Ontology-Based Extraction and Structuring of Information from Data-Rich
Unstructured Documents

David W. Embley? Douglas M. Campbell, Randy D. Smith
Department of Computer Science

Stephen W. Liddlef
School of Accountancy and Information Systems

Brigham Young University, Provo, Utah 84602, U.S.A.
{embley,campbell smithr}@cs.byu.edu; liddle@byu.edu

Abstract

We present a new approach to extracting information from
unstructured documents based on an application ontology
that describes a domain of interest. Starting with such an
ontology, we formulate rules to extract constants and con-
text keywords from unstructured documents. For each un-
structured document of interest, we extract its constants and
keywords and apply a recognizer to organize extracted con-
stants as attribute values of tuples in a generated database
schema. To make our approach general, we fix all the pro-
cesses and change only the ontological description for a dif-
ferent application domain. In experiments we conducted on
two different types of unstructured documents taken from
the Web, our approach attained recall ratios in the 80% and
90% range and precision ratios near 98%.

Keywords: unstructured data, semistructured data, in-
formation extraction, information structuring, ontology.

1 Introduction

A relation in a structured database consists of a set of n-
tuples. Each n-tuple associates n attribute-value pairs in a
relationship. These relationships constitute the information
asserted by the relation. A well-chosen n-place predicate
for the relation can make this information human under-
standable. An unstructured document lacks these structur-
ing characteristics. There are no relations with associated
predicates, no attribute-value pairs, and no n-tuples. Con-
sequently, there is no information asserted by any relation
about the contents of an unstructured document.

For some unstructured documents, it is possible and use-
ful to impose structure by establishing relations over the
information contents of the document. In such cases, it is
beneficial to establish these relations automatically. This
paper presents an automated approach to extracting infor-
mation from unstructured documents and reformulating the

*Research funded in part by Novell, Inc.
fResearch funded in part by Faneuil Research

information as relations in a database.

We characterize our approach as being ontology based.
Ontology is a branch of philosophy that attempts to model
things as they exist in the world [10]; it is particularly appro-
priate for modeling objects including their relationships and
properties [33]. We use an augmented semantic data model
to provide an ontology that describes the view we wish to
have over a domain of interest. The semantic data model lets
us create an ontological model instance as sets of objects,
sets of relationships among these objects, and constraints
over these objects. Further, as augmented, it lets us define
data representation and expected contextual keywords for
each object set within the ontology. Based on an applica-
tion ontology with these characteristics, we apply a parser,
a constant/keyword recognizer, and a structured-text gener-
ator to filter an unstructured document with respect to the
ontology and populate a generated database schema with
attribute-value pairs associated as relations. We thus ex-
tract information of interest from an unstructured document
and reformulate it as a structured document.

We do not expect this approach to work well for all
unstructured documents. We do, however, expect the ap-
proach to work well for unstructured documents that are
data rich and narrow in ontological breadth. A document is
data rich if it has a number of identifiable constants such as
dates, names, account numbers, ID numbers, part numbers,
times, currency values, and so forth. A document is nar-
row in ontological breadth if we can describe its application
domain with a relatively small ontological model.

As case studies to test these ideas for this paper, we con-
sider newspaper advertisements for automobiles and news-
paper job listings for computer-related jobs. Both automo-
bile ads and job listings are data rich and narrow in onto-
logical breadth. Automobile ads typically include constants
for and information about year, make, model, asking price,
mileage, features, and contact phone numbers. Computer
job listings include degree required, needed skills, and con-
tact information. Other application areas whose documents
have similar characteristics include travel, stocks, financial
transactions, scheduling for meetings, sports information,
genealogy, medical research, product information, and many
others.

We present the details of our approach as follows. We
first provide a context for our research in Section 2. We de-
scribe our approach in Section 3. We give the basic frame-
work in Section 3.1, including each of the component parts

and how they work together to process unstructured doc-
uments for any given application ontology. In Section 3.2,
we show how we applied this general approach to two spe-
cific applications—automobile advertisements from the Salt
Lake Tribune and computer job listings from the Los An-
geles Times. Section 4 reports the results of experiments
we conducted with these two applications. In Section 5 we
describe ideas for future work, and we state our conclusions
in Section 6.

2 Related Work

Our research reported here relates to recent efforts in sev-
eral areas including Web data modeling, wrapper genera-
tion, natural-language processing, semistructured data, and
Web queries.

Others have used semantic data models to describe Web
documents and populate databases [8, 14]. Our work differs
from these efforts because they do not attempt to popu-
late their model instances automatically, populating them
instead by hand, with the aid of tools, or by semiautomatic
methods.

The most common approach to information extraction
from the Web is through wrappers, which parse source doc-
uments to provide a layer to map source data into a struc-
tured or semistructured form. If the mapped form is fully
structured, standard query languages such as SQL can be
used to query the extracted information. Otherwise, spe-
cial “semistructured” query languages may be used [1, 3, 9].
Wrappers can be written by hand [7, 11, 20, 21], or semiau-
tomatically [4, 6, 15, 23, 32]. Approaches to semiautomatic
wrapper generation include the use of hand-coded special-
ized grammars [2], wrapper generators based on HTML and
other formatting information [5, 21], page grammars [8], and
concept definition frames [31], all of which are similar in na-
ture. A disadvantage of hand generation and semiautomatic
generation is the work required to create the initial wrap-
per and the rework required to update the wrapper when the
source document changes. In our approach, wrapper genera-
tion is fully automatic. Instead of generating wrappers with
respect to document pages, we generate wrappers based on
recognizable keywords and constants described in domain
ontologies. This significant departure from past approaches
is a key difference in what we present here. Our approach is
also more resilient to unstructured document evolution than
is a rigid, grammar-oriented wrapper approach.

Research in natural-language processing (NLP) and par-
ticularly research in the information-extraction subfield as
described in [12] attempts to build systems that find and link
relevant information in natural-language documents while
ignoring extraneous, irrelevant information. NLP processes
apply such techniques as filtering to determine the rele-
vance of a document, part-of-speech tagging, semantic tag-
ging, building relationships among phrasal and sentential el-
ements, and producing a coherent framework for extracted
information fragments. In the NLP approach, natural lan-
guage is the dominant guide; in our approach an ontology
expressed as a conceptual model is the dominant guide. One
interesting point of similarity is that NLP approaches to
information extraction typically use special-purpose rules
to recognize semantic units such as names, currencies, and
equipment. These techniques use context and string pat-
terns, similar to ours, and sometimes use large lexicons of
names and places. [12] observes that although these phrasal
units usually cause no problems for human readers, they can
and do cause ambiguity problems that are more difficult to

Application
Ontology

Ontology
Parser

Unstructured
Document | Constant/Keyword Rules |

\ / List of Objects,

Relationships,
Constant/Keyword and Constraints

Recognizer \

| Name/String/Position Table Structured-Text
Generator

Filtered and
Structured Document
(Populated SQL Database)

SQL Schema

Figure 1: Framework for ontology-based information extrac-
tion and structuring.

resolve in automatic processing.

As for similarities with semistructured-data research, one
line of work consists of dynamically creating model instances
over semistructured data. [19] introduces DataGuides as
concise and accurate structural summaries of semistructured
data; [28] and [34] attempt to do “schema discovery” to iden-
tify typical patterns found in semistructured data; and [29]
considers the idea of dynamic schema construction as a way
to transform semistructured data into structured data. We
note that [29]’s concluding sentence states, “it is ... difficult
to extract the attribute-value pairs needed to construct the
schema.” This is a drawback of their approaches, but we
overcome this problem in our approach.

Our experimental data comes from the Web, and we be-
lieve that the techniques we propose here are useful for ex-
tracting and structuring Web information. Our approach,
however, does not constitute a Web query language like [22],
[24], and [27]. Instead, once we populate our model instance
and produce a database, we can query the information using
standard query languages such as SQL.

3 Extraction and Structuring Framework

Figure 1 shows the framework we use to extract and struc-
ture the data in an unstructured document. Boxes represent
files and ovals represent processes. As Figure 1 shows, the
input to our approach is an application ontology and an un-
structured document, and the output is a filtered and struc-
tured document whose data is in a database. Since all the
processes and intermediate file formats are fixed in advance,
our framework in Figure 1 constitutes a general procedure
that takes as input any declared ontology for an application
domain of interest and an unstructured document within
the application’s domain and produces as output structured
data, filtered with respect to the ontology.

The only step that requires significant human interven-
tion is the initial creation of an application ontology. How-
ever, once such an application ontology is written, it can
be applied to unstructured documents from a wide vari-
ety of sources, so long as these documents correspond to
the given application domain. Also, because our extraction

Figure 2: Graphical car-ads ontology (with regular expres-
sions omitted).

is ontology-based, our approach is resilient to changes in
source-document formats. For example, changes in HTML
formatting codes do not affect our ability to extract and
structure information from a given Web page.

We next give a high-level description of our approach
in Section 3.1. We follow with a detailed example in Sec-
tion 3.2. We use classified car ads as a running example
throughout this section.

3.1 High-Level Description

As shown in Figure 1, there are three processes in our struc-
turing framework: an ontology parser, a constant/keyword
recognizer, and a structured-text generator. The input is an
application ontology and a set of unstructured documents,
and the output is a populated relational database. A main
program invokes the parser, recognizer, and generator in the
proper sequence. The ontology parser is invoked only once at
the beginning of execution, while the recognizer and genera-
tor are repeatedly invoked in sequence for each unstructured
document to be processed.!

The input to our system is an application ontology and a
set of unstructured documents. The semantic data model we
use for the input ontology is OSM [17], augmented to allow
regular expressions as descriptors for constants and context
keywords. Constants are potential values in lexical object
sets, while context keywords may be associated with any
object set (lexical or nonlexical). OSM has both a graphical
and a textual representation, which are equivalent [26]. This
equivalence allows us to present an ontology graphically, as
in Figure 2 but parse it textually, as in Figure 3.

The unstructured document input is presented as a se-
quence of records separated by five pound signs, as shown
in Figure 4. For now, we collect the pages manually, and
feed them to a document cleanser and record separator that
removes HTML tags and automatically divides the input
into separate unstructured documents. We are working on
improving the automatic record-boundary detection algo-
rithm, and ultimately we will replace manual gathering of
pages with an automatic agent to crawl the Web looking for
relevant pages.

1In our current implementation, the main program and the recog-
nizer are written in Perl, and we have combined them into a single
script. The parser is implemented in btyacc, flex++, and C++. The
generator is a C++ program.

Car [0:1] has Year [1:*];
Year {regexpl2]: "\d{2} : ([™\s$\d]l|™)\d{2}[", \dkK]"
m\d{2} : ([™\$\dl|"M)\d{2}, ["\d]l",
"\d{2} : \b’\d{2}\b" };
Car [0:1] has Make [1:*];
Make {regexp[10]: "\bchev\b", "\bchevy\b", ... };
Car [0:1] has Model [1:%];
Model {regexp[16]: "88 : \bolds\S*\s*88\b"
"80 : \baudi\S*\s*80\b", "\bacclaim\b", ... };
Car [0:1] has Mileage [1:%*];
Mileage {regexp[8]: "\b[1-9]\d{1,2}k",
v [1-91\d?,\d{3} : [*\s$\d][1-9]\d?,\d{3}["\dl" }
{context: "\bmiles\b", "\bmi\.", "\bmi\b"};
Car [0:*] has Feature [1:*];
Feature {regexp[20]:

-- Colors

"\bagqua\s+metallic\b", "\bbeige\b",
-- Transmission

"(5|6)\s*spd\b", "auto : \bauto(\.|,)",
-- Accessories

"\broof\s+rack\b", "\bspoiler\b",
-- Engine characteristics
"\bv-?(6]8)", "\b6\s*cyl\b",
-- Body/Style
"\b4\s*d (oo) ?2r\b", "\b2\s*d(oo)?r\b",
-- Low mileage
"\blow\s+miles\b", "\blow\s+mi\.", ... };
Car [0:1] has Price [1:%];
Price {regexp([8]: "[1-9]1\d?,\d{3} : \s[1-9]1\d?,\d{3}",
"[1-91\d{2,3} : \$[1-9]1\d{2,3}" };
PhoneNr [1:*] is for Car [0:1];
PhoneNr {regexp[8]:
"[1-91\d{2}-\d{4} : (\b|["\d]) [1-91\d{2}-\a{4} (["\al[$)"};
PhoneNr [0:1] has Extension [1:%];
Extension {context: "\bext\b"}

{regexpl4]: "\d{1,4} : (x|ext\.\s+)\d{1,4}\b"};

Figure 3: Partial textual car-ads ontology.

96 CHEV Monte Carlo Z34, loaded, bright Red
15,000 actual miles! A great buy at $14,990,
$750 to 1000 down. MURDOCK CHEVROLET 298-8090

HHHHH

94 CHEV Corsica, 88,281 miles. Ask for #16. $4,900.
Government Surplus533-5885

HHHHH

89 AUDI 80, red, auto., p/w, p/l, sunroof, loaded, 128K,
new trans., new diff. Runs perfect, must sell, $3300 obo.
gcall Nate, 554-4414

Figure 4: Sample unstructured input documents.

Given the inputs as described above, the next step is to
invoke the ontology parser. For a given application ontology,
the parser creates an SQL schema as a sequence of create-
table statements. Object-set names from the ontology de-
note attributes in the generated SQL tables. Attributes are
of type wvarchar for lexical object sets or type integer for
nonlexical object sets. The parser includes a simple nor-
malizer that produces its schema in an acceptable normal
form assuming that the application ontology is canonical
[16]. Not all information in the ontology is needed by the
structured-text generator, so the parser also extracts the list
of objects, relationships, and constraints to be used by the
generator. This list provides a mapping between the rela-
tionships in the ontology and the table declarations in the
SQL schema, and it also provides the cardinality constraints
that designate which relationships are one-one, one-many,
and many-many.? Finally, the parser also creates a file of
constant /keyword rules. This file is a list of regular expres-
sions in Perl syntax, tagged with object-set names from the
OSM ontology. (We illustrate the intermediate file formats
in Section 3.2.)

After invoking the parser, the main program invokes the
constant/keyword recognizer and then the structured-text

2For our current implementation, all relationship sets are binary.

generator for each unstructured document. The recognizer
applies each regular expression to the unstructured docu-
ment. When the Perl program recognizes a string S accord-
ing to a regular expression E with tag 7T, it emits T as the
name, S as the string, and the beginning and ending char-
acter numbers in the document as the position. We call this
list the “name/string/position table.”

The structured-text generator uses the object/relation-
ship/constraint list and the SQL schema to match attributes
(object-set names in the ontology) with values (constants de-
scribed in the name/string/position table). Then the gener-
ator forms tuples for relations in the generated SQL schema.
The generator forms tuples according to five heuristics, ap-
plied in the following order.

1. Keyword Proximity. If the constraints in the on-
tology require at most one constant for an object set,
and if there is a context keyword for the object set in
the name/string/position table, we use keyword prox-
imity to reject all but the closest constant tagged with
the same object-set name as the keyword’s object-set
name. For constants that are equally close before and
after a keyword, we favor the constant value that ap-
pears after the keyword. By “reject” we mean that we
remove the entry from the name/string/position table.

2. Subsumed and Overlapping Constants. The con-
stant /keyword recognizer may associate a single string
S in the source with more than one object set, but a
given string from the text may only generate a single
constant. Thus, if constants overlap, we must reject all
but one. We favor constants that are associated with
keywords, so we begin by rejecting overlapping con-
stants that are not associated with a keyword. Next we
reject constants that are properly contained in another
constant. If overlapping constants are still present, we
favor the one that appears first. (Typically, if a con-
stant could belong to one of several object sets in an
ontology, there is a keyword associated with the con-
stant, and the keyword-proximity heuristic will resolve
the issue. Otherwise, a human would also find the con-
stant to be ambiguous.)

3. Functional Relationships. If the ontology dictates
that the database can accept one constant for an object
set S and exactly one constant appears for S, we insert
the constant in the database (regardless of keyword
proximity).

4. Nonfunctional Relationships. If the ontology dic-
tates that the database can accept many constants for
an object set and if there are one or more constants,
we insert them all.

5. First Occurrence without Constraint Violation.
If the ontology dictates that the database can accept
at most one constant for an object set S, but if there
are several constants, we insert only the first one listed.
Since we sort the name/string/position table according
to the position of the recognized string, we assume
that the first constant found that satisfies the regular
expression for an object set should belong to the object
set.

3.2 Application Examples

For our application case studies, we consider automobile ad-
vertisements from the Salt Lake Tribune and a jobs listing

from the Los Angeles Times. We used actual unstructured
documents for these applications taken from the Web. To
clean these Web documents, we remove HTML markers and
separate individual documents by five pound signs as de-
scribed earlier. Our cleaning technique is the subject of
ongoing research, and we will present its results in another
paper.

Figure 4 shows three sample unstructured documents for
our car-ads application. (We continue here by showing and
explaining examples of the files for our car-ads application.
Files for our jobs-listing application are similar in form, but
different in content.)

Figure 2 gives a graphical layout of our car-ads ontol-
ogy (minus the regular expressions which we have chosen
to omit here). Figure 3 gives the equivalent textual rep-
resentation (with some of the regular-expression lists cut
short). We show only 30 regular-expression components in
Figure 3; all together, our car-ads ontology had 165 regular-
expression components. Observe the direct correspondence
between the graphical representation and the textual rep-
resentation. The relationship set connecting “Car” and
“Year” in Figure 2, for example, corresponds to the decla-
ration “Car [0:1] has Year [1:*]” in Figure 3. The bracketed
numbers/number-pairs in the textual version here are par-
ticipation constraints, which are displayed graphically near
the connections between object sets and relationship sets.
The numbers in brackets in the regular-expression declara-
tions in Figure 3 give the maximum length of strings that
can match any of the regular expressions in the declaration.

From this ontology, we generate three intermediate files
(constant/keyword rules, objects/relationships/constraints,
and SQL schema). Due to space limitations, we do not
illustrate most of our intermediate file formats here, but
they can be found on our Web site [13].

The relational schema generated from the ontology in
Figure 3 includes three tables: Car(Car, Year, Make, Model,
Mileage, Price, PhoneNr), PhoneNr(PhoneNr, Extension),
and CarFeature(Car, Feature). Note that table attributes
are object sets from the ontology. We use participation con-
straints to determine one-one, one-many, and many-many
relationships.

The body of a regular expression rule for extracting a
keyword or constant may either be simple or compound. A
compound regular expression is of the form “x y” and
indicates that expression z is to be matched, but only in
the context of expression y. Thus, “\d{2} : \b’\d{2}\v”
for “Year” in Figure 3 specifies a match with two dig-
its (“\d{2}”) but only in the context of a word boundary
followed by an apostrophe and ending with another word
boundary (“\b’\d{2}\b”). This allows more precise match-
ing than is possible with a single expression.

Figure 5 shows the name/string/position table generated
by the constant/keyword recognizer when its document in-
put file is the first unstructured document in Figure 4. A
bar “|” separates the fields in the generated table. The first
field is the name, possibly tagged as a context keyword; the
second column is the recognized string (either a constant or
a keyword); and the last two fields are the character posi-
tions in the unstructured document where the string begins
and ends.

Observe that in Figure 5 there are several constants that
are candidates for the year, mileage, and price of this vehicle.
Our heuristics help us sort out the results. The first heuris-
tic, keyword proximity, matches the mileage keyword with
the “15,000” constant instead of “1000” because “15,000”
is closer (60 —51 = 9 characters compared to 100 —64 = 36).

Year|96|2]3
Make |CHEV|5|8
Model |[Monte Carlo|10|20

Feature|Red |42 |44
[Mileage|15,000|46|51
KEYWORD (Mileage) |miles|60|64
Price|14,990|84|89
i 95—

Miteage 16661100103 —

PhoneNr |298-8090|130|137

Figure 5: Using heuristics to accept some constants and
reject others.

Thus, we reject “1000” as a possible mileage (and thus we
cross out this line in Figure 5). In this example, our second
heuristic is not needed since none of the recognized constants
overlaps any other. Our third heuristic, functional relation-
ships, allows us to select the model (“Monte Carlo”) and
phone number (“298-8090”) values. By the fourth heuris-
tic, nonfunctional relationships, we accept “Red” as a feature
(and if other features had been present, they would have
been accepted as well). Finally, we use the fifth heuristic to
reject “34” as a year, “750” as a price, and “CHEVROLET” as
a make.

The structured-text generator creates two tuples from
the constants and keywords in Figure 5: Car(1001, “967,
“CHEV”, “Monte Carlo”, “15,000”, “14,990”, “298-8090")
and CarFeature(1001, “Red”). These tuples are emitted as
SQL insert statements.

After feeding the car ads one at a time to our extrac-
tion and structuring procedure, we obtain a fully populated
database. We can then pose standard SQL queries to the
automatically populated database. As an example, an SQL
query to get the year, make, model, and price for 1987 or
later cars that are red or white yielded the following result.

Year Make Model Price
94 DODGE 4,995
94 DODGE Intrepid 10,000
91 FORD Taurus 3,500
90 FORD Probe

88 FORD Escort 1000

In our second case study we extracted information from
computer jobs listed in the Los Angeles Times. Figure 6
shows the ontology we used (minus the regular expressions).
Our jobs-listing ontology included 120 regular-expression
components. The ontology in Figure 6 declares the struc-
ture information about the degree needed, the skills needed,
and how to contact someone about the job. After populat-
ing the database with respect to this filter, we were again
able to perform useful queries using SQL.

4 Experimental Results

For our experiments, we took 216 car ads from a Web page
provided by the Salt Lake Tribune (www.sltrib.com) and
100 advertisements for computer jobs from a Web page pro-
vided by the Los Angeles Times (www.latimes.com). In

Degree |
T o TR
, A
requires requires \has has
o 0:* has 0:1 0:1 :
Job T Contact

Figure 6: Graphical computer job-listing ontology.

both cases, we selected advertisements from one day to be
our tuning set® and from another day (about a week and
a half later) to be our test set. We used the tuning set
to determine which object and relationship sets would be
in the ontology and what regular expressions would recog-
nize constants and keywords. We refined the ontology until
it described information in the tuning set as completely as
possible. In generating regular expressions, we did not limit
ourselves to patterns found in the tuning set. We used our
own experience to generalize some of the patterns, but we
did not attempt to be comprehensive—just to be as accurate
as possible on the tuning set. We developed and tuned our
application ontologies using 100 cars ads and 50 job ads. We
then applied these ontologies to the test sets and obtained
the results in Table 1 (car advertisements) and in Table 2
(computer jobs).*

As reported in Tables 1 and 2, we counted the number
of facts (N) in the test-set documents for each attribute. A
“fact” is a particular attribute-value pair about an item of
interest, such as “(Year, 94)” for a car ad, or “(Fax, 353-
9278)” for a job listing. For the most part, counting these
facts was straightforward. We note, however, that for car
ads, we only counted one phone number even when the ad
had more (our car-ads ontology only requested one); simi-
larly, for our job ads, we only counted one email address,
one Web URL, and one fax number, although our jobs on-
tology did allow for several voice phone numbers. Features
for car ads and skills for job ads are unbounded. We lim-
ited features to actual physical features of cars; we limited
skills to computer languages, tools, and systems. Thus, for
example, we eliminated “Government Surplus” and “Runs
perfect” as features of cars and “works well with others” and
“willing to relocate” as job skills. For the number of facts
declared correctly in Tables 1 and 2, we counted the num-
ber of facts in the test-set documents that our automated
system correctly extracted and inserted into the database.
For the number of facts declared incorrectly in Tables 1 and
2, we counted the number of facts our automated system
inserted into the database, but which were not facts in the
test-set documents.

In information retrieval, recall is the ratio of the number
relevant documents retrieved to the total number of relevant
documents, and precision is the ratio of the number of rele-
vant documents retrieved to the total number of documents

3We choose the term “tuning set” instead of “training set” to avoid
confusion with machine learning. In our case we are not training
the system; rather a domain expert is encoding knowledge into the
application ontology through a process of successive refinement.

4In our experiments, the ratio of tuning documents to test doc-
uments is quite high (on the order of one-to-one) because we had
to manually examine the experiment results exhaustively, which is
time-consuming. In practice, one would build the application ontol-
ogy based on a relatively small number of documents, as we did, and
then apply the ontology to a much larger set of documents (e.g., all
Web-based car ads from a set of on-line newspapers known to supply
such classified advertisements).

Table 1: Salt Lake Tribune Automobile Advertisements

| N [C[I] & | &
Car 116 | 116 | 0 | 1.00 1.00
Year 116 | 116 | 0 | 1.00 1.00
Make 116 | 113 | 0 | 0.97 1.00
Model 114 93 | 0| 0.82 1.00
Mileage 31 28 | 0| 0.90 1.00
Price 103 | 103 | 0 | 1.00 1.00
PhoneNr 116 | 109 | 0 | 0.94 1.00
Extension 2 1 0 | 0.50 1.00
Feature 289 | 264 | 1| 0.91 | 0.996

| All Attributes | 1003 | 943 | 1 | 0.94 | 0.9989 |

Table 2: Los Angeles Times Computer Jobs Listing

[N[CTI] & [&]
Job 50 | 50 | 0| 1.00 | 1.00
Degree 6 6 0] 1.00 | 1.00
Skill 165 | 122 | 0 | 0.74 | 1.00
Contact 50 | 50 | 0| 1.00 | 1.00
Email 11 10 | 2] 091 | 0.83
Web 0 0 [0 - -
Fax 33 | 30 [0] 091 | 1.00
Voice 14 | 11 [1]0.79 | 0.92

[AIl Attributes | 329 | 279 | 3 | 0.84 | 0.98

retrieved [18]. To compute our recall and precision ratios,
we let facts be documents. If N is the number of facts in
the source, C is the number of facts declared correctly, and

I is the number declared incorrectly, the recall ratio is %,

and the precision ratio is CL_H For our tuning sets, we were

able to achieve recall and precision ratios of 0.98 and 0.995
respectively for car ads and to 0.99 and 0.99 respectively
for computer job listings. For our test sets, Tables 1 and
2 show the results for each attribute and for all attributes
combined.®

Several comments about our results are in order. Nonlex-
ical object sets (“Car”, “Job”, “Contact”) are always iden-
tified correctly because they are represented by surrogate
identifiers we generate. Their presence in a record is as-
sumed by our extraction algorithm. If we discard the data
for these “given” nonlexical object sets, recall drops to 86%
and 78% respectively for car ads and job ads, but precision
remains high at 99% and 98% respectively.

Lexical object sets are subdivided into bounded and un-
bounded sets. Unbounded sets, such as car features and job
skills, generally dominate overall precision and recall num-
bers. For example, the 94% recall for all car attributes is
due mostly to unbounded model and feature sets. Similarly,
the unbounded skill set dominates the overall recall for job
attributes. In both cases, if we had used larger tuning sets,
we could have done better. For example, we missed the car
make “MERC” and a number of models (e.g., “Continental”,
“Town Car”, “98 Royale”). If we had used a comprehensive
catalog of car makes and models, we would have achieved
near 100% recall. Similarly, for jobs, if we had cataloged a

50ften, IR literature shows recall and precision information as
curves, but in our case, only a single point for each attribute applies.

larger set of skills, including skills we missed such as “CICS”,
“DB2”, and “BAL”, we would have achieved near 100% re-
call. This kind of error is due to incomplete domain analysis,
which is relatively easy to correct in practice.

Another similar category of errors was due to variations
in patterns we had already seen. For example, “5 speed” ap-
peared instead of “5 spd”, “p.]” instead of “p.l.”, “Wind95”
instead of “Win95”, and “888-60TITLE” or “818.546.1619”
instead of a more common phone number format.

Misidentification of attributes was infrequent because of
the fine degree of precision in our regular expressions (due in
part to our two-level context scheme). On the blind test sets
for both applications this led surprisingly to 98% or better
precision. The only incorrect identifications involved the
“C” language and the abbreviation “AUTO” (representing
automatic transmission).

Typographical mistakes also led to lower recall. For
example, we missed the make “Chrystler”, the model
“Camero”, the feature “casss.”, and the phone number “805)
295-8323”. Sometimes missing white space caused lower re-
call, as with the seven phone numbers missed in the car ex-
periment. All seven were run together with the dealership
address (“I-15566-2441"), causing the regular expression to
miss the phone number. (We suspect that even humans
outside of Utah, not realizing that Interstate 15 is the main
north-south highway, might have trouble extracting the “I-
15” prefix as part of an address.)

Finally, some attributes were missed due to weaknesses
in our heuristics. We miscategorized a couple of fax num-
bers as voice numbers instead because the context keyword
“phone” appeared in the ad, but there was no separate voice
phone. Another fax number was miscategorized because the
keyword “fax” appeared after the number instead of before.

Within our existing framework, there are several ways
we can improve our results. Larger tuning sets and more
complete domain analysis will (1) provide more complete
descriptions of unbounded categories (job skills and car fea-
tures), (2) enhance our regular expressions to match more
variations of patterns we have already included, and (3) im-
prove how we use context keywords to recognize and catego-
rize constants. With more experience, we may also be able
to lessen the impact of typographical errors by correcting for
common mistakes. For example, we missed one phone num-
ber because the typist entered the letter “I” (“ell”) instead
of the digit “1” (“one”).

5 Future Work

We have provided a framework for converting data-rich un-
structured documents into structured documents. In addi-
tion, we have implemented the procedures in our framework,
and we have demonstrated that our framework and imple-
mented procedures achieve good results. However, much
remains to be done. Three particular tasks lie ahead: (1)
improve and fine-tune the implemented procedures, (2) add
front-end page processors, and (3) diversify back-end display
generators.

There are many things we can do to fine-tune our ap-
proach. For example, we can make the ontological de-
scriptions richer. OSM already has a much richer seman-
tics than the small subset of the language we presented
here [17]. Additional modeling constructs include n-ary
relationship sets, generalization/specialization hierarchies,
aggregation, declared-view generation, predicate-calculus-
based constraints, and computation-based constraints. Cor-
responding model-equivalent textual components have been

defined as well and parsers have been built [25]. Also, pro-
cedures exist for synthesizing schemas—both flat schemas
as well as nested schemas [16]. We have begun to explore
the impact of richer ontological descriptions by applying our
framework to extract genealogical information from obitu-
aries. Preliminary results indicate that we can obtain recall
and precision ratios similar to our car ads and job listings
but in the much richer application domain of genealogy.

We can also improve schema generation and data popula-
tion. From the regular expressions, we have the information
we need to generate better types—e.g., integer, float, money,
date, and time. We also need to convert the values obtained
to these types. As currently implemented, the strings we
obtain make comparisons difficult. “55,000” is the same
as “b5K”, but we cannot directly compare them for equal-
ity. Furthermore, ordering of these and other constants with
multiple formats makes direct less-than and greater-than
comparisons meaningless. It would also be useful to allow
replacement of constants with more descriptive phrases; for
example, we might convert both “p.l.” and “pl” to “power
locks”.

We can improve and fine-tune our heuristics. Finding
and testing better heuristics is definitely possible and de-
serves attention. Representing them declaratively and pro-
cessing them with different strategies is also possible and
should be investigated.

We can make use of techniques from other research areas.
Examples include natural-language processing [12] (to im-
prove our semantic understanding—currently, our approach
is purely syntactic, which has the advantage of being much
faster to process), constraint programming (e.g., for deter-
mining whether candidate constant values fall within equa-
tional constraints such as “birth date must precede death
date”), and theory of evidence [30] (e.g., for weighting the re-
sults of different, competing heuristics to decide which path
to choose).

We can develop tools and libraries for ontology specifi-
cation. The only step in our process that is human-resource
intensive is the specification of an application ontology. In-
deed, this is a complex step that, like programming, re-
quires an expert. Graphical tools for editing the ontology
and seeing the effects of changes within a sample set of doc-
uments would be very helpful in reducing the burden of
regular-expression generation. We have begun to develop
such graphical tools in Java. Also, we can provide pre-built
libraries of common ontology types (e.g., currency, date,
time, phone, e-mail, URLs) or domains.

Front-end page processors are needed to prepare docu-
ments. For our case studies we searched the Web, found doc-
uments of interest, saved the HTML pages to a file, identified
record boundaries within the HTML text, and processed the
files to insert record separators and remove HTML markers.
How much of this can be automated? As it turned out,
we were able to insert record separators and remove HTML
markers with just a few minutes of effort. We are currently
working on the nontrivial task of automatically separating
records. Interestingly, our ontology can also help us auto-
matically recognize record boundaries. For example, if we
discover key constants repeating, we can infer that we have
crossed a record boundary. We are working on refining our
approach to boundary recognition.

Diversification of back-end display generators can
broaden the range of usability. In our implementation, we
generate a populated relational database and use SQL se-
lect statements for retrieval. Many user-friendly interfaces
have already been built over standard database interfaces, so

this is certainly feasible. Besides standard databases with
user-friendly interfaces, we could generate XML pages to
organize and store extracted information. Indeed, we need
not actually extract the information, but can instead estab-
lish links to the information and use it in place. This, of
course, is particularly useful when the information to be ex-
tracted includes multimedia objects such as images, video,
and sound.

6 Conclusions

Contributions of this paper include the following:

1. We proposed a framework for an ontology-based sys-
tem that extracts and structures information found in
data-rich unstructured documents. Except for ontol-
ogy creation, the processes in our framework are auto-
matic and do not require human intervention.

2. We built a prototype system based on this framework.

3. We applied our prototype system to two application
areas—car advertisements and a computer jobs listing.
As raw data for these applications, we used documents
placed on the Web by the Salt Lake Tribune and the
Los Angeles Times.

4. In experiments we conducted, we obtained near 99%
recall and precision on tuning data and roughly 90%
recall and 98% precision on test data.

For applications that are data rich and narrow in on-
tological breadth, the approach presented here shows great
promise. We observed that most of the errors in recall and
precision were due to incomplete lexicons and incomplete
ontologies. Without changing the framework, better lexicons
and richer ontologies will overcome both of these shortcom-
ings. Improvements in heuristics, front-end processing, and
back-end processing are also possible.

References

[1] S. Abiteboul, S. Cluet, V. Christophides, T. Milo,
G. Moerkotte, and Jéréome Siméon. Querying docu-
ments in object databases. International Journal on
Digital Libraries, 1(1):5-19, April 1997.

[2] S. Abiteboul, S. Cluet, V. Christophides, T. Milo,
G. Moerkotte, and Jéréome Siméon. Querying docu-
ments in object databases. International Journal on
Digital Libraries, 1(1):5-19, April 1997.

[3] S. Abiteboul, D. Quass, J. McHugh, J. Widom, and
J. Wiener. The lorel query language for semistructured
data. International Journal on Digital Libraries, 1(1),
April 1997.

[4] B. Adelberg. Nodose - a tool for semi-automatically ex-
tracting structured and semistructured data from text
documents. To appear in Proceedings of SIGMOD’98,
1998.

[5] N. Ashish and C. Knoblock. Wrapper generation for
semi-structured internet sources. SIGMOD Record,
26(4):8-15, December 1997.

[6] N. Ashish and C. Knoblock. Wrapper generation for
semi-structured internet sources. SIGMOD Record,
26(4):8-15, December 1997.

[7]

8]

[9]

(10]

(11]

(12]

(13]

(14]

(15]

20]

(21]

(22]

P. Atzeni and G. Mecca. Cut and paste. In Proceedings
of the PODS’97, 1997.

P. Atzeni, G. Mecca, and P. Merialdo. To weave the
web. In Proceedings of the Twenty-third International
Conference on Very Large Data Bases, pages 206—215,
Athens, Greece, August 1997.

P. Buneman, S. Davidson, G. Hillebrand, and D. Suciu.
A query language and optimization techniques for un-
structured data. In Proceedings of SIGMOD’96, June
1996.

M.A. Bunge. Treatise on Basic Philosophy: Vol. 3:
Ontology I: The Furniture of the World. Reidel, Boston,
1977.

S. Chawathe, H. Garcia-Molina, J. Hammer, K. Ireland,
Y. Papakonstantinou, J. Ullman, and J Widom. The
tsimis project: Integration of heterogeneous informa-
tion sources. In IPSJ Conference, pages 7-18, Tokyo,
Japan, October 1994.

J. Cowie and W. Lehnert. Information extraction.
Communications of the ACM, 39(1):80-91, January
1996.

Data Extraction Group Home URL:

http://osm7.cs.byu.edu/deg.

L.M.L. Delcambre, D. Maier, R. Reddy, and L. An-
derson. Structured maps: Modeling explicit semantics
over a universe of information. International Journal
on Digital Libraries, 1(1):20-35, April 1997.

R. Doorenbos, O. Etzioni, and D. Weld. A scalable
comparison-shopping agent for the world-wide web. In
Proceedings of the first international conference on au-
tonomous agents 97, 1997.

D.W. Embley. Object Database Development: Con-
cepts and Principles. Addison-Wesley, Reading, Mas-
sachusetts, 1998.

D.W. Embley, B.D. Kurtz, and S.N. Woodfield. Object-
oriented Systems Analysis: A Model-Driven Approach.
Prentice Hall, Englewood Cliffs, New Jersey, 1992.

W.B. Frakes and R. Baeza-Yates. Information Re-
trieval: Data Structures € Algorithms. Prentice Hall,
Englewood Cliffs, New Jersey, 1992.

R. Goldman and J. Widom. Dataguides: Enabling
query formulation and optimization in semistructured
databases. In Proceedings of the Twenty-third Inter-
national Conference on Very Large Data Bases, pages
436-445, Athens, Greece, August 1997.

Page.

A. Gupta, V. Harinarayan, and A. Rajaraman. Vir-
tual database technology. SIGMOD Record, 26(4):57—
61, December 1997.

J. Hammer, H. Garcia-Molina, J. Cho, R. Aranha, and
A. Crespo. Extracting semistructured information from
the web. In Proceedings of the Workshop on Manage-
ment of Semistructured Data, Tucson, Arizona, May
1997.

D. Konopnicki and O. Shmueli. A query system for
the world wide web. In Proceedings of the Twenty-first
International Conference on Very Large Data Bases,
pages 54—65, Ziirich, Switzerland, 1995.

(23]

(24]

29]

(33]

34]

N. Kushmerick, D.S. Weld, and Doorenbos. Wrapper
induction for information extraction. In Proceedings of
the 1997 International Joint Conference on Artificial
Intelligence, 1997.

L.V.S. Lakshmanan, F. Sadri, and I.N. Subramanian. A
declarative language for querying and restructuring the
web. In Proceedings of the 6th International Workshop
on Research issues in Data Engineering, RIDE’96, New
Orleans, Louisiana, 1996.

S.W. Liddle. Object-Oriented Systems Implementation:
A Model-Equivalent Approach. PhD thesis, Depart-
ment of Computer Science, Brigham Young University,
Provo, Utah, June 1995.

S.W. Liddle, D.W. Embley, and S.N. Woodfield. Uni-
fying Modeling and Programming Through an Active,
Object-Oriented, Model-Equivalent Programming Lan-
guage. In Proceedings of the Fourteenth International
Conference on Object-Oriented and Entity Relationship
Modeling (OOER’95), Lecture Notes in Computer Sci-
ence, 1021, pages 5564, Gold Coast, Queensland, Aus-
tralia, December 1995. Springer Verlag.

A.O. Mendelzon, G.A. Mihaila, and T. Milo. Querying
the world wide web. International Journal on Digital
Libraries, 1(1):54-67, April 1997.

S. Nestorov, J. Ullman, J. Wiener, and S. Chawathe.
Representative objects: Concise representations of
semistructured, hierarchiacl data. In Proceedings of the
Thirteenth International Conference on Data Engineer-
ing, Birmingham, UK, April 1997.

D.-Y. Seo, D.-H. Lee, K.-S. Moon, J. Chang, J.-
Y. Lee, and C.-Y. Han. Schemaless Representa-
tion of Semistructured Data and Schema Construc-
tion. In Proceedings of the 8th International Confer-
ence on Databases and FExpert Systems Applications
(DEXA’97), pages 387-396, Toulouse, France, Septem-
ber 1997. Springer Verlag.

G. Shafer. A Mathematical Theory of Evidence. Prince-
ton University Press, 1976.

D. Smith and M. Lopez. Information extraction for
semi-structured documents. In Proceedings of the
Workshop on Management of Semistructured Data,
Tucson, Arizona, May 1997.

S. Soderland. Learning to extract text-based informa-
tion from the world wide web. In Proceedings of the
Third International Conference on Knowledge discov-
ery and Data Mining, pages 251-254, Newport Beach,
California, August 1997.

Y. Wand. A proposal for a formal model of objects. In
W. Kim and F.H. Lochovsky, editors, Object-Oriented
Concepts, Databases, and Applications, pages 537-559.
ACM Press, New York, 1989.

K. Wang and H. Liu. Schema discovery for semistruc-
tured data. In Proceedings of the Third International
Conference on Knowledge discovery and Data Min-
ing, pages 271-274, Newport Beach, California, August
1997.

