
Ontology Alignment using Machine Learning
Techniques
Bita Shadgara,*, Azadeh Haratian Nejhadia and Alireza Osareha

a

Abstract. In semantic web, ontology plays an important role to provide formal definitions of concepts and relationships.
Therefore, communicating similar ontologies becomes essential to provide ontologies interpretability and extendibility. Thus,
it is inevitable to have similar but not the same ontologies in a particular domain, since there might be several definitions for a
given concept. This paper presents a method to combine similarity measures of different categories without having ontology
instances or any user feedbacks towards aligning two given ontologies. To align different ontologies efficiently, K Nearest
Neighbor (KNN), Support Vector Machine (SVM), Decision Tree (DT) and AdaBoost classifiers are investigated. Each clas-
sifier is optimized based on the lower cost and better classification rate. Experimental results demonstrate that the F-measure
criterion improves to 99% using feature selection and combination of AdaBoost and DT classifiers, which is highly compara-
ble, and outperforms the previous reported F-measures.

Computer Engineering Department, Shahid Chamran University, Ahvaz, Iran.

Keywords: Ontology Alignment, Support Vector Machine, Decision Tree, AdaBoost, K-Nearest Neighbor

*Bita.Shadgar@scu.ac.ir.

1. Introduction

Managing distributed information across the web
is going to be a difficult challenge. Ontologies have
been a solution of this problem. However, reusing the
existing ontologies has been considered recently.
Different attitudes of ontology designers cause sever-
al similar ontologies in every particular domain [1, 2].
It is unlikely to find two ontologies describing a same
thing (concept) with a fully complete match. This
makes communication and interoperability difficult
or impossible [3]. Ontology alignment overcomes
these difficulties by exploring a map between similar
entities that refer to the same concept in two different
ontologies [4,5]. Therefore the importance of ontolo-
gy alignment methods becomes more non-trivial,
considering the fact that communication and intero-
perability are necessary for wide variety of areas.
These areas include web service integration, agent
communication, information retrieval from heteroge-
neous multimedia databases [6], learning resource
management systems [1, 2], improving web-based
searching [7], business processes management sys-
tems [8] and so on.

Ontology alignment process usually comprises six
steps: (1) feature engineering, (2) search step selec-
tion, (3) similarity computation, (4) similarity aggre-
gation, (5) interpretation and (6) iteration [9]. Manual
solution of this process is usually time consuming
and expensive. Therefore, having an automated solu-
tion becomes necessary. The current ontology align-
ment has applied automatic techniques in two parts:
(1) training and generating the model and (2) the
classification process [8]. ML techniques help to per-
form the last three steps of above more efficiently.
Different well-known categories of similarity me-
thods that are used to measure the similarity of two
ontologies include: string, linguistic, structural and
instance based methods. Each similarity measure is
considered as a feature of the input sample, thus it is
important to select effective similarity measures (fea-
tures) from different categories (steps (1) and (2)).

There are several works which have already ex-
ploit ML techniques towards ontology alignment. In
[9] a multi-strategy learning was used to obtain simi-
lar instances of hierarchies to extract similar concepts
using Naive Bayes (NB) technique. In [10], follow-
ing a parameter optimization process on SVM, DT

and neural networks (NN) classifiers, an initial
alignment was carried out. Then the user's feedback
was considered to improve the overall performance.

In [11], some string and linguistic (using Word-
Net) measures were utilized as input features. It then
used CART, NN and DT based classifiers to align
ontologies. In [12], string, linguistic and structural
measures (in total 23 features) were used to obtain
the dataset of pair entities, and then the SVM algo-
rithm was applied to classify the dataset samples. The
idea of [13] is taken from [9] with an almost similar
dataset. This work computes 10 similarity measures
from string, linguistic and instance based methods.
The DT and Naive Bayes were applied to classify the
input samples. While [14] applied SVM classifier on
27 similarity measures from string, linguistic, struc-
tural and instance based methods. However, paper
[15] presented a method for improving alignment
results by not choosing a specific alignment method
but applying ML techniques on an ensemble of
alignment methods.

Some research works [7,8,16,17] have applied on-
tology instances in conjunction with the instance
based methods of similarity. However, providing the
ontology instances is expensive. Therefore, this work
does not apply instance based methods.

Other studies use rule sets, RDF graph analysis,
data mining and ML techniques to aggregate similari-
ty measures of each individual category [18]. This
paper for the first time composed different individual
similarity metrics (features) of string, linguistic and
structural based categories into one input sample. As
each individual similarity measure is able to deter-
mine partial similarity of the whole feature space,
considering all the measures simultaneously will
probably achieve higher classification accuracy.

The ensemble method is an active research area
which gives better performance than a single classifi-
er [19]. Some research works have shown that using
a single classifier performing well may not be the
optimal choice [20]. It may lose potentially valuable
information contained in other less accurate classifi-
ers. Thus ensemble approach is proposed as a solu-
tion to combine several less accurate classifiers in
this work.

Section 2 presents the most well-known and effec-
tive similarity measures which are utilized in this
work. The exploited classifiers are briefly introduced
in section 3. The proposed alignment method has
been modeled and discussed in section 4. Section 5
evaluates the results and the paper is concluded in
section 6.

2. Feature Selection

String, linguistic, structural and instance based
methods are four different category of measuring
similarities (features) in ontology alignment. Here,
top 15 effective similarity methods from the first
three categories have been selected. Instance based
similarity measure is not used, because of its difficul-
ty to provide dataset. Each method returns a similari-
ty value in the range of [0,1] for a given entity pair
from two ontologies. These methods are briefly in-
troduced in the following subsections.

2.1. String based Methods

There are several string based methods in ontology
alignment field. These techniques focus on entity's
name (string) and find similar string entities. Here,
the most popular methods which are already imple-
mented in Alignment API and SecondString API
have been selected [9,21]. Because of low accuracy
of each string based method, more methods from this
category are used compare to the others, so that each
method calculates different view of similarity (dis-
tinct feature). The overall performance can be in-
creased by having a diversity of distinct features.
This work's experimental results have shown that the
following methods provide the more accurate out-
comes. These methods are performed on two entity's
names (two strings).
− N-gram similarity compares two strings and cal-

culates the number of common n-grams between
them. An n-gram composed of all sequences of n
characters [9]. For instance, three-gram of word
"paper" are: "pap", "ape" and "per".

− Levenshtein distance computes the minimum
number of insertion, deletion and substitution of
characters is needed to transform one string to
another [1].

− SMOA is based on the number of common part
of the two strings, while considering the length
of mismatched substrings and the length of the
common prefix of both strings [22].

− Dice coefficient is defined as twice the number
of common terms of compared strings over the
total number of terms in both strings. The coeffi-
cient result of 1 indicates identical vectors, while
0 equals orthogonal vectors [23].

− UnsmoothedJS is kind of Jensen-Shannon dis-
tance for two unsmoothed unigram language
models. Jensen-Shannon distance is a popular
method of measuring the similarity between two

(or more) probability distributions [23].
− Monge-Elkan distance uses semantic similarity

of a number of strings or substrings. Each sub-
string is evaluated against the most similar sub-
string in the comparison entities' name [17].

− Substring similarity calculates the similarity of
two strings based on their common longest sub-
string [2].

− Needleman-Wunsch applies a global alignment
on two sequences (strings). It is suitable measure
when the two sequences are of similar length,
with significant degree of similarity throughout.
It also determines whether it is likely that two
sequences evolved from the same string [21].

− Smith-Waterman distance is a version of
Needleman-Wunsch which measures local se-
quence alignment. In other words, it determines
similar regions between two string sequences. In-
stead of looking at the total sequence, this algo-
rithm compares segments of all possible lengths
and optimizes the similarity measure [23].

− Cosine similarity transforms the input string into
vector space so that the Euclidean cosine rule is
used to determine similarity [22].

− Jaccard measure is operated on two vectors X
and Y. In this case, each vector is an entity name.
The inner product of X and Y, and Euclidean
norm of each vectors are used to calculate the
similarity measure [22].

− Jaro measure finds words with spelling mistakes
[9].

2.2. Language based Methods

Apart from similar appearance of entities name
which has been measured through the string based
methods, there are some semantic similarities be-
tween which reflect the applied language in ontolo-
gies. For example, although "car" and "automobile"
have almost no string based similarity, but they refer
to the same concept from language point of view.

WordNet is the most popular lexicon in English
[5]. It arranges the word semantically rather than
morphologically. WordNet is a network which has
several synset. Every synset includes words with the
same sense. Here, WordNet's package of Alignment
API tool has been used to measure possible linguistic
similarities of correspond entities' names.

2.3. Structural based Methods

Ontology alignment solely based on string and lin-
guistic similarities may fail. Because these similari-
ties only investigate the entities name without consi-
dering the entity's relation to other entities in its on-
tology. For instance, the result of applying the string
and linguistic methods on two entities named "jack-
pot" from two given ontologies shows they are equal
entities, while investigation of each entity in its own
ontology may result opposite, e.g. if they are from
two different ontology like kitchenware ontology and
game ontology. Thus, structural based methods are
defined to evaluate the similarity of entities and rela-
tions in two ontologies.

This work has investigated two structural based
methods from the OLA's tool [4]. These methods
compute the similarity measure of class names and
their property locally, which are then aggregated into
one particular measure.

3. Machine Learning Techniques

When similarity features of two given entities
from two ontologies are selected and measured, they
will be aggregated. There are several techniques to
comput the optimal aggregation for different type of
similarity measures such as fuzzy, weighted product,
weighted sum, Minkowski and etc. [7]. However
choosing the optimum parameters of these techniques
such as thresholds and other constraints are difficult.
ML provides another possibility to combine different
similarity measures. Here, supervised ML methods
are utilized to extract optimal model of compound
metrics. Thus the alignment problem is transformed
to a supervised ML task.

The basis of any ML-based ontology alignment
system is a classifier. So far, numerous classifiers
have been developed and applied to ML-based deci-
sion making problems. Here, the ontology alignment
(classification) is regarded as a probability density
function modeling. In this way, a parametric ap-
proach is used, in which explicit assumptions are
made about underlying model characteristic [24].
This includes some parameters that need to be opti-
mized by fitting the model to the dataset.

In this work, the performance of several classifiers
such as SVM, KNN, DT and a re-sampling ensemble
method (AdaBoost) are analyzed to select the one
with the most accurate results. These techniques are
briefly introduced in the following sub-sections.

3.1. Support Vector Machine (SVM)

Given a set of training instances, which are
marked as two categories of alignment and non-
alignment, an SVM training algorithm builds a model
that predicts the category into which a new instance
falls. Intuitively, an SVM model is a representation
of the instances as points in space, so that the
instances of the separate categories are divided by a
clear gap that is as wide as possible. A new instance
is then mapped into that same space and its category
is predicted [25].

In other words, an SVM constructs a hyperplane
or set of hyperplanes in a high or infinite dimensional
space which can be used for classification, regression
or other tasks. A good separation is achieved by the
hyperplane that has the largest distance to the nearest
training datasets of any class.

For a separable classification task, the idea is to
map the training data into a higher-dimensional fea-
ture space using a kernel function where a separating
hyperplane (w,b) with w the weight vector and b the
bias, can be found which maximizes the margin or
distance from the closest data points. The optimum
separating hyperplane can be represented based on
the kernel function (as Eq. (1)).

(1)∑ +=
n

i
iii b).x)K(xy(sign (x) αf

where n is the number of training examples, yRiR is the
lable value of example i, K represents the kernel.
Subject to the constraints αRiR ≥ 0 and ∑αRiRyRiR=0, there is
a Lagrangian multiplier αRi Rfor each training point and
only those training examples that lie close to the de-
cision boundary have nonzero αRiR. These examples are
called support vectors. With a suitable choice of the
kernel the original non-separable data in input space
become separable in feature space. Thus, kernel subs-
titution presents a solution for obtaining nonlinear
algorithms previously restricted to handling linearly
separable cases. There are many kernels that can be
used such as Gaussian Radial Basis function (RBF)
as shown in Eq. (2).

)2/exp(),(22
σjiji xxxxk −−= (2)

where σ >0 is a constant that defines the kernel width.

3.2. 10BK-Nearest Neighbors (KNN)

The KNN classifier has been broadly used in ML
applications due to its conceptual simplicity, and
general applicability [24]. A KNN classifier is
trained by storing all training patterns presented to it.

During the test stage, the K stored entity pairs closest
to the test entity pair are found using the Euclidian
distance measure. A vote is then taken amongst those
K neighbors and the most frequent class is assigned
to that test entity pair. This assignment minimizes the
probability of the considered test entity pair being
wrongly classified. The reader is referred to [25] for
the details of this algorithm. In KNN classification,
the number of neighbors, i.e. K needs to be pre-
defined. A single nearest neighbor technique (K=1) is
primarily suited to classifications where there is
enough confidence in the fact that class distributions
are non-overlapping and the features used are discri-
minatory. But in most practical applications, such as
ours, more than one nearest neighbor is necessary for
majority voting.

A reasonable and practical approach would be to
use trial and error to identify K such that it gives the
lowest misclassification error rate. This is performed
with different K values ranging from 1 to 9 to find
the optimum value (section 5).

3.3. 11BDecision Tree (DT)

Different methods exist to build DTs, which sum-
marize given training data in a tree structure, with
each branch representing an association between fea-
ture values and a class label. The most famous and
representative amongst these is, perhaps, the C4.5
algorithm [24]. It works by recursively partitioning
the training dataset according to tests on the potential
of feature values in separating the classes. The core
of this algorithm is based on its original version,
named the ID3. So, to have a basic understanding of
how this algorithm works, the ID3 method is outlined
below.

 The DT is learned from a set of training instances
through an iterative process, of choosing a similarity
measure (i.e., feature) and splitting the given data set
according to the values of that feature. The key ques-
tion here is which feature is the most influential in
determining the classification and hence should be
chosen first. Entropy measures or equivalently, in-
formation gains are used to select the most influential,
which is intuitively deemed to be the feature of the
lowest entropy (or of the highest information gain).

In more detail, the learning algorithm works by:
(a) computing the entropy measure for each feature,
(b) partitioning the set of examples according to the
possible values of the feature that has the lowest en-
tropy, and (c) for each subset of instances repeating
these steps until all features have been partitioned or

http://en.wikipedia.org/wiki/Hyperplane�
http://en.wikipedia.org/wiki/High-dimensional_space�

other given termination conditions met. In order to
compute the entropy measures, frequencies are used
to estimate probabilities. Note that although feature
tests are chosen one at a time in a greedy manner,
they are dependent on results of previous tests.

Explaining the results is one of the most popularity
reasons of DT classifier in ontology alignment do-
main. It can be easily converted to set of rules or ex-
pression logic and created very fast [24, 25].

3.4. AdaBoost

For an ensemble technique to achieve higher accu-
racy than a single classifier, it is crucial that the base
classifiers are sufficiently diverse. Bagging and
Boosting are among the most popular re-sampling
ensemble methods that generate and combine a
diversity of classifiers using the same learning
algorithm for the base classifiers. Boosting
algorithms are considered stronger than bagging on
noise free data. However, there are strong empirical
indications that bagging is much more robust than
boosting in noisy settings [26]. AdaBoost is a prac-
tical version of the boosting approach. Our experi-
mental results regarded to our dataset reveal that
boosting methods outperform the bagging methods.

Having provided an input training set including m
elements, AdaBoost calls a given weak or base learn-
er algorithm repeatedly in a series of rounds t =1,…,
T. One of the main ideas of algorithm is to maintain a
distribution or set of weights over the training set.
The weight of this distribution on training example i
on round t is denoted by wi

t. Initially, all weights are
set equally (e.g. wi

1=1/m), but on each round, the
weight of misclassified examples are increased so
that the weak learner forces to focus on the hard ex-
amples in the training set. The weak learner is re-
sponsible to find a weak hypothesis ht : X  {-1, +1}
appropriate for the distribution wt

The distribution w
.

t

t

tit
t
it

i C
xhyww)](exp[1 α−

=+

 is next updated using Eqs. (3)
and (4):

 (3)








 −
=

t

t
t e

e1
ln

2
1α

 (4)

where Ct is a normalization factor, and et is the error
of ht. As the result of Eq. (3), the weight of misclas-
sified examples by ht is increased, and the weight of
correctly classified examples by ht

The output is calculated by final hypothesis f,
shown in Eq. (5). It is a weighted majority vote of the

T weak hypothesis, where α

 is decreased. Thus,
the weight tends to concentrate on hard examples.

t is the weight assigned
to ht

)(x))(sign((x)
T

1t
tt∑

=

= hf α

 [27].

 (5)

This work chooses DT and SVM as the base clas-
sifiers of AdaBoost.

4. Proposed Alignment Method

The proposed system is implemented in JAVA and
adopted Alignment API framework and MATLAB.

The datasets are taken from Ontology Alignment
Evaluation Initiative (OAEI) which provides frame-
work in ontology alignment. These datasets are pro-
duced for alignment contest and provide several for-
mats [28]. Indeed, the evaluation of proposed system
is carried out by OAEI API.

Series #301-304 represent real-life ontologies for
bibliographic references found on the web. Here,
#301 is selected as training dataset, while #302-304
series are considered as test datasets. It should be
noted that all series are aligned to #101.

To construct the similarity matrix, similarity
measures (section 2) are applied to a pair of ontolo-
gies selected from the above datasets. The similarity
matrix is a table with m rows and n columns; where
m is the number of given entity pairs and n is the
number of applied features (similarity measures). The
truth alignment of each entity pair correspondent to
each row of similarity matrix is called actual value.
This value is defined by the expert and takes a value
of 1 (i.e. aligned) or 0 (i.e. not aligned).

Having provided the similarity matrix and target
values, the problem would be reduced to a supervised
learning task comprised of training and testing phases.
Figure 1 illustrates the details.

Training Phase Testing Phase

Two Ontologies (as input)


Extracting Similarity Matrix
and Actual Values


Aggregating Similarity Matrix

via Classification


Adjusting Classifier's
Parameters


Extracting Training Model

(as output)

Two Ontologies and Training
Model (as input)


Extracting Similarity Matrix

and Actual Values


Using Training Model
on Similarity Matrix


System Alignment (as output)


Comparison of Actual Values

and System Alignment

Fig. 1. Training and testing phases in proposed alignment system.

In this work, a binary classification with the objec-
tive of achieving the best possible alignments in an
automatic and efficient way is introduced.

Within the test stage, the trained optimum model is
used to classify the new unseen similarity matrixes
(test data) into two classes i.e. aligned or not aligned.
This type of alignment is named system alignment.

Each classifier is quantitatively evaluated by inde-
pendent test data; otherwise the evaluation would
become biased and would not present a fair assess-
ment of the classifier performance. To assess the
classifier generalization ability and thus measure the
classification accuracy, system alignment and actual
value of each entity pair are compared.

4.1. Evaluation Criteria

In ontology alignment task, precision and recall
criteria are generally used to evaluate the system's
performance [29]. These measures are defined as Eqs.
(6) and (7).

givenalignment
alignmentcorrect givenalignment

 Precision
∩

= (6)

alignmentcorrect
alignmentcorrect givenalignment

 Recall
∩

= (7)

F-measure is basically the harmonic mean of pre-
cision and recall, and defined as Eq. (8).

Recall) (Precision
Recall *Precision * 2 measure-F

+
= (8)

F-measure is a common performance measure in
information retrieval which balances precision and
recall. Indeed, Alignment API provides a utility to
evaluate the result of alignment [2,5].

4.2. 14BExperiments

Here, four experiments have been conducted; each
experiment considers an aspect which has its impact
on the training model and final results. Furthermore,
each experiment is carried out using different clas-
sifier (DT, SVM, KNN and AdaBoost models) and
the results are compared against each other.

These experiments are explained as follows.

4.2.1. 15BFirst Experiment
The first experiment has simply chosen the opti-

mum model based on those 15 similarity measures
which are represented in section 2.

4.2.2. 16BSecond Experiment
This experiment investigates the comments role in

ontology alignment, so that the comments of every
entity (if exist) are added to the dataset. For extract-
ing valuable words, each sentence is tokenized and
then dummy and auxiliary words are eliminated, so
that remained words are meaningful information.
Furthermore to save the time, this process is only
employed on entity pairs which are not fully aligned
and their similarity measure is less than 1.

The rest of this experiment is the same as first ex-
periment.

4.2.3. 17BThird Experiment
This experiment explores the effect of training

samples quantity on the quality of final trained model.
In previous two experiments, two ontologies (#101,
#301) are utilized to build the training model. In this
experiment, the number of entity pairs is increased by
using other ontologies such as #102, #103, i.e. entity
pairs extracted from (#101, #102) and (#101, #103).
So the diversity of instances in training phase is wi-
dened. To avoid training the model with similar input
samples, those samples from #102 and #103 ontolo-
gies which represent the highest variances are se-
lected.

4.2.4. 18BFourth Experiment
This experiment takes advantage of feature selec-

tion technique to eliminate the ineffective features.
To do that, a feature selection method is used to rank
features based on their weights in SVM. This method
calculates the set of feature’s weight in SVM clas-
sifier and eliminates features that have less effect by
iteration. So those features are only selected which
lead to better discrimination ability [25]. As the result,
8 features from section 2 i.e. SOMA, Needleman-
Wunsch, WordNet, Jaccard, Dice coefficient, N-
gram, and two structural similarities are chosen.

Since the number of features is decreased from 15
to 8, the similarity matrix is created faster and in less
memory compared to first experiment. Furthermore,
based on the result of second and third experiments,
comments (if exist) are also added to the dataset and
the diversity of instances is enlarged in training phase.

5. 4BResults and Evaluation

This study optimizes the classifiers. If every para-
meter of each classifier tunes well, the alignment
result will be more accurate.

The design of the SVM classifier architecture is
simple and mainly requires the choice of kernel and
its associated parameters. There are currently no
techniques available to learn the form of kernel; thus
a Gaussian RBF kernel function has been employed.
We construct a set of SVM classifiers with range of
values for the kernel parameter σ and with no restric-
tion on the Lagrange multipliers α i

In KNN classification, the number of neighbors,
i.e. K needs to be pre-defined. A reasonable and
practical approach would be to use trial and error to
identify K such that it gives the lowest misclassifica-
tion rate. We performed such an experiment with
different K values ranging from 1 to 9 (K is chosen to
be odd to avoid tie votes), and found K = 3 as the
optimum K value for the application at hand.

. Having defined
classification rate as the system alignment over the
truth alignment, the best classification accuracy is
achieved when σ = 0.1.

In DT, having minimum tree without losing accu-
racy significantly decreases the costs. Therefore after
constructing DT, it is configured to estimate the min-
imum tree with the lowest cost for every test set.
Here, the minimum tree size is experimentally found
to be 12.

This work also experiments an AdaBoost method
with two different base classifiers, i.e. SVM and DT
noted as AdaBoost (SVM) and AdaBoost (DT), re-
spectively.

In AdaBoost (SVM), finding a suitable σ for SVM
base learner is non-trivial. Because having too large
value for σ often results in too weak SVM classifier
with RBF kernel. The AdaBoost (SVM) classifica-
tion accuracy is often less than 50% and cannot meet
the requirement of a given AdaBoost classifier. On
the other hand, a smaller σ often makes stronger
SVM with RBF kernel and so boosting them may
become inefficient [30]. Here, the AdaBoost (SVM)
algorithm initiates firstly by one SVM base learner
with the optimum σ value from previous experiment
(i.e. σ = 0.1). The final optimum architecture is com-
prised from three SVM base learners with the opti-
mum σ values equal to 0.1, 0.09 and 0.08, respective-
ly.

In AdaBoost (DT), having suitable tree size be-
comes important. Again, this value is set by 12 which
obtained from previous experiment. The optimum
number of AdaBoost rounds varies in each experi-
ment. Here, these round numbers have been found 18,
2, 15, and 12 for experiment #1,…,#4, respectively.

Table 1 summarizes the best F-measure perfor-
mances obtained from all experiments against the test
set #302. As it can be seen, the KNN and AdaBoost

provide the first and second best results, respectively.
Indeed, the obtained performances for both AdaBoost
(DT) and AdaBoost (SVM) classifiers are very close
to each other. On the other hand, the worst results are
provided by DT classifier.

Table 1. F-measure values against test set #302.

AdaBoost
(SVM)

AdaBoost
(DT) SVM DT KNN Experiment

0.89 0.89 0.89 0.85 0.92 #1
0.91 0.91 0.89 0.88 0.91 #2
0.90 0.91 0.91 0.85 0.92 #3
0.90 0.89 0.87 0.83 0.92 #4

Similarly, Table 2 and Table 3 summarize the best

F-measure performances obtained from all experi-
ments against the test set #303 and #304 respectively.
As it can be seen, the fourth experiment which bene-
fits from feature selection mostly outperforms the
first experiment, while on average the KNN and
AdaBoost (DT) classifiers perform better amongst all
exploited classifiers.

Table 2. F-measure values against test set #303.

AdaBoost
(SVM)

AdaBoost
(DT) SVM DT KNN Experiment

0.82 0.87 0.80 0.86 0.86 #1
0.79 0.87 0.76 0.84 0.81 #2
0.90 0.84 0.80 0.87 0.85 #3
0.88 0.90 0.88 0.86 0.87 #4

Table 3. F-measure values against test set #304.

AdaBoost
(SVM)

AdaBoost
(DT) SVM DT KNN Experiment

0.95 0.94 0.94 0.94 0.98 #1
0.96 0.96 0.96 0.96 0.97 #2
0.96 0.97 0.95 0.94 0.97 #3
0.98 0.99 0.96 0.96 0.98 #4

In general, F-measure values which are obtained

against test sets #304 and #303 are the best and worst
results, respectively. This is due to the fact that test
set #304 has similar structure and vocabularies to the
reference ontology, i.e. #101, while test set #303 has
the least vocabularies and linguistic information. This
trend also validates the recent attentions on reusing
the existing ontologies.

Although, the optimum AdaBoost (DT) model can
provide the best results, but usually creation of train-

ing model for an ensemble-based classifier need
much more time and memory compared to non-
ensemble ones. To this end, Table 4 represents the
needed test time in terms of seconds to perform
fourth experiment using different classifiers. As it
can be seen, the required time for AdaBoost (DT) is
reasonable compared to other non-ensemble classifi-
ers, but it is much longer for AdaBoost (SVM) clas-
sifier.

Table 4. Time comparison of different classifiers in experiment #4.

AdaBoost
(SVM)

AdaBoost
(DT) SVM DT KNN Classifiers

0.9070 0.3676 0.0304 0.3357 0.0798 Time (seconds)

Table 5 compares the F-measure of this system

with the most important previous approaches. The
result of our fourth experiment using the KNN and
AdaBoost (DT) achieve remarkable improvement in
ontology alignment.

Table 5. Comparison of different methods using the F-measure.

OLA[18] OMAP[17] Properties[16] Classes[16] NB[15] DT[15] FOAM[9]
Fourth Experiment

AdaBoost (DT) KNN
0.34 0.74 0.85 0.69 0.753 0.759 0.77 0.89 0.92 #302
0.44 0.84 0.88 0.86 0.860 0.816 0.84 0.90 0.87 #303
0.69 0.91 0.98 0.94 0.960 0.960 0.95 0.99 0.98 #304

6. 5BConclusions

This paper proposes an efficient method for ontol-
ogy alignment based on the combination of different
similarity categories in one input sample. This, in
turn, increases the discrimination ability of the model
and enhances the system's overall accuracy.

The proposed model determines the alignment
process with no prior need to ontology instances,
which facilitates alignment task.

Through a comprehensive optimization process of
operational parameters, our proposed model does not
require any user intervention, and it has consistent
performance for both aligned and non-aligned enti-
ties.

AdaBoost (DT) model provides the best overall
accuracy, especially when feature selection scheme is
utilized. Experimental results demonstrate that the F-
measure criterion improves up to 99% which is better
than other related works that have used up to 23 simi-
larity measures. Although, this work is using only 8
similarity measures in its optimum model, but the
possible impacts of feature reduction has been com-
pensated by using ontology comments, enlarging the
diversity of training set samples, and choosing more
effective similarity measures. This grants more accu-
racy and less computation cost which makes the pro-
posed model appropriate even for an online ontology
alignment task.

References

[1] J. Euzenat, T. L. Bach, J. Barrasa, P. Bouquet, J. De Bo, R.
Dieng, M. Ehrig, M. Hauswirth, M. Jarrar, R. Lara, D. May-
nard, A. Napoli, G. Stamou, H. Stuckenschmidt, P. Shvaiko,
S. Tessaris, S. Van Acker, I. Zaihrayeu,"D2.2.3: State of the
art on ontology alignment", Knowledge web, pp. 5-12, 2004.

[2] J. Euzenat, P. Shvaiko, "Ontology Matching", Springer,
2007.

[3] L. Predoiu, C. Feier, F. Scharffe, J. de Bruijn, F. Recuerda,
D. Manov, M. Ehrig, "D4.2.2 State-of-the art survey on On-
tology Merging and Aligning V2", SEKT Consortium, 2005.

[4] J. Euzenat, "Alignment API and server", INRIA & LIG, pp.
32, 2008.

[5] R. Zhang, Y. Wang, J. Wang, "Research on Ontology Match-
ing Approach in Semantic Web", International Conference
on Internet Computing in Science and Engineering, pp. 1,
2008.

[6] X. Li, J. Zhang, T. Huang, "A Standardized Learning Re-
sources Retrieval System Based on Ontology Matching",
Springer-Verlag Berlin Heidelberg, 2007.

[7] A. Doan, J. Madhavan, P. Domingos, A. Halevy, "Learning
to map ontologies on the semantic web", Proceeding of
www, 2002.

[8] M. Ehrig, S. Staab, Y. Sure, "Bootstrapping Ontology
Alignment Methods with APFEL", Springerlink, 2005.

[9] J. David, F. Guillet, H. Briand, "Association Rule Ontology
Matching Approach", International Journal on Semantic Web
& Information Systems, Vol. 3, Issue 2, 2007.

[10] B. Bagheri Hariri, H. Sayyadi, H. Abolhassani, "A Neural-
Networks-Based Approach for Ontology Alignment", Pro-
ceedings of the Joint 3rd International Conference on Soft
Computing and Intelligent Systems and 7th International
Symposium on advanced Intelligent Systems, Japan, 2006.

[11] B. Bagheri Hariri, H. Sayyadi, H. Abolhassani, "Combining
Ontology Alignment Metrics Using the Data Mining Tech-
niques", Proceeding of the 17th European Conference on Ar-
tificial Intelligence, International Workshop on Context and
Ontologies (C&O' 2006), Trento, Italy, 2006.

Test set

Alignment
Method

[12] H. Stuckenschmidt, M. Ehrig, J. Euzenat, A. Hess,W. R. van
Hage, W. Hu, N. Jian, G. Cheng, Y. Qu, G. Stoilos, G. Sta-
mou, U. Straccia, V. Svatek, R. Troncy, P. Valtchev, M.
Yatskevich, "D2.2.4: Alignment implementation and ben-
chmarking results", Knowledge Web Consortium, 2006.

[13] K. Eckert, C. Meilicke, H. Stuckenschmidt, "Improving
Ontology Matching using Meta-level Learning", Proceedings
of ESWC, 2009.

[14] R. Ichise, "Machine Learning Approach for Ontology Map-
ping using Multiple Concept Similarity Measures", Proceed-
ings of ICIS, 2008.

[15] K. Eckert, C. Meilicke, H. Stuckenschmidt, "Improving
Ontology Matching using Meta-level Learning," In Proceed-
ings of ESWC, 2009.

[16] M. Mao, "Ontology Mapping: Towards Semantic Interopera-
bility in Distributed and Heterogeneous Environment", Ph.D.
Thesis, 2008.

[17] U. Straccia, R. Troncy, "oMAP: Combining Classifiers for
Aligning Automatically OWL Ontologies", Springer-Verlag
Berlin Heidelberg, LNCS 3806, 2005, pp. 133–147.

[18] J. Euzenat, P. Guegan, P. Valtchev, "OLA in the OAEI 2005
alignment contest", 2005.

[19] J. Kittler, M. Hatef, R. P. W. Duin, J. Matas, "On Combining
Classifiers", IEEE Trans. On Pattern Analysis and Machine
Intelligence, 20, pp. 226-239, 1998.

[20] K. Tumer, J. Ghosh, "Classifier combining: analytical results
and implications", Working notes from the Workshop, Inte-
grating Multiple Learned Models., 13th National Conference
on Artificial Intelligence, 1996, Protland, Oregon.

[21] SecondString Project Page, <http://secondstring.sourceforge-
.net>.

[22] G. Stoilos, G. Stamou, S. Kollias, "A String Metric for On-
tology Alignment," Springer-Verlag Berlin Heidelberg ISWC
2005, LNCS 3729, pp. 624–637, 2005.

[23] W. W. Cohen, P. Ravikumar, S. E. Fienberg, "A Comparison
of String Metrics for Matching Names and Records", Ameri-
can Association for Artificial Intelligence, 2003.

[24] R. O. Duda, P. E. Hart, D. J. Storke, Pattern Classification,
John Wiley & Sons, New York, 2001, ISBN:0471056693.

[25] E. Alpaydin, Introduction to Machine Learning, MIT press,
2004.

[26] S. B. Kotsiantis, P. E. Pintelas, "Combining Bagging and
Boosting", International Journal of Computational Intelli-
gence, Vol. 1, Number 4, 2004.

[27] R. E. Schapire, "A Brief Introduction to Boosting", Proceed-
ing of the Sixteenth International Joint Conference on Artifi-
cial Intelligence, 1999.

[28] Ontology Alignment Evaluation Initiative, (2009),
<http://oaei.ontologymatching.org>.

[29] H. Doa, E. Rahm, "Matching large schemas: Approaches and
evaluation", Information Systems 32, 2007, pp. 857–885.

[30] X. Li, L. Wang, E. Sung, "AdaBoost with SVM-based com-
ponent classifiers", Engineering Applications of Artificial In-
telligence, Vol. 21, pp. 785-795, 2008.

	1. Introduction
	2. Feature Selection
	2.1. String based Methods
	2.2. Language based Methods
	2.3. Structural based Methods

	3. Machine Learning Techniques
	3.1. Support Vector Machine (SVM)
	3.2. K-Nearest Neighbors (KNN)
	3.3. Decision Tree (DT)
	3.4. AdaBoost

	4. Proposed Alignment Method
	4.1. Evaluation Criteria
	4.2. Experiments
	4.2.1. First Experiment
	4.2.2. Second Experiment
	4.2.3. Third Experiment
	4.2.4. Fourth Experiment

	5. Results and Evaluation
	6. Conclusions

