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Abstract

Modern search engines receive large numbers of busi-

ness related, local aware queries. Such queries are best

answered using accurate, up-to-date, business listings, that

contain representations of business categories. Creating

such listings is a challenging task as businesses often

change hands or close down. For businesses with street

side locations one can leverage the abundance of street

level imagery, such as Google Street View, to automate the

process. However, while data is abundant, labeled data is

not; the limiting factor is creation of large scale labeled

training data. In this work, we utilize an ontology of ge-

ographical concepts to automatically propagate business

category information and create a large, multi label, train-

ing dataset for fine grained storefront classification. Our

learner, which is based on the GoogLeNet/Inception Deep

Convolutional Network architecture and classifies 208 cat-

egories, achieves human level accuracy.

1. Introduction

Following the popularity of smart mobile devices, search

engine users today perform a variety of locality-aware

queries, such as Japanese restaurant near me, Food nearby

open now, or Asian stores in San Diego. With the help of

local business listings, these queries can be answered in a

way that is tailored to the user’s location.

Creating accurate listings of local businesses is time con-

suming and expensive. To be useful for the search engine,

the listing needs to be accurate, extensive, and importantly,

contain a rich representation of the business category. Rec-

ognizing that a JAPANESE RESTAURANT is a type of ASIAN

STORE that sells FOOD, is essential in accurately answering

a large variety of queries. Listing maintenance is a never

ending task as businesses often move or close down. In fact

it is estimated that 10% of establishments go out of business

every year, and in some segments of the market, such as the

restaurant industry, the rate is as high as 30% [24].

Figure 1. The multi label nature of business classification is clear

in the image on the left; the main function of this establishment is

to sell fuel, but it also serves as a convenience store. The remaining

images show the fine grained differences one expects to find in

businesses. The shop in the middle image is a grocery store, the

one on the right sells plumbing supplies; visually they are similar.

The turnover rate makes a compelling case for automat-

ing the creation of business listings. For businesses with a

physical presence, such as restaurants and gas stations, it is

a natural choice to use data from a collection of street level

imagery. Probably the most recognizable such collection is

Google Street View which contains hundreds of millions of

360◦ panoramic images, with geolocation information.

In this work we focus on business storefront classifica-

tion from street level imagery. We view this task as a form

of multi-label fine grained classification. Given an image

of a storefront, extracted from a Street View panorama, our

system is tasked with providing the most relevant labels for

that business from a large set of labels. To understand the

importance of associating a business with multiple labels,

consider the gas station shown in Figure 1 (left). While its

main purpose is fueling vehicles, it also serves as a conve-

nience or grocery store. Any listing that does not capture

this subtlety will be of limited value to its users. Similarly,

stores like Target or Walmart sell a wide variety of products

from fruit to home furniture, all of which should be reflected

in their listings. The problem is fine grained as business of

different types can differ only slightly in their visual ap-

pearance. An example of such a subtle difference is shown

in Figure 1. The middle image shows the front of a grocery

store, while the image on the right is of a plumbing supply

store. Visually they are similar. The discriminative infor-
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mation can be very subtle, and appear in varying locations

and scales in the image; this, combined with the large num-

ber of categories needed to cover the space of businesses,

require large amounts of training data.

The contribution of this work is two fold. First, we pro-

vide an analysis of challenges of a storefront classification

system. We show that the intra-class variations can be larger

than differences between classes (see Figure 2). Textual

information in the image can assist the classification task,

however, there are various drawbacks to text based models:

Determining which text in the image belongs to the business

is a hard task; Text can be in a language for which there is

no trained model, or the language used can be different than

what is expected based on the image location (see Figure 3).

We discuss these challenges in detail in Section 3.

Finally, we propose a method for creating large scale la-

beled training data for fine grained storefront classification.

We match street level imagery to known business informa-

tion using both location and textual data extracted from im-

ages. We fuse information from an ontology of entities with

geographical attributes to propagate category information

such that each image is paired with multiple labels with dif-

ferent levels of granularity. Using this data we train a Deep

Convolutional Network that achieves human level accuracy.

2. Related Work

The general literature on object classification is vast. Ob-

ject category classification and detection [9] has been driven

by the Pascal VOC object detection benchmark [8] and

more recently the ImageNet Large Scale Visual Recogni-

tion Challenge (ILSVRC) [26]. Here, we focus on review-

ing related work on analysis of street view data, fine-grained

classification and the use of Deep Convolutional Networks.

Analyzing Street View Data. Since its launch in 2007,

Google Street View [28, 1] has been used by the computer

vision community as both a test bed for algorithms [19, 31]

and a source from which data is extracted and analyzed [12,

34, 21, 10, 6].

Early work on leveraging street level imagery focused on

3D reconstruction and city modeling. Cornelis et al. [6] fo-

cused on supplying textured 3D city models at ground level

for car navigation system visualizations. Micusik et al. [21]

used image segmentation cues and piecewise planar struc-

tures to build a robust 3D modeling system.

Later works have focused on extracting knowledge from

Street View and leveraging it for particular tasks. In [34] the

authors presented a system in which SIFT descriptors from

100, 000 Street View images were used as reference data to

be queried upon for image localization. Xiao et al. [31] pro-

posed a multi view semantic segmentation algorithm that

classified image pixels into high level categories such as

ground, building, person, etc. Lee et al. [19] described a

weakly supervised approach that mined midlevel visual el-

ements and their connections in geographic data sets. Their

approach discovered elements that vary smoothly over loca-

tion. They evaluated their method using Street View images

from the eastern coast of the United States. Their classifiers

predicted location with a resolution of about 70 miles.

Most similar to our work, is that of Goodfellow et al.

[12]. Both works utilize Street View as a map making

source, and data mine information about real world ob-

jects. They focused on understanding street numbers, while

we are concerned with local businesses. They described a

method for street number transcription in Street View data.

Their approach unified the localization, segmentation, and

recognition steps by using a Deep Convolutional Network

that operated directly on image pixels. The key idea behind

their approach was to train a probabilistic model P (S|X),
where S is a digit sequence, and X an image patch, by max-

imizing logP (S|X) on a large training set. Their method,

which was evaluated on tens of millions of annotated street

number images from Street View, achieved above 90% ac-

curacy and was comparable to human operators.

Fine Grained Classification. Recently there has been re-

newed interest in Fine Grained classification [32, 33, 14]

Yao et al. [33] modeled images by densely sampling rect-

angular image patches, and the interactions between pairs

of patches, such as the intersection of the feature vectors

of two image patches. In [32] the authors proposed a

codebook-free representation which samples a large num-

ber of random patches from training images. They de-

scribed an image by its response maps to matching the

template patches. Branson et al. [4] and Wah et al. [29]

proposed hybrid human-computer systems, which they de-

scribed as a visual version of the 20-question game. At each

stage of the game, the algorithm chooses a question based

on the content of the image, and previous user responses.

Convolutional Networks. Convolutional Networks [11,

18] are neural networks that contain sets of nodes with tied

parameters. Increases in size of available training data and

availability of computational power, combined with algo-

rithmic advances such as piecewise linear units [16, 13]

and dropout training [15] have resulted in major improve-

ments in many computer vision tasks. Krizhevsky et al. [17]

showed a large improvement over state of the art in object

recognition. This was later improved upon by Zeiler and

Fergus [35], and Szegedy et al. [27].

On immense datasets, such as those available today for

many tasks, overfitting is not a concern; increasing the size

of the network provides gains in testing accuracy. Optimal

use of computing resources becomes a limiting factor. To

this end Dean et al. developed DistBelief [7], a distributed,

scalable implementation of Deep Neural Networks. We

base our system on this infrastructure.



Figure 2. Examples of 3 businesses with their names blurred. Can

you predict what they sell? Starting from left they are: Sushi

Restaurant, Bench store, Pizza place. The intra-class variation

can be bigger than the differences between classes. This exam-

ple shows that the textual information in images can be important

for classifying the business category. However, relying on OCR

has many problems as discussed in Section 3.

3. Challenges in Storefront Classification

Large Within-Class Variance. Predicting the function of

businesses is a hard task. The number of possible categories

is large, and the similarity between different classes can be

smaller than within class variability. Figure 2 shows three

business storefronts. Their names have been blurred. Can

you tell the type of the business without reading its name?

Two of them are restaurants of some type, the third sells

furniture, in particular store benches (middle image). It is

clear that the text in the image can be extremely useful for

the classification task in these cases.

Extracted Text is Often Misleading. The accuracy of

text detection and transcription in real world images has in-

creased significantly over the last few years [30, 22], but

relying on the ability to transcribe text has drawbacks. We

would like a method that can scale up to be used on images

captured across many countries and languages. When us-

ing extracted text, we need to train a dedicated model per

language, this requires a lot of effort in curating training

data. Operators need to mark the location, language and

transcription of text in images. When using the system it

would fail if a business had a different language than what

we expect for its location or if we are missing a model for

that language (Figure 3a). Text can be absent from the im-

age, and if present can be irrelevant to the type of the busi-

ness. Relying on text can be misleading even when the lan-

guage model is perfect; the text can come from a neigh-

boring business, a billboard, or a passing bus (Figure 3b).

Lastly, panorama stitching errors may distort the text in the

image and confuse the transcription process (Figure 3c).

However, it is clear that the textual parts of the image do

contain information that can be helpful. Ideally we would

want a system that has all the advantages of using text infor-

mation, without the drawbacks mentioned. In Section 6.3

we show that our system implicitly learns to use textual

cues, but is more robust to these errors.

Business Category Distribution. The natural distribution

of businesses in the world exhibits a “long tail”. Some busi-

(a) Unexpected Language (b) Misleading Text (c) Stitching Errors

Figure 3. Text in the image can be informative but has a number of

characteristic points of failure. (a) Explicitly transcribing the text

requires separate models for different languages. This requires

maintaining models for each desired language/region. If text in

one language is encountered in a an area where that language was

not expected, the transcription would fail. (b) The text can be mis-

leading. In this image the available text is part of the Burger King

restaurant that is behind the gas station. (c) Panorama stitching

errors can corrupt text and confuse the transcription process.

(a) Area Too Small (b) Area Too Large (c) Multiple Businesses

Figure 4. Common mistakes made by operators: a red box shows

the area marked by an operator, a green box marks the area that

should have been selected. (A) Only the signage is selected. (B)

An area much larger than the business is selected. (C) Multiple

businesses are selected as one business.

nesses (e.g. McDonalds) are very frequent, but most of the

mass of the distribution is in the large number of businesses

that only have one location. The same phenomena is also

true of categories. Some labels have an order of magnitude

more samples than others. For example, for the FOOD AND

DRINK category which contains restaurants, bars, cafes,

etc, we have 300,000 images, while for LAUNDRY SER-

VICE our data contains only 13,000 images. We note that a

large part of the distribution’s mass is in smaller categories.

Labeled Data acquisition. Acquiring a large set of high

quality labeled data for training is a hard task in and of itself.

We provide operators with Street View panoramas captured

at urban areas in many cities across Europe, Australia, and

the Americas. The operators are asked to mark image areas

that contain business related information. We call these ar-

eas biz-patches. This process is not without errors. Figure 4

shows a number of common mistakes made by operators.

The operators might mark only the business signage (4a),

an area that is too large and contains unneeded regions (4b),

multiple businesses in the same biz- patch (4c).



4. Ontology Based Generation of Training

Data

Learning algorithms require training data. Deep Learn-

ing methods in particular are known for their need of large

quantities of training instances, without which they overfit.

In this section we describe a process for collecting a large

scale training set, coupled with ontology-based labels.

Building a training set requires matching extracted biz-

patches p and sets of relevant category labels. First, we

match a biz-patch with a particular business instance from

a database of previously known businesses B that was man-

ually verified by operators. We use the textual information

and geographical location of the image to match it to a busi-

ness. We detect text areas in the image, and transcribe them

using an OCR software. This process suffers from the draw-

backs of extracting text, but is useful for creating a set of

candidate matches. This provides us with a set S of text

strings. The biz-patch is geolocated and we combine the

location information with the textual data. For each known

business b ∈ B, we create the same description, by com-

bining its location and the set T of all the textual informa-

tion that is available for it; name, phone number, operating

hours, etc. We decide that p is a biz-patch of b if geograph-

ical distance between them is less than approximately one

city block, and enough extracted text from S matches T .

Using this technique we create a set of 3 million pairs

(p, b). However, due to the factors that motivated our work,

the quality and completeness of the information varies

greatly between businesses. For many businesses we do not

have category information. Moreover, the operators who

created the database were inconsistent in the way they se-

lected categories. For example, a McDonalds can be labeled

as a HAMBURGER RESTAURANT, a FAST FOOD RESTAU-

RANT, a TAKE AWAY RESTAURANT, etc. It is also plau-

sible to label it simply as RESTAURANT. Labeling similar

businesses with varying labels will confuse the learner.

We address this in two ways. First, by defining our task

as a multi label problem we teach the classifier that many

categories are plausible for a business. This, however, does

not fully resolve the issue – When a label is missing from an

example, the image is effectively used as a negative train-

ing instance for that label. It is important that training data

uses a consistent set of labels for similar businesses. Here

we use a key insight: the different labels used to describe

a business represent different levels of specificity. For ex-

ample, a hamburger restaurant is a restaurant. There is

a containment relationship between these categories. On-

tologies are a commonly used resource, holding hierarchi-

cal representations of such containment relations [3, 23].

We use an ontology that describes containment relation-

ships between entities with a geographical presence, such

as RESTAURANT, PHARMACY, and GAS STATION. Our

Food & Drink

FoodDrink

Restaurant
or Cafe

Food
Store

Restaurant

Italian
Restaurant

Hamburger
Restaurant

Pizza
Restaurant

Cafe

Bar

Grocery
Store

Sports
Bar

Figure 5. Using an ontology that describes relationships between

geographical entities we assign labels at multiple granularities.

Shown here is a snippet of the ontology. Starting from the ITAL-

IAN RESTAURANT concept (diamond), we assign all the predeces-

sors’ categories as labels as well (shown in blue).

ontology, which is based on Google Map Maker’s ontology,

contains over 2,000 categories. For a pair (p, b) for which

we know the category label c, we locate c in the ontology.

We follow the containment relations described by the on-

tology, and add higher-level categories to the label set of p.

The most general categories we consider are: ENTERTAIN-

MENT & RECREATION, HEALTH & BEAUTY, LODGING,

NIGHTLIFE, PROFESSIONAL SERVICES, FOOD & DRINK,

SHOPPING. Figure 5 shows an illustration of this process

on a snippet from the ontology. Starting from an ITALIAN

RESTAURANT, we follow containment relations up prede-

cessors in the ontology, until FOOD & DRINK is reached.

This creates a large set of pairs (p, s) where p is a biz-

patch and s is a matching set of labels with varying levels

of granularity. To ensure there is sufficient training data per

label we omit labels whose frequency is very low and are

left with 1.3 million biz-patches and 208 unique labels.

5. Model Architecture and Training

We base our model architecture on the winning sub-

mission for the ILSVRC 2014 classification and detection

challenges by Szegedy et al. named GoogLeNet [27]. The

model expands on the Network-in-Network idea of Lin et

al. [20] while incorporating ideas from the theoretical work

of Arora et al. [2]. Szegedy et al. forgo the use of fully

connected layers at the top of the network and, by forc-

ing the network to go through dimensionality reduction in

middle layers, they are able to design a model that is much

deeper than previous methods, while dramatically reducing

the number of learned parameters. We employ the DistBe-

lief [7] implementation of deep neural networks to train the

model in a distributed fashion.

We create a train/test split for our data such that 1.2 mil-

lion images are used for training the network and the re-

maining 100,000 images are used for testing. As a busi-
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Figure 6. (a) Accuracy of classification for top K predictions. Us-

ing the top-1 prediction our system is comparable to human oper-

ators (see Table 1). When using the top 5 predictions the accuracy

increases to 83%. (b) Percentage of images for which the first

correct prediction was at rank K. To save space the values for

K ≥ 15 are summed and displayed at the 15th bin.

ness can be imaged multiple times from different angles,

the splitting is location aware. We utilize the fact that Street

View panoramas are geotagged. We cover the globe with

two types of tiles. Big tiles with an area of 18 kilometers,

and smaller ones with area of 2 kilometers. The tiling alter-

nates between the two types of tiles, with a boundary area of

100 meters between adjacent tiles. Panoramas that fall in-

side a big tile are assigned to the training set, and those that

are located in the smaller tiles are assigned to the test set.

This ensures that businesses in the test set were never ob-

served in the training set while making sure that training and

test sets were sampled from the same regions. This splitting

procedure is fast and stable over time. When new data is

available and a new split is made, train/test contamination is

not an issue as the geographical locations are fixed. This al-

lows for incremental improvements of the system over time.

We first pre-train the network using images and ground

truth labels from the ImageNet large scale visual recog-

nition challenge with a Soft Max top layer, and once the

model has converged we replace the top layer, and continue

the training process with our business image data. This pre-

training procedure has been shown to be a powerful initial-

ization for image classification tasks [25, 5]. Each image is

resized to 256 × 256 pixels. During training random crops

of size 220× 220 are given to the model as training images.

We normalize the intensity of the images, add random pho-

tometric changes and create mirrored versions of the images

to increase the amount of training data and guide the model

to generalize. During testing a central box of size 220×220
pixels is used as input to the model. We set the network to

have a dropout rate of 70% (each neuron has a 70% chance

of not being used) during training, and use a Logistic Re-

gression top layer. Each image is associated with all the la-

bels found by the method described in Section 4. This setup

is designed to push the network to share features between

classes that are on the same path up the ontology.

6. Evaluation

In this section we describe our experimental results. We

begin by providing a quantitative analysis of the system’s

performance, then describe two large scale human perfor-

mance studies that show our system is competitive with the

accuracy of human operators and conclude with quantita-

tive results that provide understanding as to what features

the system managed to learn.

When building a business listing it is important to have

very high accuracy. If a listing contains wrong informa-

tion it will frustrate its users. The requirements on coverage

however can be less strict. If the category for some business

images can not be identified, the decision can be postponed

to a later date; each street address may have been imaged

many times, and it is possible that the category could be de-

termined from a different image of the business. Similarly

to the work of Goodfellow et al. [12] on street number tran-

scription, we propose to evaluate this task based on recall

at certain levels of accuracy rather than evaluating the ac-

curacy over all predictions. For automatically building list-

ings we are mainly concerned with recall at 90% precision

or higher. This allows us to build the listing incrementally,

as more data becomes available, while keeping the overall

accuracy of the listing high.

6.1. Fine Grained Classification Results

As described in section 4 each image is associated with

one or more labels. We first evaluate the classifier’s abil-

ity to retrieve at least one of those labels. For an image i,

we define the ground truth label set gi. The predictions pi
are sorted by the classifier’s confidence, and we define the

top-k prediction set pk
i

as the first k elements in the sorted

prediction list. A prediction for image i is considered cor-

rect if gi∩pk
i
6= ∅. Figure 6a shows the prediction accuracy

as a function of labels predicted. The accuracy at top-k is

shown for k ∈ {1, 3, 5, 7, 10}. Top-1 performance is com-

parable to human annotators (see Section 6.2), and when the

top 5 labels are used the accuracy increases to 83%. Fig-

ure 6b shows the distribution of first-correct-prediction, i.e.

how far down the sorted list of predictions does one need to

search before finding the first label that appears in gi. We

see that the first predicted label is by far the most likely and

that the probability of having a predicted set pk
i

that does not
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Figure 7. Precision recall curves for some of the top performing

categories. The precision curve of the full system is shown as a

dashed line. Recall at 90% precision is shown in the legend.

contain any of the true labels decreases with k. In order to

save space we sum up all the probabilities for k ∈ [15, 208]
in one bin.

As mentioned above, one important metric for evalua-

tion is recall at specific operating points. Figure 7 shows

precision recall curves for some of the top performing cate-

gories and summary curve of the full system (dashed). The

precision and recall of the full system is calculated by using

the top-1 prediction. For many categories we are able to re-

cover the majority of businesses while precision is held at

90%. For a classification system to be useful in a practical

setting the classifier’s returned confidence must be well cor-

related with the quality of its prediction. Figure 8 shows a

histogram of the number of correctly predicted labels in the

top 5 predictions on a set of images whose labels were man-

ually verified. The mean prediction confidence is indicated

by color intensity (darker means higher confidence). Note

the strong correlation between confidence and accuracy; for

confidence above 80% normally at least 4 of the top labels

are correct.

The GoogLeNet network [27] incorporates a number of

new design elements that make it particularly appealing:

by not using fully connected upper layers, and forcing the

network to go through dimensionality reduction stages, the

network has far fewer parameters while being much deeper

than previous methods. We evaluate the use of this architec-

ture by comparing it to the AlexNet network proposed by

Krizhevsky et al. [17] on a 13 category, single label classi-

fication task. We select a set of useful categories that a user

might search for, and train both networks to predict one la-

bel per image. Figure 9 shows recall at 0.9 precision on all

categories for which at least one method has recall ≥ 0.1.

GoogLeNet outperforms the baseline for all categories, and

for some, e.g. PHARMACY, recall more than doubles.

Figure 10 shows 30 sample images from the test set

with their top 5 predictions. The model is able to classify

these images with their high level categories and with fine
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Figure 8. Histogram of correct labels in the top 5 predictions for a

set of 300 manually verified images. Color indicates mean predic-

tion confidence. Note that the confidence in prediction is strongly

correlated with the accuracy.
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Figure 9. Recall at 90% precision for the GoogLeNet model used

by our method and the AlexNet architecture [17] on a 13 category

classification task. We show classes for which at least one of the

models has recall ≥ 0.1. GoogLeNet performs better on all cate-

gories. On some, such as PHARMACY recall more than doubles.

grained, specialized classes. For example, the top-right im-

age was classified by the model as: BEAUTY, BEAUTY SA-

LON, COSMETICS, HEALTH SALON, and NAIL SALON.

6.2. Human Performance Studies

Our system needs to perform at human level accuracy.

Otherwise it will require a human verification post pro-

cess. To estimate human accuracy on this task we have

conducted two large scale human performance studies that

check the agreement of operator-provided labels for the

same business. In our experiments, subjects were shown

images of businesses and selected one of 13 options (12

categories, and an OTHER category that stands for “none

of the above”.) Categories were chosen based on their

financial impact for a business listing creator. The cat-

egories are: FOOD STORE, RESTAURANT/CAFFE, FI-

NANCE, PHARMACY, REAL ESTATE, GAS STATION, AU-

TOMOTIVE (other than gas stations), FASHION, LODGING,

LAUNDRY, PLACE OF WORSHIP, BEAUTY. Note that

the studies used full resolution images as opposed to the

256 × 256 images given to the algorithm. The first study

had 73, 272 images, each was shown to two operators. The

operators agreed on 69% of image labels. In our second



Operator Number of images

Agreement Study 1 Study 2

100% 50,425 9,938

75% - 9

66% - 8,535

50% - 133

0% 22,847 1,300

Average Agreement 69% 78%

Table 1. Human Performance studies. In two large scale human

studies we have found that manual labelers agree on a label for

69% and 78% of the images.

study we had 20, 000 images, but each image was shown to

three to four subjects. We found that the average agreement

of the human operators was 78%. Table 1 shows a detailed

summary of the human study results.

6.3. Analysis: Learning to Read With Weak Labels

For some of the images in Figure 10, such as the im-

age of the dental center (top row, second image from right)

it is surprising that the model was capable of classifying it

correctly. It is hard to think of a “canonical” dental cen-

ter look, but even if we could, it doesn’t seem likely that

this image would be it. In fact, without reading the text, it

seems impossible to correctly classify it. This suggests that

the system has learned to use text when needed. Figure 11

shows images from Figure 10 for which we have manually

blurred the discriminative text. Note especially the image of

the dental center, and of the auto dealer. After blurring the

test “Dental” the system is confused about the dental center;

it believes it is a beauty salon of some sorts. However, for

the auto dealer, it is still confident that this is a place that

sells things, and is related to transportation and automotive.

To take this experiment to its logical extreme, we also show

a synthetic image, which contains only the word Pharmacy.

The classifier predicts the relevant labels for it.

To us this is a compelling demonstration of the power of

Deep Convolutional Networks to learn the correct represen-

tation for a task. Similar to a human in a country in which

she does not know the language, it has done the best it can –

learn that some words are correlated with specific types of

businesses. Note that it was never provided with annotated

text or language models. It was only provided with what we

would consider as weak textual labels, images that contain

text and labeled with category labels. Furthermore, when

text is not available the system is able to make an accurate

prediction if there is distinctive visual information.

7. Discussion

Business category classification, is an important part of

location aware search. In this paper we have proposed a

method for fine grained, multi label, classification of busi-

Dental Auto Nail

health & beauty .935 automotive .996 health & beauty .894

beauty .925 gas & automotive .996 beauty .891

cosmetics .742 shopping .995 cosmetics .800

beauty salon .713 store .995 beauty salon .799

hair care .527 transportation .985 hair .407

Liquor store McDonald’s

food & drink .833 food & drink .998 health & beauty .987

food .745 food .996 shopping .985

restaurant or cafe .717 restaurant or cafe .992 store .982

restaurant .667 restaurant .990 health .981

beverages .305 fast food restaurant .862 pharmacy .969

Figure 11. A number of images from Figure 10 with the discrimi-

native text in the image blurred (noted above the image). For some

images, without the discriminative word the algorithm is confused

(left column). For example, for the dental center, without the word

dental it predicts a beauty salon. For other images, there is enough

non textual information for the algorithm to be confident of the

business category even when the text is blurred, for example the

car dealership. Note the image of the nail spa: when the word nail

is blurred the classifier falls back to more generic classes that fit

the visual information - beauty salon, cosmetics, etc. As a final in-

dicator to the ability of the network to learn textual cues we show

a synthetic image where the only visual information is the word

pharmacy. The network predicts relevant labels.

ness storefronts from street level imagery. We show that

our system learned to extract and associate text patterns in

multiple languages to specific business categories without

access to explicit text transcriptions. Moreover, our system

is robust to the absence of text, and when distinctive visual

information is available, it is able to make correct predic-

tions. We show our system achieves human level accuracy.

Using an ontology of entities with geographical at-

tributes, we propagate label information during training,

and produce a large set of 1.3 million images for a fine

grained, multi label task. The use of non visual information,

such as an ontology, to “ground” image data to real world

entities is an exciting research direction, and there is much

that can be done. For example, propagating information us-

ing the ontology at test time can increase both accuracy and

recall. Node similarity in the ontology can be used to guide

feature sharing between classes, and improve performance

for seldom viewed classes.



finance .997 shopping .813 prof. services .998 automotive .999 health & beauty .992 beauty .997

bank or atm .994 store .805 real estate agency .995 gas & automotive .999 health .985 beauty salon .997

atm .976 construction .662 real estate .992 shopping .999 doctor .961 cosmetics .995

user op machine .975 home goods (s) .530 rental .453 store .999 emergency services .960 health salon .994

bank .948 building material (s) .300 finance .085 vehicle dealer .998 dentist .945 nail salon .953

telecommunication .826 shopping .923 shopping .920 laundromat .934 food & drink .947 automotive .999

cell phone (s) .796 store .908 store .916 cleaners .795 food .867 gas & automotive .999

shopping .627 food & drink .860 sporting goods (s) .625 prof. services .732 restaurant or cafe .722 repairs .999

store .627 food .849 sports .600 laundry .679 restaurant .621 prof. services .999

health & beauty .116 butcher shop .824 textiles .374 cleaning service .669 beverages .441 car repair .998

shoe store 1.00 car repair 1.00 cafe 1.00 food & drink 1.00 liquor store 1.00 food & drink .999

shoes 1.00 gas & automotive 1.00 beverages 1.00 food 1.00 beverages .999 food .998

store 1.00 automotive 1.00 restaurant or cafe 1.00 restaurant or cafe .999 shopping .998 restaurant or cafe .884

shopping 1.00 prof. services 1.00 food & drink 1.00 restaurant .999 store .998 restaurant .995

clothing .001 repairs 1.00 food 1.00 hamburger restaurant .936 food & drink .700 fast food restaurant .884

health .999 prof. services .999 prof. services .995 food & drink* .996 food & drink .825 shopping .932

health & beauty .999 real estate .996 company .982 food* .959 food .762 store .920

pharmacy .997 real estate agency .973 cleaning service .975 restaurant* .931 restaurant or cafe .741 florist .896

emergency services .996 rental .132 laundry .970 restaurant or cafe* .909 restaurant .672 fashion .077

shopping .989 consultant .029 dry cleaner .966 asian* .647 beverages .361 gift shop .071

prof. services .594 gas station .996 shopping .489 shopping .719 beauty .999 place of worship .990

legal services .346 transportation .996 store .467 store .713 health & beauty .999 church .988

lawyer .219 gas & automotive .995 prof. services .289 home goods (s) .344 cosmetics .998 education/culture* .031

insurance .129 government .001 services .246 furniture store .299 health salon .998 assoc./organization* .029

insurance agency .103 gastronomy .001 gas & automotive .219 mattress store .240 nail salon .949 prof. services .027

Figure 10. Top predictions for sample images from the test set. Predictions marked in red disagree with ground truth labels; in some cases

the classifier is correct and the ground truth label is wrong (marked with *). For example, see asian restaurant (fourth image from left, row

before last), for which the top 5 predictions are all correct, but do not agree with the ground truth. The mark (s) is an abbreviation for store.
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