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Abstract 

How to improve the performance of content 

searching in peer-to-peer (P2P) systems is a 

challenging issue. In this paper we attack this problem 
by proposing a new decentralized P2P architecture – 

ontology-based community overlays. The system 

exploits the semantic property of the content in the 

network to cluster nodes sharing similar interest 
together to improve the query and searching 

performance. Specifically, a distributed hash table 

(DHT) based overlay is constructed to assist peers 

organizing into communities. Those peers in the same 
community form a Gnutella-like unstructured overlay. 

This architecture helps reduce the search time and 

decrease the network traffic by minimizing the number 

of messages propagated in the system. Moreover, it 
retains the desirable properties of existing 

unstructured architectures, including being fully 

decentralized with loose structure, and supporting 

complex queries. We demonstrate by simulation, that 
with this architecture, peers can get more relevant 

resources faster and with less traffic generated. 

1. Introduction 

With the growing volume of information and 

resources stored in P2P networks, it is becoming 

increasingly difficult to search for desired resources in 

P2P networks. Various querying and routing 

techniques have been proposed for searching in P2P 

networks. Currently, many popular commercial P2P 

applications [15, 26] are built on top of unstructured 

P2P networks. Flooding is the predominant search 

technique in unstructured networks. This method, 

though simple, does not scale well in terms of message 

overhead. Recent work on DHTs [16–19] captures the 

relationship between content name and content 

location. They map an object to a key and guarantee to 

locate the object within a bounded number of hops. 

However, a missing feature in these systems is the 

ability to support complex queries. More recently, a 

few studies [10, 21, 22] extend the DHT scheme to 

support keywords or multi-attribute queries. However 

they may incur either huge traffic load for result 

intersection, or large overhead for multiple publication 

and update.  

In this paper, we propose a query routing approach 

which organizes nodes into community overlays 

according to different categories defined in nodes’ 

content ontology. It forwards queries only to 

semantically related overlays, and thus alleviating the 

traffic load caused by flooding in large-sized Gnutella 

systems. Specifically, the system includes two types of 

overlay: an upper-level DHT-based category overlay 

and multiple lower-level decentralized unstructured 

community overlays. The DHT overlay helps peers 

with similar interests locate each other and form 

community overlays. In addition, it also helps node 

forward queries to right communities. A community 

overlay is composed of nodes with similar interest. It is 

responsible for resolving queries related to this interest. 

The benefit of this routing approach is that queries will 

travel less and success is more likely to be achieved 

with a smaller number of hops. As we show in this 

paper, the system exhibits many plausible 

characteristics, such as: supporting complex queries, 

fast response, low bandwidth, and robust behavior.  

The remainder of this paper is organized as follows. 

Related work is discussed in Section 2. Section 3 

describes the construction, maintenance and routing of 

the DHT and community overlay networks. Section 4 

gives the experimental results. Section 5 concludes the 

paper.

2. Related work 

Gnutella [15] is a representative of unstructured 

P2P systems. It uses flooding to locate and retrieve 

shared files. One advantage of it is inherent scalability 

and good fault tolerance. However, Gnutella faces 

serious scaling problems when the network is very 

large [4]. There have been numerous attempts to 

enhance its scalability. For example, [1] improves the 

efficiency of searches in unstructured P2P networks by 
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topology adaptation, replication, and flow control. 

Yang and Garcia-Molina [2] present several strategies, 

such as iterative deepening and the DBF algorithm to 

reduce the overhead of searching. Another algorithm, 

called probabilistic flooding [3], has been modeled 

using percolation theory. Random Walks [14, 20] are 

an alternative to flooding for unstructured searches. 

They usually utilize previous experience to help 

forward the query. They can reduce the amount of 

network traffic, but it is at the cost of query latency. In 

addition, they are effective in locating popular content, 

but perform poorly for more rare content.  

Recently, hierarchical super-peer systems [13] have 

been proposed to improve search efficiency. They 

utilize the heterogeneity existing in P2P networks and 

adopt hierarchy in the form of Ultrapeers (Gnutella 

[15]) or Super-nodes (FastTrack [12]). These powerful 

nodes maintain the indices for other nodes, therefore 

searching can be carried out only among these more 

powerful ones. The introduction of a new level of 

hierarchy in the system increases the scale and speed of 

a query lookup. 

DHTs [16–19] have received a lot of attention in the 

last few years. They map a content identifier to a key, 

and guarantee that content can be located within a 

bounded number of hops. These systems have been 

shown to be scalable and efficient. However, a missing 

feature is keyword searching and support for more 

advanced queries. Another hurdle to DHT deployment 

is their tight control of both data placement and 

network topology, which makes them more sensitive to 

failures and “churn”.  

More recently, A few studies extend the DHTs to 

address the problems mentioned above. In [21], DHTs 

have been proposed to implement multiple-keyword 

searching. The idea is to map each keyword to a key 

and publish links to objects based on these keys. A 

query with multiple keywords has to lookup each 

keyword and returns the intersection. All related peers 

have to exchange large amounts of data to get the 

intersection. Systems like [23] try to avoid this 

multiple lookup and intersection by storing a complete 

keyword list on each node. However, this may incur a 

huge overhead on publishing and storing the keywords. 

Skipnet [9] provides range queries and data placement 

flexibility on top of DHTs, but it requires many 

pointers, thereby increasing the maintenance traffic. 

And it cannot guarantee system-wide load balancing.  

Semantic Web [5] attempts to define the metadata 

information model for the World Wide Web to aid in 

information retrieval and aggregation. It provides 

general languages for describing any metadata. 

Currently, many P2P applications [6, 7, 8] have 

leveraged semantic web technologies to add semantics 

to P2P systems, and thus improving the effectiveness 

of content and query representation, and the efficiency 

of content searching. 

3. Framework 

This section gives a detailed explanation of the 

system architecture. Particularly, it explains how to 

cluster nodes, how to create, maintain and search the 

community overlays. 

3.1. Clustering policies 

To create peer communities, we need a clustering 

policy to cluster peers. Since a peer’s interests can be 

represented by its local data, data ontology properties 

can be used to classify peers. Ontology is defined as “a 

formal, explicit specification of a shared 

conceptualization”, which can refer to the shared 

understanding of some domains of interests. The 

criteria of ontology classification can be very flexible. 

For example, it can be a global taxonomy like domains 

defined in Yahoo [24] and DMOZ [25]. Or it can be 

general ontology formalizing notions such as processes 

and events, time and space, physical objects, and so on. 

We can assume taxonomy is defined in the data 

ontology and each data item can be classified into one 

type. Also, we assume queries can be classified with 

the same policy. 

3.2. Community construction 

After the clustering policies have been determined, 

the system can cluster peers according to it and create 

peer communities. This section explains how to 

construct community networks in detail. 

Figure 1. System architecture 

As shown in Fig. 1, the system consists of two kinds 

of logical overlays: one DHT overlay and multiple 

community overlays. The function of DHT overlay is 
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to assist the construction of community overlays. 

Nodes in the DHT overlay are also user nodes that are 

stable and have good Internet connectivity compared 

with the rest nodes. Excluding ephemeral nodes from 

the DHT overlay avoids unnecessary maintenance cost. 

A node joins the DHT overlay only when three 

conditions are satisfied:  (1) The node satisfies the 

capacity requirements, i.e., it is powerful. (2) It is 

stable for a threshold time. (3) The load inside the 

DHT overlay is high. Only all these three conditions 

are satisfied, can a node join the DHT overlay to take 

over some load.  

In this paper we use Chord [18] to implement the 

DHT overlay. Nodes are organized into a ring topology 

corresponding to an ID space ranging from 0 to 2
m

-1, 

where m can be set according to the network size. Each 

node is assigned an ID drawn from this ID space, and 

is responsible for the key range between its ID and the 

ID of the previous node on the ring. When a new node 

joins the system, it first classifies its data, and then 

registers its major interests to the DHT overlay. 

Specifically, an interest of the joining node is hashed 

into a key in the ID space. The node in the DHT 

overlay, whose ID immediately follows the interest’s 

key is responsible for that interest, and is called the 

access point of that interest. From the access point, the 

new node would know other existing nodes sharing the 

same interest. Then this new node contacts some of 

these existing nodes and joins their communities. In 

this way, nodes always connect to other nodes sharing 

common interests, and thus they can form a 

community overlay. Chord on average routes a 

message to its destination in O(logM) hops, where M is 

the number of nodes in the Chord overlay. In our 

system, M is much less than N, the total number of 

nodes in the system. Therefore, it should be very fast to 

locate an interest in the DHT overlay. Fig. 1 shows 

how a new node finds its interested community and 

joins to that community overlay. Note: a node can join 

several community overlays at the same time. 

3.3. Query routing 

Since peers with similar interests are in the same 

community overlay, we can expect that most queries 

would be satisfied within the local community. When a 

node initiates a query request, the request is propagated 

from that node to the whole community. Various 

strategies can be used for request forwarding inside the 

community overlay. For example, if controlled 

flooding such as the Gnutella searching protocol is 

used, the query is forwarded on to neighbors until the 

time-to-live (TTL) value reaches zero. We do not focus 

on how queries are routed within a community overlay, 

since it has been well studied in many literatures.  

It is possible, though infrequent, nodes may want to 

search content in different categories. To resolve these 

query requests, communities which are in charge of the 

related interests have to be located first. Then queries 

can be forwarded to these communities and be 

answered by nodes there. The DHT overlay facilitates 

query forwarding among communities, just as it helps 

nodes join their interested communities. After the 

category of the query has been determined, the 

community in charge can be found by checking the 

category in the DHT overlay. Then the request is 

forwarded to entry nodes of the related community 

overlay, and is propagated in that overlay. To alleviate 

the lookup overhead on the DHT overlay, node will 

first check its own local host cache to see whether it 

has cached entry nodes falling into the target 

community. Moreover, it can also query neighboring 

nodes on their local host caches. Only after all these 

attempts fail, will the lookup request for entry nodes of 

a community be forwarded to DHT overlay network.  

3.4. Overlay maintenance 

It is necessary to maintain the DHT and community 

overlays to ensure that they remain working as nodes 

update their interests, join and leave the network. The 

DHT overlay uses its corresponding DHT membership 

protocol to maintain the overlay topology, for example 

Chord [18] or Pastry [17] protocol may be used. The 

load of DHT overlay comes from peers’ register, 

update and lookup operations. To control the overhead, 

the update period can be adaptively adjusted. Both the 

register and update messages are lightweight: basically 

only the key of the interest and the IP address of the 

peer need to be recorded. Besides, only the most 

representative interests, usually only a few, are 

registered for each peer. To reduce the lookup 

overhead, nodes will check their own cache and their 

neighbors’ caches first, before they lookup the DHT 

overlay network. 

Nodes in the community overlay form an 

unstructured P2P network. The maintenance of the 

unstructured network like Gnutella is simple and 

lightweight.  As mentioned, a new node joins the 

community overlay by connecting some entry nodes 

obtained from the DHT overlay. Inside the community 

overlay, nodes use Ping and Pong protocol to update 

neighbor table. In addition, nodes need to detect 

failures and repair faulty neighbors. The simplest 

approach to detect failures is to periodically send a 

hello message to every node in its neighbor table. 

Since its neighbors do the same, each node should 

receive a message from each neighbor in each period. 

If it does not receive this message, it probes the node 

and if the node does not reply it marks it faulty. 
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4. Experiment 

We performed extensive simulations to evaluate the 

performance of the routing scheme. In this section, we 

first describe our simulation methodology, and then 

present results for different simulation scenarios.  

The topology of the network defines the number of 

nodes and how they are connected. In our model, we 

used BRITE [11], a well-known topology generator to 

create two kinds of network topologies: the random 

graph and the power-law graph. The network is created 

by adding nodes one by one. And the performance test 

starts after all nodes have joined the network. The 

resource set includes 50,000 resources, and falling into 

500 categories. We model the location of these 

resources using two distributions: the uniform 

distribution and a 70/30 biased distribution. Requesters 

are randomly chosen from the network. The dynamic 

network behaviors are simulated as this: in every unit 

simulation time, an active node has a 20% possibility 

to create a query, 1% possibility to update its 

resources, and 1% possibility to leave the system. 

Also, the same numbers of offline nodes join the 

system, and they start functioning without any prior 

knowledge. Our evaluation metrics are: (1) the recall 

rate which is defined as the number of results returned 

divided by the number of results actually available in 

the network; (2) the number of messages to forward 

queries; (3) the number of hops to resolve a query. 

In the following experiments, we use Gnutella 

protocol as our intra-community searching protocol. 

To make comparisons we simulate our community-

based searching scheme in conjunction with flat 

Gnutella searching.  
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Figure 2. Recall rate versus network size 
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Figure 3. Message overhead versus network size 

Fig. 2 and Fig. 3 compare the two routing strategies 

in terms of query recall rate and query message 

consumption. The network size increases from 1000 to 

10000 and the TTL value is set 5. As expected, our 

community routing outperforms Gnutella routing on 

both metrics. In Fig. 2, Gnutella’s recall rate decreases 

substantially as the network size increases, but our 

community routing is not directly affected by the 

network size. We can see that our routing scheme 

achieves a high recall rate even when the network size 

is very large. Fig 3 shows that our community routing 

sends significantly fewer messages than Gnutella does, 

to resolve a query, i.e., our system accrues lower costs. 

This is because, when given a request, the community 

routing can select a small number of overlay networks 

whose nodes have a higher number of hits. Nodes that 

have few results for this query will not receive it. 

Therefore, the searching space is reduced and queries 

get more results with certain TTL. 
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Figure 4. Recall rate versus TTL 
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Figure 5. Effect of cache 

Figure 4 illustrates the relationship of the query 

recall rate with the query TTL. The network size is 

8000 in this experiment. Under the same TTL value, 

our community routing can achieve higher recall rate 

compared with Gnutella. We can see, in our system, a 

recall rate near 100 percent can be achieved with a 

very small TTL value. Figure 5 depicts the effect of 

using cache in the routing process. It is clear that using 

cache improves the searching performance by 

decreasing the message overhead. 

5. Conclusion 

As more and more resources appear in P2P 

networks, there is an increasing need to find an 

effective and efficient way to discover and query these 

resources. In this paper, we’ve presented an ontology-

based community routing architecture to optimize 

search in P2P networks. This architecture integrates the 

advantage of both structured and unstructured P2P 

systems. It adopts a decentralized technique for 
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identifying groups of nodes with common interests and 

build overlays that mirror shared interests. The 

community overlay searching scheme achieves higher 

efficiency and scalability than a pure flooding-based or 

history-based search scheme. At the same time it also 

retains desirable features of search in unstructured 

overlays such as self-organizing, fully distributed, 

scalable, and inherent support for rich resource 

descriptions and complex queries. Simulation 

experiments show that the proposed routing schemes 

are both efficient and scalable. 

6. References 

[1] Chawathe, Y., Ratnasam, S., Breslau, L. Lanhan, N. 
Shenker, S. “Making Gnutella-like P2P Systems Scalable”, 
In Proceedings of ACM SIGCOMM’03.

[2] B.Yang, H.Garcia-Molina, “Efficient search in peer-to-
peer networks”, Proc. of CDCS’02, Vienna, Austria, July 
2002 

[3] Banaei-Kashani, F. and C. Shahabi. “Criticality-based 
analysis and design of unstructured peer-to-peer networks 
as complex systems”. Proceedings of the 3rd IEEE/ACM 
International Symposium on Cluster Computing and the 
Grid, pp. 351-358. 

[4] Ajay Chander, Steven Dawson, etc., “NEVRLATE: 
Scalable Resource Discovery”, Proceedings of 
CCGRID’02.

[5] T Berners-Lee, J Hendler, O Lassila, "The semantic web". 
Scientific American, 2001, 284(5):34–43. 

[6] M. Schlosser, M. Sintek, S. Decker and W. Nejdl. “A 
Scalable and Ontology-Based P2P Infrastructure for 
Semantic Web Services”. Second International 
Conference on Peer-to-Peer Computing (P2P’02) 
September 05-07, Linkoping, Sweden 2002.

[7] W. Nejdl, M. Wolpers, W. Siberski, A. Loser, I. 
Bruckhorst, M. Schlosser, and C. Schmitz. “Super-Peer-
Based Routing and Clustering Strategies for RDF-Based 
Peer-To-Peer Networks.” In Proceedings of the Twelfth 
International World Wide Web Conference (WWW2003), 
Budapest, Hungary, May 2003. 

[8] A. Halevy, Z. Ives, I. Tatarinov, and P. Mork. Piazza: 
Data management infrastructure for semantic web 
applications. In Proc. of the Int. WWW Conf., 2003. 

[9] N. J.A. Harvey, M.B. Jones, S. Saroiu, M. Theimer, and 
A. Wolman. “SkipNet:A Scalable Overlay Network with 
Practical Locality Properties”. In Proceedings of the 
Fourth USENIX Symposium on Internet Technologies and 
Systems (USITS ’03), Mar. 2003. 

[10] S. Shi, Y. Guanwen, D. Wang, J. Yu, S. Qu and M. 
Chen “Making Peer-to-Peer Keyword Searching Feasible 
Using Multi-level Partitioning”. Proc. Of the 3rd 
International Workshop on Peer-to-Peer Systems, San 
Diego, CA, USA, February. 

[11] A.Medina, A. Lakhina, I.Matta, and J. Byers, “BRITE: 
An Approach to Universal Topology Generation,” Proc. 
The International Workshop on Modeling, Analysis and 
Simulation of Computer and Telecommunications 
Systems- MASCOTS, Cincinnati, Ohio, August 2001. 

[12] B.Yang and H.Garcia-Molina, Designing a Super-Peer 
Ntrwork, Proc. 19th Int’l Conf. Data Engineering, IEEE 
Computer Society Press, Los Alamitos, CA, March 2003 

[13] B.Yang and H.Garcia-Molina, “Designing a Super-Peer 
Ntrwork”, Proc. 19th Int’l Conf. Data Engineering, Los 
Alamitos, CA, March 2003 

[14] Lv, C., Cao, P., Cohen, E., Li, K., Shenker, S. “Search 
and replication in unstructured peer-to-peer networks”. In: 
ACM, SIGMETRICS 2002.  

[15] Gnutella website. http://gnutella.wego.com/ 
[16] B. Y. Zhao, J. D. Kubiatowicz, and A. D. Joseph. 

“Tapestry: An Infrastructure for Fault-Tolerant Wide-
Area Location and Routing,” Technical Report, 
UCB/CSD-01-1141, April 2000. 

[17] A. Rowstron and P. Druschel. “Pastry: Scalable, 
Distributed Object Location and Routing for Large-Scale 
Peer-to-Peer Systems,” Proceedings of the IFIP/ACM 
International Conference on Distributed Systems 
Platforms, Middleware, November 2001. 

[18] I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and 
H.Balakrishnan. “Chord: A Scalable Peer-to-Peer Lookup 
Service for Internet Applications,” ACM SIGCOMM,
August 2001, pp. 149-160. 

[19] S. Ratnasamy, P.Francis, M.Handley, R.Karp, and S. 
Shenker. “A Scalable Content-Addressable Network,” 
ACM SIGCOMM, August 2001, pp. 161-172. 

[20] Adamic, L., Huberman, B., Lukose, R., Puniyani, A.: 
“Search in power law networks”. Physical Review (2001)  

[21] P.Reynolds and A. Vahdat. “Efficient Peer-to-Peer 
Keyword Searching”. In Proceedings of 
ACM/IFIP/USENIX Middleware, June 2003 

[22] M. Cai, M. Frank, J. Chen and P. Szekely, “ MAAN: A 
Multi-Attribute Addressable Network for Grid 
Information Services”. The 4th International Workshop 
on Grid Computing, 2003.  

[23] C.Tang and S.Dwarkadas. “Hybrid Gloablal-Local 
Indexing for Efficient Peer-to-Peer Information Retrieval”. 
In Proceedings of USENIX NSDI, March 2004. 

[24] Yahoo website. http://www.yahoo.com 
[25] DMOZ website. http://www.dmoz.org
[26] Kazaa website. http://www.kazaa.com/ 

Proceedings of the Sixth International Conference on Parallel and Distributed Computing, Applications and Technologies (PDCAT’05) 
0-7695-2405-2/05 $20.00 © 2005 IEEE 


