
Ontology Based Data Integration Over

Document and Column Family Oriented NOSQL

stores

Olivier Curé1, Myriam Lamolle2, Chan Le Duc2

1 Université Paris-Est, LIGM, Marne-la-Vallée, France
ocure@univ-mlv.fr

2 LIASD Université Paris 8 - IUT de Montreuil
{myriam.lamolle, chan.leduc}@iut.univ-paris8.fr

Abstract. The World Wide Web infrastructure together with its more
than 2 billion users enables to store information at a rate that has never
been achieved before. This is mainly due to the will of storing almost
all end-user interactions performed on some web applications. In order
to reply to scalability and availability constraints, many web companies
involved in this process recently started to design their own data man-
agement systems. Many of them are referred to as NOSQL databases,
standing for ’Not only SQL’. With their wide adoption emerges new
needs and data integration is one of them. In this paper, we consider
that an ontology-based representation of the information stored in a
set of NOSQL sources is highly needed. The main motivation of this
approach is the ability to reason on elements of the ontology and to
retrieve information in an efficient and distributed manner. Our contri-
butions are the following: (1) we analyze a set of schemaless NOSQL
databases to generate local ontologies, (2) we generate a global ontology
based on the discovery of correspondences between the local ontologies
and finally (3) we propose a query translation solution from SPARQL to
query languages of the sources. We are currently implementing our data
integration solution on two popular NOSQL databases: MongoDB as a
document database and Cassandra as a column family store.

1 Introduction

The distributed architecture of the World Wide Web and its more than 2 billion
users, in 2011, enables to store vast amount of information from end-user inter-
actions. The volumes of data retrieved this way are so large that it motivated
the design and implementation of new data models and management systems
able to tackle issues such as scalability, high availability and partition tolerance.
In fact, the Web helped us to understand that the until now prevalent relational
model does not fit all the data management issues [24].

These new data stores are regrouped under the NOSQL label (but coSQL [17]
is another recently proposed name). This acronym stands for ’Not Only SQL’
and generally identifies data stores based on the Distributed Hash Table (DHT)

SSWS 2011

122



model which provides a hash table access semantics. That is in order to access
and modify a data object, a client is required to provide the key for this object
and a management system will lookup the object using an equality match to the
required attribute key. The First successful NOSQL databases were developed
by Web companies like Google (with Big Table [6]) and Amazon (Dynamo [9]).
An important number of open source projects followed more or less inspired by
these two systems, e.g. MongoDB3, Cassandra4 which respectively correspond
to the document and column family categories. Nowadays, NOSQL systems are
used in all kinds of application domains (e.g. social networks, science, finance)
and are present in cloud computing environments. Hence, we consider that the
Web of Data can not miss the opportunity to address and integrate technologies
and datasets emerging from this ecosystem.

In this paper, we propose a data integration framework where the target
schema is represented as a semantic web ontology and the sources correspond to
NOSQL databases. The main difficulty in integrating these data sources concerns
their schemalessness and lack of a common declarative query language.

Concerning the schemalessness, although this provides for a form of flexi-
bility in term of data modeling, this makes the generation of correspondences
between a global and local schemata more involved. Thus a first contribution
of our work consists in generating a local schema for each integrated source
using an inductive approach. This approach uses non-standard description logic
(DL [2]) reasoning services like Most Specific Concept (MSC) and Least Concept
Subsumer (LCS) in order to generate a concept for a group of similar individuals
and to define hierarchies for these concepts. Our second contribution enables the
specification of a global ontology based on the local ontologies generated for each
data source. This global ontology results from the correspondences discovered
between concept definitions present in each local ontology.

Concerning the lack of a common declarative query language, we propose
a Bridge Query Language (BQL) that supports a translation from SPARQL
queries expressed over the global ontology to the possibly different query lan-
guages accepted at the sources. In general, document and column family databases
do not provide for a declarative query language like SQL. They rather propose a
procedural approach based on the use of specific APIs, for instance for the Java
language. Hence our last contribution is to present the main steps involved in
this transformation and to provide a sketch of the BQL language.

This paper is organized as follows. In Section 2, we present related works in
ontology based data integration. Section 3 provides some background knowledge
on NOSQL databases, non-standard DL reasoning services and some alignment
methods. Section 4 details our contributions in the design of our ontology-based
data integration system and thus provides for an overview of this system’s archi-
tecture. In Section 5, we present the query processing solution adopted for our
system. Section 6 concludes the paper and gives perspectives on future works.

3 http://www.mongodb.org/
4 http://cassandra.apache.org/

SSWS 2011

123



2 Related work

To the best of our knowledge, this paper is a first attempt to integrate data stored
in NOSQL systems into an ontology based framework. Hence, in this section, we
focus on the broader subject of ontology-based data integration and concentrate
on solutions addressing the relational model. Most of the work dedicated to
bridging the gap between ontologies and relational databases concentrated on
defining mapping languages, query answering and its relationship with reasoning
over the ontology.

MASTRO [5] is the reference implementation for the Ontology-Based Data
Access (OBDA) approach. In OBDA, ontologies, expressed in Description Log-
ics, represent the conceptual layer of the data stored in relational databases. It
allows for both sound and complete conjunctive query answering over an ontol-
ogy by retrieving data from a relational databases. Most of the nice properties
of MASTRO come from the computational characteristics of DL-Lite which mo-
tivated the creation of OWL2QL, an OWL2 fragment. Nevertheless, MASTRO
requires that both the global ontology and relational schemata are known in
order to define semantic mappings.

In [10], the SHER system is presented as a system for scalable conjunctive
query answering over SHIQ ontologies where the ABox is stored in a relational
database management system. A main contribution of this work is to implement
an ABox summarization technique which improves the computational perfor-
mances of query answering.

In the Maponto tool [1], the authors propose a solution that enables to define
complex mappings from simple correspondences. This approach expects end-
users or an external software to provide mappings and then uses them to generate
new ones. Maponto is being provided with a set of relational databases and an
existing ontology.

Systems like MARSON [14] and RONTO [19] discover simple mappings by
classifying the relations of a database schema and validate the mapping consis-
tency that have been generated. Like Maponto, these systems require that the
target ontology is provided.

In comparison with these systems, our approach deals with the absence of a
schema at the sources and of global ontology. Moreover, while all systems based
on a relational model benefit from the availability of SQL, the existence of a
common query language for the sources can not be assumed in the context of
NOSQL databases.

3 Background

In this section, we present background knowledge concerning the two NOSQL
databases we are focusing on in this paper, namely document and column-
oriented stores. This is motivated by their ability to provide an efficient so-
lution to the scalability issue by enabling to scale out quickly. For both of these

SSWS 2011

124



approaches, we model a similar use case dealing with the submission and review-
ing process of scientific conferences. Concerning ontology related operations, we
present non-standard reasoning services encountered in DL, i.e. MSC, LCS and
GCS, and provide information on methods used to align expressive ontologies.

3.1 Document oriented databases

Document oriented databases correspond to an extension of the well-known key-
value concept where in this case the value consists of a structured document.
A document contains hierarchically organized data similar to XML and JSON.
This permits to represent one-to-one as well as one-to-many relationships in
a single document. Therefore a complex document can be retrieved or stored
without using joins. Since document oriented databases are aware of stored data,
it enables to define document field indexes as well as to propose advanced query
features. The most popular document oriented databases are MongoDB (10gen)
and CouchDB (Apache).

Example 1 This document database (denoted docDB) stores data in 2 collec-
tions, namely Person and Document. In the Person collection, documents
are identified by the email address of the person and contains information
regarding the last name, first name, url, university, person type (i.e. either
a user, author, conference member or reviewer) and possibly a list of re-
viewed document identifiers. The documents in the Document collection are
identified by a ’doc’ prefix followed by a unique numerical value. For each
document, the system stores the title, email of the different authors (cor-
responding to keys in the Person collection), the abstract and full content
of the paper. Finally, a list of reviews is stored for each document. Fig. 1
presents a graphical representation of a document for each collection. In this
database, the reviews of a paper are stored within the paper document. This
is easily structured in a document store which generally supports the nesting
of documents. Similarly, the documents a person needs to review are stored
in Person documents, i.e. in writeReview.

3.2 Column-family databases

Column family stores correspond to persistent, sparse, distributed multilevel
hash maps. In column family stores, arbitrary keys (rows) are applied to arbitrary
key value pairs (columns). These columns can be extended with further arbitrary
key value pairs. Afterwards, these key value pair lists can be organized into
column families and keyspaces. Finally, column-family stores can appear in a very
similar shape to relational databases on the surface. The most popular systems
are HBase and Cassandra. All of them are influenced by Google’s Bigtable.

Example 2 Considering the kind of queries one can ask on this column family
(denoted colDB), the structure consists of 3 columns families: Person, Paper
and Review. The set of information stored in these column families is the

SSWS 2011

125



Fig. 1. Extract of the document oriented database

same as in Example 1. The row key for the Person, Paper and Review are
respectively the email address of the person and system generated identifiers
for papers and reviews. All other information entries are stored in columns
with some of them being multi-valued. Fig. 2 provides a graphical represen-
tation of an extract of colDB. The Paper and Review column families have
several columns in common (abstract, content and submissionDate). But
while the authors column stores the list of authors of a paper, the author

column of reviewer stores the identifier of its reviewer.

3.3 Non-standard Reasoning Services

We present in this section the basic versions of Least Common Subsumer (LCS)
[18] , Most Specific Concept (MSC) [2] and Good Common Subsumer (GCS) [4].
The MSC of an individual consists in defining the least concept description that
the individual is an instance of.

Definition 1 Given concept terms C1, ..., Cn, the MSC of an individual a is a
concept term C iff
– C ⊑ Ci, for 1 6 i 6 n ;
– C is the most specific concept term with this property, i.e., if D is a

concept term such that Ci ⊑ D for 1 6 i 6 n, then C ⊑ D.

And, the LCS of a set of concepts is the least concept that subsumes all of
them, i.e., there is no sub-concept of this LCS that subsumes the set of concepts
too.

SSWS 2011

126



Fig. 2. Extract of the column family database

Definition 2 Given concept terms C1, ..., Cn, the LCS of C1, ..., Cn is a concept
term C such that

– Ci ⊑ C for 1 6 i 6 n ;
– C is the least concept term with this property, i.e., if D is a concept

term such that Ci ⊑ D for 1 6 i 6 n, then C ⊑ D.

But, the LCS is very hard to process in practice. So, Baader [4] proposes an
algorithm named Good Common Subsumer (GCS) to compute an approximation
of LCS by determining the smallest conjunction of (negated) concept names
subsuming the conjunction of the top level concept names of each considered
concept. By computing the MSC and LCS of these individuals, more complex
concept descriptions can be added to the ontology [3].

3.4 Alignment methods

The heterogeneity between ontologies must be reduced in order to facilitate inter-
operability of applications based on these ontologies. For this purpose, semantic
correspondences between different entities belonging to two different ontologies
are required to be established. This is the goal of ontology alignment as pre-
sented in [12]. An alignment consists of a set of correspondences between pairs
of ontology entities. Two entities of each pair are connected by a semantic rela-
tion (e.g. equivalence, subsumption, incompatibility, etc.). Moreover, a similarity
measure can be associated to each correspondence to specify its trust. Then, a
set of correspondences (i.e. alignment) can be used to merge ontologies, migrate
data or translate queries from one to another ontology.

SSWS 2011

127



In the literature, there are several alignment methods that can be catego-
rized according to techniques employed to produce alignments. The most early
methods are based on the comparison of linguistic expressions [11]. Another
aligner presented in [8] has taken into account annotations of entities defined
in ontologies. More recently, the methods introduced in [15], [22], [16] have ex-
ploited ontological structures related to concepts in question. These methods,
namely simple alignment methods, are the most prevalent at present. They de-
tect simple correspondences between atomic entities (or simple concepts) (e.g.
Human ⊑ Person, Female ⊑ Person). As a result, some kinds of semantic het-
erogeneity in different ontologies can be solved by using these classical alignment
methods.

However, simple correspondences are not sufficient to express relationships
that represent correspondences between complex concepts since (i) it may be
difficult to discover simple correspondences (or they do not exist) in certain cases,
or (ii) simple correspondences do not allow for expressing accurately relationships
between entities.

A second important issue is that generating a complex alignment has a certain
impact during the consistency checking of the system. Indeed, a reasoner such as
Pellet [23] or FaCT++ [25], running on a system consisting of two ontologies O1

and O2 and a simple alignment As, may reply that the system is not consistent.
But, this same reasoner, with the same ontologies O1 and O2, and with a complex
alignment Ac can deduce that the system is consistent.

Consequently, new works follow the way of complex alignment solutions such
as [20]. But, currently, they address the alignment of simple concept with a
complex concept, at best.

4 Architecture overview

In this section, we present the main components of our system and highlight
on the approaches used at each steps of the data integration processing. These
steps, depicted in Fig. 3, consist of the (1) creation of an ontology associated to
each data sources, (2) aligning these ontologies and (3) creating a global ontology
given these correspondences.

Finally, we present a query language enabling to retrieve information stored
in the sources from a query expressed over the global ontology.

4.1 Source ontology generation

As explained earlier, NOSQL databases are generally schemaless. Although this
provides flexibility for information storage, it makes the generation of associated
ontologies more involved. In fact, one can only use containers, i.e. collections
and column families in respectively document and column family databases, of
key/value pairs as well as key labels to deduce a schema. Our approach considers
that each container defines a DL concept and that each key label corresponds to
a DL property that can either be a data type or object one and whose domain
is the DL concept corresponding to its container.

SSWS 2011

128



Fig. 3. Basic architecture of our data integration system

Example 3 Consider Example 1 (resp. Example 2), the following concepts are
automatically generated: Person and Document (resp. Person, Paper and
Review). Concerning DL properties, a firstName DL datatype property
will be created in the cases of both Examples 1 and 2 with a domain corre-
sponding to the Person DL concept. Additionally, a writeReview DL object
property is created with a domain and range corresponding to respectively
the Person DL and Paper concepts. This is due to the fact that the values
of the writeReview (doc101 and doc 104 in the case of the document iden-
tified by joe.doe@gmail.com) served as identifier of other documents. The
same approach applies for authors, author and paper in Example 2.

A modeling pattern frequently encountered in key/value stores supports the
discovery of complementary DL concepts and some subsumption relationships.
This pattern, henceforth denoted type definition, consists of a key whose range
of values is finite and which do not correspond to container identifiers, i.e. they
do not serve as foreign keys. We assume that each of these values specifies a DL
concept. For instance, this is the case of the type key in respectively Examples
1 and 2. Its set of possible values is {User, Author, ConfMember and Reviewer},
each of them corresponding to a DL concept. These concepts can be organized
into a hierarchy of concepts using methods of Formal Concept Analysis (FCA)
[13]. In a recent paper [7], we have emphasized on an FCA methodology for on-
tology mediation. Some features of this method are to create concepts that are
not in the source ontologies, to label the new concepts, and to optimize the re-
sulting ontology by eliminating redundant or irrelevant concepts. This approach
easily applies to the discover of DL concepts and their subsumption relation-
ships in the context of a type definition pattern. That is, tuples of the key of the
pattern (type in our example) correspond to objects in the FCA terminology
and their values provide FCA attributes. Then a Galois connection lattice can
easily be computed using the methods proposed in [7]. The nodes of this lat-

SSWS 2011

129



tice correspond to DL concepts and arrows between them specify subsumption
relationships.

Example 4 We consider the document database of Fig.1. The document identi-
fied by key ’joe.doe@gmail.com’ has several type values (User, ConfMember,
Author and Reviewer) while the document identified by ’miles.davis@jazz.com’
is only characterized by the User value. Using the information coming from
different documents, one can discover the following DL concept subsump-
tions: Author ⊑ User

Reviewer ⊑ User

ConfMember ⊑ User

The method we have presented so far can be applied recursively to embedded
structures where the nested container is reified into an object.

At this point in the local ontology generation process, we have created an
ontology that is no more expressive than RDFS. We consider that using induction
over the instances of the source database, we can enrich the ontology and leverage
its expressiveness to a fragment of OWL2, namely OWL2EL. This is performed
using the approach proposed in [21] to compute the GCS wrt to local ontology
computed. This method exploits the TBox of the ontology and precomputes the
conjunction of concept names using FCA. One issue in this precomputation is
to handle a possibly very large set of FCA objects.

Ganter’s attribute exploration interactive algorithm [13] is an efficient ap-
proach for computing an appropriate representation of a concept lattice that
at certain stages asks contextualized questions to a domain expert. Instead of
relying on this interactive process, we propose other solutions that may be used
to select a subset of relevant objects. In some cases, the set of objects may be
of a reasonable size, (e.g. fitting into main memory) and a complete analysis is
possible. Nevertheless, in many situations, due to the size of individual data, a
complete analysis is not realistic and some heuristics need to be proposed. The
first naive approach one can think of is to randomly access a set of individu-
als. Apart from the hazardous results this approach could provide, it is not just
doable in hash table context where the key of the container needs to be known
a priori.

A simple heuristic consists in considering that the most frequently accessed
individuals are the most representative of the ontology to generate. In order to
discover this set, one can take advantage of the data store architecture, generally
distributed over several servers and supervised by several tools such as load
balancers. Using logs generated by these tools enables to identify a subset of the
individuals that are the most frequently accessed in the application.

Finally an incremental schema generation approach can be implemented.
That is each time a tuple is inserted or modified, the system checks if some
labels are being introduced or deleted into the schema. This approach imposes
that each update operation goes through this process.

At the end of this step, using an inductive approach, we have created a
schema for each NOSQL source. The goal of this schema is twofold: it enables

SSWS 2011

130



the creation of DL ontology which can be serialized into an OWL2 fragment
(namely OWL2EL) and supports the definition between ontology entities (i.e.
DL concepts and properties) with elements of the NOSQL source (i.e. documents,
column families, columns and keys). Hence, the arrows linking the database and
ontology layers of Fig. 3 have been generated. The task of the next section
is to generate a global ontology via the discovery of alignments between local
ontologies.

4.2 Discovering Alignments between ontologies and global ontology

building

We now propose a new solution to detect both simple and complex correspon-
dences. To do this, we follow several steps. The first step consists in enriching
the two ontologies to be aligned using the IDDL reasoner [26]. This reasoner
allows to add subsumption relations which are implicit in ontologies (see Fig.4).

Fig. 4. Extract of review document family DB graph

The second step detects the simple correspondences using three classical
alignment processes. We use the three conventional aligners OLA5 [15], AROMA6[8]
et WN7. Each of them is based on a particular approach. The first aligner is a
basic aligner, which uses the linguistic resource WordNet, the second is based on
a structural approach and the third on the annotations associated to entities.

5 OWL-Lite Alignment
6 Association Rule Ontology Matching Approach
7 basic aligner of API alignment named JWNLAlignment

SSWS 2011

131



Note that the last two chosen aligners are considered by OAEI8 among the best
alignment systems.

The last step detects the complex correspondences. Our idea is inspired from
simple alignment methods which are based on graphs [15],[22]. Since, from a finite
vocabulary, an infinite number of formulas can be processed, it is impossible to
know what are the relevant formulas to align. A possible solution is to try to
capture the semantic of OWL and to represent the constructors (for example,
subsumption, disjunction, restriction of cardinality) by a graph formalism. Then,
from the two graphs representing the ontologies to be aligned, it must search
relevant subgraphs which can be aligned taking into account their structures
and using a terminological similarity measure.

Proposition 1 Our first proposition allows correspondences between two com-
plex concepts (i.e. formulas) to be detected.

For example, Paper ⊓ ∃write.Author ⊓ ∃accept.Reviewer ⊑ Paper ⊓ ∃write.Author

can be deduced. The detection of this kind of matching is made by exploiting the
structure of graphs, which expresses the semantics of the OWL-DL ontologies.
Each graph consists of a set of subgraphs, which represent a formula. So, for all
pairs of concepts (C1, C2) belonging to the ontologies (O1, O2), it is necessary
to check whether their respective subgraphs can be aligned.

A subgraph of a given concept C consists of all concepts directly linked to C
by simple edges (subsumptions or disjunctions) or properties.

To align two subgraphs, one of the following cases must be checked:

1. The first subgraph SG1 subsumes the second subgraph SG2 (i.e. SG1 ⊒
SG2). In this case, a relation of subsumption is generated;

2. The second subgraph SG2 subsumes the first subgraph SG1 (i.e. SG1 ⊑
SG2). In this case, a relation of subsumption is generated, in the opposite
way of case 1;

3. The two subgraphs are equivalent. In other words, SG1 subsumes SG2 and
SG2 subsumes SG1. In this case, a relation of equivalence is generated (i.e.
SG1 ≡ SG2).

A subgraph SG1 subsumes a subgraph SG2 if the following conditions hold:

– All direct subclasses of SG1 are similar to direct subclasses of SG2,
– All disjoint subclasses of SG1 are similar to disjoint subclasses of SG2,
– All direct super classes of SG1 or their generalization are similar to direct

super classes of SG2 or their generalization,
– All direct properties of SG1 are similar to direct properties of SG2,
– All properties cardinalities of SG1 are equivalent or subsumed by properties

cardinalities of SG2,
– All domains or co-domains of these properties of SG1 are similar to domains

or co-domains or their generalizations in SG2.

8 Ontology Alignment Evaluation Initiative

SSWS 2011

132



Proposition 2 This proposition allow us to detect correspondences between a
simple concept and a formula (e.g. SubmittedPaper ⊑ ∃submit.Author). It
is inspired by the research work presented in [20] with some simplification and
generalization. We search correspondences between simple concepts and formulas
based on syntactic similarities between concepts and properties. It is necessary
to use a purely syntactic similarity measure to compare concepts labels to prop-
erties labels. Moreover, a concept to align with a formula having a property
similar syntactically must be a concept specializing a concept already aligned to
a concept source or target of this property (or one of its super concept).

To generate the complex correspondences detected by these two propositions,
we used the language EDOAL9, which extends the alignment format proposed
by INRIA. This language can express complex structures between entities of
different ontologies.

Example .
Given two ontologies O1 and O2 built from NOSQL databases to be aligned

concerning a conference domain. OWL semantics of these ontologies are repre-
sented by graphs (cf. Fig. 4 of O1 from example 1) .

The following simple correspondences are detected during the first step:

O1 : Document ≡ O2 : Document

O1 : Person ≡ O2 : Person

O1 : Reviewer ≡ O2 : Referee

O1 : Review ≡ O2 : Review

O1 : Conference ≡ O2 : Conference

O1 : Submit ≡ O2 : Submit

O1 : WriteReview ≡ O2 : WriteReview

O1 : ConfMember ≡ O2 : ConfMember

The second step consisting in traversing the relevant subgraphs detects com-
plex correspondences such as these presented in Fig. 5 and 6. To do this, the
neighborhood of the graphs nodes are considered. For example, the generated
correspondence from the two subgraphs in Fig. 5 having respectively the nodes
O1 : Paper and O2 : Published as starting point is:

O1 : Paper ⊓ > 1 O1 : hasAuthor.O1 : contactPerson ⊓ > 1 O1 :
Submit.O1 : contactPerson ⊒ O2 : Published ⊓ > 1 O2 : Submit > .O2 :
Author ⊓ > O2 : isAuthorOf.O2 : Author ⊓ O2 : AcceptedBy.O2 :
ComitteMember

In the same way, the generated correspondence from the two subgraphs of
Fig. 6 having respectively the nodes O1 : Reviewer and O2 : Referee as starting
point is:

O1 : Reviewer ⊓ > 1 O1 : WriteReview.O1 : Review ⊑ O2 :
Referee ⊓ ∃ WriteReview.O2 : Review

9 http ://alignapi.gforge.inria.fr/edoal.html

SSWS 2011

133



Fig. 5. Aligned subgraphs of concepts O1 : Paper and O2 : Published

Taking into account the ontologies representing NOSQL data sources and
their alignments, a global ontology GO is built. GO = (O,A) represents net-
worked ontologies 0 = {01, ..., On} through a set of alignments A = {A1, ..., Am}
where Ai is the set of correspondences between 0k and 0l(k 6= l).

5 Query processing

In this section, we present the query processing solution adopted in our ontology-
based data integration system. The approach consists in two consecutive trans-
lation operations.

The first one transforms end-user written SPARQL queries expressed over
the global ontology into a set of queries specified in the Bridge Query Lan-
guage (BQL). This translation uses the correspondences discovered during the
local and global ontology generation steps and occurrences of a set of RDF/S
properties (e.g. rdf:type, rdfs:subClassOf) in SPARQL queries. Given these
correspondences, a BQL query is generated over the local ontology of a NoSQL
source. Due to space limitations, we do not provide a thorough presentation of
BQL but rather sketch its main features. BQL is a high-level declarative query
language and has low-level, procedural programming flavor that enables to re-
trieve information from data repositories. In fact, a BQL program is similar to
specifying a query execution plan that can easily be translated into fully proce-
dural programs satisfying a given API and programming language. Following a
nested data model, a BQL program specifies a sequence of steps that each define
a single high level data operation. Like a relational algebra, each step is specified
via a relation definition which can serve as the input to another step. A main
construct of BQL is a foreach .. in operation which permits to iterate other
a defined relation and perform some associated operations. These operations

SSWS 2011

134



Fig. 6. Aligned subgraphs of concepts O1 : Reviewer and O2 : Referee

generally consist in retrieving information from the database. This is specified
using a get operation defined over a given database and container. It contains 2
parameters: a set of filters expressed over source keys with standard comparator
(e.g. =, <, <=, 6=) and a set of attributes to retrieve from the resultset. In Ex-
ample 5, we highlight a SPARQL to BQL transformation given our conference
document database.

Example 5 Consider a query that retrieves titles of reviews written by a per-
son with last name Doe. This corresponds to the following SPARQL query
which is simplified for readability reasons:
SELECT ?t WHERE {?p rdf:type Person. ?p hasLastName ’Doe’.

?p writeReview ?r. ?r hasTitle ?title.}
The presence of a rdf:type property in the SPARQL query provides some
information about which source database and container we can create a BQL
query for. The query specifies that the ?p variable must of type Person which
is mapped to the person container of the document NoSQL database. This
query addresses a list of reviews hence an iteration needs to be performed
over the writeReview attribute of the Person container. This first step of
the BQL query is written as the following:
temp(paper) = docDB.Person.get({lastName=’Doe’},{writeReview})
Intuitively, the temp relation stores the list of review identifiers written by
the person whose last name is ’Doe’. The final result of the query is provided
by the ans relation:
ans(title) = foreach paper in temp : docDB.Paper.get({Key=paper},
{title}). That is for each identifier in the temp relation, find documents in
the Paper collection of the docDB database and retrieve its title.

The second translation corresponds to generating a program in a given pro-
gramming language (e.g. Java) from the different relations of a BQL query. Given
the procedural flavor of BQL, this translation is relatively straight forward but
one set of rules needs to be defined for each language and each NoSQL database.

SSWS 2011

135



So far, we have implemented rules for the Java language for both the MongoDB
and Cassandra stores. In the future, we aim to define such rules for more NoSQL
stores and programming languages (e.g. Python, Ruby).

6 Conclusion

This paper tackles the problem of integrating data stores in two of the most
popular NOSQL database categories, i.e. document and column family oriented
stores, in a Semantic Web context. It is well recognized that scalability is a main
issue for these systems. The most involved aspect of this integration concerns the
fact that these databases are schemaless and generally lack a common declarative
query language. Addressing this first issue, we emphasized that using existing
techniques like FCA together with non-standard DL inferences like GCS, we
could compute an ontology from the structure and instances of each databases
source. Using a novel alignment ontology method, we highlighted that these
ontologies can be linked to create a global ontology over which SPARQL queries
are expressed. Finally, a bridge query language supports a translation approach
to generate procedural queries, using specific APIs for each database source,
from SPARQL queries. We have already implemented this translation for the
Java language for both the MongoDB and Cassandra NOSQL databases and
we are currently working on query optimisation. Recently, several propositions
for a common NOSQL declarative query language are emerging (e.g. CQL for
Cassandra, unQL for CouchDB). Studying these specifications is on our list of
future works. Nevertheless, we consider that our data integration framework is
not complete until we incorporate another category of NOSQL stores: graph
databases.

References

1. Y. An, A. Borgida, and J. Mylopoulos. Inferring complex semantic mappings
between relational tables and ontologies from simple correspondences. In OTM
Conferences (2), pages 1152–1169, 2005.

2. F. Baader, D. Calvanese, D. L. McGuiness, D. Nardi, and P. Patel-Schneider. The
Description Logic Handbook: Theory, Implementation, Applications. Cambridge
University Press, Cambridge, UK, 2003.

3. F. Baader, R. Ksters, and R. Molitor. Computing least common subsumers in
description logics with existential restrictions. pages 96–101. Morgan Kaufmann,
1999.

4. F. Baader, B. Sertkaya, and A. yasmin Turhan. Computing the least common
subsumer w.r.t. a background terminology. In Journal of Applied Logic, pages
400–412. Springer, 2004.

5. D. Calvanese, G. D. Giacomo, D. Lembo, M. Lenzerini, A. Poggi, M. Rodriguez-
Muro, R. Rosati, M. Ruzzi, and D. F. Savo. The mastro system for ontology-based
data access. Semantic Web, 2(1):43–53, 2011.

6. F. Chang, J. Dean, S. Ghemawat, W. C. Hsieh, D. A. Wallach, M. Burrows,
T. Chandra, A. Fikes, and R. Gruber. Bigtable: A distributed storage system
for structured data (awarded best paper!). In OSDI, pages 205–218, 2006.

SSWS 2011

136



7. O. Curé and R. Jeansoulin. An fca-based solution for ontology mediation. JCSE,
3(2):90–108, 2009.

8. J. David, F. Guillet, and H. Briand. Association rule ontology matching approach.
International Journal Semantic Web Information Systems, 2:27–49, 2007.

9. G. DeCandia, D. Hastorun, M. Jampani, G. Kakulapati, A. Lakshman, A. Pilchin,
S. Sivasubramanian, P. Vosshall, and W. Vogels. Dynamo: amazon’s highly avail-
able key-value store. In SOSP, pages 205–220, 2007.

10. J. Dolby, A. Fokoue, A. Kalyanpur, E. Schonberg, and K. Srinivas. Scalable highly
expressive reasoner (sher). J. Web Sem., 7(4):357–361, 2009.

11. J. Euzenat. An api for ontology alignment. In 3rd conference on international
semantic web conference (ISWC), pages 698–712, 2004.

12. J. Euzenat and S. Pavel. Ontology matching. Springer Verlag, Heidelberg (DE),
2007.

13. B. Ganter and R. Wille. Formal concept analysis - mathematical foundations.
Springer, 1999.

14. W. Hu and Y. Qu. Discovering simple mappings between relational database
schemas and ontologies. In ISWC, pages 225–238, 2007.

15. J.-F. Kengue Djoufak, J. Euzenat, and P. Valtchev. Alignement d’ontologies dirigé
par la structure. In Y. A. Ameur, editor, Conférence Francophones sur les Archi-
tectures Logicielles, CAL 2008, volume RNTI-L-2 of RNTI, pages 155–. Cépaduès-
Éditions, 2008.

16. T. Lê Bach. Construction d’un Web sémantique multi-points de vue. Thèse de
doctorat, École des Mines de Paris à Sophia-Antipolis, 2006.

17. E. Meijer and G. M. Bierman. A co-relational model of data for large shared data
banks. Commun. ACM, 54(4):49–58, 2011.

18. R. Möller, V. Haarslev, and B. Neumann. Semantics-based information retrieval.
In Int. Conf. on Information Technology and Knowledge Systems, pages 48–61,
1998.

19. P. Papapanagiotou, P. Katsiouli, V. Tsetsos, C. Anagnostopoulos, and S. Had-
jiefthymiades. Ronto: Relational to ontology schema matching. AIS SIGSEMIS
Bulletin, 3(4):32–36, 2006.

20. D. Ritze, C. Meilicke, O. Šváb Zamazal, and H. Stuckenschmidt. A pattern-based
ontology matching approach for detecting complex correspondences. Proceedings
of the ISWC 2009 Workshop on Ontology Matching, 2009.

21. B. Sertkaya. A survey on how description logic ontologies benefit from formal
concept analysis. CoRR, abs/1107.2822, 2011.

22. P. Shvaiko, J. Euzenat, F. Giunchiglia, and B. He, editors. SODA: an OWL-
DL based ontology matching system, volume 304 of CEUR Workshop Proceedings.
CEUR-WS.org, 2008.

23. E. Sirin, B. Parsia, B. C. Grau, A. Kalyanpur, and Y. Katz. Pellet: a pratical
owl-dl reasoner. Journal of Web Semantics, 5(2):51–53, 2007.

24. M. Stonebraker and U. Çetintemel. ”one size fits all”: An idea whose time has
come and gone (abstract). In ICDE, pages 2–11, 2005.

25. D. Tsarkov and I. Horrocks. FaCT++ description logic reasoner: System descrip-
tion. In Proc. of the Int. Joint Conf. on Automated Reasoning (IJCAR 2006),
volume 4130 of Lecture Notes in Artificial Intelligence, pages 292–297. Springer,
2006.

26. A. Zimmermann and C. Le Duc. Reasoning with a network of aligned ontologies.
In Proceedings of the 2nd International Conference on Web Reasoning and Rule
Systems (ICWRRS), pages 43–57, 2008.

SSWS 2011

137


