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Materials digital data, high throughput experiments and high throughput computa-

tions are regarded as three key pillars of materials genome initiatives. With the fast

growth of materials data, the integration and sharing of data is very urgent, that has

gradually become a hot topic of materials informatics. Due to the lack of semantic

description, it is difficult to integrate data deeply in semantic level when adopting the

conventional heterogeneous database integration approaches such as federal database

or data warehouse. In this paper, a semantic integration method is proposed to create

the semantic ontology by extracting the database schema semi-automatically. Other

heterogeneous databases are integrated to the ontology by means of relational alge-

bra and the rooted graph. Based on integrated ontology, semantic query can be done

using SPARQL. During the experiments, two world famous First Principle Computa-

tional databases, OQMD and Materials Project are used as the integration targets,

which show the availability and effectiveness of our method. © 2017 Author(s).

All article content, except where otherwise noted, is licensed under a Creative

Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.1063/1.4999209

I. INTRODUCTION

Traditionally, the materials science heavily relies on costly experiments and simulation based

methods to understand the intrinsic mechanisms of the relationships among processing-structure-

property-performance (PSPP). Currently, the big data generated by high throughput experiments

and computations has provided a great opportunities for data-driven based techniques, which is

one of the three pillars of materials genome initiatives (MGI). Data-driven materials techniques

are playing a big role in revealing PSPP relationships in materials science, which not only can

be used for both property prediction based forward models, but also materials discovery based

inverse models. So, the data-driven featured materials science is regarded as the essential con-

tent of materials informatics, which provides the foundations for fourth paradigm of materials

discovery.1,2

With the data generating techniques are getting easier than before, the requirement of data shar-

ing and data integration gradually become urgent.3 However, this problem faces many challenges.

Firstly, the data types are quite different from discrete to continuous, from simple text to complex

images, videos, etc. Secondly, in different data sources the data schema or format are quite dif-

ferent which makes it difficult to understand with each other. Thirdly, the data quality in different

sources are also different, which makes data evaluation and selection difficult. Finally, even we

have found the data, recognizing what the rows and columns represent can be another challenge,

because many of the datasets have machine-readable descriptions, but often these are in very large

data dictionary files full of terminology that is often designed primarily for the experts in a given

field.
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Ontology, which is used to capture knowledge about some domain of interest, is widely used

in knowledge engineering, information retrieval, information integration, etc. An ontology usually

describes not only the concepts in a domain, but also the relationships that hold among those con-

cepts. This paper presents a methodology that integrating heterogeneous relational databases by

transforming one database into ontology and mapping others into it, and then do semantic query on

the integrated ontology based system.

The rest of the paper is organized as follows: Section II and III discuss the related work and the

framework of the whole system. Mapping from the relational database to ontology and other hetero-

geneous database integration are described in Section IV and V. The experimental integrations of two

famous materials databases are shown in Section VI. Section VII provides some final conclusions

and directions for the future work.

II. RELATED WORK

The integration of distributed heterogeneous database, sometimes called data integration, is an

active area of research. Concerning about the heterogeneous database integration, it can be divided

into two categories according to the query method. One is the data warehouse which means the whole

data is integrated and stored in one data source. The other is on-demand retrieval that only when the

end users send the query to the system, the query execution engine extracts data from the different

data sources.

Query expansion is an important issue in the field of information retrieval. Chokri et al put forward

Ontology-based Query Expansion4 which can expend a single SQL (structured query language) query

into several queries. It utilize the synonym and parent concept in ontology to fulfil the expansion which

is only suitable when the attribute in database equals to the concept in ontology.

Bonatti et al put forward an ontology extended relation (OER), which contains an ordinary

relation as well as an associated ontology conveying semantic meaning about the terms being used.5

They extended the relational algebra to query OERs. And the advantage of their method is that OER

model can not only be directly built on top commercial relational databases, but also can be scaled

to handle large data sets.

Ranganathan and Liu6 proposed a system to bridge the semantic gap between the user given

queries and the queries can be answered by the database. They use domain knowledge contained in

ontologies, that extends relational databases with the ability to answer semantic queries expressed in

SPARQL.7 Based on a semantic model of data, end users express their queries in SPARQL, and they

get back semantically relevant results. The experimental results show a good performance on sample

relational database, using a combination of standard and custom ontologies.

Ontologies are becoming increasingly commonplace for semantically representing knowledge

in a formal manner that facilitates sharing and integrating rich information for materials informatics.

Moreover, ontologies can support logic reasoning by rule engines that enhance knowledge acquisition

automatically. Generally speaking, the purpose of materials informatics ontologies can be defined as

three concrete objectives:8 (1) Translate data and information into knowledge that is useful, not only

to materials scientists, but also to application engineers, regulators, and other users. (2) Curate the

knowledge base to align with the emerging materials scientific research and industrial application

development. (3) Present the knowledge in a flexible architecture that is understandable to each kind

of user group. So far, quite a lot materials ontologies have been defined, and the representative ones

are as follows:

Plinius ontology9 is the earliest materials ontology which is developed for ceramic materials

that covers the conceptualisation of the chemical composition of materials. The Plinius ontology

is given as a conceptual construction kit, involving several sets of atomic concepts and construc-

tion rules for making complex concepts. Plinius ontology does not depend on specific language

so that it can be implemented in several languages or tools, such as Prolog, Ontolingua and

LOOM.

Ashino et al10 developed an information platform for data exchange between heterogeneous

materials data resources, in which there are two components, materials data portal service and ontol-

ogy based materials data exchange. The materials data portal service mainly aggregates materials
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databases’ information through RDF site summary (RSS) technology, which includes materials type,

properties or other items to identify a material database. Ashino ontology covers quite a few fields

in materials science especially on thermal properties. The Ashino ontology contains more than 600

classes implemented in OWL (Web ontology language).

Cheung et al11 developed a semantic web application, named MatSeek, that aims to integrate

heterogeneous databases associated with materials science. MatSeek relies on a machine-processable

OWL ontology (MatOnto12) to correlate processing parameters with nano-structure, physical and

chemical properties to help scientists discover potential new materials for specific and high-priority

applications. MatSeek provides a federated search interface over several critical materials science

databases, such as the Inorganic Crystal Structure Database (ICSD), NIST Phase Equilibria Diagrams

Database (PED), etc.

ONTORULE steel ontology13 is developed by European Union which is focus on coils, defects,

phenomena etc. It is developed for the steel industry which aims to build the conceptual model with

the steel use case. The ONTORULE ontology is implemented in OWL.

FreeClassOWL14 is developed for European construction and building materials market, which

allows for the fine-grained descriptions and search for products, suppliers, and warehouses for any

building-related sourcing needs. Based on FreeClassOWL, Eurobau Utility ontology and the Bau-

DataWeb RDF dataset, BauDataWeb15 has become one of the largest and richest public datasets for

a well-defined vertical sector that is available on the Semantic Web.

Premkumar et al16 developed a novel Semantic Laminated Composites Knowledge Manage-

ment System (SLACKS) that reuses part of the structure of Ashino ontology and MatOnto ontology.

SLACKS ontology is developed for the engineering of laminated composites structures which inte-

grates relevant domains of the product life cycle, such as design, analysis, manufacturing and materials

selection through the engineering case study of a wind turbine blade. Using SLACKS ontology, it

reveals a usable product life cycle knowledge tool that can facilitate efficient knowledge creation,

retrieval and reuse from product design to manufacturing.

MatML is an extensible markup language (XML) developed especially to facilitate the materials

information exchange, which can uniformly represent materials property data to resolve syntactic and

structural heterogeneity.17,18 Although, MatML is simple, flexible and understandable, Ashino and

Oka19 have shown that MatML is not adequate for data exchange between heterogeneous materials

database and proposed a ontology framework to define the structure of domain concepts. Zhang

et al20 proposed an approach to transform MatML-based materials data into an OWL ontology

(named MatOWL). Using MatOWL, materials data can then be explored in a more semantic way.

Furthermore, MatOWL can be mapped to other ontologies with logic rules to provide more semantic

context for domain experts. Using MatOWL more materials knowledge can be obtained by reasoning

on the OWL ontology.

III. THE FRAMEWORK OF THE WHOLE SYSTEM

Supposing we have two heterogeneous databases, the idea of our method is to convert one basic

materials database to a materials ontology and then integrate the other. After that the data in each

database will be integrated into the ontology. End users can do semantic query on the integrated

ontology. Figure 1 shows the whole procedure.

Although there exists several materials ontologies as mentioned in related work, most of ontolo-

gies tend to represent one sort of material, or special fields and applications. Recently, ontologies are

often built manually, sometimes it is complicated and time consuming that needs domain experts to

participate in. So, we adopt a semi-automatic method to build a material ontology according to the

structure of a comprehensive materials database. First of all, we extract the relational model from

database by DBC API. Then we generate a material ontology according to the relational model and

some conversion rules. The tuples from database can also be converted to the ontology individuals

according to the conversion rules. And then we build an algebraic model for the materials ontology

and the other materials database. After that we get the relation between them, which can be used to

convert the data from the database into the individuals of ontology. Through these steps, the hetero-

geneous databases can be integrated together. Moreover, when using relation algebra to integrate the
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FIG. 1. System architecture of the ontology based heterogeneous databases integration.

ontology and the database, ontology individuals are used as the data carrier which is more suitable

to SPARQL. And we adopt ontology rules to make the query results more accurate.

IV. MAPPING FROM RELATIONAL DATABASE TO ONTOLOGY

Currently, building ontology according to the relational database can be divided into three

categories, which are manual, semi-automatic and automatic. Manual, for instance21 is usually for

a particular field. During the manual ontology building, some hidden mapping relations could be

found, but it is time-consuming and difficult for normal researchers to build the ontology manu-

ally. Semi-automatic, such as22 is usually realized by interacting with the domain experts. During

the procedure of building ontology, end users can participate in the verification and modification of

the mapping results. Methods for automatically building ontology is rarely used because of the low

accuracy. Therefore, in this paper, we also use the semi-automatic approach to build the ontology.

About the ontology representation, Web Ontology Language (OWL) is the latest standard rec-

ommended by W3C.23 It is a vocabulary extension of Resource Description Framework (RDF). And

OWL facilitate greater machine interpretability of web content than that of XML, RDF and RDFS.

So in this paper we choose OWL as the ontology description language.

A. Materials science tetrahedron for root concepts

In materials science, we mainly focus on the study of the structure, performance, processing and

properties, which is called materials science tetrahedron24 as shown in Figure 2.

In Figure 2, the structure of materials include bonding structure, crystal structure and organization

structure. The bonding structure includes chemical bonds (ionic bonds, covalent bonds, metal bonds)

and physical bonds (hydrogen bonds, molecular bonds). The crystal structure of the material includes

crystal, non-crystal and quasi crystal. The organization structure refers to the characteristics which

represented by the different components of materials. The properties of materials are the response

FIG. 2. Materials science tetrahedron.
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of a material to electrical, magnetic, optical, thermal and mechanical loads, that include mechanical

properties, physical properties, chemical properties, etc. Processing means all unit operations, milling,

blending, tableting and relevant processing parameters. Performance is a kind of characterization

parameters of a material under certain conditions, in order to describe the act or result of the material.

It usually includes manufacturability, content uniformity, etc.

Therefore, for materials ontology building, we create five owl:Class for material, structure,

properties, processing and performance. And most of the owl:Class converted from database will be

the subclass of them.

B. Conversion from relational database to ontology

Our approach is to classify the relation, and then formalize the corresponding conversion rules.

Using database commander (DBC), we can utilize database relational model and convert it according

to the predefined conversion rules. And then output OWL based ontology. Figure 3 shows the whole

conversion process.

Definition 1: Relational Database. The relational database is a 6-tuple model: Rd = {U, D,

DOM, F, PK, FK}, where Rd is the name of relation; U is the set of attribute names that come from

the relation; D is the domain that the attributes in U come from; DOM is the mapping set from

attributes to domains, in which we use DOM(U i) to specify the type, range, length, etc. of U i; F is

the set of the data dependencies among attributes; PK(Rd) is the set of the primary keys of Rd and

FK(Rd) is the set of the foreign keys of Rd .

Definition 2: Ontology. We can describe an ontology by a number of sets of concepts, relations,

lexical entries, and links between these entities. The definition of the ontology is 5-tuple model:25

O = {C, Hc, R, rel, Ao}, where O is the ontology name. C is the set of concepts. Hc is a taxonomy of

concepts with multiple inheritance. For example, Hc(C1, C2) notes that C1 is the subconcept of C2.

R is a set of non-taxonomic relations described by their domain and rang restrictions. rel(R) describes

a heterarchy of relations. For example, rel(R) = (C1, C2) specifies that there is a relation R between

C1 and C2. Ao is the set of axioms.

Definition 3: Keywords Set. K is the set of keywords in materials science, including different

kinds of materials name such as performance, properties, structures and processing, for example,

tensile strength, density, cold forming, porous, etc. The keywords set can be added as needed.

Next, we will divide different types of relations and discuss how to define different rules for

mapping the relational database to ontology automatically.

Type (a): For the database relation, it has primary keys but does not have foreign keys. That is

|PK(Rd
i
)| ≥ 1 and |FK(Rd

i
)| = 0. This kind of relation is the basic entity. We have 4 rules for this kind

of mapping.

FIG. 3. Conversion flow chart from relational database to OWL based ontology.
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FIG. 4. Conversion rules for type (a).

Rule 1: Convert each database relation name to a concept. That is Rd
i
→Ci. During the actual

conversion process, Ci is a owl:Class.

Rule 2: If a database relation name is a materials keyword, then we can set the corresponding

concept taxonomy. That is to say, if Rd
j
∈K , then we can get Hc(Ci, Cmaterial) or Hc(Ci, Cproperties)

or Hc(Ci, Cperformance) or Hc(Ci, Cstructure) or Hc(Ci, Cprocessing). In the actual conversion process,

we set Ci owl:subclass-of Cproperty or Cmaterial etc. For example, if the database relation name is

yield strength(a kind of mechanical performance), we set Ci owl:subclass-of Cperformance to enrich

the ontology.

Rule 3: Convert each attribute to a concept and set the corresponding non-taxonomy concepts

relation. That is, for each U j ∈U, we have U j→Cj and rel(Rj) = (Ci, Cj). During the actual conversion,

we create a owl:DatatypeProperty for U j and set its rdfs:domain = Ci, DOM(U j)→rdfs:range.

Rule 4: If an attribute name is a materials keyword, we convert it to a concept and set the

corresponding concept taxonomy. That is, if U j ∈ K we have U j → Cj and Hc(Cj, Ci). During the

actual conversion, Cj is a owl:Class. We set Cj owl:subclass-of Ci and Cj owl:subclass-of Cpropertie

or Cmaterial, etc. according to the keyword at the same time.

Figure 4 is the visual conversion rules for type (a). During the processing of Rule 2 and Rule 4,

setting subclass should be supervised by the domain experts. Figure 5 is an example for type (a).

Metallic is the database relation name and it’s a materials keyword, so that we convert it to an

owl:class and set it to a subclass of Materials. Tensile Strength, Grade, Formula, Mass and Name

are the attributes of Metallic materials. The Tensile Strength is a materials keyword, we convert it to

owl:class and set it to a subclass of Metallic materials. For the rest of attributes, each of them will

be converted to an owl:DatatypeProperty and set its domain to Metallic materials and set its range

according its DOM.

Type (b): For the database relation which only has one primary key and one foreign key,

moreover the primary key is the same to the foreign key. That is, |PK(Rd
i
)| = 1, |FK(Rd

i
)| = 1 and

FIG. 5. A conversion example for type (a).
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FIG. 6. Conversion rules for type (b).

PK(Rd
i
)=FK(Rd

i
). This kind of relation is usually caused by the inheritance among entities. In this

condition, we use the following rule for mapping.

Rule 5: Convert the database relation to a concept and set the corresponding concept taxonomy

according to its foreign key. That is, Rd
i
→Ci and set Hc(Ci, Cj). During the actual conversion process,

Ci is an owl:Class and we set Ci owl:subclass-of Cj.

Figure 6 shows the conversion rules for type (b) and Figure 7 is a mapping example for type (b).

The relation has one foreign key. High Strength Steel is the database relation name and Grade is the

foreign key which related to Metallic materials. We convert the High Strength Steel to an owl:class

and set it as a subclass of Metallic materials.

Type (c): For the database relation which has two attributes, two primary keys and two foreign

keys. And each of the foreign key is a primary key for another database. That is, |PK(Rd
i
)| = |U | = 2

and for FK(Rd
i
)= { f k1, f k2} we have { f k1} =PK(Rd

j
) and { f k2} =PK(Rd

k
). This kind of relation is

usually caused by the many-to-many relationship among entities. In this case, we use the following

rules for mapping.

Rule 6: According to the concepts corresponding to the foreign keys, create two relations to spec-

ify the many-to-many relationship between two concepts. That is FK(Rd
i
)→{rel(R1)= (Cj, Ck) and

rel(R2) = (Ck , Cj)}. During the actual conversion process, we convert R1 and R2 to owl:ObjectProperty.

And R1’s rdfs:domain = Cj, R1’s rdfs:range = Ck and R2’s rdfs:domain = Ck , R2’s rdfs:range = Cj.

And we set R1 owl:inverse-of R2.

Figure 8 is the conversion rules for type (c) and Figure 9 is a mapping example of type (c).

Structures id is the foreign key related to Structures and Element id is the foreign key related to

Element. We need to build the relation between Structures and Element so that we convert two

attributes to two owl:ObjectProperties. Set the owl:ObecjtProperty Structures-Element’s domain to

Structures and range to Elements. Similarly, Element-Structures should be handled in the same way.

FIG. 7. A conversion example for type (b).
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FIG. 8. Conversion rules for type (c).

Type (d): For the database relation which primary key is not empty and only has one foreign

key. That is, |PK(Rd
i
)| , 0 ∩ |FK(Rd

i
)| = 1. This kind of relation is usually caused by the one-to-one

or one-to-many relationship between two entities.

Type (e): For the database relation which primary key is not empty and has more than two foreign

keys. That is, |PK(Rd
i
)| , 0 ∩ |FK(Rd

i
)| > 2. This kind of relation is usually caused by the multiple

relations among entities.

The database relation of type (d) and (e) should be convert to a owl:Class. So that can use Rules

1∼4 of type (a). Besides Rule 7 can be used to specify the foreign key relation, cardinality restrictions

in OWL can specify the one-to-one and one-to-many relationships. Therefore we use the following

2 rules:

Rule 7: According to each concept corresponding to the foreign keys, create a relation to specify

the relationship between two concepts. That is, for each f km ∈ FK(Rd
i
) there exists { f km} =PK(Rd

j
)

and we have fkm → rel(Rm) = (Ci, Cj). During the actual conversion process, we convert Rm to a

owl:ObjectProperty. Rm’s rdfs:domain = Ci, Rm’s rdfs:range = Cj. If fkm can not be empty we set

owl:minCardinality = 1, otherwise set owl:minCardinality = 0.

Figure 10 is the conversion rules for type (d) and (e). Figure 11 is an example for type (d) and (e),

where Materials has two foreign keys Performance id and Structures id. We convert both of them to

owl:ObjectProperty whose domain are Materials, and range are Performance and Structures.

And there are cardinality restrictions for foreign keys on the basis of whether they are empty or

not. We can use Rule 8 and Rule 9 for conversion.

Rule 8: If the attribute can not be empty we should set its cardinality restriction. That is if

U j ∈ U, null we have rel(Rj) = (Ci, Cj). During the actual conversion process, we convert Rj to a

owl:DatatypeProperty and set its owl:Cardinality = 1.

FIG. 9. A conversion example for type (c).
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FIG. 10. Conversion rules for type (d) and (e).

Rule 9: If the attribute can be empty we should set its cardinality restriction. That is if U j ∈ U we

have rel(Rj) = (Ci, Cj). During the actual conversion process, we convert Rj to a owl:DatatypeProperty

and set its owl:maxCardinality = 1.

C. The data conversion

In order to integrate heterogeneous databases, we should convert the data from database to the

ontology’s individuals. After the conversion according to the rules as mentioned above, we can convert

the data easily. Suppose that I(Ci) is the individual of Ci and t(Rd
i
) is the data tuples of Rd

i
.

FIG. 11. A conversion example for type (d) and (e).
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Rule 10: Convert each tuple in database to a individual and give a unique identifier. That is, for

each tj ∈ t(Rd
i
)→ Ij(Ci). During the actual conversion process, we use the database relation name and

the primary key name to be the unique identifier. And we convert the data in tuple to the statement

and make it connect to the corresponding owl:DataProperty. Then we convert the foreign keys to

owl:ObjectProperty.

So far, using the above conversion rules, we have obtained a materials ontology where all the

data of one materials database have been stored. Next, we should consider how to integrate other

database to the created ontology easily.

V. INTEGRATE OTHER DATABASES TO ONTOLOGY

In order to integrate other databases to ontology, we build a mathematical structure for the

materials ontology and the other materials database.

A. Define the ontology as a mathematical structure

In ontology, “C” is the set of the concepts. “×” is a binary operation on C that represents the

combination of two concepts. It is obvious that the order of the combination of two concepts doesn’t

matter. So the concept c = c1 × c2 and c′ = c2 × c1 are the same. That means “×” is commutative. In

addition, “×” should be idempotent.

So, let < C, ×, ec > be a commutative idempotent monoid of concepts. ec is a kind of pseudo-

concept which is neutral to the concepts. That is to say, for ∀Ci ∈ C we have Ci × ec = ec

× Ci = Ci.

It is obvious that the combination operator “×” satisfies the associative law. However, it is

worth mentioning that, in some cases, there are some no real meaning concepts coming from

the combination of concepts in C. And those concepts just satisfy the closure property of the

monoid.

Definition 4: Part-of-relation. For every c1, c2 ∈ C, if c1 is part-of c2, we denote c1 ⊑ c2 ⇔∃

(c|c ∈ C : c1 × c = c2).

The part-of-relation is a partial order. It satisfies the three axioms of posets. Since the mereological

relationships is a simplification of a partial order,26 we can use the poset properties to build the structure

of the ontology and link it to the material database.

Starting from the concept of the main domain, we define L is a subset of C which contains the

main concept of C and all its parts until the atoms. The part-of-relation forms a boolean lattice of

concepts,27 that is L = (L, ⊑). The pseudo-concept concept ec is also included in L. So that two

concepts do have one concept ec even if they are structurally unrelated.

There may be some concepts in L associated with other concepts in C by one or more relationships.

The concept in L we call it the ancestor element of the relationship in that case. We consider that only

subsets of concepts can be connected to the lattice. The relationships can be represented as rooted

graphs and the root of the rooted graph is always part of the lattice.

G = {Gi } i∈L is a family of rooted graphs. Each Gi we associate a relation Ri which should be

connected to the top element. For a ∈ C, Ra defined as {(x, x)|x = a}.

Definition 5: Rooted Graph. For Ci ∈ C and Ri is a relation on Ci. Rooted graph

Gi = (Ci, Ri), iff∃!(ti |ti ∈Ci : Rti ⊂ R∗
i
), where “*” is the power operation. As,28 we denote a rooted

graph as Gi = (Ci, Ri, ti), and ti is the root of Gi.

Thus, we can define the ontology as a mathematical structure:

Definition 6: Mathematical Structure of Ontology. Supposing C is the set of concepts.

L = (L,⊑) is a Boolean lattice. G = {Gi } i∈L is a family of rooted graphs. So, we have the mathematical

structure of the ontology O = (C, L , G ).

The definition specifies that each relation has a ancestor element which is the root of the rooted

graph. For each root in G ends up in L . The definition also ensures that all the concepts in relation

can connect to the lattice.
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Algorithm 1. The integration procedure of two heterogeneous databases.

1: Take all main concepts and its parts and subparts until the atoms from C to build the boolean lattice with part-of-relation.

2: Supposing there exists a set of concepts V ⊆ (C ☞ L), where each concept V i ∈ V has rel(Ri) = (Lj , V i) and Lj ∈ L.

For every Lj ∈ L, use Lj and the corresponding V i to build the rooted graph.

3: Use relational algebra A = (A, +, ·, ☞) to demonstrate the structure of materials database.

4: For each entity E1, E2, · · ·, Ei ∈ E (E is also an entity), we have τ′(E1) = C1, τ′(E2) = C2, · · · , τ′(Ei) = Ci to associate

each entity to the concept it instantiates.

5: The type of each entity Ei, τ(Ei) = ρ(τ′(Ei)) = ρ(Ci). Then can get the type of entity E, τ(E) = τ(E1 · E2 · · · · · Ei)

= τ(E1) × τ(E2) ×· · · × τ(Ei).

6: Convert the data from the database to the individuals according to the type of it.

B. Relational database structure

To model the materials database, we can use the relational algebra.

Definition 7: Relational Algebra. The simplified relational algebra A is:

A = (A, +, ·,−)

Where, A is the set of relations. “+” and “·” are the binary operations on A which means the

intersection and the union operations for the relations. “☞” is the unary operations on A means the

complement of the relation.

Considering that U is the set of attributes U 1, U 2, · · ·, U n. J ⊆U is a set of attributes called

type. For each U i ∈U , there is a attribute domain D(Ai) for Ai which can not be empty. We call a

relation of type J is a set of tuples A and the element Ai ∈ A is called a tuple. For a tuple Ai ∈ A, we

have τ(Ai) = τ(A) = J. τ is a operator can get the type of A. In relational database, J is represented as

a table with its columns representing each attribute in J. And the tuples represent as rows in a table.

Herein, we can use the relational algebra A = (A, +, ·, ☞) to describe the other materials database.

And then we can connect two structures together. In order to do so, we define the operator τ′:

A→ C to connect the entities to the corresponding concept in the rooted graph. And for rooted graph

Gi = (Ci, Ri, ti), we have a operator ρi : Ci → L, ρi(c) = ti, where c ∈ Ci. Finally we define the type

operator τ : A→ L as τ = ρ ◦ τ′.

Definition 8: Type of Entity Combination. The type of the entities combination is the

combination of the type of each entity, that is τ(a · b) = τ(a) × τ(b).

Definition 9: Mathematical Structure of Heterogeneous Materials Databases. Supposing

O = (C, L , G ) is the structure of ontology, A = (A, +, ·, ☞) is the relational algebra and

τ = ρ ◦ τ′ is the type operator. And then the mathematical structure of heterogeneous materials

databases is S = (O , A , τ).

The integration procedure of two heterogeneous databases is as Algorithm 1.

VI. EXPERIMENTS

We use OQMD29,30 and Materials Project31 as the experimental databases which are two famous

First Principle Computational Databases. The E-R models of the two databases are as shown in

Figures 12 and 13. Using mapping rules mentioned in section IV, we convert the OQMD database

to an ontology. In order to avoid the identifier duplication, we use TableName-ColumnName to

describe the owl:DatatypeProperty. For example, for the table Elements, which is a table belongs

to type (e). We build an owl:class Elements. And all the attributes of table Elements are converted

to the owl:DatatypeProperty which domain are Elements. Then we covert all the foreign keys to the

owl:ObjectProperties which domain are Elements, and range are Atoms, Compositions and Structures.

After tuning we get the converted ontology as shown in Figure 14.

Then we build the mathematical model for the ontology and the other materials database Materials

Project, as mentioned in Section V. Figure 15 shows the main part of the integrated model. It shows
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FIG. 12. E-R model of OQMD database.

FIG. 13. E-R model of Materials Project.

that the concepts, such as materials, structure, elements, spaceGroup, ec, etc. form the lattice of

concepts. Concepts hall, latticesystem, symbol, point group, etc. are part of the rooted graph. And

(-P 4 2 3), cubic, P63/mmc, etc. are entities.

FIG. 14. The ontology structure of OQMD database.
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FIG. 15. A part view of the integrated model.

Through the matching of synonyms, homoionym and some manual correction we could map the

concepts from ontology and the data from database. However, in the actual processing, one database

is often difficult to cover another one. So new concepts should be created if we can not find the

corresponding concepts for data.

For example, a tuple a(12.03868668, 0, 27.88188999, Ru, -P 4 2 3, cubic, P63/mmc, 4/mmm),

we get the type for each attribute, such as τ′(☞P 4 2 3) = hall. And in the rooted graph, we have

ρ(hall) = spacegroup. Thus we can get the type of (☞ P 4 2 3) as Equation (1), and all the types of

the rest attributes can be obtained in the similar way.

τ(−P 4 2 3)= τ′(−P 4 2 3) ◦ ρ(hall)= spacegroup (1)

Through definition 8, we get τ(a) = τ(12.03868668) × τ(27.88188999) ×· · ·× τ(4/mmm).

And we get τ(a) = structure. Then we can convert the data from the database to the individuals

according to the type of tuple a. Thus the data of heterogeneous materials database are integrated

together.

Once the integrated ontology created, semantic query is allowed on the ontology which is inte-

grated from two materials databases, OQMD and Materials Project. We can construct SPARQL to

extract the information from the integrated ontology. For example, if we want to query all the struc-

tures that latticesystem equals cubic, construct a semantic query with SPARQL as SPARQL Query

Example 1.

SPARQL Query Example 1

1: PREFIX this: <http://shu.edu.cn/material/ontology#>

2: SELECT ?structure ?volume ?spacegroups WHERE{
3: ?structure this:structures-spacegroups ?spacegroups.

4: ?spacegroups this:spacegroups-lattice system ?lattice.

5: ?structure this:structures-volume ?volume.

6: Filter regex(?lattice,’Cubic’,’i’)

7: }

We show part of the results in Table I. During implementation, JENA API32 is used to execute

the SPARQL query. All the results return with ResultSet format which can be operated easily. We

can see that both of the data in two databases can be retrieved together that do not need to construct

different SQL statement for each relational database. It is also worth mentioning that the query is

executed on the ontology not the relational database, so the complicated and time-consuming union

or join operations are avoided when the query involves multiple tables.

http://shu.edu.cn/material/ontology
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TABLE I. Part of semantic query results from integrated ontology.

Structure Volume Spacegroups Datasource

structures-pri-243 25.77007415 spacegroups-pri-243 Material Project

structures-pri-267 265.8010647 spacegroups-pri-267 Material Project

structures-34112 10.8604 spacegroups-229 OQMD

structures-34224 20.8806 spacegroups-216 OQMD

structures-pri-496 367.4211175 spacegroups-pri-496 Material Project

structures-34611 77.4177 spacegroups-221 OQMD

structures-pri-167 69.53995864 spacegroups-pri-167 Material Project

structures-34448 33.1271 spacegroups-229 OQMD

Furthermore, we can create some additional rules for the materials ontology to refine query

results. For example, when a relational database has some common data and the other does not, then

we can create some rules to add a external relation for that part of unlinked data. For example, if

we want to extract all the individuals with structures that has a relation with element “C”. We may

construct the SPARQL query as SPARQL Query Example 2.

SPARQL Query Example 2

1: PREFIX this: <http://shu.edu.cn/material/ontology#>

2: PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>

3: SELECT ?structures ?volume ?spacegroups WHERE{
4: ?structure this:structures-elements ?element.

5: ?element this:elements-symbol ?symbol.

6: ?structure this:structures-volume ?volume.

7: ?structure this:structures-spacegroups ?spacegroups.

8: Filter regex(?symbol, ’∧C✩’)

9: }

Although the individuals can be queried from two materials databases. However, as shown in

Figure 16, the relationship between structures and elements only exist in OQMD database. So, the

relationship between structure data and element data in OQMD database is well organized. But

the structure data in Materials Project have no connections with the element data. When execute

the query 3, the results can only be responded from the OQMD database. Table II shows the results

before adding rules. We can see that only those data from OQMD database can be retrieved. To get

the better result we can add a external rule as Ontology rule example 1.

Ontology rule example 1

1: [rule:(?structure this:structures-composition ?composition)

2: (?element this:elements-symbol ?symbol)regex(?composition, ?symbol)

3: - >(?structure this:structures-elements ?element)].

The rule means that if the composition of structures contains a certain element we connect the

structures and the corresponding element together by owl:ObjectProperty. Thus, when a end user

searches structures containing some elements in Materials Project can also be responded which can

not be done earlier. Table III shows the searching results after adding rules. From Table III, we can

see that two results come from OQMD and four from Materials Project.

http://shu.edu.cn/material/ontology
http://www.w3.org/2000/01/rdf-schema
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FIG. 16. A partial view of the E-R model.

TABLE II. Query results before adding rules.

Structure Volume Spacegroups Datasource

structures-34224 20.8806 spacegroups-216 OQMD

structures-34170 16.624 spacegroups-225 OQMD

TABLE III. Query results after adding rules.

Structure Volume Spacegroups Datasource

structures-34224 20.8806 spacegroups-216 OQMD

structures-34170 16.624 spacegroups-225 OQMD

structures-pri-42 41.13742744 spacegroups-pri-42 Material Project

structures-pri-21 44.91792373 spacegroups-pri-21 Material Project

structures-pri-55 11.41878254 spacegroups-pri-55 Material Project

structures-pri-149 21.21334856 spacegroups-pri-149 Material Project

structures-pri-41 22.87020916 spacegroups-pri-41 Material Project

Ontologies creation is milliseconds which can be ignored. Most of the time spent in the method

is the conversion of individuals and the relationship between individuals. Figure 17 and Figure 18

show when the amount of data are millions, the conversion of individuals and the relationship costs

several minutes. And the single query costs half seconds.

FIG. 17. Query efficiency.
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FIG. 18. Ontology individuals conversion efficiency.

FIG. 19. A prototype system of ontology based data integration and semantic query.

Currently, we have implemented a prototype system deployed in https://matdata.shu.edu.cn. And

the interface for defining rules and semantic query looks like Figure 19.

VII. CONCLUSIONS AND FUTURE WORK

With the fast development of materials science, materials big data, especially come from high

throughput experiments and computations, increase rapidly. However, different databases has their

own schemas and structures which bring great challenges for data sharing and integration. The main

work of the paper are as follows:

➉ Presents a set of conversion rules to transform the relational materials database to ontology, that

is general can be used in other areas.

➉ Builds up a mathematical model for the materials ontology and the heterogeneous materials

database, which allows to map the data in database to the individuals of ontology. So as to

integrate the heterogeneous databases.

https://matdata.shu.edu.cn
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Considering the future work, several directions can be done further. Firstly, during ontology

creation, reduce the manual interventions as little as possible without affecting accuracy. Secondly,

separate the data and ontology physically to improve the query performance further. Finally, visualize

the SPARQL construction, makes it easier for normal non-professional users to use friendly and

conveniently.
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