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Abstract. In semantic web, ontology plays an important role to provide formal definitions of concepts and relationships. 
Therefore, communicating similar ontologies becomes essential to provide ontologies interpretability and extendibility. Thus, 
it is inevitable to have similar but not the same ontologies in a particular domain, since there might be several definitions for a 
given concept. This paper presents a method to combine similarity measures of different categories without having ontology 
instances or any user feedbacks towards aligning two given ontologies. To align different ontologies efficiently, K Nearest 
Neighbor (KNN), Support Vector Machine (SVM), Decision Tree (DT) and AdaBoost classifiers are investigated. Each clas-
sifier is optimized based on the lower cost and better classification rate. Experimental results demonstrate that the F-measure 
criterion improves to 99% using feature selection and combination of AdaBoost and DT classifiers, which is highly compara-
ble, and outperforms the previous reported F-measures.  
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1.  Introduction 

Managing distributed information across the web 
is going to be a difficult challenge. Ontologies have 
been a solution of this problem. However, reusing the 
existing ontologies has been considered recently. 
Different attitudes of ontology designers cause sever-
al similar ontologies in every particular domain [1, 2]. 
It is unlikely to find two ontologies describing a same 
thing (concept) with a fully complete match. This 
makes communication and interoperability difficult 
or impossible [3]. Ontology alignment overcomes 
these difficulties by exploring a map between similar 
entities that refer to the same concept in two different 
ontologies [4,5]. Therefore the importance of ontolo-
gy alignment methods becomes more non-trivial, 
considering the fact that communication and intero-
perability are necessary for wide variety of areas. 
These areas include web service integration, agent 
communication, information retrieval from heteroge-
neous multimedia databases [6], learning resource 
management systems [1, 2], improving web-based 
searching [7], business processes management sys-
tems [8] and so on. 

Ontology alignment process usually comprises six 
steps: (1) feature engineering, (2) search step selec-
tion, (3) similarity computation, (4) similarity aggre-
gation, (5) interpretation and (6) iteration [9]. Manual 
solution of this process is usually time consuming 
and expensive. Therefore, having an automated solu-
tion becomes necessary. The current ontology align-
ment has applied automatic techniques in two parts: 
(1) training and generating the model and (2) the 
classification process [8]. ML techniques help to per-
form the last three steps of above more efficiently. 
Different well-known categories of similarity me-
thods that are used to measure the similarity of two 
ontologies include: string, linguistic, structural and 
instance based methods. Each similarity measure is 
considered as a feature of the input sample, thus it is 
important to select effective similarity measures (fea-
tures) from different categories (steps (1) and (2)).      

There are several works which have already ex-
ploit ML techniques towards ontology alignment. In 
[9] a multi-strategy learning was used to obtain simi-
lar instances of hierarchies to extract similar concepts 
using Naive Bayes (NB) technique. In [10], follow-
ing a parameter optimization process on SVM, DT 



and neural networks (NN) classifiers, an initial 
alignment was carried out. Then the user's feedback 
was considered to improve the overall performance.  

In [11], some string and linguistic (using Word-
Net) measures were utilized as input features. It then 
used CART, NN and DT based classifiers to align 
ontologies. In [12], string, linguistic and structural 
measures (in total 23 features) were used to obtain 
the dataset of pair entities, and then the SVM algo-
rithm was applied to classify the dataset samples. The 
idea of [13] is taken from [9] with an almost similar 
dataset. This work computes 10 similarity measures 
from string, linguistic and instance based methods. 
The DT and Naive Bayes were applied to classify the 
input samples. While [14] applied SVM classifier on 
27 similarity measures from string, linguistic, struc-
tural and instance based methods. However, paper 
[15] presented a method for improving alignment 
results by not choosing a specific alignment method 
but applying ML techniques on an ensemble of 
alignment methods. 

Some research works [7,8,16,17] have applied on-
tology instances in conjunction with the instance 
based methods of similarity. However, providing the 
ontology instances is expensive. Therefore, this work 
does not apply instance based methods.  

Other studies use rule sets, RDF graph analysis, 
data mining and ML techniques to aggregate similari-
ty measures of each individual category [18]. This 
paper for the first time composed different individual 
similarity metrics (features) of string, linguistic and 
structural based categories into one input sample. As 
each individual similarity measure is able to deter-
mine partial similarity of the whole feature space, 
considering all the measures simultaneously will 
probably achieve higher classification accuracy. 

The ensemble method is an active research area 
which gives better performance than a single classifi-
er [19]. Some research works have shown that using 
a single classifier performing well may not be the 
optimal choice [20]. It may lose potentially valuable 
information contained in other less accurate classifi-
ers. Thus ensemble approach is proposed as a solu-
tion to combine several less accurate classifiers in 
this work.  

Section 2 presents the most well-known and effec-
tive similarity measures which are utilized in this 
work. The exploited classifiers are briefly introduced 
in section 3. The proposed alignment method has 
been modeled and discussed in section 4. Section 5 
evaluates the results and the paper is concluded in 
section 6.  

2.  Feature Selection 

String, linguistic, structural and instance based 
methods are four different category of measuring 
similarities (features) in ontology alignment. Here, 
top 15 effective similarity methods from the first 
three categories have been selected. Instance based 
similarity measure is not used, because of its difficul-
ty to provide dataset. Each method returns a similari-
ty value in the range of [0,1] for a given entity pair 
from two ontologies. These methods are briefly in-
troduced in the following subsections.  

2.1.  String based Methods 

There are several string based methods in ontology 
alignment field. These techniques focus on entity's 
name (string) and find similar string entities. Here, 
the most popular methods which are already imple-
mented in Alignment API and SecondString API 
have been selected [9,21]. Because of low accuracy 
of each string based method, more methods from this 
category are used compare to the others, so that each 
method calculates different view of similarity (dis-
tinct feature). The overall performance can be in-
creased by having a diversity of distinct features. 
This work's experimental results have shown that the 
following methods provide the more accurate out-
comes. These methods are performed on two entity's 
names (two strings). 
− N-gram similarity compares two strings and cal-

culates the number of common n-grams between 
them. An n-gram composed of all sequences of n 
characters [9]. For instance, three-gram of word 
"paper" are: "pap", "ape" and "per". 

− Levenshtein distance computes the minimum 
number of insertion, deletion and substitution of 
characters is needed to transform one string to 
another [1]. 

− SMOA is based on the number of common part 
of the two strings, while considering the length 
of mismatched substrings and the length of the 
common prefix of both strings [22]. 

− Dice coefficient is defined as twice the number 
of common terms of compared strings over the 
total number of terms in both strings. The coeffi-
cient result of 1 indicates identical vectors, while 
0 equals orthogonal vectors [23]. 

− UnsmoothedJS is kind of Jensen-Shannon dis-
tance for two unsmoothed unigram language 
models. Jensen-Shannon distance is a popular 
method of measuring the similarity between two 



(or more) probability distributions [23].  
− Monge-Elkan distance uses semantic similarity 

of a number of strings or substrings. Each sub-
string is evaluated against the most similar sub-
string in the comparison entities' name [17]. 

− Substring similarity calculates the similarity of 
two strings based on their common longest sub-
string [2].  

− Needleman-Wunsch applies a global alignment 
on two sequences (strings). It is suitable measure 
when the two sequences are of similar length, 
with significant degree of similarity throughout. 
It also determines whether it is likely that two 
sequences evolved from the same string [21].   

− Smith-Waterman distance is a version of 
Needleman-Wunsch which measures local se-
quence alignment. In other words, it determines 
similar regions between two string sequences. In-
stead of looking at the total sequence, this algo-
rithm compares segments of all possible lengths 
and optimizes the similarity measure [23]. 

− Cosine similarity transforms the input string into 
vector space so that the Euclidean cosine rule is 
used to determine similarity [22]. 

− Jaccard measure is operated on two vectors X 
and Y. In this case, each vector is an entity name. 
The inner product of X and Y, and Euclidean 
norm of each vectors are used to calculate the 
similarity measure [22]. 

− Jaro measure finds words with spelling mistakes 
[9].  

2.2. Language based Methods 

Apart from similar appearance of entities name 
which has been measured through the string based 
methods, there are some semantic similarities be-
tween which reflect the applied language in ontolo-
gies. For example, although "car" and "automobile" 
have almost no string based similarity, but they refer 
to the same concept from language point of view.  

WordNet is the most popular lexicon in English 
[5]. It arranges the word semantically rather than 
morphologically. WordNet is a network which has 
several synset. Every synset includes words with the 
same sense. Here, WordNet's package of Alignment 
API tool has been used to measure possible linguistic 
similarities of correspond entities' names.  

2.3.  Structural based Methods  

Ontology alignment solely based on string and lin-
guistic similarities may fail. Because these similari-
ties only investigate the entities name without consi-
dering the entity's relation to other entities in its on-
tology. For instance, the result of applying the string 
and linguistic methods on two entities named "jack-
pot" from two given ontologies shows they are equal 
entities, while investigation of each entity in its own 
ontology may result opposite, e.g. if they are from 
two different ontology like kitchenware ontology and 
game ontology. Thus, structural based methods are 
defined to evaluate the similarity of entities and rela-
tions in two ontologies.  

This work has investigated two structural based 
methods from the OLA's tool [4]. These methods 
compute the similarity measure of class names and 
their property locally, which are then aggregated into 
one particular measure. 

3.  Machine Learning Techniques 

When similarity features of two given entities 
from two ontologies are selected and measured, they 
will be aggregated. There are several techniques to 
comput the optimal aggregation for different type of 
similarity measures such as fuzzy, weighted product, 
weighted sum, Minkowski and etc. [7]. However 
choosing the optimum parameters of these techniques 
such as thresholds and other constraints are difficult. 
ML provides another possibility to combine different 
similarity measures. Here, supervised ML methods 
are utilized to extract optimal model of compound 
metrics. Thus the alignment problem is transformed 
to a supervised ML task. 

The basis of any ML-based ontology alignment 
system is a classifier. So far, numerous classifiers 
have been developed and applied to ML-based deci-
sion making problems. Here, the ontology alignment 
(classification) is regarded as a probability density 
function modeling. In this way, a parametric ap-
proach is used, in which explicit assumptions are 
made about underlying model characteristic [24]. 
This includes some parameters that need to be opti-
mized by fitting the model to the dataset.  

In this work, the performance of several classifiers 
such as SVM, KNN, DT and a re-sampling ensemble 
method (AdaBoost) are analyzed to select the one 
with the most accurate results. These techniques are 
briefly introduced in the following sub-sections.       



3.1. Support Vector Machine (SVM) 

Given a set of training instances, which are 
marked as two categories of alignment and non-
alignment, an SVM training algorithm builds a model 
that predicts the category into which a new instance 
falls. Intuitively, an SVM model is a representation 
of the instances as points in space, so that the 
instances of the separate categories are divided by a 
clear gap that is as wide as possible. A new instance 
is then mapped into that same space and its category 
is predicted [25]. 

In other words, an SVM constructs a hyperplane 
or set of hyperplanes in a high or infinite dimensional 
space which can be used for classification, regression 
or other tasks. A good separation is achieved by the 
hyperplane that has the largest distance to the nearest 
training datasets of any class.  

For a separable classification task, the idea is to 
map the training data into a higher-dimensional fea-
ture space using a kernel function where a separating 
hyperplane (w,b) with w the weight vector and b the 
bias, can be found which maximizes the margin or 
distance from the closest data points. The optimum 
separating hyperplane can be represented based on 
the kernel function (as Eq. (1)). 
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where n is the number of training examples, yRiR is the 
lable value of example i, K represents  the kernel. 
Subject to the constraints αRiR ≥ 0 and ∑αRiRyRiR=0, there is 
a Lagrangian multiplier αRi Rfor each training point and 
only those training examples that lie close to the de-
cision boundary have nonzero αRiR. These examples are 
called support vectors. With a suitable choice of the 
kernel the original non-separable data in input space 
become separable in feature space. Thus, kernel subs-
titution presents a solution for obtaining nonlinear 
algorithms previously restricted to handling linearly 
separable cases. There are many kernels that can be 
used such as Gaussian Radial Basis function (RBF) 
as shown in Eq. (2).  
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where σ >0 is a constant that defines the kernel width. 

3.2. 10BK-Nearest Neighbors (KNN) 

The KNN classifier has been broadly used in ML 
applications due to its conceptual simplicity, and 
general applicability [24]. A KNN classifier is 
trained by storing all training patterns presented to it. 

During the test stage, the K stored entity pairs closest 
to the test entity pair are found using the Euclidian 
distance measure. A vote is then taken amongst those 
K neighbors and the most frequent class is assigned 
to that test entity pair. This assignment minimizes the 
probability of the considered test entity pair being 
wrongly classified. The reader is referred to [25] for 
the details of this algorithm. In KNN classification, 
the number of neighbors, i.e. K needs to be pre-
defined. A single nearest neighbor technique (K=1) is 
primarily suited to classifications where there is 
enough confidence in the fact that class distributions 
are non-overlapping and the features used are discri-
minatory. But in most practical applications, such as 
ours, more than one nearest neighbor is necessary for 
majority voting. 

A reasonable and practical approach would be to 
use trial and error to identify K such that it gives the 
lowest misclassification error rate. This is performed 
with different K values ranging from 1 to 9 to find 
the optimum value (section 5). 

3.3. 11BDecision Tree (DT) 

Different methods exist to build DTs, which sum-
marize given training data in a tree structure, with 
each branch representing an association between fea-
ture values and a class label. The most famous and 
representative amongst these is, perhaps, the C4.5 
algorithm [24]. It works by recursively partitioning 
the training dataset according to tests on the potential 
of feature values in separating the classes. The core 
of this algorithm is based on its original version, 
named the ID3. So, to have a basic understanding of 
how this algorithm works, the ID3 method is outlined 
below. 

  The DT is learned from a set of training instances 
through an iterative process, of choosing a similarity 
measure (i.e., feature) and splitting the given data set 
according to the values of that feature. The key ques-
tion here is which feature is the most influential in 
determining the classification and hence should be 
chosen first. Entropy measures or equivalently, in-
formation gains are used to select the most influential, 
which is intuitively deemed to be the feature of the 
lowest entropy (or of the highest information gain). 

In more detail, the learning algorithm works by:      
(a) computing the entropy measure for each feature, 
(b) partitioning the set of examples according to the 
possible values of the feature that has the lowest en-
tropy, and (c) for each subset of instances repeating 
these steps until all features have been partitioned or 
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other given termination conditions met. In order to 
compute the entropy measures, frequencies are used 
to estimate probabilities. Note that although feature 
tests are chosen one at a time in a greedy manner, 
they are dependent on results of previous tests. 

Explaining the results is one of the most popularity 
reasons of DT classifier in ontology alignment do-
main. It can be easily converted to set of rules or ex-
pression logic and created very fast [24, 25].  

3.4. AdaBoost 

For an ensemble technique to achieve higher accu-
racy than a single classifier, it is crucial that the base 
classifiers are sufficiently diverse. Bagging and 
Boosting are among the most popular re-sampling 
ensemble methods that generate and combine a 
diversity of classifiers using the same learning 
algorithm for the base classifiers. Boosting 
algorithms are considered stronger than bagging on 
noise free data. However, there are strong empirical 
indications that bagging is much more robust than 
boosting in noisy settings [26]. AdaBoost is a prac-
tical version of the boosting approach. Our experi-
mental results regarded to our dataset reveal that 
boosting methods outperform the bagging methods.  

Having provided an input training set including m 
elements, AdaBoost calls a given weak or base learn-
er algorithm repeatedly in a series of rounds t =1,…, 
T. One of the main ideas of algorithm is to maintain a 
distribution or set of weights over the training set. 
The weight of this distribution on training example i 
on round t is denoted by wi

t. Initially, all weights are 
set equally (e.g. wi

1=1/m), but on each round, the 
weight of misclassified examples are increased so 
that the weak learner forces to focus on the hard ex-
amples in the training set. The weak learner is re-
sponsible to find a weak hypothesis ht : X  {-1, +1} 
appropriate for the distribution wt

The distribution w
. 

t

t

tit
t
it

i C
xhyww )](exp[1 α−

=+

 is next updated using Eqs. (3) 
and (4):    

                                   (3) 








 −
=

t

t
t e

e1
ln

2
1α

                                                     (4) 

where Ct is a normalization factor, and et is the error 
of ht. As the result of Eq. (3), the weight of misclas-
sified examples by ht is increased, and the weight of 
correctly classified examples by ht

The output is calculated by final hypothesis f, 
shown in Eq. (5). It is a weighted majority vote of the 

T weak hypothesis, where α

 is decreased. Thus, 
the weight tends to concentrate on hard examples.  

t  is the weight assigned 
to ht

)(x))(sign(  (x)
T

1t
tt∑

=

= hf α

 [27].   

                                   (5) 

This work chooses DT and SVM as the base clas-
sifiers of AdaBoost.  

4. Proposed Alignment Method 

The proposed system is implemented in JAVA and 
adopted Alignment API framework and MATLAB.  

The datasets are taken from Ontology Alignment 
Evaluation Initiative (OAEI) which provides frame-
work in ontology alignment. These datasets are pro-
duced for alignment contest and provide several for-
mats [28]. Indeed, the evaluation of proposed system 
is carried out by OAEI API. 

Series #301-304 represent real-life ontologies for 
bibliographic references found on the web. Here, 
#301 is selected as training dataset, while #302-304 
series are considered as test datasets. It should be 
noted that all series are aligned to #101.  

To construct the similarity matrix, similarity 
measures (section 2) are applied to a pair of ontolo-
gies selected from the above datasets. The similarity 
matrix is a table with m rows and n columns; where 
m is the number of given entity pairs and n is the 
number of applied features (similarity measures). The 
truth alignment of each entity pair correspondent to 
each row of similarity matrix is called actual value. 
This value is defined by the expert and takes a value 
of 1 (i.e. aligned) or 0 (i.e. not aligned).  

Having provided the similarity matrix and target 
values, the problem would be reduced to a supervised 
learning task comprised of training and testing phases. 
Figure 1 illustrates the details. 

 
Training Phase Testing Phase 

Two Ontologies (as input)  
 

Extracting Similarity Matrix 
and Actual Values  

 
Aggregating Similarity Matrix 

via Classification  
 

Adjusting Classifier's  
Parameters 

 
Extracting Training Model  

(as output) 

Two Ontologies and Training 
Model (as input) 

 
Extracting Similarity Matrix 

and Actual Values  
 

Using Training Model  
on Similarity Matrix  

 
System Alignment (as output) 

 
Comparison of Actual Values 

and System Alignment 

Fig. 1. Training and testing phases in proposed alignment system. 



In this work, a binary classification with the objec-
tive of achieving the best possible alignments in an 
automatic and efficient way is introduced. 

Within the test stage, the trained optimum model is 
used to classify the new unseen similarity matrixes 
(test data) into two classes i.e. aligned or not aligned. 
This type of alignment is named system alignment.    

Each classifier is quantitatively evaluated by inde-
pendent test data; otherwise the evaluation would 
become biased and would not present a fair assess-
ment of the classifier performance. To assess the 
classifier generalization ability and thus measure the 
classification accuracy, system alignment and actual 
value of each entity pair are compared.    

4.1. Evaluation Criteria  

In ontology alignment task, precision and recall 
criteria are generally used to evaluate the system's 
performance [29]. These measures are defined as Eqs. 
(6) and (7).  

givenalignment 
alignmentcorrect givenalignment 

 Precision 
∩

=            (6)    

                           

alignmentcorrect 
alignmentcorrect givenalignment 

  Recall
∩

=                (7) 

F-measure is basically the harmonic mean of pre-
cision and recall, and defined as Eq. (8). 

Recall)  (Precision
Recall *Precision * 2  measure-F

+
=                         (8) 

F-measure is a common performance measure in 
information retrieval which balances precision and 
recall. Indeed, Alignment API provides a utility to 
evaluate the result of alignment [2,5]. 

4.2. 14BExperiments  

Here, four experiments have been conducted; each 
experiment considers an aspect which has its impact 
on the training model and final results. Furthermore, 
each experiment is carried out using different clas-
sifier (DT, SVM, KNN and AdaBoost models) and 
the results are compared against each other.  

These experiments are explained as follows. 

4.2.1. 15BFirst Experiment 
The first experiment has simply chosen the opti-

mum model based on those 15 similarity measures 
which are represented in section 2.    

4.2.2. 16BSecond Experiment  
This experiment investigates the comments role in 

ontology alignment, so that the comments of every 
entity (if exist) are added to the dataset. For extract-
ing valuable words, each sentence is tokenized and 
then dummy and auxiliary words are eliminated, so 
that remained words are meaningful information. 
Furthermore to save the time, this process is only 
employed on entity pairs which are not fully aligned 
and their similarity measure is less than 1.   

The rest of this experiment is the same as first ex-
periment.  

4.2.3. 17BThird Experiment 
This experiment explores the effect of training 

samples quantity on the quality of final trained model. 
In previous two experiments, two ontologies (#101, 
#301) are utilized to build the training model. In this 
experiment, the number of entity pairs is increased by 
using other ontologies such as #102, #103, i.e. entity 
pairs extracted from (#101, #102) and (#101, #103). 
So the diversity of instances in training phase is wi-
dened. To avoid training the model with similar input 
samples, those samples from #102 and #103 ontolo-
gies  which represent the highest variances are se-
lected.   

4.2.4. 18BFourth Experiment 
This experiment takes advantage of feature selec-

tion technique to eliminate the ineffective features. 
To do that, a feature selection method is used to rank 
features based on their weights in SVM. This method 
calculates the set of feature’s weight in SVM clas-
sifier and eliminates features that have less effect by 
iteration. So those features are only selected which 
lead to better discrimination ability [25]. As the result, 
8 features from section 2 i.e. SOMA, Needleman-
Wunsch, WordNet, Jaccard, Dice coefficient, N-
gram, and two structural similarities are chosen.  

Since the number of features is decreased from 15 
to 8, the similarity matrix is created faster and in less 
memory compared to first experiment. Furthermore, 
based on the result of second and third experiments, 
comments (if exist) are also added to the dataset and 
the diversity of instances is enlarged in training phase.  

5. 4BResults and Evaluation  

This study optimizes the classifiers. If every para-
meter of each classifier tunes well, the alignment 
result will be more accurate.  



The design of the SVM classifier architecture is 
simple and mainly requires the choice of kernel and 
its associated parameters. There are currently no 
techniques available to learn the form of kernel; thus 
a Gaussian RBF kernel function has been employed. 
We construct a set of SVM classifiers with range of 
values for the kernel parameter σ and with no restric-
tion on the Lagrange multipliers α i

In KNN classification, the number of neighbors, 
i.e. K needs to be pre-defined. A reasonable and 
practical approach would be to use trial and error to 
identify K such that it gives the lowest misclassifica-
tion rate. We performed such an experiment with 
different K values ranging from 1 to 9 (K is chosen to 
be odd to avoid tie votes), and found K = 3 as the 
optimum K value for the application at hand.  

. Having defined 
classification rate as the system alignment over the 
truth alignment, the best classification accuracy is 
achieved when σ = 0.1.  

In DT, having minimum tree without losing accu-
racy significantly decreases the costs. Therefore after 
constructing DT, it is configured to estimate the min-
imum tree with the lowest cost for every test set. 
Here, the minimum tree size is experimentally found 
to be 12. 

This work also experiments an AdaBoost method 
with two different base classifiers, i.e. SVM and DT 
noted as AdaBoost (SVM) and AdaBoost (DT), re-
spectively.  

In AdaBoost (SVM), finding a suitable σ for SVM 
base learner is non-trivial. Because having too large 
value for σ often results in too weak SVM classifier 
with RBF kernel. The AdaBoost (SVM) classifica-
tion accuracy is often less than 50% and cannot meet 
the requirement of a given AdaBoost classifier. On 
the other hand, a smaller σ often makes stronger 
SVM with RBF kernel and so boosting them may 
become inefficient [30]. Here, the AdaBoost (SVM) 
algorithm initiates firstly by one SVM base learner 
with the optimum σ value from previous experiment 
(i.e. σ = 0.1). The final optimum architecture is com-
prised from three SVM base learners with the opti-
mum σ values equal to 0.1, 0.09 and 0.08, respective-
ly.  

In AdaBoost (DT), having suitable tree size be-
comes important. Again, this value is set by 12 which 
obtained from previous experiment. The optimum 
number of AdaBoost rounds varies in each experi-
ment. Here, these round numbers have been found 18, 
2, 15, and 12 for experiment #1,…,#4, respectively.  

Table 1 summarizes the best F-measure perfor-
mances obtained from all experiments against the test 
set #302. As it can be seen, the KNN and AdaBoost 

provide the first and second best results, respectively. 
Indeed, the obtained performances for both AdaBoost 
(DT) and AdaBoost (SVM) classifiers are very close 
to each other. On the other hand, the worst results are 
provided by DT classifier.  

 
Table 1. F-measure values against test set #302. 

AdaBoost 
(SVM) 

AdaBoost 
(DT) SVM DT KNN Experiment 

0.89 0.89 0.89 0.85 0.92 #1 
0.91 0.91 0.89 0.88 0.91 #2 
0.90 0.91 0.91 0.85 0.92 #3 
0.90 0.89 0.87 0.83 0.92 #4 

 
Similarly, Table 2 and Table 3 summarize the best 

F-measure performances obtained from all experi-
ments against the test set #303 and #304 respectively. 
As it can be seen, the fourth experiment which bene-
fits from feature selection mostly outperforms the 
first experiment, while on average the KNN and 
AdaBoost (DT) classifiers perform better amongst all 
exploited classifiers. 

 
Table 2. F-measure values against test set #303. 

AdaBoost 
(SVM) 

AdaBoost 
(DT) SVM DT KNN Experiment 

0.82 0.87 0.80 0.86 0.86 #1 
0.79 0.87 0.76 0.84 0.81 #2 
0.90 0.84 0.80 0.87 0.85 #3 
0.88 0.90 0.88 0.86 0.87 #4 

 
Table 3. F-measure values against test set #304. 

AdaBoost 
(SVM) 

AdaBoost 
(DT) SVM DT KNN Experiment 

0.95 0.94 0.94 0.94 0.98 #1 
0.96 0.96 0.96 0.96 0.97 #2 
0.96 0.97 0.95 0.94 0.97 #3 
0.98 0.99 0.96 0.96 0.98 #4 

 
In general, F-measure values which are obtained 

against test sets #304 and #303 are the best and worst 
results, respectively. This is due to the fact that test 
set #304 has similar structure and vocabularies to the 
reference ontology, i.e. #101, while test set #303 has 
the least vocabularies and linguistic information. This 
trend also validates the recent attentions on reusing 
the existing ontologies.  

Although, the optimum AdaBoost (DT) model can 
provide the best results, but usually creation of train-



ing model for an ensemble-based classifier need 
much more time and memory compared to non-
ensemble ones. To this end, Table 4 represents the 
needed test time in terms of seconds to perform 
fourth experiment using different classifiers. As it 
can be seen, the required time for AdaBoost (DT) is 
reasonable compared to other non-ensemble classifi-
ers, but it is much longer for AdaBoost (SVM) clas-
sifier.  

Table 4. Time comparison of different classifiers in experiment #4. 

AdaBoost 
(SVM) 

AdaBoost 
(DT) SVM DT KNN Classifiers 

0.9070 0.3676 0.0304 0.3357 0.0798 Time (seconds) 
 
Table 5 compares the F-measure of this system 

with the most important previous approaches. The 
result of our fourth experiment using the KNN and 
AdaBoost (DT) achieve remarkable improvement in 
ontology alignment. 

 

Table 5. Comparison of different methods using the F-measure. 

OLA[18] OMAP[17] Properties[16] Classes[16] NB[15] DT[15] FOAM[9] 
Fourth Experiment  

AdaBoost (DT) KNN 
0.34 0.74 0.85 0.69 0.753 0.759 0.77 0.89 0.92 #302 
0.44 0.84 0.88 0.86 0.860 0.816 0.84 0.90 0.87 #303 
0.69 0.91 0.98 0.94 0.960 0.960 0.95 0.99 0.98 #304 

6. 5BConclusions  

This paper proposes an efficient method for ontol-
ogy alignment based on the combination of different 
similarity categories in one input sample. This, in 
turn, increases the discrimination ability of the model 
and enhances the system's overall accuracy.  

The proposed model determines the alignment 
process with no prior need to ontology instances, 
which facilitates alignment task. 

Through a comprehensive optimization process of 
operational parameters, our proposed model does not 
require any user intervention, and it has consistent 
performance for both aligned and non-aligned enti-
ties. 

AdaBoost (DT) model provides the best overall 
accuracy, especially when feature selection scheme is 
utilized. Experimental results demonstrate that the F-
measure criterion improves up to 99% which is better 
than other related works that have used up to 23 simi-
larity measures. Although, this work is using only 8 
similarity measures in its optimum model, but the 
possible impacts of feature reduction has been com-
pensated by using ontology comments, enlarging the 
diversity of training set samples, and choosing more 
effective similarity measures. This grants more accu-
racy and less computation cost which makes the pro-
posed model appropriate even for an online ontology 
alignment task.  
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