
Ontology-Based Clustering and Routing in Peer-to-Peer Networks

Juan Li, Son Vuong

Computer Science Department, University of British Columbia

{juanli, vuong}@cs.ubc.ca

Abstract

How to improve the performance of content

searching in peer-to-peer (P2P) systems is a

challenging issue. In this paper we attack this problem
by proposing a new decentralized P2P architecture –

ontology-based community overlays. The system

exploits the semantic property of the content in the

network to cluster nodes sharing similar interest
together to improve the query and searching

performance. Specifically, a distributed hash table

(DHT) based overlay is constructed to assist peers

organizing into communities. Those peers in the same
community form a Gnutella-like unstructured overlay.

This architecture helps reduce the search time and

decrease the network traffic by minimizing the number

of messages propagated in the system. Moreover, it
retains the desirable properties of existing

unstructured architectures, including being fully

decentralized with loose structure, and supporting

complex queries. We demonstrate by simulation, that
with this architecture, peers can get more relevant

resources faster and with less traffic generated.

1. Introduction

With the growing volume of information and

resources stored in P2P networks, it is becoming

increasingly difficult to search for desired resources in

P2P networks. Various querying and routing

techniques have been proposed for searching in P2P

networks. Currently, many popular commercial P2P

applications [15, 26] are built on top of unstructured

P2P networks. Flooding is the predominant search

technique in unstructured networks. This method,

though simple, does not scale well in terms of message

overhead. Recent work on DHTs [16–19] captures the

relationship between content name and content

location. They map an object to a key and guarantee to

locate the object within a bounded number of hops.

However, a missing feature in these systems is the

ability to support complex queries. More recently, a

few studies [10, 21, 22] extend the DHT scheme to

support keywords or multi-attribute queries. However

they may incur either huge traffic load for result

intersection, or large overhead for multiple publication

and update.

In this paper, we propose a query routing approach

which organizes nodes into community overlays

according to different categories defined in nodes’

content ontology. It forwards queries only to

semantically related overlays, and thus alleviating the

traffic load caused by flooding in large-sized Gnutella

systems. Specifically, the system includes two types of

overlay: an upper-level DHT-based category overlay

and multiple lower-level decentralized unstructured

community overlays. The DHT overlay helps peers

with similar interests locate each other and form

community overlays. In addition, it also helps node

forward queries to right communities. A community

overlay is composed of nodes with similar interest. It is

responsible for resolving queries related to this interest.

The benefit of this routing approach is that queries will

travel less and success is more likely to be achieved

with a smaller number of hops. As we show in this

paper, the system exhibits many plausible

characteristics, such as: supporting complex queries,

fast response, low bandwidth, and robust behavior.

The remainder of this paper is organized as follows.

Related work is discussed in Section 2. Section 3

describes the construction, maintenance and routing of

the DHT and community overlay networks. Section 4

gives the experimental results. Section 5 concludes the

paper.

2. Related work

Gnutella [15] is a representative of unstructured

P2P systems. It uses flooding to locate and retrieve

shared files. One advantage of it is inherent scalability

and good fault tolerance. However, Gnutella faces

serious scaling problems when the network is very

large [4]. There have been numerous attempts to

enhance its scalability. For example, [1] improves the

efficiency of searches in unstructured P2P networks by

Proceedings of the Sixth International Conference on Parallel and Distributed Computing, Applications and Technologies (PDCAT’05)
0-7695-2405-2/05 $20.00 © 2005 IEEE

topology adaptation, replication, and flow control.

Yang and Garcia-Molina [2] present several strategies,

such as iterative deepening and the DBF algorithm to

reduce the overhead of searching. Another algorithm,

called probabilistic flooding [3], has been modeled

using percolation theory. Random Walks [14, 20] are

an alternative to flooding for unstructured searches.

They usually utilize previous experience to help

forward the query. They can reduce the amount of

network traffic, but it is at the cost of query latency. In

addition, they are effective in locating popular content,

but perform poorly for more rare content.

Recently, hierarchical super-peer systems [13] have

been proposed to improve search efficiency. They

utilize the heterogeneity existing in P2P networks and

adopt hierarchy in the form of Ultrapeers (Gnutella

[15]) or Super-nodes (FastTrack [12]). These powerful

nodes maintain the indices for other nodes, therefore

searching can be carried out only among these more

powerful ones. The introduction of a new level of

hierarchy in the system increases the scale and speed of

a query lookup.

DHTs [16–19] have received a lot of attention in the

last few years. They map a content identifier to a key,

and guarantee that content can be located within a

bounded number of hops. These systems have been

shown to be scalable and efficient. However, a missing

feature is keyword searching and support for more

advanced queries. Another hurdle to DHT deployment

is their tight control of both data placement and

network topology, which makes them more sensitive to

failures and “churn”.

More recently, A few studies extend the DHTs to

address the problems mentioned above. In [21], DHTs

have been proposed to implement multiple-keyword

searching. The idea is to map each keyword to a key

and publish links to objects based on these keys. A

query with multiple keywords has to lookup each

keyword and returns the intersection. All related peers

have to exchange large amounts of data to get the

intersection. Systems like [23] try to avoid this

multiple lookup and intersection by storing a complete

keyword list on each node. However, this may incur a

huge overhead on publishing and storing the keywords.

Skipnet [9] provides range queries and data placement

flexibility on top of DHTs, but it requires many

pointers, thereby increasing the maintenance traffic.

And it cannot guarantee system-wide load balancing.

Semantic Web [5] attempts to define the metadata

information model for the World Wide Web to aid in

information retrieval and aggregation. It provides

general languages for describing any metadata.

Currently, many P2P applications [6, 7, 8] have

leveraged semantic web technologies to add semantics

to P2P systems, and thus improving the effectiveness

of content and query representation, and the efficiency

of content searching.

3. Framework

This section gives a detailed explanation of the

system architecture. Particularly, it explains how to

cluster nodes, how to create, maintain and search the

community overlays.

3.1. Clustering policies

To create peer communities, we need a clustering

policy to cluster peers. Since a peer’s interests can be

represented by its local data, data ontology properties

can be used to classify peers. Ontology is defined as “a

formal, explicit specification of a shared

conceptualization”, which can refer to the shared

understanding of some domains of interests. The

criteria of ontology classification can be very flexible.

For example, it can be a global taxonomy like domains

defined in Yahoo [24] and DMOZ [25]. Or it can be

general ontology formalizing notions such as processes

and events, time and space, physical objects, and so on.

We can assume taxonomy is defined in the data

ontology and each data item can be classified into one

type. Also, we assume queries can be classified with

the same policy.

3.2. Community construction

After the clustering policies have been determined,

the system can cluster peers according to it and create

peer communities. This section explains how to

construct community networks in detail.

Figure 1. System architecture

As shown in Fig. 1, the system consists of two kinds

of logical overlays: one DHT overlay and multiple

community overlays. The function of DHT overlay is

Proceedings of the Sixth International Conference on Parallel and Distributed Computing, Applications and Technologies (PDCAT’05)
0-7695-2405-2/05 $20.00 © 2005 IEEE

to assist the construction of community overlays.

Nodes in the DHT overlay are also user nodes that are

stable and have good Internet connectivity compared

with the rest nodes. Excluding ephemeral nodes from

the DHT overlay avoids unnecessary maintenance cost.

A node joins the DHT overlay only when three

conditions are satisfied: (1) The node satisfies the

capacity requirements, i.e., it is powerful. (2) It is

stable for a threshold time. (3) The load inside the

DHT overlay is high. Only all these three conditions

are satisfied, can a node join the DHT overlay to take

over some load.

In this paper we use Chord [18] to implement the

DHT overlay. Nodes are organized into a ring topology

corresponding to an ID space ranging from 0 to 2
m

-1,

where m can be set according to the network size. Each

node is assigned an ID drawn from this ID space, and

is responsible for the key range between its ID and the

ID of the previous node on the ring. When a new node

joins the system, it first classifies its data, and then

registers its major interests to the DHT overlay.

Specifically, an interest of the joining node is hashed

into a key in the ID space. The node in the DHT

overlay, whose ID immediately follows the interest’s

key is responsible for that interest, and is called the

access point of that interest. From the access point, the

new node would know other existing nodes sharing the

same interest. Then this new node contacts some of

these existing nodes and joins their communities. In

this way, nodes always connect to other nodes sharing

common interests, and thus they can form a

community overlay. Chord on average routes a

message to its destination in O(logM) hops, where M is

the number of nodes in the Chord overlay. In our

system, M is much less than N, the total number of

nodes in the system. Therefore, it should be very fast to

locate an interest in the DHT overlay. Fig. 1 shows

how a new node finds its interested community and

joins to that community overlay. Note: a node can join

several community overlays at the same time.

3.3. Query routing

Since peers with similar interests are in the same

community overlay, we can expect that most queries

would be satisfied within the local community. When a

node initiates a query request, the request is propagated

from that node to the whole community. Various

strategies can be used for request forwarding inside the

community overlay. For example, if controlled

flooding such as the Gnutella searching protocol is

used, the query is forwarded on to neighbors until the

time-to-live (TTL) value reaches zero. We do not focus

on how queries are routed within a community overlay,

since it has been well studied in many literatures.

It is possible, though infrequent, nodes may want to

search content in different categories. To resolve these

query requests, communities which are in charge of the

related interests have to be located first. Then queries

can be forwarded to these communities and be

answered by nodes there. The DHT overlay facilitates

query forwarding among communities, just as it helps

nodes join their interested communities. After the

category of the query has been determined, the

community in charge can be found by checking the

category in the DHT overlay. Then the request is

forwarded to entry nodes of the related community

overlay, and is propagated in that overlay. To alleviate

the lookup overhead on the DHT overlay, node will

first check its own local host cache to see whether it

has cached entry nodes falling into the target

community. Moreover, it can also query neighboring

nodes on their local host caches. Only after all these

attempts fail, will the lookup request for entry nodes of

a community be forwarded to DHT overlay network.

3.4. Overlay maintenance

It is necessary to maintain the DHT and community

overlays to ensure that they remain working as nodes

update their interests, join and leave the network. The

DHT overlay uses its corresponding DHT membership

protocol to maintain the overlay topology, for example

Chord [18] or Pastry [17] protocol may be used. The

load of DHT overlay comes from peers’ register,

update and lookup operations. To control the overhead,

the update period can be adaptively adjusted. Both the

register and update messages are lightweight: basically

only the key of the interest and the IP address of the

peer need to be recorded. Besides, only the most

representative interests, usually only a few, are

registered for each peer. To reduce the lookup

overhead, nodes will check their own cache and their

neighbors’ caches first, before they lookup the DHT

overlay network.

Nodes in the community overlay form an

unstructured P2P network. The maintenance of the

unstructured network like Gnutella is simple and

lightweight. As mentioned, a new node joins the

community overlay by connecting some entry nodes

obtained from the DHT overlay. Inside the community

overlay, nodes use Ping and Pong protocol to update

neighbor table. In addition, nodes need to detect

failures and repair faulty neighbors. The simplest

approach to detect failures is to periodically send a

hello message to every node in its neighbor table.

Since its neighbors do the same, each node should

receive a message from each neighbor in each period.

If it does not receive this message, it probes the node

and if the node does not reply it marks it faulty.

Proceedings of the Sixth International Conference on Parallel and Distributed Computing, Applications and Technologies (PDCAT’05)
0-7695-2405-2/05 $20.00 © 2005 IEEE

4. Experiment

We performed extensive simulations to evaluate the

performance of the routing scheme. In this section, we

first describe our simulation methodology, and then

present results for different simulation scenarios.

The topology of the network defines the number of

nodes and how they are connected. In our model, we

used BRITE [11], a well-known topology generator to

create two kinds of network topologies: the random

graph and the power-law graph. The network is created

by adding nodes one by one. And the performance test

starts after all nodes have joined the network. The

resource set includes 50,000 resources, and falling into

500 categories. We model the location of these

resources using two distributions: the uniform

distribution and a 70/30 biased distribution. Requesters

are randomly chosen from the network. The dynamic

network behaviors are simulated as this: in every unit

simulation time, an active node has a 20% possibility

to create a query, 1% possibility to update its

resources, and 1% possibility to leave the system.

Also, the same numbers of offline nodes join the

system, and they start functioning without any prior

knowledge. Our evaluation metrics are: (1) the recall

rate which is defined as the number of results returned

divided by the number of results actually available in

the network; (2) the number of messages to forward

queries; (3) the number of hops to resolve a query.

In the following experiments, we use Gnutella

protocol as our intra-community searching protocol.

To make comparisons we simulate our community-

based searching scheme in conjunction with flat

Gnutella searching.

0%
20%
40%
60%
80%

100%

1
0

0
0

2
0

0
0

3
0

0
0

4
0

0
0

5
0

0
0

6
0

0
0

7
0

0
0

8
0

0
0

9
0

0
0

1
0

0
0

0

re
ca

ll

Gnutella
Community

Figure 2. Recall rate versus network size

0
500

1000
1500
2000

1
0

0
0

2
0

0
0

3
0

0
0

4
0

0
0

5
0

0
0

6
0

0
0

7
0

0
0

8
0

0
0

9
0

0
0

1
0

0
0

0a
v

g
 m

sg
 p

e
r

q
u

er
y

Gnutella
Community

Figure 3. Message overhead versus network size

Fig. 2 and Fig. 3 compare the two routing strategies

in terms of query recall rate and query message

consumption. The network size increases from 1000 to

10000 and the TTL value is set 5. As expected, our

community routing outperforms Gnutella routing on

both metrics. In Fig. 2, Gnutella’s recall rate decreases

substantially as the network size increases, but our

community routing is not directly affected by the

network size. We can see that our routing scheme

achieves a high recall rate even when the network size

is very large. Fig 3 shows that our community routing

sends significantly fewer messages than Gnutella does,

to resolve a query, i.e., our system accrues lower costs.

This is because, when given a request, the community

routing can select a small number of overlay networks

whose nodes have a higher number of hits. Nodes that

have few results for this query will not receive it.

Therefore, the searching space is reduced and queries

get more results with certain TTL.

0%

20%

40%

60%

80%

100%

1 2 3 4 5 6 7 8 9 10

re
c
a
ll

Gnutella

Community

Figure 4. Recall rate versus TTL

0

50

100

150

200

1000 3000 5000 7000 9000

a
v

g
 m

sg
 p

e
r

q
u

e
ry no

yes

Figure 5. Effect of cache

Figure 4 illustrates the relationship of the query

recall rate with the query TTL. The network size is

8000 in this experiment. Under the same TTL value,

our community routing can achieve higher recall rate

compared with Gnutella. We can see, in our system, a

recall rate near 100 percent can be achieved with a

very small TTL value. Figure 5 depicts the effect of

using cache in the routing process. It is clear that using

cache improves the searching performance by

decreasing the message overhead.

5. Conclusion

As more and more resources appear in P2P

networks, there is an increasing need to find an

effective and efficient way to discover and query these

resources. In this paper, we’ve presented an ontology-

based community routing architecture to optimize

search in P2P networks. This architecture integrates the

advantage of both structured and unstructured P2P

systems. It adopts a decentralized technique for

Proceedings of the Sixth International Conference on Parallel and Distributed Computing, Applications and Technologies (PDCAT’05)
0-7695-2405-2/05 $20.00 © 2005 IEEE

identifying groups of nodes with common interests and

build overlays that mirror shared interests. The

community overlay searching scheme achieves higher

efficiency and scalability than a pure flooding-based or

history-based search scheme. At the same time it also

retains desirable features of search in unstructured

overlays such as self-organizing, fully distributed,

scalable, and inherent support for rich resource

descriptions and complex queries. Simulation

experiments show that the proposed routing schemes

are both efficient and scalable.

6. References

[1] Chawathe, Y., Ratnasam, S., Breslau, L. Lanhan, N.
Shenker, S. “Making Gnutella-like P2P Systems Scalable”,
In Proceedings of ACM SIGCOMM’03.

[2] B.Yang, H.Garcia-Molina, “Efficient search in peer-to-
peer networks”, Proc. of CDCS’02, Vienna, Austria, July
2002

[3] Banaei-Kashani, F. and C. Shahabi. “Criticality-based
analysis and design of unstructured peer-to-peer networks
as complex systems”. Proceedings of the 3rd IEEE/ACM
International Symposium on Cluster Computing and the
Grid, pp. 351-358.

[4] Ajay Chander, Steven Dawson, etc., “NEVRLATE:
Scalable Resource Discovery”, Proceedings of
CCGRID’02.

[5] T Berners-Lee, J Hendler, O Lassila, "The semantic web".
Scientific American, 2001, 284(5):34–43.

[6] M. Schlosser, M. Sintek, S. Decker and W. Nejdl. “A
Scalable and Ontology-Based P2P Infrastructure for
Semantic Web Services”. Second International
Conference on Peer-to-Peer Computing (P2P’02)
September 05-07, Linkoping, Sweden 2002.

[7] W. Nejdl, M. Wolpers, W. Siberski, A. Loser, I.
Bruckhorst, M. Schlosser, and C. Schmitz. “Super-Peer-
Based Routing and Clustering Strategies for RDF-Based
Peer-To-Peer Networks.” In Proceedings of the Twelfth
International World Wide Web Conference (WWW2003),
Budapest, Hungary, May 2003.

[8] A. Halevy, Z. Ives, I. Tatarinov, and P. Mork. Piazza:
Data management infrastructure for semantic web
applications. In Proc. of the Int. WWW Conf., 2003.

[9] N. J.A. Harvey, M.B. Jones, S. Saroiu, M. Theimer, and
A. Wolman. “SkipNet:A Scalable Overlay Network with
Practical Locality Properties”. In Proceedings of the
Fourth USENIX Symposium on Internet Technologies and
Systems (USITS ’03), Mar. 2003.

[10] S. Shi, Y. Guanwen, D. Wang, J. Yu, S. Qu and M.
Chen “Making Peer-to-Peer Keyword Searching Feasible
Using Multi-level Partitioning”. Proc. Of the 3rd
International Workshop on Peer-to-Peer Systems, San
Diego, CA, USA, February.

[11] A.Medina, A. Lakhina, I.Matta, and J. Byers, “BRITE:
An Approach to Universal Topology Generation,” Proc.
The International Workshop on Modeling, Analysis and
Simulation of Computer and Telecommunications
Systems- MASCOTS, Cincinnati, Ohio, August 2001.

[12] B.Yang and H.Garcia-Molina, Designing a Super-Peer
Ntrwork, Proc. 19th Int’l Conf. Data Engineering, IEEE
Computer Society Press, Los Alamitos, CA, March 2003

[13] B.Yang and H.Garcia-Molina, “Designing a Super-Peer
Ntrwork”, Proc. 19th Int’l Conf. Data Engineering, Los
Alamitos, CA, March 2003

[14] Lv, C., Cao, P., Cohen, E., Li, K., Shenker, S. “Search
and replication in unstructured peer-to-peer networks”. In:
ACM, SIGMETRICS 2002.

[15] Gnutella website. http://gnutella.wego.com/
[16] B. Y. Zhao, J. D. Kubiatowicz, and A. D. Joseph.

“Tapestry: An Infrastructure for Fault-Tolerant Wide-
Area Location and Routing,” Technical Report,
UCB/CSD-01-1141, April 2000.

[17] A. Rowstron and P. Druschel. “Pastry: Scalable,
Distributed Object Location and Routing for Large-Scale
Peer-to-Peer Systems,” Proceedings of the IFIP/ACM
International Conference on Distributed Systems
Platforms, Middleware, November 2001.

[18] I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and
H.Balakrishnan. “Chord: A Scalable Peer-to-Peer Lookup
Service for Internet Applications,” ACM SIGCOMM,
August 2001, pp. 149-160.

[19] S. Ratnasamy, P.Francis, M.Handley, R.Karp, and S.
Shenker. “A Scalable Content-Addressable Network,”
ACM SIGCOMM, August 2001, pp. 161-172.

[20] Adamic, L., Huberman, B., Lukose, R., Puniyani, A.:
“Search in power law networks”. Physical Review (2001)

[21] P.Reynolds and A. Vahdat. “Efficient Peer-to-Peer
Keyword Searching”. In Proceedings of
ACM/IFIP/USENIX Middleware, June 2003

[22] M. Cai, M. Frank, J. Chen and P. Szekely, “ MAAN: A
Multi-Attribute Addressable Network for Grid
Information Services”. The 4th International Workshop
on Grid Computing, 2003.

[23] C.Tang and S.Dwarkadas. “Hybrid Gloablal-Local
Indexing for Efficient Peer-to-Peer Information Retrieval”.
In Proceedings of USENIX NSDI, March 2004.

[24] Yahoo website. http://www.yahoo.com
[25] DMOZ website. http://www.dmoz.org
[26] Kazaa website. http://www.kazaa.com/

Proceedings of the Sixth International Conference on Parallel and Distributed Computing, Applications and Technologies (PDCAT’05)
0-7695-2405-2/05 $20.00 © 2005 IEEE

