
Ontologies and Object models in Object Oriented
Software Engineering

Abstract─This paper is to clarify ontologies in knowledge base
compare with object models in object oriented software
engineering. Ontology itself has the concept which is the
foundation of knowledge base; on the other hand The object
model is the center of object oriented software engineering.
Because ontologies are closely related to modern object-oriented
software design, it is natural to adapt existing object-oriented
software development methodologies for the task of ontology
development. Selected approaches originate from research in
artificial intelligence; knowledge representation and object
modeling are presented in this paper. Some issues mentioned in
this paper are related with their connection; some are addressed
directly into the similarities or differences point of view of both.
This paper also presents the available tools, methods, procedures
which show the corporation with object modeling and ontologies.

 Index Terms─ Software Engineering, Object Model, Object
Oriented Development, knowledge base, Ontologies.

I. INTRODUCTION
The object oriented paradigm is the framework in software

engineering, influencing all effort in information science. It is
one of the main objectives of the software engineering
discipline[18]. Object models are different from other
modeling techniques because they have merged the concept of
variables and abstract data types into an abstract variable type:
an object. Objects have identity, state, and behavior and
object models are built out of systems of these objects. To
make object modeling easier, there are concepts of type,
inheritance, association, and possibly class [1]. Object
modeling’s focus on identity and behavior is completely
different from the relational model’s focus on information
[14]. Ontology is well known as description of declaration
and abstract way the domain information of the application, it
involved with vocabulary and how to constrain the use of the
data [6] and they are used widely in the semantic web
approach, which requires a significant degree of structure. In
the area of ontology the concept have been supplemented
above which allow expressing the similarity of concept in
ontology with object (atom) in object oriented.

Ontologies themselves are rising as an important tool for
coping with very great, compound and various sources of
information. It has also been known that ontologies are
advantageous for software engineering. Ontology
representations are little known outside AI research
laboratories, In contrast, commercial interest has results in
ideas from object oriented programming community maturing

into industry standards and powerful tools for object oriented
analysis design and implementation. And this maturing
standards and tools can be used for ontology modeling [1].
Ontology is formally specified models of bodies of
knowledge defining concepts used to describe a domain and
the relationship that hold between them.

The central objective of this paper is to acknowledge the
paper is structured as follows. Section 2 introduces the
definition of ontology and object model. Section 3 will be
present the modeling with their structure. Section 4 will show
the languages used for object model and stand for ontology.
Section 5 will be emphasize on possibility development
processes and tools of them and the conclusion section will be
point of the similarities and differences of them.

II. DEFINITION
Ontology is actually well known in philosophy research

area since 1960s, in the artificial intelligence (AI) arena, has
been focused on knowledge modeling. The term ontology is
used to refer to “an explicit specification of a
conceptualization [of a domain] is mentioned by Tom Gruber
which we are already familiar with for quite sometimes. In
other words, ontology refers to a formalization of the
knowledge in the domain. Ontology is the concept which is
separately identified by domain users, and used in a self-
contained way to communicate information. Combination of
concept is the knowledge base or knowledge network. Some
of the reasons why someone want to develop an ontology are
to share common understanding of the structure of
information among people or software agents, to enable reuse
of domain knowledge, to make domain assumptions explicit,
to separate domain knowledge from the operational
knowledge, to analyze domain knowledge [19]

While ontologies is formally specified models of bodies of
knowledge defining concepts used to describe a domain and
the relationship that hold between them [6]. Object model is
the mechanism of object-oriented paradigm, which is used for
software engineering. In particular, the general software
engineering principle of parting of concerns combined with
object-oriented modeling characteristics has turned out to be
very useful. The basic idea of object-orientation is the
consequent application of the abstract data type concept,
combining data and functionality. The abstract data type
concept is applied in the context of the architecture of any
object-oriented model. The Objects model in object oriented
analysis and design provide a more realistic representation,

Dr. Waralak V. Siricharoen
phone: 6601-696-6425; fax: 6602-882-3783

e-mail: lak_waralak@ yahoo.com, waralak_von@utcc.ac.th
University of the Thai Chamber of Commerce (UTCC), Bangkok, Thailand

IAENG International Journal of Computer Science, 33:1, IJCS_33_1_4
__

(Advance online publication: 13 February 2007)

which an end user can more readily understand.. An object
oriented model uses functions to model relationships of
objects and the attributes [19]. An ontology structure holds
definitions of concepts, binary relationship between concepts
and attributes. Relationships may be symmetric, transitive and
have an inverse. A minimum and maximum cardinality
constraint for relations and attributes may be specifies.
Concepts and relationships can be arranged in two distinct
generalization hierarchies [5]. Concepts, relationship types
and attribute abstract from concrete objects or value and thus
describe the schema (the ontology) on the other hand concrete
objects populate the concepts, concrete values instantiate the
attributes of these objects and concrete relationship instantiate
relationships. Three types of relationship that may be used
between classes: generalization, association, and aggregation.

III. MODELING

A. Object Modeling:
The object-oriented model is based on a collection of

objects. An object contains values stored in instance variables
within the object. Thus objects contain objects to an
arbitrarily deep level of nesting. Attributes/properties: objects
will have at least one attribute. Possible slot types are
primitive types (integer, boolean, string etc.), references to
other objects (modeling relationships) and sets of values of
these types. An object also contains bodies of code that
operate on the object. These bodies of code are called
methods. Method/Operations: They are attached to classes or
slots and contain meta information, such as comments,
constraints and default values. Relationship/relations: they
represent the relation between objects/classes from object
model (KB). Major classes of relations exist: relations
combining labels(the name we tend to give to things) and
concepts(the things themselves) and concepts and relations
combining concepts (the part-whole relation)[13].

Objects that contain the same types of values and the same
methods are grouped into classes. A class may be viewed as a
type definition for objects. Analogy: the programming
language concept of an abstract data type. The only way in
which one object can access the data of another object is by
invoking the method of that other object. This is called
sending a message to the object. Internal parts of the object,
the instance variables and method code, are not visible
externally or some researchers called it as black box.

The following Fig.1 shows a simple Banking System object
Model, containing classes for Head-Office, Branch, Accounts
held at that Branch, and the Customers who the Accounts
belong to. Object/Class represent the tangible things. For
example, an object representing a bank account. The object
contains instance variables number and balance. The object
contains a method pay-interest which adds interest to the
balance. Under most data models, changing the interest rate
entails changing code in application programs. In the object-
oriented model, this only entails a change within the pay-
interest method [10]. In commonly-known object-oriented
data models attributes and associations are not defined with
the class specification itself [14]. Instead, class properties are
first-class primitive themselves [12].

One approach for implementing objects is to have a class,
which defines the implementation for multiple objects. A
class defines what types the objects will implement, how to
perform the behavior required for the interface and how to
remember state information. Each object will then only need
to remember its individual state. Although using classes is by
far the most common object approach, it is not the only
approach (using prototypes is another approach) and is really
peripheral to the core concepts of object-oriented modeling
[19].

Fig. 1 Example of banking system object oriented model

Unified Modeling Languages (UML) is well known and

widely used object modeling that consist of concepts
/entitypes/classes in a specification hierarchy, the description
of concepts by attributes which have range and relationship
between concepts. UML defines several types of diagram that
can be used to model the static and dynamic behaviors of a
system. A UML object diagram does not define a standard set
of primitive types for attributes and operation declarations;
however, Object Constraint Languages (OCL) does and it is
proposed that these be used for ontology modeling with UML
Model an ontology as a static model consisting of a class
diagram to depict the classes in the domain and their
relationships, an object diagram to show particular named
instances of those classes.

Conceptual (or Ontology) modeling deals with the question
on how to describe in a declarative and abstract way the
domain information of an application, its relevant vocabulary,
and how to constrain the use of the data. Modeling languages
like UML and Object Data Management Group (ODMG)
have been developed for object oriented models in software
engineering. Common to all of these newer models is the
arrangement of concepts/entitytypes/classes in a specialization
hierarchy, the description of concepts by attributes which
have ranges and relationships between concepts. Concepts,
relationshiptypes and attributes abstract from concrete objects
or values and thus describe the schema (the ontology). On the
other hand concrete objects populate the concepts, concrete
values instantiate the attributes of these objects and concrete
relations instantiate relationships [10].

B. Ontologies Modeling:
 Ontology is a formal explicit description of concepts in a
domain of discourse (classes/concepts). Slots/properties/roles
Properties of each concept describing various features and

attributes of the concept. And facets/role restrictions means
restrictions on slots. An ontology together with a set of
individual instances of classes constitutes a knowledge base.
In reality, there is a fine line where the ontology ends and the
knowledge base begins.

Classes are the focus of most ontologies. Classes describe
concepts in the domain [19]. For example, a class of banking
accounts represents all accounts. Specific accounts are
instances of this class. The your own account (e.g. Waralak
account) is an instance of the class of accounts. A class can
have subclasses that represent concepts that are more specific
than the superclass. For example, we can divide the class of
all accounts into saving accounts, and checking accounts.

Slots describe properties of classes and instances: Saving
Account has a specific requirement; it is opened by the bank
branch. We have slots describing the account in this example:
the slot branch with the value New York Fifth Avenue branch.
At the class level, we can say that instances of the class
Account will have slots describing their account number,
name, address, the branch of the account and so on.

All instances of the class account, and its subclass Saving,
have a slot branch the value of which is an instance of the
class Branch. All instances of the class Branch have a slot
open that refers to all the accounts (instances of the class
Account and its subclasses) that the branch opens an account
for a particular customer.

IV. LANGUAGES AND STANDARDS
In particular, object-oriented languages like C++ or Java

[14] have become the effectively standard for programming.
The same holds for the analysis and design phases within a
software development process, where object-oriented
modeling approaches are becoming more and more the
standard ones. Unified Modelling Language (UML) and
Object Data Management Group (ODMG) have been
developed for object oriented models in software engineering.
Modeling language like UML and ODMG. The ODMG
Object Model is intended to allow portability of applications
among object database products. It provides a common model
for these products by defining extensions to the OMG object
model that support object database requirements. In particular,
the ODMG model extends the OMG core to provide for
persistent objects, object properties, more specific object
types, queries and transactions. The basic concepts are
objects, types, operations, properties, identity and subtyping.
Objects have state (defined by the values of their properties),
behavior (defined by operations) and identity. All objects of
the same type have common behavior and properties. Types
are objects so may have their own properties. A type has an
interface and one or more implementations. All things are
instances of some type and subtyping organizes these types in
a lattice. A type definition can declare that an extent (set of all
instances) be maintained for the type. Objects are instances of
a type, and as such have state, behavior and identity [26].

There are lot of papers address about the object oriented
standard to be used for ontology modeling. The large user
community and commercial support for object oriented
standards warrants the investigation of standard object
modeling technique for ontology development.

For ontology standards, the most notably W3C recommends
a number of semantic markup language standards as part of
the semantic Web stack. Specifically, eXtensible Markup
Language (XML) provides a surface syntax for structured
documents but imposes no semantic constraints on the
meaning of these documents. XML Schema is a language for
restricting the structure of XML documents. Resource
Description Framework (RDF) is a language for creating a
data model for objects (or “resources”) and relations among
them, providing a simple semantics for the data model. The
data models are represented in an XML syntax. RDF Schema
is a vocabulary for describing properties and classes of RDF
resources, with semantics for generalization hierarchies of
such properties and classes [25]. Finally, Web Ontology
Language (OWL) adds more vocabulary for describing
properties and classes. Among others, relations among
classes, cardinality, equality, richer typing of properties and
enumerated classes. Also now, the OWL is designed for use
by applications that need to process the content of information
instead of just presenting information to humans. OWL
facilitates greater machine interpretability of Web content
than that supported by XML, RDF, and RDF Schema [24].
OWL succeeds the preceding effort of DAML+OIL in this
area, and thus it goes beyond these languages in its ability to
represent machine-readable content [28]. As following is the
example of OWL used for describing banking system account
register ontologies according to class and property hierarchy
from DAML ontology library [22]:

Class Hierarchy
- Category (description)
- Transaction (amount, category*, cleared, date,

description, memo?, number?)
Property Hierarchy

- amount, category, cleared, date, description, memo,
number

<owl:Ontology rdf:about="">
 <owl:versionInfo>$Id: check-ont.daml,v 1.3 2001/07/21 22:34:26 mdean

Exp $</owl:versionInfo>
 <rdfs:comment>checking account register</rdfs:comment>
</owl:Ontology>

<rdfs:Class rdf:ID="Transaction">
 <rdfs:comment>
 a deposit, check, or other item
 </rdfs:comment>
 <rdfs:subClassOf>
 <owl:Restriction>
 <owl:onProperty rdf:resource="#date"/>
 <owl:allValuesFrom

rdf:resource="http://www.w3.org/2001/XMLSchema#date"/>
 <owl:cardinality>1</owl:cardinality>
 </owl:Restriction>
 </rdfs:subClassOf>
 <rdfs:subClassOf>
…
<owl:DatatypeProperty rdf:ID="date"/>
<owl:DatatypeProperty rdf:ID="description"/>
<owl:DatatypeProperty rdf:ID="memo"/>
<owl:DatatypeProperty rdf:ID="amount">
 <rdfs:comment>in US dollars</rdfs:comment>
</owl:DatatypeProperty>
<owl:DatatypeProperty rdf:ID="number"/>
<owl:DatatypeProperty rdf:ID="category"/>
<owl:DatatypeProperty rdf:ID="cleared"/>

Another ontology language, with F-Logics provide a clearly
defined syntax and semantics to ontologies and the
representation of these knowledge models is based on a well-
understood logical framework. F-Logic allows to describe
ontologies, i.e. classes, the hierarchy of classes, their
attributes and relationships between classes in an object
oriented style way. Nowadays, the object-oriented paradigm
has become the standard approach throughout the whole
software development process.

 Ontologies allow the specification of concepts in a domain
as well as the terms used to markup content in a learning
object. Shared ontologies allow for different systems to come
to a common understanding of the semantics of a learning
object. The present the required ontology model including the
formal expression of ontology, object model, mapping to
XML representation and the corresponding system
architecture for binding web services. This can see that
ontology model work well together almost the same with
object model because it is the fundamental of system
architecture [9].

V. DEVELOPMENT TOOLS
For several years ago, object-oriented development was an

interesting concept. Every development tool on the shelf
promotes itself as object oriented. Object orientation is a
software development success story, and it is here to stay.
Despite the tremendous success of objects, developers and
development organizations are still low on the object oriented
learning curve. Object oriented systems development is an
extension of structured programming: Object oriented
development emphasizes the benefits of modular and reusable
computer code and modeling real-world objects, just as
structured programming emphasizes the benefits of properly
nested structures. In many cases, the tools are more advanced
than the expertise of the developers who use them. Although
most object oriented development tools promote object reuse,
there is no standard reusable object among tools (for example,
C++ objects under Smalltalk). To solve this problem, the
Object Management Group (OMG) came up with the
Common Object Request Broker Architecture (CORBA). As
the object market expands and component development takes
off, more object vendors will be interested in standard objects.
IBM, for example, bases its object development on its System
Object Model (SOM). Other examples of distributed objects
include NeXT Computer's Portable Distributed Objects, and
Sun's Distributed Objects Everywhere. Microsoft is pushing
Object Linking and Embedding (OLE) and its Component
Object Model as its standard object development strategy.
Although not object oriented (they do not support
inheritance), OLE objects work with a number of application
development tools. It's not a question of whether object
oriented development will remain popular, but how to use
objects in your application development efforts. There are
more choices of object oriented tools out there than ever
before. These tools all implement objects in their own special
way. Moreover, the industry is still very much in the learning
phase, and it's going to take a few more years before it finally
sees the optimal payback from object oriented development
[17]. Object orientation is much more than a way to program.
It can apply across every system development activity,

including requirements analysis, design, testing, and business
process reengineering. Developing an Object Oriented
application requires even more thought about the design than
developing in the traditional structured programming
environment, because the focus on future reuse requires a
longer-term view during analysis and design. However, a
well-stocked library of reusable components reduces the need
to perform original analysis and design. Nevertheless, many
experienced object oriented developers know that their
application is only as good as its design. Object oriented
analysis and design methodologies and the use of CASE
technology are extensive in the object oriented world. Object
oriented languages such as C++ is a complex language; C++
is a low-level language that operates very close to the metal.
Developers must learn how to do such things as manage
memory directly, access physical disk storage, and use cryptic
APIs. The potential for problems is enormous, and it takes
about twice as long to develop a client/server application
using C++ than it does using other 4GL-driven client/server
development environments. Increased productivity with
object technology methods is not just a theory. The tools that
surround software development are built around both in
reduced development efforts as well as fewer ongoing
maintenance costs concept, as well; compilers, linkers, and
even language features rely on source code files as input.
Version control systems mirror the file system's structure,
maintaining a copy of every version of each file monitored.
For decades this has been acceptable and has even become
standard. Languages such as C are built upon file references
in the source code via include directives. The problems are in
the mid-1990s, the idea of Object- oriented development
finally began to gain momentum. Languages like C++, once
formerly constrained to small research projects, now became
the mainstream. With this fundamental shift, the file-based
system of development was dragged along as a relic of old.
C++, like its predecessor, also uses file includes to resolve
dependencies. Despite new techniques and languages for
modeling and designing software, such as UML, in the end
source files still needed to be created and linked to each other.
Developers reuse existing objects through the inheritance
mechanism that most object oriented tools provide.
Inheritance is a critical concept of object orientation; because
it lets developers inherit the capabilities (methods and data) of
existing objects. This lets developers maximize the use of
application objects.

For knowledge engineering methodology for developing an
ontology, there are some fundamental rules in ontology
design. These rules may seem rather dogmatic. However,
these rules can often help in making design decisions [28]:
- There is no one correct way to model a domain – there

are always viable alternatives. The best solution almost
always depends on the application that you have in mind
and the extensions that you anticipate.

- Ontology development is necessarily an iterative
process.

- Concepts in the ontology should be close to objects
(physical or logical) and relationships in your domain of
interest. These are most likely to be nouns (objects) or
verbs (relationships) in sentences that describe your
domain.

Deciding what we are going to use the ontology for, and
how detailed or general the ontology is going to be, will guide
many of the modeling decisions down the road. Among
several viable alternatives, we will need to determine which
one would work better for the projected task and which one
would be more intuitive, more extensible, and more
maintainable. We must also remember that ontology is a
model of reality and the concepts in the ontology must reflect
reality. After we define an initial version of the ontology, we
can evaluate and debug it by using it in applications or
problem-solving methods or by discussing it with experts in
the field, or both. As a result, we will almost certainly need to
revise the initial ontology. In practical terms, developing an
ontology includes[28]:

- Defining classes in the ontology,
- Arranging the classes in a taxonomic (subclass–

superclass) hierarchy,
- Defining slots and describing allowed values for these

slots,
- Filling in the values for slots for instances.
- Creating a knowledge base by defining individual

instances of these classes, filling in specific property
value information and additional property restrictions.

Then we can create a knowledge base by defining
individual instances of these classes filling in specific slot
value information and additional slot restrictions. The idea of
ontology has been welcomed by visionaries and early
adopters. For example, ontology has been used in medical
informatics studies, and the community produced popular
tools such as Protégé ontology editor. However, it has failed
to appeal to the majority users of the mainstream, at least until
recently. It is said that the idea was too arcane for ordinary
folks to understand. There is no standard way to do things
with ontology, but so many different proprietary ways. There
were not enough tools for programming ontologies and
managing various aspects of the life cycle of ontologies.
Recently, however, the semantic Web initiative lead by W3C
has changed the ontology landscape completely. Through the
initiative, researchers and developers join forces to provide
standard semantics markup languages based on XML,
ontology management systems, and other useful tools. An
ontology-development methodology have been described for
declarative frame-based systems. However, ontology
development is different from designing classes and relations
in object-oriented programming. Object oriented
programming centers primarily around methods on classes—a
programmer makes design decisions based on the operational
properties of a class, whereas an ontology designer makes
these decisions based on the structural properties of a class.
As a result, a class structure and relations among classes in an
ontology are different from the structure for a similar domain
in an object-oriented program. Concepts in the ontology
should be close to objects (physical or logical) and
relationships in your domain of interest. These are most likely
to be nouns (objects) or verbs (relationships) in sentences that
describe your domain. The modern development environment
has not yet fully caught up to the object-oriented shift. All of
the tools still rely on a file to be the container of source code.
While some contain modeling capabilities as well, the models

exist as different entities than the file and its code. The tools
need to evolve to support modern software development; they
need to merge the model view and the code view into a single
entity. While this may seem like a radical shift, and it is, the
new tools will be natural to developers. Developers already
expect their classes to be organized by namespace; they do
not really care about which file or directory contains what
code [16].

VI. CONCLUSIONS
Object technology support the ability to build applications

by selecting and assembling objects from libraries. If a
developer must create a missing object to meet the
application's requirements, that new object may be placed in a
library for reuse in future applications. For many simple
systems, the developer may use the available objects to form
the entire application instead of writing code. More complex
development efforts require the developer to modify the
objects to meet specific requirements. Ontologies are
promised to bright future. In this paper we propose that as
ontologies are closely related to modern object-oriented
software engineering, it is natural to adapt existing object-
oriented software development methodologies for the task of
ontology development. This is some part of similarity
between descriptive ontologies and database schemas,
conceptual data models in object oriented are good applicant
for ontology modeling, however; the difference between
constructs in object models and in current ontology proposals
which are object structure, object identity, generalization
hierarchy, defined constructs, views, and derivations. We can
view ontology design as an extension of logical database
design, which mean that the training object data modelers
could be a promising approach. An ontology use the
equivalent of database schema But ontology represent a much
more richer information model than normal database schema,
and also a richer information model compared to UML
class/object model.

Ontology is different from object-oriented modeling
(represented in UML) in several ways. First, the most
profound difference is that the ontology technology is
theoretically found on logic. While ontology allows
automated reasoning or inference, object-oriented modeling
does not. Another difference is the treatment of properties;
while the ontology technology treats properties as the first-
class citizen, the object-oriented modeling does not. That is,
while the ontology technology allows inheritance of
properties, the object-oriented modeling does not. While the
ontology technology allows arbitrary user-defined
relationships among classes (a type property), the object-
oriented modeling limits the relationship types to the
subclass-superclass hierarchical relationship. While the
ontology technology allows adding properties to relationships
such as symmetry, transitivity, and inversion so that they are
used in reasoning, the object-oriented modeling does not.
While the ontology technology allows multiple inheritances
among classes and also among properties, the object-oriented
modeling allows only single inheritances. Despite theses
differences, object-oriented modeling and UML are accepted
as a practical ontology specification, mostly because of their

wide-spread use in industry and the multitude of existing
models in UML. There is an on-going effort to add logic
capability to object-oriented modeling, represented by OCL
(Object Constraint Language).It is very make sense to attempt
to highlight similarities as well as significant differences in
the approach. Ontologies are meant to describe and explain
the world, while object model (database) are meant to
describe that part of the world whose representation has to be
managed for some application purpose. Overcoming
differences is a meaningful way to benefit one domain with
results from the other domain. The bottom line is that object-
oriented software development methodologies show promise
as a basis for ontologies methodologies.

Ontology is not meant to replace various software
technologies in the procedural computation category, such as
Java, SQL, data mining, statistics, etc. Instead, ontology
brings most value when it is used in combination with such
procedural technologies. For example, ontology cannot
replace data-mining algorithms based on pattern matching or
statistical techniques. However, it can help make data-mining
procedures more efficient, adaptive, and smart by
externalizing and organizing domain knowledge the data-
mining algorithms use in ontological models. For another
example, ontology cannot replace software-engineering
technology using object-oriented analysis and modeling.
However, it can help software-engineering tools validate the
generated models by externalizing and organizing metadata of
the models in ontological models. For yet another example,
ontology is not meant to replace database technology for
storing large-scale data sets. However, it can be used with
databases to provide a conceptual view of various data
sources scattered in a number of databases with an ontological
model, and virtually integrate (federate) the data sources
without replicating data instances.

VII. REFERENCES
[1] W. Vongdoiwang, .D. N. Batanov. (2004). Similarities and Differences

between Ontologies and Object Model. CCCT’05 proceeding 2004.
Austin, Texas.

[2] S. Cranefield, M. Purvis. (1999). UML as an Ontology Modeling
Language. Proceeding of the IJCAI-99 Workshop on Intelligent
Information Integration, Department of Information Science, University
of Otago, New Zealand.

[3] O. R. Zaï ane (1995). The Object-Oriented Model. [Online]. Available:
http://www.cs.sfu.ca/CC/354/zaiane/material/notes/Chapter1/
node8.html

[4] Object Oriented Database. [Online]. Available:
http://www.profc.udec.cl/~gabriel/tutoriales/giswb/vol1/cp4/cp4-6.htm

[5] [Online]. Available: http://www.cs.vu.nl/~mcaklein/papers/oil-xmls.pdf
[6] J. Angele, S.Staab, H. Schurr, Object Oriented Logics for Ontologies.

Draft Whitepaper Series, Karlsruhe, Germany, 2003.
[7] N. Cullot, C. Parent, S. Spaccapietra and et. Ontologies : A contribution

to the DL/DB debat. to appear.
[8] R. Volz, D. Oberle, R. Studer. (1999). Views for light-weight web

ontologies. Proceeding of SAC 2003, Melbourne, Florida, USA.
[9] B. Wouters, D. Deridder, E. V. Paesschen. (2000). The use of

Ontologies as a backbone for use case management ", This research
was partially supported by Wang Global and the Brusseles Capital
Region (CCOOS Project), Belgium, to appear.

[10] D. E. Jenz. (2003). It is High Time for Pursuing the Ontology-Centric
Approach

[11] J. Heflin, M. N. Huhns. (2003). The Zen of the Web. Guest Editors’
Introduction, IEEE Internet Computing, pp. 30-33, September-October
2003.

[12] S. Strom. (2000). Building a Large-Scale Generic Object
Model:Applying the CYC Upper Ontology to Object Database
Development in Java. [Online]. Available: www.techtrader.com.

[13] P. Mohan, C. Brooks. (2004). Learning Objects on the Semantic Web.
[14] ChiMu Corporation, " Object Modeling ". Foundations of O-R

Mapping, [Online]. Available: http://www.chimu.com/publications/-
objectRelational/part0003.html.

[15] B. Morgan. Java and the Component Object Model. [Online].
Available: http://docs.rinet.ru/ZhPP/ch16.htm#TypeLibrariesand-
ObjectDescriptionLanguage

[16] J. Greenfield. (2004). The Case for Software Factories. JOURNAL3:
Microsoft Architects Journal, Issue 3, July 2004. [Online]. Available:
http://msdn.microsoft.com/library/default.asp?url=/library/enus/dnmaj/h
tml/nexgen.asp

[17] Netmation Inc. (2005). Object Oriented developments [Online].
Available: http://netmation.com/exp0028.htm

[18] G. Engels., L. Groenewegen. (2000). Object-Oriented Modeling: A
Roadmap [Online]. Available: www.cs.ucl.ac.uk/staff/ A.Finkelstein-
/fose/finalengels.pdf

[19] N. F. Noy., D. L. McGuinness. (2001). Ontology Development 101: A
Guide to Creating Your First Ontology [Online]. Available:
protege.stanford.edu/publications/ontology_development/ontology101.p
df

[20] J. Rumbaugh, M. Blaha, W. Premerlani, F. Eddy, and W. Lorensen.
(1991). Object-oriented modeling and design. Englewood Cliffs, New
Jersey: Prentice Hall.

[21] DAML Ontologies by Keyword (account register). [Online]. Available:
http://www.daml.org/cgibin/hyperdaml?http://www.daml.org/2001/06/e
xpenses/check-ont

[22] Object Oriented Analysis and Design Using UML
Mark Collins-Cope Objective view software development Mangazine
Issue 9; Ryby, Rails, Ajax, AspectJ [Online]. Available:
http://ratio.co.uk/W1.html

[23] N. F. Noy, and D. L. McGuinness. mentioned in that ontologies can
build on the experience using Protégé-2000 (Protege 2000), Ontolingua
(Ontolingua 1997), and Chimaera (Chimaera 2000) as ontology-editing
environments.

[24] G. Wilkie. (2001). Object-Oriented Software Engineering - The
professional Developer’s Guide(on OMG’s OOA/OOD proposal)
[Online]. Available: www.idi.ntnu.no/grupper/su/courses/dif8901-
/presentations2001/a01-wilkie.ppt

[25] D. L. McGuinness, F. V. Harmelen. (2004). OWL Web Ontology
Language Overview. [Online]. Available:
 http://www.w3.org/TR/owl-features/

[26] M. Denny. Language Suitability: Ontology Tools Survey, Revisited.
[Online]. Available: http://www.xml.com/pub/a/2004/07/14/onto.html?-
page=2

[27] R.G.G. Cattell. (1994). The Object Database Standard: ODMG-93,
Release 1.1, Morgan Kaufmann Publishers, San Francisco [Online].
Available:http://www.objs.com/x3h7/odmg.htm.

[28] Alphawork. What is ontology? Frequently asked questions. [Online].
Available: http://www.alphaworks.ibm.com/contentnr/semanticsfaqs

