
7237_WSSAT_tamma_Titelei 15.4.2005 12:14 Uhr Seite 1

Whitestein Series in Software Agent Technologies

Series Editors:
Marius Walliser
Stefan Brantschen
Monique Calisti
Thomas Hempfling

This series reports new developments in agent-based software technologies and agent-
oriented software engineering methodologies, with particular emphasis on applications in var-
ious scientific and industrial areas. It includes research level monographs, polished notes
arising from research and industrial projects, outstanding PhD theses, and proceedings of
focused meetings and conferences. The series aims at promoting advanced research as well
as at facilitating know-how transfer to industrial use.

About Whitestein Technologies

Whitestein Technologies AG was founded in 1999 with the mission to become a leading
provider of advanced software agent technologies, products, solutions, and services for vari-
ous applications and industries. Whitestein Technologies strongly believes that software agent
technologies, in combination with other leading-edge technologies like web services and
mobile wireless computing, will enable attractive opportunities for the design and the imple-
mentation of a new generation of distributed information systems and network infrastruc-
tures.

www.whitestein.com

7237_WSSAT_tamma_Titelei 15.4.2005 12:14 Uhr Seite 2

Ontologies for Agents:
Theory and Experiences

Valentina Tamma
Stephen Cranefield
Timothy W. Finin
Steven Willmott
Editors

Birkhäuser Verlag
Basel • Boston • Berlin

7237_WSSAT_tamma_Titelei 15.4.2005 12:14 Uhr Seite 3

Editors:

Valentina Tamma
University of Liverpool
Agent Applications,
Research and Technology Group
Department of Computer Science
Chadwick Building
Liverpool L69 7ZF
Great Britain

Stephen Cranefield
University of Otago
Department of Information Science
PO Box 56
Dunedin
New Zealand

2000 Mathematical Subject Classification 68T35, 68U35, 94A99, 94C99

A CIP catalogue record for this book is available from the
Library of Congress, Washington D.C., USA

Bibliographic information published by Die Deutsche Bibliothek
Die Deutsche Bibliothek lists this publication in the Deutsche Nationalbibliografie;
detailed bibliographic data is available in the Internet at <http://dnb.ddb.de>.

ISBN 3-7643-7237-0 Birkhäuser Verlag, Basel – Boston – Berlin

This work is subject to copyright. All rights are reserved, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, re-use of illustrations,
recitation, broadcasting, reproduction on microfilms or in other ways, and storage in data
banks. For any kind of use permission of the copyright owner must be obtained.

© 2005 Birkhäuser Verlag, P.O. Box 133, CH-4010 Basel, Switzerland
Part of Springer Science+Business Media
Cover design: Micha Lotrovsky, CH-4106 Therwil, Switzerland
Printed on acid-free paper produced from chlorine-free pulp. TCF °°
Printed in Germany
ISBN-10: 3-7643-7237-0
ISBN-13: 978-3-7643-7237-8

9 8 7 6 5 4 3 2 1 www.birkhauser.ch

Timothy W. Finin
University of Maryland
329 Information Technology and Engineering
Baltimore County
1000 Hilltop Circle
Baltimore MD 21250
USA

Steven Willmott
Universitat Politècnica de Catalunya (UPC)
Dept. Llenguatges i Sistemes Informatics
Modul C5, 211b
Campus Nord
08034 Barcelona
Spain

7237_WSSAT_tamma_Titelei 15.4.2005 12:14 Uhr Seite 4

Contents

Foreword . vii

Stephen Cranefield, Martin Purvis, Mariusz Nowostawski and Peter Hwang
Ontologies for Interaction Protocols .1

Marian H. Nodine and Jerry Fowler
On the Impact of Ontological Commitment . 19

Maria Teresa Pazienza and Michele Vindigni
Agent to Agent Talk: ”Nobody There?” Supporting Agents Linguistic
Communication . 43

Dejing Dou, Drew McDermott and Peishen Qi
Ontology Translation by Ontology Merging and
Automated Reasoning . 73

Leen-Kiat Soh
Collaborative Understanding of Distributed Ontologies in a
Multiagent Framework: Experiments on Operational Issues 95

Kendall Lister, Maia Hristozova and Leon Sterling
Reconciling Implicit and Evolving Ontologies for Semantic
Interoperability .121

Heiner Stuckenschmidt, Frank van Harmelen and Fausto Giunchiglia
Query Processing in Ontology-Based Peer-to-Peer Systems145

Chris van Aart, Bob Wielinga and Guus Schreiber
Message Content Ontologies . 169

Muthukkaruppan Annamalai and Leon Sterling
Incorporating Complex Mathematical Relations in Web-Portable
Domain Ontologies . 201

Harry Chen, Tim Finin and Anupam Joshi
The SOUPA Ontology for Pervasive Computing . 233

Stephen Cranefield, Jin Pan and Martin Purvis
A UML Ontology and Derived Dontent Language for a
Travel Booking Scenario . 259

vi Contents

Ian Dickinson and Michael Wooldridge
Some Experiences with the Use of Ontologies in Deliberative Agents . . . 277

Akio Sashima, Noriaki Izumi and Koichi Kurumatani
Location-Mediated Agent Coordination in Ubiquitous Computing299

Roland Zimmermann, S. Käs, Robert Butscher and Freimut Bodendorf
An Ontology for Agent-Based Monitoring of Fulfillment Processes 323

Foreword

There is a growing interest in the use of ontologies for multi-agent system appli-
cations. On the one hand, the agent paradigm is successfully employed in those
applications where autonomous, loosely-coupled, heterogeneous, and distributed
systems need to interoperate in order to achieve a common goal. On the other
hand, ontologies have established themselves as a powerful tool to enable knowl-
edge sharing, and a growing number of applications have benefited from the use of
ontologies as a means to achieve semantic interoperability among heterogeneous,
distributed systems.

In principle ontologies and agents are a match made in heaven, that has
failed to happen. What makes a simple piece of software an agent is its ability
to communicate in a ”social” environment, to make autonomous decisions, and to
be proactive on behalf of its user. Communication ultimately depends on under-
standing the goals, preferences, and constraints posed by the user. Autonomy is
the ability to perform a task with little or no user intervention, while proactiveness
involves acting autonomously with no need for user prompting. Communication,
but also autonomy and proactiveness, depend on knowledge. The ability to com-
municate depends on understanding the syntax (terms and structure) and the
semantics of a language. Ontologies provide the terms used to describe a domain
and the semantics associated with them. In addition, ontologies are often comple-
mented by some logical rules that constrain the meaning assigned to the terms.
These constraints are represented by inference rules that can be used by agents to
perform the reasoning on which autonomy and proactiveness are based.

In practice, the application areas of these technologies often overlap, for ex-
ample: e-commerce, intelligent information integration, and web services. Increas-
ingly, the multi-agent systems and ontology research communities are seeking to
work together to solve common problems. A key focus to this joint working is
emerging in ideas for the semantic web. Both ontologies and agent technologies
are central to the semantic web, and their combined use will enable the shar-
ing of heterogeneous, autonomous knowledge sources in a scalable, adaptable and
extensible manner.

This volume collects the most significant papers of the AAMAS 2002 and
AAMAS 2003 workshop on ontologies for agent system, and the EKAW 2002 work-
shop on ontologies for multi-agent systems. The workshops were taking different
perspectives to the topic of using ontologies in the framework of a multi-agent
system. On the one hand, there is the knowledge modelling perspective; i.e. how
ontologies should be modelled and represented in order to be effectively used in
agent systems. On the other hand, there is the agent perspective; what kind of
capabilities should be exhibited by an agent in order to make use of ontological
knowledge and to perform efficient reasoning with it.

The volume aims at providing a comprehensive review of the diverse efforts
covering the gap existing between these perspectives. The papers cover a wide
range of topics but can mainly be grouped in three categories: modelling principles

viii Foreword

for building and reasoning with ontologies for agents, semantic interoperability
between different agents, and applications of ontologies in agent systems.

Modelling ontologies entails dealing with the problems of building ontologies,
and establishing ontological commitment. Semantic interoperability includes rea-
soning with ontological knowledge that agents may use to proactively overcome
differences in their conceptualisation of the world, and applications of ontologies
concern real life examples of how ontologies can be used in agents.

For what concerns modelling and representing ontologies, Cranefield and col-
leagues in their first contribution propose to reduce the degree of human inter-
pretation currently necessary to understand an interaction protocol, by describing
at an abstract level the required agent actions that must be ‘plugged into’ the
protocol for it to be executed. In particular, this can be done by designing and
publishing ontologies describing the input and output data that are processed
during the protocol’s execution, together with the actions and decisions that the
agents must perform.
Nodine and Fowler concentrate on ontological commitment, or the agreement to
have applications and users conform to a common domain understanding, as en-
capsulated in one or more shared ontologies. They present their experiences in
building ontology-based agent systems in multiple domains and illustrate the prob-
lems arising when a new application aims to locate and conform to some existing
ontology or ontologies within its domain. The authors propose guidelines for on-
tology development and evolution, which should facilitate ontology reuse that may
underpin a usage model for ontologies; one that enables the application designer
to reuse ontological concepts from multiple ontologies in a more flexible manner,
while retaining the essentially good properties of ontology sharing and reuse.
Pazienza and Vindigni also concentrate on ontological commitment, and in par-
ticular, on the lack of a shared knowledge model that can be assumed as a default
ontological commitment. They propose a communication model based on the use of
natural language, that predicates a strong separation among terms and concepts.
In order to support the proposed communication model, the authors present a
novel agent architecture able to deal with possible linguistic ambiguities by focus-
ing on the conversational level.

An important part of this volume is devoted to approaches aimed at finding
an ontological model that is shared by all the agents composing a system. These
approaches become particularly important when agents commit to heterogenous
ontologies. Dou and colleagues present an approach to ontology translation, one
of the hardest problems agents must cope with. In their approach, the merging
of two related ontologies is obtained by taking the union of the terms and the
axioms defining them. Bridging axioms are added, not only as bridges between
terms in two related ontologies, but also to make this merge into a completely new
ontology, which can subsequently be merged with other ontologies. Translation is
implemented using an inference engine (OntoEngine), running in either a demand-
driven (backward chaining or data-driven (forward chaining) mode.

Foreword ix

Leen-Kiat Soh contribution describes a multiagent framework for collaborative un-
derstanding of distributed ontologies. The framework aims to investigate and iden-
tify how agents collaborate to understand each other under resource constraints
and operational setups, and to examine how agents manage and share their dis-
tributed ontologies triggered by various queries. To facilitate collaborative under-
standing, each agent maintains an ontology and a translation table with other
agents or neighbors.
In Lister and colleagues, the authors address the problem of semantic interoper-
ability on the web, and present their research experiments suggesting that as yet
unaddressed issues should be considered; such as reconciling implicit ontologies,
evolving ontologies, and task-oriented analysis. The authors consider the role of
semantic interoperation in multi-agent systems, and describe strategies for achiev-
ing it via the ROADMAP methodology.
Stuckenschmidt and colleagues concentrate on the problem of answering queries
over multiple data sources in a dynamic environment, where it is no longer realis-
tic to assume that the involved data sources act as if they were a single (virtual)
source, modelled as a global schema. In their contribution, they propose an alter-
native approach where they replace the role of a single virtual data source schema
with a peer-to-peer approach relying on limited, shared (or overlapping) vocabu-
laries between peer agents.
Chris van Aart and colleagues present an approach to agent communication, based
on message content ontologies that specify the meaning and intention of messages.
By committing to a shared ontology, several agents can reach an agreement on
different agent communication languages.

With respect to applications, Annamalai and Sterling investigate the possibil-
ity for agent systems aiding with collaboration among Experimental High-Energy
Physics (EHEP) physicists. They argue that a necessary component is an agreed
scientific domain ontology, which must include concepts that rely on mathematical
formulae involving other domain concepts, such as energy and momentum. In this
work, previous efforts on representing mathematical expressions are adapted to
produce a set of representational primitives and supporting definitions for mod-
elling complex mathematical relations.
Chen and colleagues investigate the use of ontologies in a multi-agent system pro-
viding brokering services for pervasive computing. Cranefield and colleagues, in
their second contribution, propose the use of a UML profile for ontology mod-
elling, to represent an ontology for travel booking services, and automatically
derive an object-oriented content language for this domain. This content language
is then used to encode example messages for a simple travel booking scenario,
and it is shown how this approach to agent communication allows messages to be
created and analysed using a convenient object-oriented, agent-specific application
programmer interface. Dickinson and Wooldridge present a belief-desire-intention
(BDI) approach to the problem of developing an agent-assisted travel scenario,
and ask what role ontologies would have in supporting the agent’s activity. To

x Foreword

this end, their contribution discusses the Nuin agent platform, and illustrates var-
ious ways in which ontology reasoning supports BDI-oriented problem solving and
communications by the agents in the system.
Sashima and colleagues focus on the problem of achieving coordination in ubiq-
uitous computing, and in particular. bridging the coordination gap separating
devices, services, and humans. They propose an agent-based coordination frame-
work for ubiquitous computing to solve this human-centered service coordination
issue.
Zimmerman and colleagues present agent-based supply chain monitoring system
for tracking orders, in which communication is enabled through the definition of
a shared ontology. The paper discusses the design of the ontology and its use for
inter-agent communication is illustrated with the help of AUML models of the
agent-interactions in the supply chain monitoring system.

Valentina Tamma

Valentina Tamma
Department of Computer Science
University of Liverpool
Chadwick Building
L69 7ZF Liverpool
Great Britain
e-mail: V.A.M.Tamma@csc.liv.ac.uk

Stephen Cranefield
Department of Information Science
University of Otago
Dunedin
New Zealand
e-mail: scranefield@infoscience.otago.ac.nz

Timothy W. Finin
Information Technology and Engineering
Baltimore County
Baltimore
USA
e-mail: finin@cs.umbc.edu

Steven Willmott
Dept. Llenguatges i Sistemes Informatics
Universitat Politecnica
Barcelona
Spain
e-mail: steve@lsi.upc.es

Ontologies for Interaction Protocols

Stephen Cranefield, Martin Purvis, Mariusz Nowostawski and
Peter Hwang

Abstract. In this paper we propose reducing the degree of human interpreta-
tion currently necessary to understand an interaction protocol by describing
at an abstract level the required agent actions that must be ‘plugged into’ the
protocol for it to be executed. In particular, this can be done by designing and
publishing ontologies describing the input and output data that are processed
during the protocol’s execution together with the actions and decisions that
the agents must perform. An agent (or agent developer) that has previously
defined mappings between the internal agent code and the actions and deci-
sions in an ontology would then be able to interpret any interaction protocol
that is defined with reference to that ontology. The discussion is based on the
use of Coloured Petri Nets to represent interaction protocols and the Unified
Modeling Language (UML) for ontology modelling. An alternative approach
using Agent UML (AUML) is also outlined.

1. Introduction

Agent communication languages (ACLs) such as the Knowledge Query and Manip-
ulation Language (KQML) [11] and the Foundation for Intelligent Physical Agents
(FIPA) ACL [15] are based on the concept of agents interacting with each other
by exchanging messages that specify the desired ‘performative’ (inform, request,
etc.) and a declarative representation of the content of the message. Societies of
agents cooperate to collectively perform tasks by entering into conversations—
sequences of messages that may be as simple as request/response pairs or may
represent complex negotiations. In order to allow agents to enter into these con-
versations without having prior knowledge of the implementation details of other
agents, the concepts of agent conversation policies [17] and interaction protocols
have emerged1. These are descriptions of standard patterns of interaction between

1Some authors treat these terms as synonymous, while others [13] make a distinction between
them in terms of the type and generality of the representation formalism used.

2 S. Cranefield et al.

two or more agents. They constrain the possible sequences of messages that can
be sent amongst a set of agents to form a conversation of a particular type. An
agent initiating a conversation with others can indicate the interaction protocol it
wishes to follow, and the recipient (if it knows the protocol) then knows how the
conversation is expected to progress. A number of interaction protocols have been
defined, in particular as part of the FIPA standardisation process [16].

The specification of the individual messages comprising an interaction proto-
col is necessarily loose: usually only the message performative, sender and receiver
are described. This is because an interaction protocol is a generic description of a
pattern of interaction. The actual contents of messages will vary from one execu-
tion of the protocol to the next. Furthermore, the local actions performed and the
decisions made by agents, although they may be related to the future execution of
the protocol, are traditionally either not represented explicitly (e.g. in an Agent
UML sequence diagram representation [28]) or are represented purely as labelled
‘black boxes’ (e.g. in a Petri net representation [5]).

In this paper we argue that the traditional models of interaction protocols are
suitable only as specifications to guide human developers in their implementation
of multi-agent systems, and even then often contain a high degree of ambiguity
in their intended interpretation. Here we are not referring to the necessity for
an interaction protocol to have formal semantics (although that is an important
issue). Rather, we see a need for techniques that allow the designers of interaction
protocols to indicate their intentions unambiguously so that a) other humans can
interpret the protocols without confusion, and b) software agents can interpret
protocols for the purposes of generating conversations. Ideally, an agent would be
able to download an interaction protocol previously unknown to it, work out where
and how to ‘plug in’ to the protocol its own code for message processing and for
domain-specific decision making, and begin using that protocol to interact with
other agents.

We propose reducing the degree of human interpretation currently necessary
to understand an interaction protocol by describing at an abstract level the re-
quired agent actions that must be plugged into the protocol for it to be executed.
In particular, this can be done by designing and publishing ontologies describing
the input and output data that are processed during the protocol’s execution to-
gether with the actions and decisions that the agents must perform. An agent (or
agent developer) that has previously defined mappings between the internal agent
code and the actions and decisions in an ontology would then be able to interpret
any interaction protocol that is defined with reference to that ontology.

For example, consider a protocol describing some style of auction. Inherent in
this protocol are the concepts of a bid and response and the actions of evaluating
a bid (with several possible outcomes). There are also some generic operations
related to any interaction protocol such as the parsing of a message to check that
it has a particular performative and that its content can be understood by the
agent in the current conversational context, and the creation of a message.

Ontologies for Interaction Protocols 3

In the next section, we motivate our work by discussing an example: the FIPA
Request Interaction Protocol, as specified by FIPA using Agent UML (AUML).
This specification lacks a number of important details that would be required for
an agent to use the protocol without additional human interpretation. In Section 3
we illustrate how a more detailed model of this interaction protocol can be defined
using a coloured Petri net, and explain the role that an ontology plays in the defi-
nition. Section 4 then presents two approaches to defining the internal operations
that an agent must implement in order to play a particular role in an interaction
protocol. In Section 5 we return to consider the use of AUML for interaction pro-
tocol modelling, due to the current effort underway in FIPA to enhance and fully
specify the language. We give an overview of our recent work on the development
of an agent conversation controller that directly interprets AUML sequence dia-
grams, based on techniques similar to those discussed in Sections 3 and 4 in the
context of coloured Petri nets. Section 6 concludes the paper.

2. Example: the FIPA Request Interaction Protocol

Figure 1 shows the FIPA Request Interaction Protocol2 [14] using AUML [28].
This protocol defines a simple interaction between two agents. One agent plays
the Initiator role and sends a request for an action to be performed to another
agent which plays the Participant role. The protocol illustrates that there are three
alternative responses that the participant can make after receiving the request: it
can refuse or agree to the request or it may signal that it did not understand the
request message. If it agreed, it subsequently sends a second response: a message
indicating that its attempt to fulfil the request action failed, a message signalling
that the action has been performed, or a message containing the result of perform-
ing the requested action.

There are some aspects of this protocol that are not specified. For example,
it is not specified that each of the not-understood, agree and refuse messages
should contain part of the original request in their content tuple, along with an
additional proposition (representing respectively an error message, a precondition
for the action to be performed, and a reason for refusal). To make the specification
more precise there needs to be a way of annotating the protocol with constraints on
the contents of the messages and the relationships between them. These constraints
would need to be expressed in terms of a vocabulary relating to the structure of
messages, i.e. an ontology for messages.

Furthermore, the underlying intention of this protocol is not explicitly spec-
ified. In order to customise this protocol to a particular domain, a request ini-
tiator agent must ‘plug in’ domain-specific procedures at six different points: the
handling of not-understood, refuse and failure messages, analysing an agree

2The figure shows Version F of the protocol. Since this paper was written a more recent version

of the protocol has been released by FIPA and promoted to standard status. The new version
has removed the not-understood message and made the agree message optional.

4 S. Cranefield et al.

FIPA-Request-Protocol

Initiator Participant

request

refuse

not-understood

agree

Initiator, Participant,
request, refuse*, not-

understood*, agree, failure*,
inform-done : inform*,

inform-ref : inform*

x

x

failure

inform-done

inform-ref

[agreed]

Figure 1. The FIPA Request Interaction Protocol defined using
AUML

message to check if a precondition is specified by the participant, and the handling
of the two different types of response that indicate the action was successfully per-
formed. Similarly, there are three pieces of domain-specific functionality that an
agent wishing to play the role of participant must supply: the parsing of the ac-
tion being requested (possibly resulting in a failure to understand the message),
choosing whether to agree to the request, and the choice between an inform-done
response or an inform-ref message describing the action’s result. We believe that
an interaction protocol is not completely specified until the interface between the
domain-specific agent-supplied code and the generic interaction protocol is defined.
Clearly, interaction protocols should remain as generic as possible, making no com-
mitment to any particular agent platform or implementation language. Thus the
specification of this interface should be in terms of a programming-language inde-
pendent representation. Furthermore, the agent operations related to a particular
protocol will be related to the types of entity involved in the execution of that

Ontologies for Interaction Protocols 5

protocol, e.g. the notion of a bid in a ‘call for proposals’ protocol. This model
of protocol-related concepts and the operations that act on them is an ontology
that needs to be supplied along with the interaction protocol to give it a full
specification.

3. A Coloured Petri Net approach

The discussion above was based on an analysis of an interaction protocol expressed
as an AUML sequence diagram. However, the version of AUML used in the current
FIPA standards has some shortcomings for further investigation of these ideas.
First, this version of AUML is underspecified and the intended interpretation of an
AUML sequence diagram is not always clear. Second, there are no graphical editors
that directly support the use of AUML. Finally, these AUML sequence diagrams
do not have a way of explicitly modelling the internal actions of agents3—which
are exactly the points of the protocol at which we need to attach annotations
refering to an ontology. We therefore adopted an alternative modelling language
for our initial research in this area: coloured Petri nets.

Petri Nets [24] are a formalism and associated graphical notation for mod-
elling dynamic systems. The state of the system is represented by places (denoted
by hollow circles) that can contain tokens (denoted by symbols inside the places).
The possible ways that the system can evolve are modelled by defining transi-
tions that have input and output arcs (denoted by arrows) connected to places.
The system dynamics can be enacted non-deterministically by determining which
transitions are enabled by the presence of tokens in the input places, selecting one
and firing it, which results in tokens being removed from its input places and new
tokens being generated and placed in its output places.

Coloured Petri nets (CPNs) [18] are an elaboration of ordinary Petri nets. In
a coloured Petri net, each place is associated with a ‘colour’, which is a type (al-
though the theory of CPNs is independent of the choice of type system). Places can
contain a multiset of tokens of their declared type. Each input arc to a transition
is annotated with an expression (possibly containing variables) that represents a
multiset of tokens. For a transition to be enabled, it must be possible to match
the expression on each input arc to a sub-multiset of the tokens in the associated
input place. This may involve binding variables. In addition, a Boolean expression
associated with the transition (its guard) must evaluate to true, taking into ac-
count the variable bindings. When a transition is fired, the matching tokens are
removed from the input places and multiset expressions annotating the output
arcs are evaluated to generate the new tokens to be placed in the output places.
If the expression on an output arc evaluates to the empty multiset then no tokens
are placed in the connected place.

3UML activity diagrams have this capability and can be used on their own or in conjunction
with sequence diagrams to specify the internal agent processing [28, 20].

6 S. Cranefield et al.

Out

In Receive
request
result

Result

Failed Done

Start

Send
request

Request
sent

Not
understood

Receive request
answer

Refused

Agreed

Process
refusal

Process
not understood Process

failure Process
done

Process
result

Process
precondition

Agreed
(processed)

Figure 2. The Initiator role for the Request protocol as a CPN
(outline only)

The coloured Petri net formalism provides a powerful technique for defining
system dynamics and has previously been proposed for use in modelling interaction
protocols [5, 19]. In this paper we take a different approach from our previous work
[26, 25, 31] in the application of CPNs to interaction protocol modelling. We choose
to model each side of the conversation (a role) using a separate CPN (we have also
discussed this approach elsewhere [34, 35, 33, 32], and a variety of approaches have
been used by other researchers [30, 23, 21]). Figure 2 shows an overview of the
net for the Initiator role of the FIPA Request protocol (the ‘colours’ of places, the
arc inscriptions and the initial distribution of tokens are not shown). In the figure,
places are represented by circles and transitions are represented by squares. No
tokens are shown. The places labelled In and Out are fusion places: they are shared
between all nets for the roles the agent can play (in any interaction protocol). The
agent’s messaging system places tokens representing received messages in the In
place and removes tokens from the Out place (these represent outgoing messages)
and sends the corresponding messages.

The fully detailed version of this Petri net encodes the following process.
The Initiator begins the conversation by sending a request with its reply-with
parameter set to a particular value. When an answer with a matching in-reply-to
parameter value is received, the Receive request answer transition is enabled and can
subsequently fire at the agent’s discretion. This transition generates a single token
that is placed in one of the Agreed, Refused or Not understood places, depending on
the communicative act of the reply (the remaining two output arcs each generate
an empty multiset of tokens, i.e. no tokens are placed in their output places). In the
case that the other agent agreed to the request, another message is subsequently
expected from that agent, containing the result of the requested action. This is
handled by the right hand side of the net in a similar fashion.

Ontologies for Interaction Protocols 7

Request sent :
FIPAMessage

reply

Guard:
reply.inReplyTo->notEmpty() and
reply.inReplyTo = req.replyWith

Refused :
Pair<FIPARequestMessage,

 Reason >

if reply.oclIsKindOf(FIPARefuseMessage)
then Bag{Pair.create(
 req, Reason.createFromProposition(
 reply.oclAsType(FIPARefuseMessage).reason))}
else Bag{}
endif

req

In : FIPAMessage

Agreed :
Pair<FIPARequestMessage,
 Precondition >

Receive
request
answer

Not understood :
Pair<FIPARequestMessage,
 Reason >

Not understood :
Pair<FIPARequestMessage,
 Reason >

if reply.oclIsKindOf(FIPANotUnderstoodMessage)
then Bag{Pair.create(
 req, Reason.createFromProposition(
 reply.oclAsType(FIPANotUnderstoodMessage).reason))}
else Bag{}
endif

if reply.oclIsKindOf(FIPAAgreeMessage)
then Bag{Pair.create(
 req, Precondition.createFromProposition(
 reply.oclAsType(FIPAAgreeMessage).precondition))}
else Bag{}
endif

Figure 3. Details of the ‘Receive request answer’ transition

In this Petri net we have included transitions that correspond to internal ac-
tions of the agent, such as those labelled Process refusal and Process not understood.
These are not part of the protocol when it is viewed in the pure sense of simply
being a definition of the possible sequences of messages that can be exchanged.
However, we believe these ‘internal’ transitions communicate the underlying intent
of the protocol: there are a number of points at which the agent must invoke par-
ticular types of computation to internalise and/or react to the different states that
can occur. In the example shown, most of these internal transitions occur after
the final states of the protocol. However, this is not necessarily the case, e.g. the
Process precondition transition gives the agent a chance to reason about the pre-
condition that may be specified by the other agent when it agrees to the request.
This precondition must become true before the other agent will fulfil the request
(in the simple case it can just be the expression true). Although the Request

8 S. Cranefield et al.

interaction protocol does not allow for any extra communication between the two
agents regarding this precondition, an agent might wish to do something outside
the scope of the conversation to help satisfy the precondition (e.g. perform an
action). Therefore, the initiator needs an opportunity to notice the precondition.

replyWith : String [0..1]

inReplyTo : String [0..1]

 . . .

FIPAMessage

FIPARefuseMessage FIPANotUnderstoodMessage FIPAAgreeMessage . . .

ActionDescription

CommunicativeActionDescription
0..1

1

Proposition

0..1

action

1

0..1

reason

1

0..1

precondition

1

0..1

action

1

0..1

action
1

0..1

reason
1

«create» createFromProposition(p : Proposition)

Reason

0..1

1

«create» createFromProposition(p : Proposition)

Precondition

1

0..1

Figure 4. A partial ontology for the Request interaction protocol

Figure 3 shows the details of the Receive request answer transition. This is
where we make the connection with ontologies: the types used as place colours and
within arc expressions are concepts in an associated ontology (a portion of which is
shown in Figure 4). We use the object-oriented Unified Modeling Language (UML)
[3] to represent the ontology and UML’s associated Object Constraint Language
(OCL) [36] as our expression language. For brevity, we adopt the convention that
a variable x appearing on an input arc represents the singleton multiset Bag{x}
(Bag is the OCL type corresponding to a multiset).

In the case of the Request protocol, the concepts that need to be defined
in the associated ontology are message types. Figure 4 therefore defines an in-
heritance hierarchy of FIPA ACL message types4 (generalisation relationships are
represented by arrows with triangular heads, while associations are represented
by arrows with open heads). In addition, we have chosen to explicitly model the
concepts of a reason and a precondition that are associated with the Request pro-
tocol. Within a FIPA ACL message these are both represented as propositions, but

4A more complex UML model for FIPA messages has been presented elsewhere [6], but that

serves a different purpose. The model in this paper is not intended as an update of that previous
work, but instead provides a different view of FIPA message types.

Ontologies for Interaction Protocols 9

here the Reason and Precondition classes can be used (via their constructors) to
achieve an additional level of interpretation of a proposition. Note that although
the ontology is shown here as being a monolithic model, in practice some of the
classes shown would be imported from a separate UML package.

Process refusal
Guard: true
Operation: processRefusal(request: FIPARequestMessage,
 reason: Reason)
Inputs: { request = p.get(1), reason = p.get(2) }
Outputs: { }

Refused : Pair<FIPARequestMessage,
 Reason >

p

Figure 5. Details of the ‘process request refusal’ transition

In addition to the classes shown, the ontology is assumed to include a UML
class template called Pair. A class template is a class that is defined in terms of
one or more other classes, which are specified only as parameter names. When it is
used (as in Figure 3) specific types must be supplied to instantiate the parameters.
Pair represents a pair of elements with the type of each argument being the
corresponding supplied parameter.

The arc expressions in Figure 3 use the operations oclIsKindOf and
oclAsType. These are predefined OCL operations used for run-time type checking
and type casting respectively.

4. Modelling Internal Agent Operations

In Figure 3, all processing represented by the transition is performed by the guard
and the output arc expressions. This is not always the case. Consider the Process
request refusal transition from Figure 2 (shown in detail in Figure 5). This repre-
sents the computation that an agent must do to react to the participant’s refusal
of the request. Although any future actions of the initiator agent are outside the
scope of the Request protocol, in order for the protocol model to act as a stand-
alone specification (without relying on implicit assumptions about the meaning of
certain places) it should define the way in which the agent transfers information
from the Petri net to its own internal processes. To support this, we optionally
associate an operation with each transition, specifying the inputs to the operation
as OCL expressions and providing a list of variables to which the outputs should
be assigned (note that UML allows multiple output parameters in an operation).
Figure 5 illustrates this for the Process request refusal transition.

The operations required to interface an agent with the CPN for a given role
constitute part of the ontology for the protocol. In this section we describe two

10 S. Cranefield et al.

createPendingRequest() : FIPARequestMessage

processRefusal(req : FIPARequestMessage, rsn : Reason)

processRequestNotUnderstood(req : FIPARequestMessage, rsn : Reason)

processAgreementPrecondition(req : FIPARequestMessage, pre : Precondition)

processRequestedActionFailure(req : FIPARequestMessage, rsn : Reason)

processRequestDone(req : FIPARequestMessage)

processRequestResult(result : GroundTerm)

«role»

Initiator

Figure 6. ‘Static’ specification of the Initiator role for the
Request protocol

approaches for using UML to model the operations required for particular roles: a
simple ‘static’ approach and a more flexible but complex ‘dynamic’ approach.

«powertype»
OpType

Operation

ProcessRefusal

: OpType

FIPARequestMessage Reason

0..1

req 1

«parameter» 0..1

reason
1

«parameter»

Context

* before
1

*
after

1

«powertype»
RoleType

{ in } { in }

Role

Initiator

Agent

* *

: RoleType

* *

Binding

Object

*

0..1

name: String

execute(in b : Binding) : Binding

OpExecutor

r: RoleType
o: OpType

1

1

Figure 7. Specifying operations as first-class objects

4.1. The Static Approach

Figure 6 illustrates the static approach to including a role’s operations in a UML
ontology. This figure shows a class (annotated with the ��role�� stereotype) repre-
senting the role and containing all required operations. Although this looks like the
specification of an application programmer interface rather than an ontology, it is
not intended that an agent must implement operations with the same signatures
as shown here. Instead an agent may be able to map these operations into those
it does possess. To do this, the description of the role’s required operations would

Ontologies for Interaction Protocols 11

need to include some information about their semantics, possibly using OCL pre-
and postcondition expressions. This is a subject for future research.

The representation in Figure 6 does not model the operations required for a
given role as first class objects in UML, but as features of a class representing the
role. Although this has the benefit of simplicity, it has a number of shortcomings.
Essentially it treats a role as an interface that an agent must implement if it wants
to act in that role. We call this the static approach because it does not accommo-
date in a straightforward way the possibility of agents dynamically changing the
roles they support. The UML object model does not allow classes (or agent types
in this scenario) to change their set of implemented interfaces at run time. Also,
the notation does not show graphically the relationships between the operations
and the ontological concepts on which they depend.

4.2. The Dynamic Approach

Figure 7 shows an alternative approach that addresses the concerns raised above.
The majority of the figure represents a base ontology containing classes to which a
specific role ontology would make reference. Only the four classes at the bottom of
the figure represent a specific ontology: a portion of the ontology for the Request
interaction protocol.

Modelling both entities and the operations that act on them as first class
objects is difficult to do in a straightforward way without departing from a “strict
metamodelling architecture” where there is a firm distinction between instances
and classes [1]. In this case, to allow the use of associations to define the types of
operation arguments, each operation must be defined as a class. The abstract class
Operation represents the concept of an operation that is associated with a role
and which relates two contexts: the relevant local states of the world before and
after the operation is performed. Particular operations are modelled as subclasses
of Operation with their input and output arguments represented by associations
labelled with the UML stereotype ��parameter�� and one of the Boolean ‘tagged
values’ in or out

If operations are classes, we need to consider what their instances are. The
answer is that the instances represent snapshots of the operation’s execution in
different contexts and with different arguments, in the same way that a mathemat-
ical function can be regarded as the set of all the points on its graph. However,
the operation class only serves as a description of the operation: it will not be
instantiated by an agent. Instead we model an agent as containing a collection of
OpExecutor objects, each being an instance of some class that implements an oper-
ation. These objects are indexed by role and operation (this is shown using UML’s
qualified association notation). Roles and operations are both modelled as classes,
so the types for these association qualifiers must be powertypes of Operation and
Role. A powertype is a class whose instances are all the subclasses of another class
[22, Chapter 23].

To invoke an operation, an agent calls execute on an OpExecutor object.
The arguments to this method must be completely generic, so a binding structure

12 S. Cranefield et al.

is provided as an argument. This maps the operation’s argument names to ob-
jects. The operation returns another binding list specifying values for any output
parameters.

5. AUML Revisited

Section 3 motivated our use of coloured Petri nets by discussing some shortcomings
of AUML as used in the FIPA interaction protocols. Recently FIPA has formed the
Modeling Technical Committee [12] which is developing a new version of AUML,
based on UML 2.0 and various UML-inspired modelling notations that have been
defined by researchers in the area of agent-based software engineering. To date,
work has focussed on the graphical notation, with a metamodel to be developed
later. In parallel with (and informed by) the FIPA work on notation, we have
have undertaken a preliminary investigation of how interaction protocols can be
represented by sequence diagrams in sufficient detail to allow them to be directly
interpreted by agents (once the application-specific code has been ‘plugged in’ to
the appropriate points in the protocol) [9]. This required developing a mechanism
for specifying the connection between the contents of incoming messages, the pa-
rameters and results of agents’ internal operations, and the contents of outgoing
messages—similar to the technique presented in Section 4 for use with coloured
Petri nets. We also developed a metamodel for AUML sequence diagrams (based
on a subset of the UML 2.0 metamodel), and implemented a library5 for the Opal
agent platform [29] that allows an agent to read an interaction protocol sequence
diagram encoded in the XMI format, plug in methods that correspond to the in-
ternal actions specified in the protocol, and take part in a conversation according
to that protocol by directly interpreting the sequence diagram.

Figure 8 illustrates the sequence diagram notation handled by our tool. The
rectangles appearing on the lifelines represent the operations performed by agents
when processing incoming messages and generating responses. These are specified
by an operation name (not shown in the figure) and start and end constraints,
denoted by dog-eared rectangles. These constraints specify how the inputs and
outputs of the operations are related to the contents of the messages and variables
of the protocol. In general, we believe that OCL would be the apppropriate lan-
guage for expressing these constraints. However, as our tool is based on the Eclipse
Modelling Framework (EMF) [8], and an OCL interpreter for EMF [27] was not
yet available at the time this work was done, we used Java statements (interpreted
by BeanShell [2]) for our prototype AUML interpreter. Figure 9 shows the decla-
ration of the inputs and outputs of the createProposal operation from Figure 8:
the operation’s inputs are the two expressions in the content of the incoming CFP
message (an action description and a referential expression describing a property
that any responding proposal should satisfy), and the outputs are the action the

5The current library is an early prototype that supports only two-party conversations and a
subset of sequence diagram features.

Ontologies for Interaction Protocols 13

sd: contract

boolean accept

ALT

customer seller

CFP()

Interaction constraint

accept=false

accept=true

Global variable

Agree()

Propose()

Refuse()

Action start and end
constraints

Message
creation

and
processing

actions

Figure 8. An executable AUML interaction protocol

m2 (PROPOSE)()

{ createProposal.add(0,m1.getAction());
 createProposal.add(1,m1.getRefExp()); }

createProposal

{ m2.setAction(createProposal.get(0));
 m2.setProposition(createProposal.get(1)); }

m1 (CFP)()

input specification

output specification

Figure 9. Declaring operation inputs and outputs in AUML

seller will propose to do (probably the same as that requested) and a proposition
expressing the terms of the bid.

6. Conclusion

In this paper we have identified two weaknesses in traditional mechanisms for
specifying agent interaction protocols: a lack of precision in defining the form of
messages that are exchanged during the protocol and the relationships between
them, and the lack of any explicit indication of where and how the protocol in-
terfaces with an agent’s internal computation. We have proposed the use of an
ontology associated with a protocol to define the relevant concepts and the in-
ternal operations that an agent needs in order to partake in a conversation using
that protocol, and have illustrated how this information can be represented in
interaction protocols defined using coloured Petri nets and an extended version of
AUML.

14 S. Cranefield et al.

We note that some uses of interaction protocols are not concerned with the
internal actions of agents, e.g. external monitoring of conversations for the purpose
of compliance testing or debugging multi-agent systems [30]. For this type of ap-
plication it may be beneficial to provide a simpler view of protocols that abstracts
away the transitions representing internal actions.

Two techniques were proposed for modelling the agent internal actions nec-
essary to use an interaction protocol: a static model and a dynamic model. We
believe the dynamic model, although more complex, is more flexible and has more
scope for adding semantic annotations to define the operations—an extension nec-
essary to enable agents to deduce how to use their existing operations to implement
those required by an interaction protocol.

The type of ontology discussed in this paper combines descriptions of concepts
and operations that act on them in a single model. In the knowledge acquisition
research community there has been considerable study of techniques for building
libraries of reusable problem-solving methods, and work has been done on combin-
ing such libraries and ontologies in a single system [10]. This research may provide
some insights into the problems of integrating action descriptions into ontologies.

The aim of the work described in this paper is to reduce the degree of hu-
man interpretation required to understand an interaction protocol. The solution
proposed here achieves this by including more detailed information about the ac-
tions that participating agents must perform. The use of an associated ontology
provides terminology for describing how the messages received and sent by agents
are related to each other, and also allows signatures to be defined for the oper-
ations that agents must be able to perform in order to use the protocol for its
intended purpose. These signatures provide a syntactic specification for the points
in the protocol at which the agents must provide their own decision-making and
information-processing code, and agent developers could use this to bind internal
agent code to these points in the protocol. There is further work to be done to
find ways of defining the meaning of these operations so that this binding can be
performed on a semantic rather than syntactic basis. This will provide the ability
for agents to engage in previously unknown interaction protocols by interpreting
the specifications of the protocol and its associated ontologies.

References

[1] C. Atkinson and T. Kühne. Processes and products in a multi-level metamodelling
architecture. International Journal of Software Engineering and Knowledge Engi-
neering, 11(6):761–783, 2001.

[2] Beanshell: Lightweight scripting for Java. http://www.beanshell.org, 2003.

[3] Grady Booch, Ivar Jacobson, and James Rumbaugh. The Unified Modeling Language
User Guide. Addison-Wesley, 1998.

[4] C. Castelfranchi and W. L. Johnson, editors. Proceedings of the 1st International
Joint Conference on Autonomous Agents and Multi-Agent Systems (AAMAS 2002).
ACM Press, 2002.

Ontologies for Interaction Protocols 15

[5] R. Cost, Y. Chen, T. Finin, Y. Labrou, and Y. Peng. Using colored Petri nets for
conversation modeling. In Dignum and Greaves [7], pages 178–192.

[6] S. Cranefield and M. Purvis. A UML profile and mapping for the generation of
ontology-specific content languages. Knowledge Engineering Review, 17(1):21–39,
2002.

[7] F. Dignum and M. Greaves, editors. Issues in Agent Communication, volume 1916
of Lecture Notes in Artificial Intelligence. Springer, 2000.

[8] Eclipse modeling framework. http://www.eclipse.org/emf, 2004.

[9] L. Ehrler and S. Cranefield. Executing agent UML diagrams. In Proceedings of the
3rd International Joint Conference on Autonomous Agents and Multi-Agent Systems
(AAMAS 2004). ACM Press, 2004. To appear.

[10] D. Fensel, M. Crubezy, F. van Harmelen, and M. I. Horrocks. OIL
& UPML: A unifying framework for the knowledge web. In Proceedings
of the Workshop on Applications of Ontologies and Problem-Solving Meth-
ods, 14th European Conference on Artificial Intelligence (ECAI 2000), 2000.
http://delicias.dia.fi.upm.es/WORKSHOP/ECAI00/14.pdf.

[11] Tim Finin, Yannis Labrou, and James Mayfield. KQML as an agent communica-
tion language. In J. M. Bradshaw, editor, Software Agents. MIT Press, 1997. Also
available at http://www.cs.umbc.edu/kqml/papers/kqmlacl.pdf.

[12] FIPA Modeling Technical Committee Web site. http://www.auml.org/
auml/modelingtc, 2004.

[13] R. A. Flores and R. C. Kremer. To commit or not to commit: Modelling agent
conversations for action. Computational Intelligence, 18(2):120–173, 2002.

[14] Foundation for Intelligent Physical Agents. FIPA request interaction protocol spec-
ification, version F. http://www.fipa.org/specs/fipa00026, 2001.

[15] Foundation for Intelligent Physical Agents. FIPA ACL message representation in
string specification. http://www.fipa.org/specs/fipa00070, 2002.

[16] Foundation for Intelligent Physical Agents. FIPA interaction protocol library.
http://www.fipa.org/repository/ips.html, 2002.

[17] M. Greaves, H. Holmback, and J. Bradshaw. What is a conversation policy? In
Dignum and Greaves [7], pages 118–131.

[18] Kurt Jensen. Coloured Petri Nets: Basic Concepts, Analysis Methods and Practi-
cal Use, Volume 1: Basic Concepts. Monographs in Theoretical Computer Science.
Springer, 1992.

[19] F. Lin, D. H. Norrie, Weiming Shen, and Rob Kremer. A schema-based approach to
specifying conversation policies. In Dignum and Greaves [7], pages 193–204.

[20] J. Lind. Specifying agent interaction protocols with standard UML. In
M. Wooldridge, G. Weiß, and P. Ciancarini, editors, Agent-Oriented Software En-
gineering II, volume 2222 of Lecture Notes in Computer Science, pages 136–147.
Springer, 2002.

[21] S. Ling and S. W. Loke. A formal compositional model of multiagent interaction. In
Castelfranchi and Johnson [4], pages 1052–1053.

[22] J. Martin and J. J. Odell. Object-Oriented Methods: A Foundation. Prentice Hall,
Englewood Cliffs, NJ, UML edition, 1998.

16 S. Cranefield et al.

[23] H. Mazouzi, Amal El Fallah Seghrouchni, and S. Haddad. Open protocol design for
complex interactions in multi-agent systems. In Castelfranchi and Johnson [4], pages
517–526.

[24] T. Murata. Petri nets: Properties, analysis and applications. Proceedings of the IEEE,
77(4), 1989.

[25] M. Nowostawski, M. Purvis, and S. Cranefield. A layered approach for mod-
elling agent conversations. In Proceedings of the 2nd International Workshop on
Infrastructure for Agents, MAS, and Scalable MAS, 5th International Conference
on Autonomous Agents, 2001. http://www.cs.cf.ac.uk/User/O.F.Rana/agents2001/
papers/06 nowostawski et al.pdf.

[26] M. Nowostawski, M. Purvis, and S. Cranefield. Modelling and visualizing agent
conversations. In Proceedings of the Fifth International Conference on Autonomous
Agents, pages 234–235. ACM Press, 2001.

[27] Object constraint language library. http://www.cs.kent.ac.uk/projects/ocl, 2003.

[28] J. J. Odell, H. Van Dyke Parunak, and B. Bauer. Representing agent interaction pro-
tocols in UML. In Paolo Ciancarini and Michael Wooldridge, editors, Agent-Oriented
Software Engineering, volume 1957 of Lecture Notes in Computer Science, pages 121–
140. Springer, 2001. (Draft version at http://www.auml.org/auml/working/Odell-
AOSE2000.pdf).

[29] Opal agent platform. http://sourceforge.net/projects/nzdis, 2004.

[30] D. Poutakidis, L. Padgham, and M. Winikoff. Debugging multi-agent systems using
design artifacts: the case of interaction protocols. In Castelfranchi and Johnson [4],
pages 960–967.

[31] M. Purvis, S. Cranefield, M. Nowostawski, and D. Carter. Opal: A multi-level
infrastructure for agent-oriented software development. Discussion Paper 2002/01,
Department of Information Science, University of Otago, PO Box 56, Dunedin,
New Zealand, 2002. http://www.otago.ac.nz/informationscience/publctns/
complete/papers/dp2002-01.pdf.gz.

[32] M. Purvis, M. Nowostawski, S. Cranefield, and M. Oliveira. Multi-agent interac-
tion technology for peer-to-peer computing in electronic trading environments. In
G. Moro, C. Sartori, and M. Singh, editors, Proceedings of the 2nd International
Workshop on Agents and Peer-to-Peer Computing, 2nd International Joint Confer-
ence on Autonomous Agents and Multiagent Systems, pages 103–114, 2003.

[33] M. Purvis, M. Nowostawski, M. Oliveira, and S. Cranefield. Multi-agent interaction
protocols for e-business. In Proceedings of the 2003 IEEE/WIC International Con-
ference on Intelligent Agent Technology (IAT 2003), pages 318–324. IEEE Press,
2003.

[34] M. K. Purvis, S. J. S. Cranefield, M. Nowostawski, and M. A. Purvis. Multi-agent
system interaction protocols in a dynamically changing environment. In T. Wagner,
G. Vouros, and S. Smith, editors, Proceedings of the Workshop – Toward an Appli-
cation Science: MAS Problem Spaces and their Implications to Achieving Globally
Coherent Behavior, 1st International Joint Conference on Autonomous Agents and
Multi-Agent Systems, 2002.

[35] M. K. Purvis, P. Hwang, M. A. Purvis, S. J. Cranefield, and M. Schievink. Inter-
action protocols for a network of environmental problem solvers. In Proceedings of

Ontologies for Interaction Protocols 17

the 2002 iEMSs International Meeting: Integrated Assessment and Decision Support
(iEMSs 2002), volume 3, pages 318–323. The International Environmental Mod-
elling and Software Society, 2002. http://www.iemss.org/iemss2002/proceedings/
pdf/volume%20tre/214 purvis.pdf.

[36] J. B. Warmer and A. G. Kleppe. The Object Constraint Language: Getting your
models ready for MDA. Addison-Wesley, 2nd edition, 2003.

Stephen Cranefield, Martin Purvis, Mariusz Nowostawski
Department of Information Science
University of Otago
PO Box 56
Dunedin, New Zealand
e-mail: {scranefield,mpurvis,mnowostawski}@infoscience.otago.ac.nz

Peter Hwang
Knowledge Engineering and Discovery Research Institute
AUT Technology Park, 581-585 Great South Road
Penrose, Auckland, New Zealand
e-mail: peter.hwang@aut.ac.nz

On the Impact of Ontological Commitment

Marian H. Nodine and Jerry Fowler

Abstract. Ontological commitment, or the agreement to have your applica-
tions and users conform to a common domain understanding as encapsulated
in one or more shared ontologies, is a noble goal and essential for open agent
systems. Our experiences building ontology-based agent systems in multiple
domains have shown us that the intention for a new application to locate and
conform to some existing ontology or ontologies within its domain has many
impediments to its success. For instance, the goals of the designer of a domain
ontology include developing a complete and comprehensive domain descrip-
tion; however, the application developer may only require a small fragment
of that ontology. Multiple applications that conform to the ontology may, in
fact, use completely orthogonal fragments of the ontology, and not be able to
interact at all. Users may insist on importing into the ontology sets of terms
that are neither logically consistent nor easily modelable.

With these issues in mind, we propose here some guidelines for ontol-
ogy development and evolution that should facilitate ontology reuse. These
guidelines could underpin a usage model for ontologies; one that enables the
application designer to reuse ontological concepts from multiple ontologies in
a more flexible manner, while retaining the essentially good properties of on-
tology sharing and reuse. These guidelines affect both the design and use of
ontology-based applications, as well as the way applications advertise them-
selves to other agents with which they may interoperate.

Mathematics Subject Classification (2000). 68U35 Information Systems.

Keywords. Ontologies, ontological commitment.

1. Introduction

The goal of knowledge representation is to make explicit the semantics of a partic-
ular domain of interest for the purposes of sharing the knowledge among humans
and computer artifacts. Sowa [21] subdivides knowledge representation into cate-
gories:

EDEN was funded jointly by the DOD, DOE and EPA.

20 Marian H. Nodine and Jerry Fowler

Logic provides the formal structure and rules of inference.
Ontology defines the kinds of things that exist in the application do-
main.
Computation supports the applications that distinguish knowledge rep-
resentation from pure philosophy.”

There is a strong relationship between some specific ontology and the log-
ical rules and computational artifacts that use that ontology, in that when they
communicate among themselves, they have some level of assurance that the same
terms have the same meanings to all. However, this use requires that the logi-
cal rules and the computational artifacts have explicit linkages with the ontology;
often in the form of hard-coding the ontological terms into the rules and/or the
application code itself.

In an agent-based system, common ontologies specify the ontological com-
mitments of a set of participating agents [10]. An ontological commitment is an
agreement to use a vocabulary in a way that is consistent with an ontology. An
agent or human committed to an ontology understands (some subset of) the ontol-
ogy and agrees to use it in a manner consistent with the semantics of the ontology.
Agents and humans committed to the same ontology can share knowledge among
themselves with some confidence that they share an underlying understanding of
what is being said. Commitment to common, shared ontologies facilitates openness
in an agent-based system.

We examine the conflicting requirements and goals of ontology designers,
ontology-committed applications, and ontology-aware users, and their respective
impact on the problem of ontology commitment and reuse. This conflict is ev-
ident, but unresolved, in the guide for the OWL Web Ontology Language [24],
which states at one point, “... the development of an ontology should be firmly
driven by the intended usage”, and at another, “in order for ontologies to have
the maximum impact, they need to be widely shared”. The first statement implies
that application designers and users need to have an impact on the development
of an ontology, and the second implies that application designers and users should
use pre-existing ontologies, which were designed without considering their needs.
As ontological sharing and reuse increases, the gap between the ontology designers
and the ontology users grows larger.

Our goal is to analyze what issues inhibit reuse and to propose strategies
for facilitating reuse. In particular, we consider the problem of reuse of ontolo-
gies whose specification is complete, for applications whose requirements were not
considered during the design of the ontology. This problem is not addressed in
the ontology design methodologies summarized in [8]. We develop guidelines and
approaches for agents to use existing ontologies in a more flexible manner.

We seek to relate the issues to real issues we have encountered within the
context of one of our applications, EDEN [5]. EDEN is an agent-based system de-
veloped for the purpose of inter-organizational sharing of environmental data col-
lected, stored and monitored by multiple government agencies and non-government

On the Impact of Ontological Commitment 21

scientists spread throughout the US and Europe, and relating information from
these disparate data sources and schemas at a semantic level as needed by the
users. EDEN uses ontologies to represent the semantics of the underlying infor-
mation in several large, diverse production databases to populate those ontologies
with instances.

2. Ontological Commitment

Because ontologies are meant to facilitate sharing and reuse of knowledge, it is
important that the ontology and its collection of users (both human and agent)
align themselves to a shared view of the domain during the process of designing
and evolving the ontology for that domain. However, many existing ontologies have
been developed either by designers attempting to characterize a domain (with no
real computational applications that use them) or by application developers to
support individual applications (with no real sharing of the ontology with other
applications). The plethora of existing ontologies argues that many concepts are
already represented within some ontology, so reuse of these ontologies, increasing
the ontological commitment level, is now feasible. For example, some ontologies
such as the Unified Medical Language System (UMLS) Metathesaurus [14] have
achieved a higher level of commitment.

There are several issues that impede this sharing and knowledge. First are
issues related to the conflicting goals and objectives of ontology definers, ontology-
committed applications, and users of such applications. Second are issues of the
mutual conflict between ontological commitment and ontological evolution. Third
are issues of conceptual mismatches between ontologies and the applications and
users that use them. Unfortunately, these issues stem from fundamental issues
and characteristics of the problem of sharing ontologies so broadly. We discuss
the first two issues in the remainder of this section, and the third (which has a
more evident impact on the application designers and users) in a later section,
“Impedance Mismatch”.

2.1. Conflict: Definer, Application, User

The commitment to ontologies is hampered by the conflicting goals of ontology
definers, developers of ontology-committed applications and ontology-committed
application users, and often by the confusion of users and definers over the de-
mands of ontology-committed applications. Here, we use the adjective “ontology-
committed” to mean that something purports to use the terms in the ontology(-ies)
in a manner consistent with its (their) definitions.

The goal of the ontology designer, working towards maximizing the useful-
ness of his ontology to a wide variety of applications, is to completely characterize
a particular domain at the semantic level. The ontology designer needs expertise
in knowledge representation and in the domain of the ontology. His intent is to
develop a comprehensive and up-to-date ontology, with a broad set of acceptable

