) and R is a
new predicate (i.e., not belonging to the vocabulary) assigned to R. Note that R1 is
both rr (plain Datalog) and dr, and R2 is ah (linear TGD).

– τ2 is similar to τ1, except that the atom with predicate R contains all variables in
the rule R:
R1 = body(R) → R(y1, . . . , yk) and
R2 = R(y1, . . . , yk) → head(R), where {y1, . . . , yk} = vars(R). Note that,
among other properties, R1 is dr, while R2 is rr.

16 Marie-Laure Mugnier

Any set of rules can be split into an equivalent set of rules by τ1 or τ2. If we further-
more consider the concrete classes of the rules obtained by both transformations, and
knowing that ENTAILMENT is undecidable with a single rule, we obtain the following
result:

Theorem 2. [BLM10] ENTAILMENT remains undecidable if R is composed of

– a range-restricted (plain Datalog) rule and an atomic-hypothesis rule
– a range-restricted (plain Datalog) rule and a domain-restricted rule
– an atomic-hypothesis rule and a domain-restricted rule.

Since ah-rules are also g-rules, this implies that g-rules are incompatible with rr-
rules and dr-rules. The incompatibility of fr1 and rr can be proven with a reduction
from the halting problem of a Turing Machine [BLM10][BLMS11]. The compatibility
of fr1 and dr is an open question. The possible compatibility of sticky with other classes
has not been studied yet.

Among decidability criteria, it is important to distinguish between properties that
can be checked on each rule (“individual” properties) and properties to be checked
on the set of rules (“global” properties) like weak-guardedness, weak-acyclicity, GRD
acyclicity or stickyness. Indeed, the union of two sets satisfying an individual property
still satisfies it, while this is not true for global properties: a single added rule may lead
to violate any of the global properties mentioned in this paper. For instance, a wa set
of rules is weakly-sticky, and the same holds for a sticky set of rules, but the union
of two such sets is generally not weakly-sticky. The concrete classes wg, wfg, wa and
aGRD, all based on global properties, are pairwise incompatible, which includes the
incompatibility of each class with itself [BLM10]. It follows from previous results that
abstract classes are incompatible: the union of two sets belonging to classes fes, bts
(gbts) or fus does not preserve decidability.

In summary, the rough union of two sets of rules belonging to different decidable
classes almost always leads to undecidability. The next question is whether decidable
sets can be combined under some constraints. The following section introduces the
“graph of rule dependencies” and define conditions on the structure of this graph that
preserve decidability.

5.2 Rule Dependencies

Intuitively, we say that a rule R2 depends on a rule R1 if R1 may bring knowledge that
leads to a new application of R2. More formally: there exists a fact F such that R1 is
applicable to F but R2 is not, and there is an application of R1 to F leading to F ′ such
that R2 is applicable to F ′.

The Graph of Rule Dependencies (GRD) encodes dependencies between rules from
a set R. It is a directed graph with R as the set of nodes and an edge (Ri, Rj) if Rj

depends on Ri.4

4 For historical reasons, the edges encode the converse of the dependency relation (an edge
(Ri, Rj) can be read as “Ri may lead to trigger Rj in a new way”.

Ontological Query Answering with Existential Rules 17

This abstract dependency relation can be effectively computed with a unification
operation. As already mentioned, this unification operation takes the complex structure
of rule heads into account, that is why it is not simply a unification between two atoms.
Indeed, whereas in Datalog, it is possible to decompose a rule B → A1 . . . Ak into
an equivalent set of k rules of the form (B → Ai)1≤i≤k, with atomic heads, such a
transformation would not preserve the rule semantics when applied to existential rules.
Instead, one has to consider the so-called pieces in the head, which can be seen as
“units” of knowledge brought by an application of the rule.

Pieces in a rule head are defined as follows. Generally speaking, a piece of a set
of atoms A according to a subset of vars(A), denoted by X , is a minimal non-empty
subset P of A such that, for all a and a′ in A, if a ∈ P and (vars(a) ∩ vars(a′)) 6⊆ X ,
then a′ ∈ P . In our case, A is the head of the rule and X is its frontier. With a graphical
view of a rule head, pieces can be recast as follows: two atom nodes a1 and a2 are in the
same piece if there is a path between them that goes through existential variable nodes
only.

Example 3. [Pieces] Cf. Figure 4.
R = p(x, y) → p(x, z)∧ p(z, t)∧ p(t, x)∧ p(x, u)∧ p(u, x). The frontier of R is {x},
hence R has two pieces {p(x, z), p(z, t), p(t, x)} and {p(x, u), p(u, x)}.

p
p

p

pp

zu x

t

{p(x, z), p(z, t), p(t, x), p(x, u), p(u, x)} and T = {x}

Fig. 4. Pieces

Then, any rule R = B → P1 . . . Pk, where the Pi are the pieces in R can be recast
as an equivalent set of k rules of the form (B → Pi)1≤i≤k.

The backward chaining defined in [BLMS09] (and previously in [SM96] for con-
ceptual graphs) relies on unifiers based on pieces, called piece-unifiers. Briefly said, a
piece-unifier of the body of R2 with the head of R1 is a homomorphism µ from a subset
of body(R2) to a specialization H ′

1 of head(R1) [with H ′
1 = s(head(R1)), where s is

a substitution of fr(R1) with fr(R1) ∪ consts(head(R1) ∪ body(R2))] that satisfies
the following condition: let T2 be the set of variables from body(R2) mapped by µ to
fr(R1) ∪ consts(head(R1)); consider the pieces of body(R2) according to T2; then, µ
is a homomorphism from some pieces of body(R2) to H ′

1. See [BLMS09][BLMS11]
for formal definitions.

Piece-unifiers allow to effectively compute dependencies between rules: R2 de-
pends on R1 iff there is a piece-unifier between body(R2) and head(R1), that satisfies
a simple syntactic condition (see [BLMS11] for details):

18 Marie-Laure Mugnier

Theorem 3. [BLMS11] R2 depends on R1 if and only if there exists an atom-erasing
piece-unifier of body(R2) with head(R1).

Example 4. Let R1 = {R1, R2}, with:
R1 = p(x) → r(x, y) ∧ r(y, z) ∧ r(z, x)
R2 = r(x, y) ∧ r(y, x) → p(x)
R1 depends on R2, but R2 does not depend on R1. Indeed, let us see head(R1) and
body(R2) as graphs; in this example, any piece-unifier of body(R2) with head(R1) is
necessarily a homomorphism from body(R2) to head(R1). Since the cycle in body(R2)
does not map by homomorphism to the cycle in head(R1), R2 does not depend on R1.

The associated decision problem (given two rules R1 and R2, does R2 depend on
R1?) is NP-complete. The GRD notion has been first introduced for conceptual graph
rules in [Bag04], then adapted to existential rules in [BLMS09]; the notion of a piece-
unifier defined in [BLMS09] is itself adapted from a similar notion defined for backward
chaining with conceptual graph rules [SM96]. A notion equivalent to the GRD, called
the chase graph, has been independently defined for TGDs in [DNR08].

Let us consider the basic saturation mechanism. If a subset of rules S ⊆ R has been
applied at step i, then the only rules that have to be checked for applicability at step i+1
are in the set {R′ ∈ R|∃R ∈ S, (R, R′) is an edge in GRD(R)}. Similar arguments
apply for backward chaining, considering the predecessors of the rules instead of their
successors. It follows that for any set of rules R, if GRD(R) has no circuit, then R is
both a fes and a fus. This result can be extended by considering the strongly connected
components of GRD(R). Let us recall that two nodes x and y in a directed graph are in
the same strongly connected component of this graph if there are directed paths from x
to y and from y to x. Any isolated node forms its own strongly connected component.

Theorem 4. [BLMS09] Let R be a set of rules. If all strongly connected components
of GRD(R) are fes (resp. fus), then R is a fes (resp. fus).

In [DNR08], it is proven that when all strongly connected components of the GRD
(called the chase graph) are weakly-acyclic (the chase graph is said to be stratified) the
forward-chaining is finite, which can be seen as a special case of the previous result.

The above results allow to safely combine several fes, or several fus. We will now
combine fes/bts and fus.

Definition 6 (directed cut of a ruleset). A (directed) cut of a set of rules R is a par-
tition {R1,R2} of R such that no rule in R1 depends on a rule in R2. It is denoted
R1.R2 (“R1 precedes R2”).

Such partitions are interesting because they allow to reason successively and inde-
pendently with the two sets of rules, as shown by the following property.

Theorem 5. [BLMS09] [BLMS11] Let R be a set of rules admitting a cut R1.R2.
Then, for any facts F and Q, it holds that F,R |= Q iff there is a fact P such that
F,R1 |= P and P,R2 |= Q hold.

Ontological Query Answering with Existential Rules 19

We will now use this property to combine rules belonging to decidable classes. For
that, we define the following notations: given C1 and C2 two classes of sets of rules, a cut
(R1.R2) is said to be a C1.C2-cut if R1 belongs to the class C1 and R2 belongs to the
class C2. The class C1.C2 is the class of sets of rules that admit at least one C1.C2-cut.

Theorem 6 (fes.bts). [BLMS09] [BLMS11] The class fes.bts is a subclass of bts.

The following result allows to combine both forward and backward chaining mech-
anisms, provided that a specific kind of cut exists.

Theorem 7 (bts . fus). [BLMS09] [BLMS11] ENTAILMENT is decidable when re-
stricted to the bts. fus class of rules.

In the specific case of a fes . fus set provided with an appropriate cut R1.R2, we
have an effective sound and complete halting mechanism. Indeed, we can on the one
hand use forward chaining on R1 to compute a full derivation of the facts, say F ′, and
on the other hand use backward chaining on R2 to compute the finite set Q of most
general rewritings of Q, then check if there is an element of Q that maps to F ′.

6 Conclusion

In this paper, we have presented a rule-based framework well-suited to ontological
query answering, which can be seen both logically and graphically. These rules allow
for value invention, which has been recognized as a mandatory feature of ontological
languages in an open-world perspective. We have given an overview of the landscape
of decidable classes of rules in relationship with classical computational paradigms,
namely forward chaining and backward chaining, and reviewed the main complexity
results, for combined and data complexity. The rough union of decidable rule sets is
generally not decidable, but conditions on the interaction between rules defined on the
graph of rule dependencies allow for safe union, as well as for combining the forward
and backward chaining mechanisms.

The study of existential rules for ontological query answering is only at its begin-
ning and a lot of issues are to be addressed. We list below some challenging problems
directly related to this paper.

– Extend or define new abstract decidable classes. Abstract decidable classes are use-
ful to highlight the properties of reasoning mechanisms (i.e., forward and backward
chaining in this paper) that ensure decidability. However, some very recent concrete
classes do not belong to any of the abstract classes fes, fus and bts. Is it possible
to cover them by combining abstract classes and properties of the GRD, or do they
correspond to a new decidability paradigm ? Another question is the following: the
fes and fus classes, both based on the finiteness of rule processing mechanisms can
be seen as playing a similar role, with respect to forward chaining and backward
chaining respectively. Is there an abstract class that would be the counterpart of bts
for backward chaining ?

20 Marie-Laure Mugnier

– Find safe ways of integrating restricted forms of transitivity and/or equality. Two
kinds of rules, specially useful for modeling applications, are well-known sources
of undecidability when they interact with existential rules: transitivity rules (and
more generally rules allowing to compose binary relations) and equality rules. For
instance, it has long been shown in databases that functional dependencies (which
are specific equality rules) and inclusion dependencies (which are specific ah rules)
make entailment undecidable [CV85]; moreover, although equality rules can be
safely added to plain Datalog, this is not the case for fes classes in general: adding
a single equality rule to a fes may lead to undecidability [BLMS11]. Current tech-
niques for safely integrating equality rules enforce a “separability” condition be-
tween equality rules and existential rules so that they can be processed separately
(see in particular [CGL09]): intuitively, this condition ensures that equality rules
can then be considered as a set of constraints to be satisfied by the initial facts, and
query entailment considers existential rules only. It would be nice to have decidable
cases allowing some interaction between equality rules and existential rules during
the forward chaining process.

– Deepen the analysis of interactions between rules. We have pointed out the inter-
est of precisely studying interactions between rules to extend decidable cases. The
notion of rule dependencies could be refined. A first step in that direction is the gen-
eralization of rule dependencies to rule k-dependencies, which allows to take into
account several steps of saturation instead of a single one [BMT11]. Another tech-
nique for analyzing interactions between rules is the graph of position dependen-
cies, mentioned in Section 4.2, which leads to the notion of weak acyclicity. These
two techniques encode different kinds of interactions between rules, hence define
incomparable decidable classes, and this remains true for their currently known
generalizations, except for wa-GRD which combines wa with a condition on the
GRD. However, this way of doing does not really “integrate” both notions.

– Optimize and evaluate algorithms. Polynomial data complexity is a requirement,
however it does not ensure practical feasibility. In particular, any backward chain-
ing algorithm has “by definition” a polynomial data complexity on a fus class, how-
ever the number of generated queries can be prohibitively large in practice. There
is still much work to do to go from algorithmic schemes to scalable algorithms.
Among other techniques, the graph of rule dependencies can be seen as a compi-
lation technique to improve the efficiency of the forward and backward chaining
mechanisms, thus speeding up the query answering task.

Acknowledgements. The author thanks Sebastian Rudolph for his careful reading of
this paper and helpful comments.

References

AHV95. S. Abiteboul, R. Hull, and V. Vianu. Foundations of Databases. Addison-Wesley,
1995.

AvBN96. H. Andréka, J. van Benthem, and I. Németi. Modal languages and bounded fragments
of FOL. Research Report ML-96-03, Univ. of Amsterdam, 1996.

Ontological Query Answering with Existential Rules 21

Bag04. J.-F. Baget. Improving the forward chaining algorithm for conceptual graphs rules.
In KR’04, pages 407–414. AAAI Press, 2004.

BBL05. F. Baader, S. Brandt, and C. Lutz. Pushing the el envelope. In IJCAI’05, pages
364–369, 2005.

BLM10. J.-F. Baget, M. Leclère, and M.-L. Mugnier. Walking the decidability line for rules
with existential variables. In KR’10, pages 466–476. AAAI Press, 2010.

BLMS09. J.-F. Baget, M. Leclère, M.-L. Mugnier, and E. Salvat. Extending decidable cases for
rules with existential variables. In IJCAI’09, pages 677–682, 2009.

BLMS11. J.-F. Baget, M. Leclère, M.-L. Mugnier, and E. Salvat. On rules with existential vari-
ables: Walking the decidability line. Artificial Intelligence, 175(9-10):1620–1654,
2011.

BM02. J.-F. Baget and M.-L. Mugnier. The Complexity of Rules and Constraints. J. Artif.
Intell. Res. (JAIR), 16:425–465, 2002.

BMRT11. J.-F. Baget, M.-L. Mugnier, S. Rudolph, and M. Thomazo. Walking the complexity
lines for generalized guarded existential rules. In IJCAI’11, to appear, 2011.

BMT11. J.F. Baget, M.-L. Mugnier, and M. Thomazo. Towards farsighted dependencies for
existential rules. Research report lirmm 11-016, 2011.

BV81. C. Beeri and M. Vardi. The implication problem for data dependencies. In ICALP’81,
volume 115 of LNCS, pages 73–85, 1981.

BV84. C. Beeri and M.Y. Vardi. A proof procedure for data dependencies. Journal of the
ACM, 31(4):718–741, 1984.

CGK08. A. Calı̀, G. Gottlob, and M. Kifer. Taming the infinite chase: Query answering under
expressive relational constraints. In KR’08, pages 70–80, 2008.

CGL+07. D. Calvanese, G. De Giacomo, D. Lembo, M. Lenzerini, and R. Rosati. Tractable
reasoning and efficient query answering in description logics: The DL-Lite family.
J. Autom. Reasoning, 39(3):385–429, 2007.

CGL09. A. Calı̀, G. Gottlob, and T. Lukasiewicz. A general datalog-based framework for
tractable query answering over ontologies. In PODS’09, pages 77–86, 2009.

CGL10a. A. Calı̀, G. Gottlob, and T. Lukasiewicz. Datalog extensions for tractable query
answering over ontologies. In R. De Virgilio, F. Giunchiglia, and L. Tanca, editors,
Semantic Web Information Management: A Model-Based Perspective, pages 249–
279. Springer, 2010.

CGL+10b. A. Calı̀, G. Gottlob, T. Lukasiewicz, B. Marnette, and A. Pieris. Datalog+/-: A family
of logical knowledge representation and query languages for new applications. In
LICS, pages 228–242. IEEE Computer Society, 2010.

CGP10a. A. Calı̀, G. Gottlob, and A. Pieris. Advanced processing for ontological queries.
PVLDB, 3(1):554–565, 2010.

CGP10b. A. Calı̀, G. Gottlob, and A. Pieris. Query answering under non-guarded rules in
datalog+/-. In RR, pages 1–17, 2010.

CLM81. A. K. Chandra, H. R. Lewis, and J. A. Makowsky. Embedded implicational depen-
dencies and their inference problem. In STOC’81, pages 342–354. ACM, 1981.

CM09. M. Chein and M.-L. Mugnier. Graph-based Knowledge Representation and
Reasoning—Computational Foundations of Conceptual Graphs. Advanced Infor-
mation and Knowledge Processing. Springer, 2009.

Cou90. B. Courcelle. The monadic second-order logic of graphs: I. recognizable sets of finite
graphs. Inf. Comput., 85(1):12–75, 1990.

CV85. A. K. Chandra and M. Y. Vardi. The implication problem for functional and inclusion
dependencies is undecidable. SIAM J. Comput., 14(3):671–677, 1985.

DEGV01. E. Dantsin, T. Eiter, G. Gottlob, and A. Voronkov. Complexity and expressive power
of logic programming. ACM Comput. Surv., 33(3):374–425, 2001.

22 Marie-Laure Mugnier

DNR08. A. Deutsch, A. Nash, and J.B. Remmel. The chase revisited. In PODS’08, pages
149–158, 2008.

DT03. A. Deutsch and V. Tannen. Reformulation of xml queries and constraints. In
ICDT’03, pages 225–241, 2003.

FKMP03. R. Fagin, P. G. Kolaitis, R. J. Miller, and L. Popa. Data exchange: Semantics and
query answering. In ICDT’03, pages 207–224, 2003.

FKMP05. R. Fagin, P. G. Kolaitis, R. J. Miller, and L. Popa. Data exchange: semantics and
query answering. Theor. Comput. Sci., 336(1):89–124, 2005.

KR11. M. Krötzsch and S. Rudolph. Extending decidable existential rules by joining
acyclicity and guardedness. In IJCAI’11, to appear, 2011.

KRH07. M. Krötzsch, S. Rudolph, and P. Hitzler. Complexity boundaries for Horn description
logics. In AAAI’07, pages 452–457. AAAI Press, 2007.

LTW09. C. Lutz, D. Toman, and F. Wolter. Conjunctive query answering in the description
logic el using a relational database system. In IJCAI’09, pages 2070–2075, 2009.

Mar09. B. Marnette. Generalized schema-mappings: from termination to tractability. In
PODS, pages 13–22, 2009.

MSL09. M. Meier, M. Schmidt, and G. Lausen. On chase termination beyond stratification.
PVLDB, 2(1):970–981, 2009.

RKH08. S. Rudolph, M. Krötzsch, and P. Hitzler. All elephants are bigger than all mice. In
Description Logics, 2008.

SM96. E. Salvat and M.-L. Mugnier. Sound and Complete Forward and Backward Chain-
ings of Graph Rules. In ICCS’96, volume 1115 of LNAI, pages 248–262. Springer,
1996.

Sow84. J. F. Sowa. Conceptual Structures: Information Processing in Mind and Machine.
Addison-Wesley, 1984.

