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Abstract

In this thesis, we will present methods for introducing ontologies in information
retrieval. The main hypothesis is that the inclusion of conceptual knowledge
such as ontologies in the information retrieval process can contribute to the
solution of major problems currently found in information retrieval.

This utilization of ontologies has a number of challenges. Our focus is
on the use of similarity measures derived from the knowledge about relations
between concepts in ontologies, the recognition of semantic information in
texts and the mapping of this knowledge into the ontologies in use, as well as
how to fuse together the ideas of ontological similarity and ontological indexing
into a realistic information retrieval scenario.

To achieve the recognition of semantic knowledge in a text, shallow nat-
ural language processing is used during indexing that reveals knowledge to
the level of noun phrases. Furthermore, we briefly cover the identification of
semantic relations inside and between noun phrases, as well as discuss which
kind of problems are caused by an increase in compoundness with respect to
the structure of concepts in the evaluation of queries.

Measuring similarity between concepts based on distances in the structure
of the ontology is discussed. In addition, a shared nodes measure is introduced
and, based on a set of intuitive similarity properties, compared to a number
of different measures. In this comparison the shared nodes measure appears
to be superior, though more computationally complex. Some of the major
problems of shared nodes which relate to the way relations differ with respect
to the degree they bring the concepts they connect closer are discussed. A
generalized measure called weighted shared nodes is introduced to deal with
these problems.

Finally, the utilization of concept similarity in query evaluation is dis-
cussed. A semantic expansion approach that incorporates concept similarity
is introduced and a generalized fuzzy set retrieval model that applies expansion
during query evaluation is presented. While not commonly used in present in-
formation retrieval systems, it appears that the fuzzy set model comprises the
flexibility needed when generalizing to an ontology-based retrieval model and,
with the introduction of a hierarchical fuzzy aggregation principle, compound
concepts can be handled in a straightforward and natural manner.
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Resumé (in danish)

Fokus i denne afhandling er anvendelse af ontologier i informationssøgning (In-
formation Retrieval). Den overordnede hypotese er, at indføring af konceptuel
viden, s̊a som ontologier, i forbindelse med forespørgselsevaluering kan bidrage
til løsning af væsentlige problemer i eksisterende metoder.

Denne inddragelse af ontologier indeholder en række væsentlige udfor-
dringer. Vi har valgt at fokusere p̊a similaritetsmål der baserer sig p̊a viden
om relationer mellem begreber, p̊a genkendelse af semantisk viden i tekst og p̊a
hvordan ontologibaserede similaritetsmål og semantisk indeksering kan forenes
i en realistisk tilgang til informationssøgning.

Genkendelse af semantisk viden i tekst udføres ved hjælp af en simpel
natursprogsbehandling i indekseringsprocessen, med det formål at afdække
substantivfraser. Endvidere, vil vi skitsere problemstillinger forbundet med at
identificere hvilke semantiske relationer simple substantivfraser er opbygget af
og diskutere hvordan en forøgelse af sammenføjning af begreber influerer p̊a
forespørgselsevalueringen.

Der redegøres for hvorledes et mål for similaritet kan baseres p̊a afstand
i ontologiers struktur, og introduceres et nyt afstandsmål – “shared nodes”.
Dette mål sammenlignes med en række andre mål ved hjælp af en samling af in-
tuitive egenskaber for similaritetsmål. Denne sammenligning viser at “shared
nodes” har fortrin frem for øvrige mål, men ogs̊a at det er beregningsmæssigt
mere indviklet. Der redegøres endvidere for en række væsentlige problemer
forbundet med “shared nodes”, som er relateret til den forskel der er mellem
relationer med hensyn til i hvor høj grad de bringer de begreber de forbinder,
sammen. Et mere generelt mål, “weighted shared nodes”, introduceres som
løsning p̊a disse problemer.

Afslutningsvist fokuseres der p̊a hvorledes et similaritetsmål, der sam-
menligner begreber, kan inddrages i forespørgselsevalueringen. Den løsning
vi præsenterer indfører en semantisk ekspansion baseret p̊a similaritetsmål.
Evalueringsmetoden der anvendes er en generaliseret “fuzzy set retrieval”
model, der inkluderer ekspansion af forespørgsler. Selvom det ikke er al-
mindeligt at anvende fuzzy set modellen i informationssøgning, viser det sig
at den har den fornødne fleksibilitet til en generalisering til ontologibaseret
forespørgselsevaluering, og at indførelsen af et hierarkisk aggregeringsprincip
giver mulighed for at behandle sammensatte begreber p̊a en simpel og naturlig
måde.
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Chapter 1

Introduction

Over the years, the volume of information available through the World Wide
Web has been increasing continuously, and never has so much information
been so readily available and shared among so many people. The role of
searching applications has therefore changed radically from systems designed
for special purposes with a well-defined target group to general systems for
almost everyone. Unfortunately, the unstructured nature and huge volume
of information accessible over networks have made it increasingly difficult for
users to sift through and find relevant information. Numerous information
retrieval techniques have been developed to help deal with this problem.

The information retrieval techniques commonly used are based on key-
words. These techniques use keyword lists to describe the content of informa-
tion, but one problem with such lists is that they do not say anything about
the semantic relationships between keywords, nor do they take into account
the meaning of words and phrases.

It is often difficult for ordinary users to use information retrieval systems
based on these commonly used keyword-based techniques. Users frequently
have problems expressing their information needs and translating those needs
into requests. This is partly because information needs cannot be expressed
appropriately in the terms used by the system, and partly because it is not
unusual for users to apply search terms that are different from the keywords
information systems use. Various methods have been proposed to help users
choose search terms and formulate requests. One widely used approach is
to incorporate a thesaurus-like component into the information system that
represents the important concepts in a particular subject area as well as the
semantic relationships connecting them.

Using conceptual knowledge to help users formulate their requests is just
one method of introducing conceptual knowledge to information retrieval. An-
other is to use conceptual knowledge as an intrinsic feature of the system in
the process of retrieving the information. Obviously, such methods are not
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mutually exclusive and would complement one another well.
In the late nineties, Tim Berners-Lee [1998] introduced the idea of a Se-

mantic Web, where machine readable semantic knowledge is attached to all
information. The semantic knowledge attached to information is united by
means of ontologies, i.e. the concepts attached to information are mapped
into these ontologies. Machines can then determine that concepts in different
pieces of information are actually the same due to the position they hold in
the ontologies. The representation of the semantic knowledge in the Semantic
Web is done by use of a special markup language, as the focus is the hyper-
text structure of the World Wide Web. In information retrieval systems, this
representation serves as the fundamental description of the information cap-
tured by the system, and thus the representation requires completely different
structures. Nevertheless, the mapping of concepts in information into concep-
tual models, i.e. ontologies, appears to be a useful method for moving from
keyword-based to concept-based information retrieval.

Ontologies can be general or domain specific, they can be created manually
or automatically, and they can differ in their forms of representation and
ways of constructing relationships between the concepts, but they all serve
as an explicit specification of a conceptualization. Thus, if the users of a
given information retrieval system can agree upon the conceptualization in
the ontologies used, then the retrieval process can benefit from using these in
the evaluation and articulation of requests.

In this thesis, we will present methods for introducing ontologies in infor-
mation retrieval along this line. The main hypothesis is that the inclusion of
conceptual knowledge in the information retrieval process can contribute to
the solution of major problems in current information retrieval systems. When
working with ontology-based information retrieval systems, one important aim
is to utilize knowledge from a domain-specific ontology to obtain better and
more exact answers on a semantic basis, i.e. to compare concepts rather than
words. In this context, better answers are primarily more fine-grained and
better-ranked information base objects that are obtained by exploiting im-
proved methods for computing the similarity between a query and the objects
from the information base. The idea is to use measures of similarity between
concepts derived from the structure of the ontology, and by doing so, replace
reasoning over the ontology with numerical similarity computation.

The benefit of applying ontology-based similarity measures is dependant
on the ability of the semantic interpretation of queries and information objects,
as the aim is to relate information found in these to the senses covered by the
ontologies. In information retrieval, the interpretation process is referred to as
indexing. During this process, descriptions of queries and information objects
are extracted, and either stored (the analysis of the information base) or used
for searching for similar information. It is therefore required to introduce natu-
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ral language processing in the indexing process in order to extract the intrinsic
semantic knowledge of the (textual) information. Natural language processing
is challenging, and completely exposing the semantics is very demanding, not
to say impossible. We, therefore, present ways to achieve a shallow processing
that recognizes noun phrases, which can then be mapped into the ontology to
create the semantic foundation of the representation used.

The central topics of this thesis can thus be summarized as measures of
semantic similarity and semantic information analysis, denoted “ontological
similarity” and “ontological indexing”, respectively, and methods for uniting
these into a realistic information retrieval scenario, and in so doing, promote
semantics in the information retrieval process. To achieve this, a generalized
fuzzy set retrieval model with an ontology-based query expansion is used.
Finally, a number of the techniques presented are used in a prototype system
intended to be the foundation for the evaluation and testing of the presented
methodologies.

1.1 Research Question

The main objective in this thesis is to provide realistically efficient means
to move from keyword-based to concept-based information retrieval utilizing
ontologies as reference for conceptual definitions. More specifically the key re-
search question is the following. How do we recognize concepts in information
objects and queries, represent these in the information retrieval system, and
use the knowledge about relations between concepts captured by ontologies in
the querying process?

The main aspects in focus in this thesis are the following:

1. recognition and mapping of information in documents and queries into
the ontologies,

2. improvement of the retrieval process by use of similarity measures de-
rived from knowledge about relations between concepts in ontologies,
and

3. how to weld the ideas of such ontological indexing and ontological simi-
larity into a realistic information retrieval scenario

The first part of the research question concerns extraction of semantic
knowledge from texts, construction of (compound) concepts in a lattice-alge-
braic representation, and a word sense disambiguation of this knowledge such
that it can be mapped into the ontology in use. The second part concerns
the development of scalable similarity measures, where the idea is to compare
concepts on behalf of the structure in the ontology, and the hypothesis that

3



measures which incorporates as many aspects as possible will be closer to
rendering human similarity judgments. Finally, the object of the last part is
how to bring the two first parts into play in information retrieval systems. This
is completed by use of a query expansion technique based on concept similarity
measures and a flexible retrieval model with the achievability of capturing the
paradigm shift of representations from simple collections of words to semantic
descriptions.

1.2 Thesis Outline

Chapter 2, which presents classical information retrieval models, including the
fuzzy set retrieval model, discusses the strengths and weaknesses of the models.
In addition, retrieval evaluation is briefly covered. Chapter 3 focuses on on-
tologies. A formal definition of ontology and a number of different formalisms
for the representation of ontologies are presented. This chapter also presents
and discusses a number of ontological resources, with a focus on WordNet, a
large lexical database for English. The topics examined in Chapter 4 are all
related to what is denoted as ontological indexing. The discussion begins with
a representation of information in general and a representation of semantic
knowledge in particular. Next, the extraction of semantic knowledge aimed at
a (rather ad hoc) method that can produce semantical representations from
information is covered. Finally, the notion of instantiated ontologies is pre-
sented. Chapter 5 then starts with a definition of a set of intuitive, qualitative
properties used throughout the presentation of a number of different similarity
measures to discuss their strengths and weaknesses. Special emphasis is put
on the weighted shared node measure. At the end of this chapter, a simple
experiment is presented in which the weighted shared node similarity measure
is compared to a number of the other presented measures through comparison
to human similarity judgments. In Chapter 6, query evaluation is covered.
We introduce a technique called semantic expansion to incorporate a similar-
ity measure in the query evaluation. Moreover, the generalized version of the
fuzzy retrieval model is presented where order weighted averaging and hierar-
chical aggregation are included. A prototype system that unites some of the
introduced techniques is presented and discussed in Chapter 7. Finally, we
conclude and indicate perspectives that can be used as the subject of further
work.

1.3 Foundations and Contributions

This dissertation is funded in part by the OntoQuery research project (Onto-
logy-based Querying)[Andreasen et al., 2000; Andreasen et al., 2002; Onto-
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Query, 2005]1 and in part by Roskilde University. Research issues and the
results presented in this dissertation are thus related to and inspired by work
done in the OntoQuery project.

The main contributions covered in this thesis concern the design of mea-
sures of similarity based on the structure of ontologies, a discussion of rep-
resentation and the extraction of descriptions, methods composed to support
ontological query evaluation, and a discussion of the challenges in uniting it all
into a prototype that can serve as the foundation for evaluation and testing.

While working with this thesis a number of papers have been submitted to
different conferences and journals. These papers cover the progression in the
design and application of ontological similarity measures, along with a number
of closely related topics. The following is a short list of some of the primary
research topics covered by these papers and included in this thesis:

• Similarity measures, with the measures Shared Nodes and Weighted
Shared Nodes as the final contributions.

• Instantiated Ontologies, a ontology modeling method usend to re-
strict a general ontology to concepts that occur in, for instance, a docu-
ment collection or a query.

• Querying evaluation, with Hierarchical Ordered Weighted Averaging
Aggregation as the primary contribution to simplify query evaluation by
comparing descriptions of the query with the descriptions of the docu-
ments.

The listed research topics are collaborative work, but my contribution is
central and thus these topics are included and have a central role in this thesis.

1The following institutions have participated in this project: Centre for Language Tech-
nology, The Technical University of Denmark - Informatics and Mathematical Modelling,
Copenhagen Business School - Computational Linguistics, Roskilde University - Intelligent
Systems Laboratory and the University of Southern Denmark.
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Chapter 2

Information Retrieval

Information retrieval deals with access to information as well as its represen-
tation, storage and organization. The overall goal of an information retrieval
process is to retrieve the information relevant to a given request. The criteria
for complete success is the retrieval of all the relevant information items stored
in a given system, and the rejection of all the non-relevant ones. In practice,
the results of a given request usually contain both a subset of all the relevant
items, plus a subset of irrelevant items, but the aim remains, of course, to
meet the ideal criteria for success.

In theory, it is possible for information of any kind to be the object of
information retrieval. One information retrieval system could handle different
kinds of information simultaneously, e.g. information retrieval in multi-media
environments. However, in the majority of information retrieval systems, the
items handled are text documents, and information retrieval is therefore often
regarded as synonymous with document retrieval or text retrieval. The no-
tion of text documents in information retrieval incorporates all types of texts,
spanning from complete texts, such as articles, books, web pages, etc., to mi-
nor fragments of text, such as sections, paragraphs, sentences, etc. A given
system, for example, could be designed for one specific type of document, or
heterogeneous documents, and be either monolingual or multilingual.

Information retrieval systems do not actually retrieve information, but
rather documents from which the information can be obtained if they are
read and understood [Van Rijsbergen, 1979; Lancaster, 1979]. To be more
precise, that which is being retrieved is the system’s internal description of the
documents, thus the process of fetching the documents being represented is a
separate process [Lancaster, 1979]. Despite this loose definition, information
retrieval is the term commonly used to refer to this kind of system, and thus,
whenever the term information retrieval is used, it refers to this text-document-
description retrieval definition.

In Figure 2.1 [Ingwersen, 1992], which shows the basic concepts of an infor-
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Represenatation Matching
Function Query

Figure 2.1: A simple model for information retrieval

mation retrieval system, representation is defined as the stored information,
matching function as a certain search strategy for finding the stored informa-
tion and queries as the requests to the system for certain specific information.

Representation comprises an abstract description of the documents in the
system. Nowadays, more and more documents are full text documents, whereas
previously, representation was usually built on references to documents rather
than the documents themselves, similar to bibliographic records in library
systems [Jones and Willett, 1997]. References to documents are normally semi-
structured information with predefined slots for different kinds of information,
e.g. title, abstract, classification, etc., while full text documents typically are
unstructured, except for the syntax of the natural language.

The matching function in an information retrieval system models the sys-
tem’s notion of similarity between documents and queries, hence defining how
to compare requests to the stored descriptions in the representation. As dis-
cussed later in this chapter, each model has its advantages and disadvantages,
with no single strategy being superior to the others.

In Figure 2.2, a more detailed view of the major functions in most in-
formation retrieval systems is shown [Lancaster, 1979]. At the top of the
figure, the input side of the system is defined as a set of selected documents.
These documents are organized and controlled by the indexing process, which
is divided into two parts, a conceptual analysis and a transformation. The
conceptual analysis, or content analysis, recognizes the content of the docu-
ments and the transformation transforms this information into the internal
representation. This representation is stored and organized in a database for
later (fast) retrieval. The bottom of the figure defines the output side, which
is very similar to the input side. The conceptual analysis and transforma-
tion of requests recognizes the semantics and transforms this knowledge into
a representation similar to the representation used in the indexing process.
Then, some type of search strategy (matching function) is used to retrieve
documents by comparing the description of the request with the descriptions
of the documents. If the request process is iterative, as shown in the figure by
broken lines, it uses either documents or document descriptions in the process
of obtaining the information needed. This iterative querying process is called
query reformulation.

In traditional information retrieval systems, the typical description of doc-
uments is as a collection of words, ranging from all the words contained in the
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Figure 2.2: The major functions performed in many types of information retrieval
systems

documents to a smaller collection of keywords chosen to point out the content
of the documents, that are not necessarily found in the particular document.

In Figure 2.2, system vocabulary refers to a collection of words valid for
use as keywords in the indexing and querying process. If a system’s vocab-
ulary equals the collection of all words used in the stored documents, then
no restrictions are defined, otherwise, the vocabulary is used to control the
system’s collection of valid keywords. More compound pieces of information,
like multi-word fragments of text, natural language phrases, etc., can also be
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used as parts of descriptions, but would obviously require special kinds of
representation and processing techniques.

In data retrieval the aim is to retrieve all the data that satisfies a given
query. If the database is consistent, the result would be exactly all the data
that can possibly be found in the domain covered by the database. One single
erroneous object means total failure. The query language in data retrieval
clearly defines the conditions for retrieving the data in the well-defined struc-
ture and semantics of the database. Knowledge of the querying language and
the structure and semantics of the database is presupposed for querying a
database. In information retrieval, however, some of the documents retrieved
might be inaccurate and erroneous without disqualifying the result in general.
The descriptions of both documents and requests are a kind of “interpreta-
tion” of content. Consequently, the documents retrieved are not a strict match
based on well-defined syntax and semantics, but the estimated “relevant” in-
formation. The notion of relevance is the core of information retrieval, and the
retrieved documents are those found to be most relevant to the given request
under the conditions available (representation, search strategy, and query).

The notion of descriptions and the indexing process will be discussed fur-
ther in Chapter 4. Before going into detail on specific search strategies, a
short introduction to term weighting is given. Following the section on search
strategies is a discussion about retrieval evaluation, and finally, a summary of
the chapter.

2.1 Search Strategies

The motivation for entering requests into an information retrieval system is an
information need [Lancaster, 1979], and the success of a given retrieval system
depends on the system’s capability to provide the user with the information
needed within a reasonable time and with a straightforward interface for posing
requests and collecting the results[Austin, 2001]1.

Until the mid-nineties, operational information retrieval systems were char-
acterized, almost without exception, by their adoption of the Boolean model2

of searching. A surprising strategy considering the antagonism between the
intrinsic restrictiveness of the Boolean model and the intrinsic uncertainty in
information retrieval, but an understandable one, on the other hand, when
the constraint on the file-handling technology and the presumption that users
with access to the systems were professionals are considered [Jones and Wil-
lett, 1997]. The intrinsic uncertainty of information retrieval is caused by the
fact that the representation of documents is “uncertain”, i.e. the extraction of

1The out of context interpretation of Mooers’ Law.
2Described in Section 2.1.2.
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information from documents or queries is a highly uncertain process [Crestani
et al., 1998].

In the majority of the information systems available, the interface for pos-
ing queries is a collection of words, which is a rather limited language for
expressing an information need. The first step for a user in the process of
retrieving information is therefore a transformation of their representation of
the information needed into a collection of words. This is by no means a
trivial process and requires some training to master, even at a novice level,
but since this is the kind of interface most often used, training opportunities
are abundant. The drawback is that it is very difficult to introduce other
interfaces, such as natural language, since users (well-trained) are accustomed
to this limited interface. Nevertheless, independent of the query language, a
transformation is needed for the user to express their information need, with
some prior knowledge about the system preferable.

The information retrieval system can provide help during the query defi-
nition process in many ways, partly via interaction with the user and partly
via refinements on the evaluation process. Interaction with the user can take
place either prior to posing the query or as an iterative query reformulation
process. Access to knowledge about the representation of documents, for in-
stance, browsing the set of keywords, is an example of prior interaction, while
relevance feedback is an example of iterative interaction. Relevance feedback
is a technique in which the user points out relevant documents from the result
of a (tentative) query. The system then uses this subset of documents in a
query reformulation for refinement of the query [Salton and McGill, 1997].
This process can be repeated until a satisfactory result is found.

Two examples of a refinement of the evaluation process are softening of
the evaluation criteria and query expansion. One example of the former is
replacement of strict match with best match, a partial match where also docu-
ments partially fulfilling the query are accepted. The retrieved documents are
then ordered based on their partial fulfillment of the queries, with the ones
closest to the queries first, hence the name best match. This gives the user the
possibility of adding more words to the query without the risk of getting an
empty result because some words in the query are mutually exclusive, since
no documents are represented by that combination of words. In query expan-
sion, the system expands the query with additional information, for instance,
synonyms. This expansion is done after the query is posed to the system, but
before the evaluation process.

Two assumptions common for the retrieval models presented here are the
document independence assumption and the term independence assumption.
The document independence assumption [Robertson, 1997] states that the
relevance of one document with respect to a given query is independent of
other retrieved documents in the same query. As a counterargument to the
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document independence assumption, one could argue that the usefulness of
retrieved documents is dependent on the other retrieved documents, e.g. after
retrieving one document (and having read it) the next document similar to
that one would be less useful, but the relatedness would still be the same. Sim-
ilarly, the term independence assumption states with regard to terms that they
are independent of other terms in the same document. Since concepts in doc-
uments are often semantically related to one another, the term independence
is an unrealistic assumption. The reason for defining the term independence
assumption is that it leads to models that are easy to implement, extend and
conceptualize.

2.1.1 Term Weighting

One of the simplest representations of documents in information retrieval is a
collection of terms corresponding to all the words contained in the documents.
The problem with such representation is that not all words in a document
specify the content equally, therefore the indexing process should provide some
kind of differentiation among the words present. The classical approach for
doing this is called term weighting. Weights indicate relevance and a simple
and well-known weighting principle is to derive weights from the frequency
with which words appear in the documents. The justification for the use of
the frequency of words is that words occur in natural language unevenly, and
classes of words are distinguishable by the frequency of their occurrence [Luhn,
1958]. Actually, the occurrence characteristics of words can be characterized
by the constant rank-frequency law of Zipf:

frequency · rank ≃ constant (2.1)

where frequency is the number of occurrences of a given word and rank is
achieved by sorting the words by frequency in decreasing order. Thus, the
frequency of a given word multiplied by the rank of the word is approximately
equal to the frequency of another word multiplied by its rank.

A simple approach to term weighting is term frequency tfi,j , where each
term ti is weighted according to the number of occurrences of the word associ-
ated with the term in document dj . The selection of significant words is then
defined by thresholds rejecting the most frequent and the least frequent words.
The reason for rejecting the high and low frequency words is that neither of
them are good content identifiers. This idea entails the notion of resolving
power, that is the degree of discrimination for a given word. The limits are
illustrated in Figure 2.3. [Luhn, 1958].

One of the problems with this simple approach is that some words may be
assigned to many of the items in a collection and yet still be more relevant in

11



Nonsignificant
high-frequency

words

R
e

so
lv

in
g 

po
w

er


of
 w

or
ds



Presumed resolving power of
significant words

Words in decreasing
frequency order

Nonsignificant
low-frequency

words

Figure 2.3: Resolving power of significant words

some items than in others. Such words could be rejected by a high-frequency
threshold, which means that a relative frequency measure would be more ap-
propriate. A relative frequency measure can be divided into a local and a
global weighting. The local weight for a given document defines the relevance
of the terms appearing, for instance, tfi,j or in a normalized version:

fi,j =
tfi,j

max1≤l≤nj
(tfl,j)

where nj is the number of terms present in the document dj [Baeza-Yates and
Ribeiro-Neto, 1999].

One well-known global weight is the inverse document frequency, which
assigns the level of discrimination to each word in a collection of items (doc-
uments). A word appearing in most items should have a lower global weight
than words appearing in few items [Salton and McGill, 1986] , such that:

idfi = log
N

ni
(2.2)

where ni are the number of items in which term ti appear, and N is the total
number of documents in the collection. One of the most important relative
frequency measures is given by:

wi,j = fik × log
N

ni
(2.3)
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which assigns a weight to each word in a document depending not only on the
local frequency of the word in the item, but also on the resolving power of that
word in the collection of documents [Salton and McGill, 1986]. This approach
is known as the tf-idf (term frequency - inverted document frequency).

The approaches described here constitute the old central ideas about term
weighting. Over the last couple of decades, many alternative approaches and
modifications on the ones given here have been developed. However, the com-
mon goal for all these approaches is to assign a weight to each word in each
item, indicating to what degree the word describes the content of the docu-
ment.

2.1.2 Boolean Model

As mentioned above, the Boolean model was the overall dominating search
strategy in information retrieval until the mid-nineties. The primary reason
for this was, on the one hand, that the model is simple and intuitive, and on
the other, that there was no clear consensus among researchers as to which
of the many non-Boolean models was the best [Cooper, 1997], and thus there
was no immediate alternative.

The Boolean model is based on set theory and Boolean algebra. Queries
specified as Boolean expressions have precise semantics in addition to being
relatively intuitive, at least with regard to simple queries. The retrieval strat-
egy in the Boolean model is based on the binary decision criterion, which
denotes that a document is predicted either to be relevant or not-relevant to
a given query, hence there are no intermediate relevance judgments.

In the Boolean model documents are usually represented as binary vectors
of index terms, specifying which terms are assigned to the documents. Queries
are lists of keywords combined with the Boolean operators, AND, OR and
NOT (∧,∨,¬), thus forming Boolean expressions. A typical strategy is a
conjunctive reading of the different aspects or facets in the queries and a
disjunctive reading of terms in the facets, e.g. synonyms, inflections, etc., for
example:

q = (“car” ∨ “auto” ∨ “automobile”) ∧ (“holiday” ∨ “vacation”)

for a query on “car vacations”. In more complicated queries, precedence often
has to be explicated by parentheses, e.g. in query [a ∧ b ∨ c], it is necessary
to be explicit and choose either query [(a ∧ b) ∨ c] or [a ∧ (b ∨ c)]. This is
often too difficult to handle for normal users, and most queries are therefore
very simple. Even the very simple expressions, however, have interpretations
which create confusion for novice users. One example of this is the confusion
between the Boolean “AND” and “OR” for English speakers because in ordi-
nary conversations a noun phrase of the form “A AND B” usually refers to
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more entities than “A” alone, while in logic, the use of “AND” refers to fewer
documents than “A” alone [Cooper, 1997].

Boolean expressions can be represented as a disjunction of conjunctions
referred to as the disjunctive normal form (DNF). For instance, the query
q = ta ∧ (tb ∨ ¬tc) can be represented in disjunctive normal form as:

qDNF = (ta ∧ tb) ∨ (ta ∧ ¬tc)

This corresponds to the vector representation (1, 1, 1)∨(1, 1, 0)∨(1, 0, 0), where
each of the components are a binary vector associated with the tuple (ta, tb, tc),
as shown in Figure 2.4 [Baeza-Yates and Ribeiro-Neto, 1999].

(1,0,0) (1,1,0)

(1,1,1)

ta tb

tc

Figure 2.4: The three conjunctive components of the query q = ta ∧ (tb ∨ ¬tc)

A major drawback of the Boolean model is the exact match caused by the
binary decision criterion. One way to remedy this is to model the likelihood
of relevance as the number of index terms that the query and a document
have in common. This presupposes that both the query and the documents
are represented as sets of index terms. A best match evaluation can then be
performed where the retrieved documents are ordered by decreasing number of
elements in common with the query, thus listing the most relevant documents
first. The strategy for posing queries would then be completely different,
not requiring considerations about whether to combine terms with “AND” or
“OR”.

2.1.3 Vector Model

The binary assignment of index terms to documents and queries used in the
Boolean model is often too limited. Furthermore, the term assignment strat-
egy can be either narrow or broad, i.e. either only strongly related or where
(almost) all related terms are assigned. Despite the chosen assignment strat-
egy, the foundation for the evaluation model is limited to the choices made
in the assignment process, i.e. the quality of the retrieval process is based on
the information available in the descriptions defined by the indexing process.
If this uncertainty or graduation of relatedness of terms to the documents is
postponed to the evaluation process, this information could be used in the
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evaluation, and graduate the result not only on behalf of the terms in com-
mon, but also on behalf of the term’s importance for query and documents.
This has been shown to have significant positive influence on the quality of
the retrieval [Salton and Lesk, 1997].

In the vector model (or vector space model) [Salton and McGill, 1986],
documents and queries are represented as vectors:

~dk = (wk,1, wk,2, . . . , wk,t)
~q = (wq,1, wq,2, . . . , wq,t)

where ~dk represents document dk and ~q represents query q. The weight wk,i

is the term weight for the i’th term of the index vocabulary for document k,
where wk,i ≥ 0 and t is the number of terms in the index vocabulary. The
weights in the vector model are therefore not bound to the binary scheme,
but can take any positive value, and documents and queries are represented
as t-dimensional vectors. For the evaluation process to calculate the degree of
similarity between document dk and query q the correlation between ~dk and ~q
has to be calculated. This is done by a ranking function that for a given query
(vector) assigns all documents with a weight describing the correlation with
the query. Documents can then be ordered by this weight of correlation in
descending order, thus showing the most relevant documents first. The value
of similarity or relatedness expressed by the ranking function is often referred
to as the retrieval status value (RSV).

All ranking functions of the vector model family are based on the inner
product [Kraaij, 2004]:

RSV (~q, ~dk) =
t∑

i=1

wq,i · wk,i (2.4)

and if binary weighting is used defining only presence/absence with term
weights as either 1 or 0, then the inner product (2.4) equals the best match
evaluation described in the previous section. Binary vectors can be seen as
simple crisp sets, while the inner product can be seen as the cardinality of the
intersection.

The assignment of weights to documents and queries should reflect the
relevance of the given term3. A simple and classical example of non-binary
term weights is a weight where the number of occurrences of a given term in
a document is used as a measure for the relevance of the term to the given
document.

In this case, one could argue that the ranking function also has to take
into account the size of the documents, which is not the case in the inner

3See Section 2.1.1 for more on term weights.
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product ranking function (2.4). For instance, take two documents d1 and d2,
which are one page and 20 pages long, respectively. If both match the same
subset of a given query with the same RSV score in (2.4), then it could be
argued that the smallest ones are more focused on the query concepts, and
thus should be more similar to the query. One approach that takes this into
account would be a normalization of the RSV score of (2.4) with the length
of the documents defined by the length of the vectors describing them, thus
a vector length normalization, which corresponds to the cosine of the angle
between the vectors [Baeza-Yates and Ribeiro-Neto, 1999] is:

RSV (~q, ~dk) = cos(~q, ~dk) =
~q × ~dk

||~q|| · || ~dk||
=

∑t
i=1 wq,i · wk,i√∑t

i=1 w2
k,i

√∑t
i=1 w2

q,i

(2.5)

This ranking function is called the cosine coefficient and is one of the preferred
ranking functions in many vector models4.

The main advantages of the vector model are the term weighting scheme,
the partial matching, and the ranking of documents according to their degree
of similarity, which in contrast to the Boolean model, are improvements. The
vector model is also simple and has a resilient ranking strategy with general
collections [Baeza-Yates and Ribeiro-Neto, 1999]. The main disadvantage is
that the conceptual understanding of the ranking is less intuitive, and the
ranked answer sets are therefore difficult to improve upon, as it is nearly
impossible for users to verify how the ranking is calculated. Naturally, tech-
niques such as relevance feedback and query expansion can be used, but the
transparency of the Boolean model is vanished.

2.1.4 Probabilistic Model

The intrinsic uncertainty of information retrieval is based on the problem that
it is difficult to distill the meaning from requests and documents, as well as
to infer whether a document is relevant to a given request. To deal with
the uncertainty, one obvious solution is probability theory, thus estimating
the probability that a given document dk will be relevant with respect to a
specific query q, denoted as P (R|q, dk), where R is a relevance judgment.

The first probabilistic model was introduced in 1960 [Maron and Kuhns,
1997], while the model discussed here was introduced in 1976 [Robertson and
Jones, 1976], and was later known as the binary independence retrieval model.
For the binary independence model, the judgment of a document’s relevance
to a given query is binary, hence the judgment of documents is either relevant
R or not relevant R̄.

4See [Salton and McGill, 1986] for more on the variety of ranking functions.
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The fundamental idea in classical probabilistic retrieval is that term distri-
butions are different for relevant and non-relevant documents, an idea known
as the cluster hypothesis [Van Rijsbergen, 1979]. Documents and queries are
represented as binary vectors in the binary independence model, so instead
of estimating P (R|q, dk) for a specific document dk and a given query q, the
actual estimation is P (R|~q, ~dk), the probability that one vector of terms (the
document) is relevant given another vector of terms (the query). Hence, dif-
ferent documents represented by the same vector of terms yields the same
probability of relevance [Fuhr, 1992].

The similarity between a query q and a document dk is defined as the
ratio of the probability of dk being relevant and the probability of dk being
non-relevant

RSV (q, dk) =
P (R|~q, ~dk)

P (R̄|~q, ~dk)

Let P (R| ~dk) be the probability that ~dk is relevant to query q, and let P (R̄| ~dk)
be the probability that it is non-relevant, and apply Bayes’ theorem [Crestani
et al., 1998]

RSV (q, dk) =
P (R| ~dk)

P (R̄| ~dk)
=

P ( ~dk|R) × P (R)

P ( ~dk|R̄) × P (R̄)
(2.6)

then P (R) and P (R̄) would be the prior probability of relevance and non-
relevance, and P ( ~dk|R) and P ( ~dk|R̄) the probability of observing ~dk, contin-
gent on whether this relevance or non-relevance has been observed.

The goal of the retrieval process is to rank documents in descending order
according to the probability of being relevant to a given query, the so-called
probability ranking principle [Robertson, 1997]. In the probability ranking
principle, it is the ranking of the documents that is important, not the actual
value of probability, and since P (R) and P (R̄) for a given query q are the same
for all documents in the collection, equation (2.6) can be reduced to [Crestani
et al., 1998]:

RSV (q, dk) ∼

P ( ~dk|R)

P ( ~dk|R̄)
(2.7)

The next step is to estimate P ( ~dk|R) and P ( ~dk|R̄). In order to simplify
this estimation, the components of ~dk are assumed to be stochastically inde-
pendent while conditionally dependent upon R and R̄. The joint probability
distribution of the terms in document dk is then given by [Crestani et al.,
1998]:

17



P (dk|R) = P ( ~dk|R) =
t∏

i=1

P (dk,i|R)

and

P (dk|R̄) = P ( ~dk|R̄) =

t∏

i=1

P (dk,i|R̄)

where t is the number of elements in ~dk. This binary independent assumption
is the basis for the original binary independence retrieval model [Robertson
and Jones, 1976]. This assumption has always been recognized as unrealistic,
while the assumption that underpins the binary independence retrieval model
was later defined as the weaker linked assumption [Cooper, 1991]:

P ( ~dk|R)

P ( ~dk|R̄)
=

t∏

i=1

P (dk,i|R)

P (dk,i|R̄)
(2.8)

which states that the ratio between the probabilities of ~dk occurring in relevant
and non-relevant documents is equal to the product of the corresponding ratios
of the single elements.

The product of equation (2.8) can be split according to the occurrences of
terms in document dk [Fuhr, 1992]:

P ( ~dk|R)

P ( ~dk|R̄)
=

t∏

i=1

P (dk,i = 1|R)

P (dk,i = 1|R̄)

t∏

i=1

P (dk,i = 0|R)

P (dk,i = 0|R̄)
(2.9)

Recalling that P (dk,i|R) + P (dk,i|R̄) = 1 and using a logarithmic transforma-
tion to obtain a linear RSV function, the expression, in the end, for ranking
computation in the probabilistic model, while ignoring factors which are con-
stant for all documents in the context of the same query, would be [Baeza-Yates
and Ribeiro-Neto, 1999]:

RSV (q, dk) ∼

t∑

i=1

wq,i × wk,i ×

(
log

P (dk,i|R)

1 − P (dk,i|R)
+ log

P (dk,i|R̄)

1 − P (dk,i|R̄)

)

An estimation of P (dk,i|R) and P (dk,i|R̄) is necessary to apply the bi-
nary independence model. Before any documents are retrieved a simplifying
assumption must be made, such as:

P (dk,i|R) = 0.5
P (dk,i|R̄) = ni

N
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where P (dk,i|R) is a constant for all index terms, typically 0.5, and ni is the
number of documents which contain the term dk,i and N the total number of
documents in the collection.

Let V be a subset of the documents retrieved and ranked by the proba-
bilistic model, defined, for instance, as the top r ranked documents, where r is
a previously defined threshold. Let Vi be the subset of V which contains the
term dk,i. Then the estimate of P (dk,i|R) and P (dk,i|R̄) can be calculated as

P (dk,i|R) = |Vi|
|V |

P (dk,i|R̄) = ni−|Vi|
N−|V |

where |X| is the cardinality of the set X. This can then be repeated recursively,
and the initial guess of the probabilities of P (dk,i|R) and P (dk,i|R̄) can then
be improved without any assistance from users. However, relevance feedback
could also be used after the first guess [Baeza-Yates and Ribeiro-Neto, 1999].

On a conceptual level the advantage of the probabilistic model is that doc-
uments are ranked in descending order according to their probability of being
relevant, based on the assumption that this is presumably easier for most users
to understand, rather than, for instance, a ranking by the cosine coefficient
[Cooper, 1991]. The probabilistic model has not been widely used; where it
has been used, however, it has achieved retrieval performance (in the sense of
quality) comparable to, but not clearly superior to, non-probabilistic methods
[Cooper, 1991]. The major disadvantages of the binary independence retrieval
model are that documents are either to be considered relevant or not, and
that the term weighting is binary. The relevance judgment depends on the
assumptions made about the distribution of terms, e.g., how terms are dis-
tributed throughout documents in the set of relevant documents, and in the
set of non-relevant documents, which is usually defined statistically. As men-
tioned earlier, term weighting has been shown to be very important for the
retrieval of information, which is not supported by the binary independence
retrieval model. Last, the model must somehow estimate the initial probabil-
ities of P (dk,i|R) and P (dk,i|R̄), either by (qualified) guessing or by a manual
estimation done by experts. Later research has shown probability models
that overcome some of the major disadvantages, e.g. [Van Rijsbergen, 1986;
Robertson and Walker, 1997; Ng, 1999].

2.1.5 Fuzzy Set Model

The Boolean model is the only one of the three classical models presented
above that has the option of controlling the interpretation of queries beyond
the weighting of keywords. In the vector and probabilistic models, queries are
assumed to be weighted vectors of keyword, whereas queries in the Boolean
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model are Boolean expressions with a well-defined logic. Naturally, as men-
tioned above, users have difficulties using Boolean expressions, a problem vec-
tor and probabilistic models solve by not offering any operators for the query
language. Query languages without operators are preferable due to their sim-
plicity, but are at the same time limited, and as users become more experi-
enced, they may benefit from more expressive query languages.

One natural alternative solution to the Boolean model is the fuzzy set
model which generalizes the Boolean model by using fuzzy sets [Zadeh, 1993]

instead of crisp sets (classical sets). The fuzzy set model can handle queries of
Boolean expressions [Bookstein, 1980] as well as queries of weighted vectors of
keywords without operators, like the vector and probabilistic models [Yager,
1987]. Moreover, the fuzzy set model can deal with the uncertainty of infor-
mation retrieval, both with regard to term weighting in the representation of
documents and the relevance between queries and documents in the evaluation
process.

Information searching and retrieval has to deal with information character-
ized, to some extent, by a kind of imperfection, where imperfection is defined
as imprecision, vagueness, uncertainty, and inconsistency [Motro, 1990]. Im-
precision and vagueness are related to the information content of a proposition,
uncertainty is related to the truth of a proposition, and inconsistency comes
from the simultaneous presence of contradictory information [Bordogna and
Pasi, 2001].

Queries can be seen as imperfect expressions of a user’s information needs
and the representation of documents can be seen as a partial and imprecise
characterization of the documents’ content. A document should be considered
relevant when the document meets the actual user’s information needs, and
can therefore be seen as a matter of degree of relevance, a possibility of being
relevant, rather than a probability of being relevant. Hence, there is only an
uncertain relationship between the request and the likelihood that the user
would be satisfied with that response [Lucarella, 1990]. The fuzzy set theory
provides a sound mathematical framework for dealing with the imperfection
of documents and queries. The substantial difference between models based
on probability and possibility, is that the probabilistic view presupposes that
a document is or is not relevant for a given query, where the possibilistic view
presupposes that the document may be more or less relevant for a given query
[Lucarella, 1990].

Basic Operations on Fuzzy Sets

A crisp set is defined by a function, usually called the characteristic function,
which declares which elements of a given universal set U are members of the
set and which are not. Set A is defined by the characteristic function χA as
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follows:

χA(u) =

{
1 for u ∈ A
0 for u /∈ A

(2.10)

and maps all elements of U to elements of the set {0,1}:

χA : U → {0, 1}

discriminating between members and non-members of a crisp set. A fuzzy
set is defined by a membership function, a generalized characteristic function,
which for a fuzzy set A maps elements from a given universal set U to the unit
interval [0,1]:

µA : U → [0, 1]

where µA defines the membership grade of elements in A. µA(u) = 1 denotes
full membership, µA(u) = 0 denotes no membership at all, and 0 < µA(u) < 1
denotes partial membership [Klir and Yuan, 1995]. Obviously, the character-
istic function in (2.10) is a special case of the fuzzy set membership function,
where fuzzy sets are identical to crisp sets.
Finite fuzzy sets are often specified as:

A = {µA(u)/u|u ∈ U}

or

A = µA(u1)/u1 + µA(u2)/u2 + · · · + µA(un)/un =
n∑

i=1

µA(ui)/ui

where + and
∑

denotes union.
The cardinality of a fuzzy set defined over a finite universe U , called the

scalar cardinality or the sigma count, is the summation of the membership
degrees of all u ∈ U defined as:

|A| =
∑

u∈U

µA(u)

for set A [Klir and Yuan, 1995].
An important concept of fuzzy sets is the α-cut, which for a given fuzzy

set A, defined on the universal set U and with α ∈ [0, 1], is the crisp set

αA = {x|µA(x) ≤ α}

that contains all elements of the universal set U , whose membership grades in
A are greater than or equal to the specified value of α.
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The complement, Ā, of a fuzzy set A with respect to the universal set U is
defined for all u ∈ U as:

µĀ(u) = 1 − µA(u)

Given two fuzzy sets, A and B, defined in the universe U , the intersection,
A∩B, and the union, A∪B, can be generalized by the use of triangular-norms
(T -norms) and triangular-conorms (T -conorms), respectively:

µA∩B = T (µA(u), µB(u))
µA∪B = S (µA(u), µB(u))

where µA∩B = T (µA(u), µB(u)) = min(µA, µB) is the standard T -norm func-
tion and µA∪B = S(µA(u), µB(u)) = max(µA, µB) the standard T -conorm
function. In Table 2.1, some alternative T -norms and T -conorms are shown
[Chen and Chen, 2005]. Whenever we only refer to intersection and union on
fuzzy sets without explicating a particular T -norm or T -conorm, the standard
versions are assumed.

All the normal operations on crisp sets also apply to fuzzy sets, except for
the law of excluded middle, A ∩ Ā = ∅, which for the standard intersection
is only true in the special case where fuzzy sets are identical to crisp sets,
i.e. when the membership function equals the characteristic function [Cross,
1994].

For any pair of fuzzy sets, defined in a finite universe U , the degree of
subsethood of A and B is defined as:

subsethood(A,B) =
1

|A|

(
|A| −

∑

u∈U

max (0, µA(u) − µB(u))

)
(2.11)

where the
∑

term in this formula describes the sum of the degree to which
the subset inequality µA(u) ≤ µB(u) is violated, with the |A| as a normalizing
factor to obtain the range 0 ≤ subsethood(A,B) ≤ 1. This can be expressed
more conveniently in terms of sets:

subsethood(A,B) =
|A ∩ B|

|A|
(2.12)

as the ratio between the cardinality of the intersection A∩B and the cardinality
of A [Klir and Yuan, 1995].

Fuzzy Information Retrieval

The weighted vector representation of documents in the vector model is eas-
ily transformed into fuzzy sets, and so is any other type of term-weighting
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T -norms T -conorms

min(µA, µB) Logical Product max(µA, µB) Logical Sum

µA × µB Algebraic Product µA + µB − (µA × µB) Algebraic Sum

µA × µB

µA + µB − (µA × µB)
Hamacher Product

µA + µB − 2(µA × µB)

1 − (µA × µB)
Hamacher Sum






µA, if µB = 1,
µB, if µA = 1,
0 otherwise

Drastic Product






µA, if µB = 0,
µB, if µA = 0,
1 otherwise

Drastic Sum

max(µA + µB − 1, 0) Bounded Product min(µA + µB, 1) Bounded Sum

Table 2.1: Some T -norms and T -conorms

schemes. The relation between terms and documents can be expressed as a
binary fuzzy indexing:

I = {µI(d, t)/(d, t)|d ∈ D; t ∈ T} (2.13)

where D and T are finite sets of documents and terms, respectively, and µI :
D × T → [0, 1], a membership function indicating for each pair (d, t) the
strength of the relation between the term t and document d [Lucarella, 1990].

On the basis of the indexing relation I, it is possible to define descriptions
for each document d ∈ D and each query q ∈ Q:

Id = {µId
(t)/(t)|t ∈ T ; µId

(t) = µI(d, t)}
Iq = {µIq(t)/(t)|t ∈ T ;µIq(t) = µI(q, t)}

as fuzzy sets. If queries are defined as Boolean expressions, then some consid-
erations have to be made on how to interpret the combination of the (possible)
weighting of terms and Boolean operators, as in Bookstein [1980].

The retrieval rule can likewise be expressed in the form of a binary fuzzy
relation:

R = {µR(q, d)/(q, d)|q ∈ Q; d ∈ D} (2.14)

with the membership function µR : Q×D → [0, 1]. For a given query q ∈ Q, on
the basis of the retrieval relation R, the retrieved fuzzy subset Rq of document
set D is defined as:

Rq = {µRq(d)/d|d ∈ D; µRq = µR(q, d)} (2.15)

where µRq(d) represents the strength of the relationship between the document
d and the query q, hence a reordering of the collection with respect to the values
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of µRq(d). The retrieved fuzzy set Rq can be restricted to a given threshold,
α ∈ [0, 1], by the α-level cut of Rq:

Rq(α) = {µRq(d)/d|µRq(d) ≥ α; d ∈ D; µRq = µR(q, d)} (2.16)

which define that the extracted elements should have a membership value
greater than or equal to the fixed threshold α. The elements in Rq(α) would
then be those documents that best fulfill the query q to the degree defined by
α. A ranked output can be returned to the user by arranging the retrieved
documents in descending order according to the degree of the retrieval status
value RSV = µRq(d).

The computation of the RSV for documents given a specific query has a
variety of different solutions. A simple approach is to interpret the queries
with a conjunctive or a disjunctive reading of the terms. In Cross [1994] two
different approaches based on set-theoretic inclusion are given:

RSV = µRq(d) = µR(q, d) =

∑
t∈T min

(
µIq(t), µId

(t)
)

∑
t∈T µIq(t)

(2.17)

and

RSV = µRq(d) = µR(q, d) =

∑
t∈T min

(
µIq(t), µId

(t)
)

∑
t∈T µId

(t)
(2.18)

defining the subsethood(q, d) of query q in document d and the subsethood(d, q)
of document d in query q, respectively. In (2.17) and (2.18), the length of the
query and the documents, respectively, are used as normalization to obtain
that 0 ≤ RSV ≤ 1, but could also be argued for based upon the same reasons
as for the normalization introduced by the cosine coefficient (2.5) in the vector
model.

A different kind of RSV approach is by means of an averaging opera-
tor, which provides an aggregation between min and max, where the simple
(arithmetic) mean is defined as :

RSV (q, d) = µRq(d) = µR(q, d) =
1

|Iq|

∑

t∈T

µIq(t) + µId
(t)

2
(2.19)

the harmonic mean as

RSV (q, d) = µRq(d) = µR(q, d) =
∑

t∈T

2µIq(t)µId
(t)

µIq(t) + µId
(t)

(2.20)

and the geometric mean as

RSV (q, d) = µRq(d) = µR(q, d) =
∑

t∈T

√
µIq(t)µId

(t) (2.21)
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for query q and document d. All these means provide different fixed views
on the average aggregation. A natural generalization would be to introduce
parameterized averaging operators that can scale the aggregation between min
and max.

Ordered Weighted Averaging Operator

An important parameterized averaging operator is the Ordered Weighted Aver-
aging Operator (OWA) [Yager, 1988], which takes a weighted “ordering” vector
as a parameter, instead of a single value. For examples of different parameter-
ized averaging approaches see e.g. [Waller and Kraft, 1979; Salton et al., 1983;
Smith, 1990].

An ordered weighted averaging operator of dimension n is a mapping
OWA : [0, 1]n → [0, 1], which has an associated weighting vector W =
(w1, w2, . . . , wn) such that:

n∑

j=1

wj = 1

and each wj ∈ [0, 1]. The aggregation with respect to a weighting vector, W ,
is defined as:

OWAW (a1, a2, . . . , an) =
n∑

j=1

wjbi

with bi being the j’th largest of the ai. Hence, the weights in W are associated
to a particular position rather than a particular element.

The generality of the ordered, weighted averaging operator lies in the fact
that the structure of W controls the aggregation operator, and the selection of
weights in W can emphasize different arguments based upon their position in
the ordering. If most of the weights are put in the beginning of the weighting
vector, emphasis is put on the higher scores, while placing them near the
end of W emphasizes the lower scores in the aggregation. The upper and
lower bounds of the ordered weighted averaging operator are defined by the
weighting vectors W ∗, where w1 = 1 and wj = 0 for j 6= 1, and W∗, where
wn = 1 and wj = 0 for j 6= n, for n dimensions and correspond to max
and min, respectively. Another interesting weighting vector is Wave, where
wj = 1

n for all n and which corresponds to the simple mean (2.19) [Yager,
2000]. Obviously, the variety of weighting vectors between the lower and
upper bounds are infinite, while there is only one for each of the bounds.
A measure for characterizing OWA operators, called the alpha value of the
weighting vector, is defined as:
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α =
1

n − 1

n∑

j=1

(n − j)wj

where n is the dimension and wj the j’th weight in the weighting vector. It
can be shown that α ∈ [0, 1], and furthermore that α = 1 if W = W ∗, α = 0.5
if W = Wave, and α = 0 if W = W∗ [Yager, 2000].

The weighting vector can be obtained by a regularly increasing monotonic
function which conforms to f(0) = 0, f(1) = 1, and if r1 > r2 then f(r1) ≥
f(r2). An example is given here of such a function, which takes α as input:

Wj =

(
j

n

) 1
α
−1

−

(
j − 1

n

) 1
α
−1

(2.22)

and distributes the weights in the weighting vector according the description
above, with more emphasis in the beginning of W when α → 1, simple mean
when α = 0.5, and more emphasis in the end of W , when α → 0, as shown in
Table 2.2.

α 1.0 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0.0

W
1.00
0.00
0.00

0.88
0.07
0.05

0.76
0.14
0.10

0.62
0.22
0.16

0.48
0.28
0.24

0.33
0.33
0.33

0.19
0.35
0.46

0.08
0.31
0.61

0.02
0.18
0.80

0.01
0.02
0.97

0.00
0.00
1.00

Table 2.2: An example of how to distribute the weights by a function

The function in (2.22) is an example of how to parameterize n-dimensional
weighting vectors with a single value. The resulting vector will always cor-
respond to an averaging operator. Some weighting vectors can meaningfully
be associated with linguistic quantifiers, e.g. W ∗ correspond to there exists
and W∗ to for all. Linguistic quantifiers could also be defined as regularly
increasing monotonic functions

Wj = Q

(
j

n

)
−Q

(
j − 1

n

)
(2.23)

where Q is some function defining some quantifier. This would permit users to
define weighting vectors from a selection of well-known linguistic qualifiers, e.g.
all, most, some, few, at least one, corresponding to the proportion of elements
in the queries deemed important. If a query evaluation with the quantifier few
gives an enormous result set, the same query with the quantifier most could
be used to restrict the query evaluation, and vise versa.
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2.2 Retrieval Evaluation

The process of querying a retrieval system can be evaluated as a complete task,
starting with posing the query and continuing until satisfactory information
has been found, including any intermediate tasks, for instance, the interactive
process of possible reformulations of the initial request.

These kinds of evaluations are sometimes called real-life evaluation, in
contrast to evaluation that only compares the query and the result, which
often is referred to as laboratory evaluation. Over the last couple of decades,
there has been more focus on real-life evaluation (see e.g. [Ingwersen, 1992]),
but this kind of evaluation is more complicated and expensive, thus laboratory
evaluation is still most prevalent. Laboratory evaluation is also the kind of
retrieval evaluation used in this thesis.

The efficiency of an information retrieval process is commonly measured
in terms of recall and precision. Recall is the ratio between the number of
relevant documents retrieved to the total number of relevant documents, and
precision is the ratio between the number of relevant documents retrieved
to the total number of retrieved documents. Let R be the set of relevant
documents associated to a given query and A the retrieved set of documents
from posing the query, meaning recall and precision can be defined as:

recall = |A∩R|
|R|

precision = |A∩R|
|A|

where |x| denotes the cardinality of the set x. Recall and precision, as defined
above, assume that all documents in the retrieved set A have been seen. How-
ever, the user is not usually presented with all documents in A, but instead
A is sorted according to the degree of relevance (or the probability of being
relevant), and the user thus only sees a fraction of A.

For example, consider the relevant set of a document to a given query q,
defined a priori by some experts, as the following set R:

R = {d3, d7, d12, d24, d29, d71, d83, d115, d141, d195}

and the following result A as the result of posing query q to a given retrieval
system

1. d3 • 6. d24 • 11. d9

2. d37 7. d117 12. d68

3. d78 • 8, d49 13. d155

4. d12 9. d141 • 14. d219

5. d6 10. d27 15. d195 •

where the relevant documents in A are marked with a bullet. Instead of
considering the complete result set A, recall and precision can be computed
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for any fragment of A. Let Ai be the fragment of A with the i topmost
answers. Recall and precision on, for instance, A1 would then be 1/10 = 10%
and 1/1 = 100%, respectively. Normally, a set of standard recall levels, which
are 0%, 10%, 20%, . . . , 100%, are used to plot a recall and precision curve. Here
is the computation for the above result:

Recall Precision
A1 1/10 = 10% 1/1 = 100%
A3 2/10 = 20% 2/3 ≈ 66%
A6 3/10 = 30% 3/6 = 50%
A9 4/10 = 40% 4/9 ≈ 44%
A15 5/10 = 50% 5/15 ≈ 33%

(2.24)

for recall from 10−50%. The plot for this computation is shown in Figure 2.5.
In this example, the recall and precision are for a single query. Usually, how-
ever, retrieval algorithms are evaluated by running them for several distinct
queries, and an average is used for the recall and precision figures.
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Figure 2.5: Recall and precision for the example query q in (2.24)

This way, recall and precision can be used on ranked retrieval, but only
the position in A is used in the evaluation. In case of vague ordering, where
the degree of relevance is not only bound to the position, but also to the
actual degree associated to the documents, then recall and precision might be
inadequate [Baeza-Yates and Ribeiro-Neto, 1999].
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The output of a fuzzy retrieval system is a list of all the documents ranked
according to their relevance evaluations. The retrieval status value is the
membership grade of the retrieved fuzzy set of relevant documents. A fuzzy
concept of retrieval is needed that catches the vagueness captured in the result.

One obvious solution to this is to generalize recall and precision to fuzzy
sets instead of crisp sets. Recall and precision can then be redefined as:

recallfuzzy =
|Af∩Rf |

|Rf |

precisionfuzzy =
|Af∩Rf |

|Af |

where Rf is the relevant documents for a given query as a fuzzy set, and
Af the vague ordering retrieval. Rf is supposed to be defined a priori by
experts, like R in normal recall and precision. This can also be described
as recall = subsethood(R, A) and precision = subsethood(A,R) [Buell and
Kraft, 1981].

Another measure sometimes also used in the evaluation is the fallout, the
fraction of non-relevant documents that are retrieved:

fallout =
|A ∩ R̄|

|R̄|

where X̄ is the complement. The fallout measure can naturally also be gen-
eralized to fuzzy sets, since fuzzy sets support the complement operation.

2.3 Summary and Discussion

In this chapter, three classical information retrieval models have been pre-
sented, one based on Boolean logic and two alternative models based respec-
tively on vector space and probability. Characteristic of operational informa-
tion retrieval systems until the mid-nineties was that they, almost without
exception, adopted the Boolean model of searching. However, in the last cou-
ple of decades, the vector retrieval model has gained some ground, while the
probabilistic retrieval model is still rarely in use.

The three classical models share a rather straightforward representation
paradigm, “bag of words”, for representing the content of documents and
queries (except for the Boolean model, where queries are Boolean expressions
– a disjunction of conjunctive vectors). Each index term in these vectors
can have a weight attached denoting the relevance of the term describing the
content of a document or query.

The aim in this thesis is to introduce external knowledge and in so doing
promote semantics in the retrieval process. This is to be achieved by intro-
ducing concept models in the form of ontologies into information retrieval.
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Naturally, this requires changes in both representation and query evaluation.
The recognition of semantics in documents and queries involves some kind of
natural language processing, which as result has a more complex representa-
tion paradigm. The classical framework seems unfeasible for adapting to this
kind of representation, likewise for the classical query evaluation with search
strategies based solely on the occurrence of string sequences, terms or words,
or combinations of words. The fuzzy set retrieval model is thus deemed a
better alternative.

The fuzzy set retrieval model is a generalization of the Boolean model,
and thus has a well-defined underlying logical skeleton. This framework is
flexible enough to capture the paradigm shift of representations from simple
collections of words to semantic descriptions. Furthermore, it underpins the
notion of imprecision perfectly5.

The fuzzy set model is only rarely used, but appears to be an appropriate
way towards solving the problems concerning ontology-based information re-
trieval dealt with in this thesis. The flexibility of the aggregation, especially
hierarchical aggregation, and the use of linguistic quantifiers as parameteriza-
tion of the aggregation process, are shown to substantiate the selection of the
fuzzy set retrieval model in Section 6.2.3.

5This is also true for the vector and probabilistic models, while the Boolean model hands
the question of uncertainty over to users.

30



31



Chapter 3

Ontology

Up until the last decade of the 20th century, ontology had primarily been a
discipline in philosophy dealing with the nature and organization of reality.
In recent years, however, ontology has also emerged as a research area related
to computer science. Two main, corresponding definitions of the word ”on-
tology” can be found in various dictionaries, for instance, Webster’s defines it
as[Webster, 1993]:

1. A science or study of being: specifically, a branch of metaphysics relating
to the nature and relations of being; a particular system according to
which problems of the nature of being are investigated; first philosophy.

2. A theory concerning the kinds of entities and specifically the kinds of
abstract entities that are to be admitted to a language system.

where the first meaning applies to the philosophical discipline, and the second
to the branch of computer science known as knowledge engineering. This two-
fold definition of ontology is concurrent with the different typing suggested
by Gurino and Giaretta [1995], where “Ontology” and “ontology” refer to the
philosophy and knowledge engineering definitions, respectively.

While the above distinction is adopted in this thesis, only the second def-
inition, which refers to the knowledge engineering sense of the word, is used
beyond this section.

3.1 Ontology as a Philosophical Discipline

In philosophy, ontology is an important area whose origins date back more than
2000 years, the plethora of discussions and opinions that have been put forward
over the centuries making it difficult to present a brief historical overview that
is not superficial. Hence, only a select number of milestones related to this
thesis will be pointed out.
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Being

Substance Accident

Property Relation

Inherence

Directedness

Containment

Quality Quantity

Movement Intermediacy

Spatial TemporalActivity Passivity Having Situated

Figure 3.1: Brentano’s tree of Aristotle’s categories

Aristotle defined ontology as the science of being. In Categories, Aristo-
tle presented ten basic categories for classifying things: Substance, Quality,
Quantity, Relation, Activity, Passivity, Having, Situatedness, Spatiality, and
Temporality. Later, the philosopher Franz Brentano organized all ten cate-
gories as leaves on a single tree, as shown in Figure 3.1, where the branches
are labeled with terms taken from some of Aristotle’s other works. [Sowa,
2000].

Quantity Quality Relation Modality

Unity Reality Inherence Possibility
Plurality Negation Causality Existence
Totality Limitation Community Necessity

Table 3.1: Kant’s categories

This classification was widely accepted until Emmanuel Kant (1724-1804)
challenged Aristotle’s idea that the essence of things is solely determined by the
things themselves. Kant’s idea was that the question of essence could not be
separated from whoever perceives and understands the thing concerned. Kant,
for whom a key question was what structures the mind uses to capture reality,
organized his categories in four classes, each of which presents a triadic pattern,
as shown in Table 3.1. Kant obtained his categories from the logic classification
of judgments. Thus, for instance, unity matches singular judgments, plurality
matches particular judgments, and totality matches universal judgments. The
sensations involved when a person perceives reality are put into order, first in
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space and time, and then, according to categories. [Gómez-Pérez et al., 2004]

Charles S. Peirce (1839-1914) found that some of Kant’s triads reflected
three additional basic categories: Firstness, Secondness, and Thirdness. First-
ness is determined by a thing’s inherent qualities, Secondness is determined in
relation to something else, and Thirdness by mediation that brings multiple
entities into relationship. The first can be defined by a monadic predicate
P(x), the second by a dyadic relation R(x, y), and the third by a triadic rela-
tion M(x, y, z). For example, the type human can be defined by the quality
inherent in the individual, the type mother is defined in relation to a child,
and the type motherhood relates mother and child [Sowa, 2000].

Figure 3.2: Sowa’s lattice of categories

Alfred North Whitehead (1861-1947) developed an ontology that combined
the insights of some of history’s greatest philosophers. Even though he never
mentioned Peirce, there was a great deal of overlap with some of Peirce’s tri-
ads in some of Whitehead’s eight categories [Sowa, 2000]. The first tree actual
entries, prehensions, and nexūs correspond to Peirce’s Fristness, Secondness,
and Thirdness. In addition to these three physical categories, he defined three
categories for abstractions, eternal objects, propositions, and subjective forms,
constituting a triad for abstractions. Whitehead’s last two categories are prin-
ciples for the construction of new categories, multiplicities and contrasts [Sowa,
2000].

The aspects of ontology described up to this point could very well be
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defined as general ontology, in contrast to various special or domain-specific
ontologies, which are also defined as formal and material ontologies by Husserl
[Guarino and Giaretta, 1995]. In his book, Knowledge Representation, John
F. Sowa merges most of the above-mentioned ideas into a lattice of categories,
shown in Figure 3.2, which are an example of a top ontology [Sowa, 2000].

3.2 Knowledge Engineering Ontologies

After this short introduction to the philosophical definition of ontologies, we
now turn to its primary meaning, which is the knowledge engineering defini-
tion. In their paper “Ontology and Knowledge Bases” Gurino and Giaretta
[1995], list the following seven different interpretations of the term ”ontology”:

1. Ontology as a philosophical discipline,

2. Ontology as a an informal conceptual system,

3. Ontology as a formal semantic account,

4. Ontology as a specification of a “conceptualization”,

5. Ontology as a representation of a conceptual system via a logical theory,

5. 1 characterized by specific formal properties,

5. 2 characterized only by its specific purposes,

6. Ontology as the vocabulary used by a logical theory,

7. Ontology as a (meta-level) specification of a logical theory.

The first interpretation of ontology is as described in the previous section and
differs from the six others, which are all related to the knowledge engineering
sense of ontology. Gurino and Giaretta divide the remaining six interpretations
(2-7) into two subdivided groups:

1. A particular framework at the semantic level (interpretations 2-3), and

2. An ontology intended as a concrete artifact at the syntactic level (inter-
pretations 4-7).

They support the ambiguity between these two interpretations and explain
that one technical term cannot cover both of them. Their suggestion is to
define the first group as conceptualization and the second as ontological theory,
denoting a semantic structure which reflects a particular conceptual system, as
well as a logical theory intended to express ontological knowledge, respectively.

The notion of the second group, ontological theory, is in fact designed
artifacts, the interpretation for which the term “ontology” is primarily used
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in this thesis. This interpretation is compatible with Gruber’s definition of
ontology (with a lowercase “o”), the most quoted in the literature:

An ontology is an explicit specification of a conceptualization.

[Gruber, 1993]1. Actually, Gruber’s definition is one of the interpretations put
forward by Gurino and Giaretta in their list of different interpretations.

Gómez-Pérez et al. [2004] conclude that ontologies aim to capture con-
sensual knowledge in a generic way. They also state that despite the many
different interpretations of the term “ontology”, there is consensus within the
community, so confusion is avoided.

3.3 Types of Ontologies

Ontologies can be classified from at least two aspects, by the type of informa-
tion they capture, and by the richness of their internal structure. The former
is divided into six groups in [Gómez-Pérez et al., 2004]:

Top-level ontologies or upper-level ontologies are the most general ontolo-
gies describing the top-most level in ontologies to which all other ontolo-
gies can be connected, directly or indirectly. In theory, these ontologies
are shareable as they express very basic knowledge, but this is not the
case in practice, because it would require agreement on the conceptu-
alization of being, which, as described in Section 3.1, is very difficult.
Any first step from the top-most concept would be either too narrow,
thereby excluding something, or too broad, thereby postponing most of
the problem to the next level, which means of course that controversial
decisions are required.

Domain ontologies describe a given domain, e.g. medicine, agriculture, pol-
itics, etc. They are normally attached to top-level ontologies, if needed,
and thus do not include common knowledge. Different domains can be
overlapping, but they are generally only reusable in a given domain.
The overlap in different domains can sometimes be handled by a so-
called middle-layer ontology, which is used to tie one or more domain
ontologies to the top-level ontology.

Task ontologies define the top-level ontologies for generic tasks and activi-
ties.

Domain-task ontologies define domain-level ontologies on domain-specific
tasks and activities.

1Gurino and Giaretta discuss the problem with the external definition of conceptualization
in this definition in their paper [Guarino and Giaretta, 1995], which is not looked at here.
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Method ontologies give definitions of the relevant concepts and relations
applied to specify a reasoning process so as to achieve a particular task.

Application ontologies define knowledge on the application-level and are
primarily designed to fulfill the need for knowledge in a specific applica-
tion.

This is similar to the definition given in [Guarino, 1998], shown in Figure
3.3. The only difference is that this model is less fine-tuned. Even though the
different ontologies are connected in this figure, they can be used as individual
ontologies, or can be connected in any number of combinations. However, the
ordering is normally respected, e.g. an “application ontology” is hardly ever
connected directly to a “top-level ontology”.

Top-level Ontology

Domain Ontology Task Ontology

Application Ontology

Figure 3.3: Guarino’s kinds of ontologies

Another type of ontology which should be mentioned here is the so-called
linguistic ontologies, whose origin is natural languages and which describe
semantic constructs rather than model a specific domain. Most of the linguis-
tic ontologies use words as a grammatical unit, and can be used for natural
language processing and generation. The mapping between units in natural
language and the meanings in the linguistic ontologies are obviously not one-
to-one due to fact that the meanings of grammatical units in natural languages
can be ambiguous. Linguistic ontologies are quite heterogeneous and are of-
ten combined with top-level and/or domain-specific ontologies to form more
coherent resources.

The other dimension along which ontologies can be categorized is by the
richness of their internal structure. Lassila and McGuinness [2001] define
categorization as a linear spectrum, as shown in Figure 3.4, that goes from
the most simple ontologies to the most complex and powerful. Whether or not

37



all of these definitions would actually be accepted as ontologies, depends on
how one defines ontologies. Lassila and McGuiness divide the spectrum into
two partitions, indicated by an inclining line, that define whether or not the
definitions have a strict subclass hierarchy.

Figure 3.4: Lassila and McGuinness categorization of ontologies

Correspondingly, with respect to richness, Corcho et al. [2003] introduce a
division between lightweight and heavyweight ontologies. Lightweight ontolo-
gies include concepts, concept taxonomies, relationships between concepts,
and properties that describe concepts, whereas heavyweight ontologies are
lightweight ontologies with axioms and constraints added.

3.4 Representation Formalisms

Ontologies are special kinds of knowledge resources, ranging from simple con-
cept taxonomies, like the hierarchies of domains available in search engines
such as Altavista and Google and the hierarchies of topics for bibliographic
categorization, to complex ontologies embedded in formal systems with rea-
soning capabilities allowing for new knowledge to be deduced from existing,
automatic classification, as well as for validating knowledge through consis-
tency checks.

In this thesis, the main purpose of introducing ontologies is to move from
a query evaluation based on words to an evaluation based on concepts, thus
moving from a lexical to a semantic interpretation. The goal is to use the
knowledge in the ontologies to match objects and queries on a semantic basis.
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For this purpose, it is necessary to be able to derive any similarity between
concepts in the ontology, e.g. how closely related are dogs and cats, and are
they more closely related than dogs and postmen? For a query on dogs, which
of the two, cats or postmen, would be the most relevant answer? Of course,
there is no obvious answer to this question because it depends on the context.

The representation of knowledge, an important research issue in the field
of artificial intelligence (AI), has been researched and discussed since the be-
ginning of AI. A lot of different approaches have evolved, and so a key question
is which of these existing approaches is most suitable for a given task, which
in this case is query evaluation involving conceptual similarity in the area of
information retrieval. One could argue that before this selection is achievable,
an attempt should be made to clarify exactly what knowledge representation
is. This is precisely what Davis, Shrobe, and Szolovits do in [Davis et al.,
1993] and they conclude that:

1. A knowledge representation is a surrogate. Most of the things
that we want to represent cannot be stored in a computer, e.g. bicycles,
birthdays, motherhood, etc., so instead, symbols are used as a surrogate
for the actual objects or concept. Perfect fidelity to the surrogate is
impossible2, and not necessary most of the time, as in most cases simple
descriptors will do.

2. A knowledge representation is a set of ontological commit-

ments. Representations are imperfect approximations of the world, each
attending to some things and ignoring others. A selection of representa-
tion is therefore also a decision about how and what to see in the world.
This selection is called the ontological commitment, i.e. the glasses that
determine what we see.

3. A knowledge representation is a fragmentary theory of intel-

ligent reasoning. To be able to reason about the things represented,
the representation should also describe their behavior and intentions.
While the ontological commitment defines how to see, the recommended
inferences suggest how to reason.

4. A knowledge representation is a medium for efficient compu-

tation. Besides guidelines on how to view the world and how to reason,
some remarks on useful ways to organize information are given.

5. A knowledge representation is a medium of human expression.
The knowledge representation language should facilitate communication.

2It is not possible because anything other than the thing itself is necessarily different.
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Davis et al. argue that among different achievements to be attained by
understanding and using this description, one is, what they call, a character-
ization of the spirit of a given representation. In other words, all representa-
tions can more or less be seen as some fragment of first order logic, and can,
based on this point of view, be equal or interchangeable, even if this some-
times requires extensive stretching and bending, though the intentions for the
representations, or the spirit, could be very different. The selection of repre-
sentations should therefore be on the basis of spirit, and the representations
with intentions similar to the given task should be preferred.

An ontology is essentially a set of concepts connected by a set of relations,
usually with subsumption/concept inclusion as ordering relation, forming the
hierarchy of the ontology. Any ontology representation should at least accom-
plish this to be considered as a possible solution. Two of the most dominant
models are network-based and logical representations. As mentioned previ-
ously, specific models in both of these categories could, for the most part, be
translated into first-order logic, but their intentions differ. While network-
based representations have their offspring in cognitive science and psychology,
logical models are anchored in philosophy and mathematics.

Two of the most applied network-based models are semantic networks
[Quillian, 1985] and frames [Minsky, 1985]. Although semantic networks and
frames are significantly different, they share cognitive intuition, their features,
and their network structure. Network-based representation models have a
human-centered origin and match well with our intuition about how to struc-
ture the world.

The semantic network model was proposed by Quillian in the late 1960s
as a model to capture the way humans organize the semantics of words. In
the semantic network model, objects, concepts, situations and actions are rep-
resented by nodes and the relationships between nodes are represented by
labeled arcs. The labels in the nodes gain their meaning from their connec-
tions [Brachman, 1985]. One of the advantages of this model is its simplicity,
which is also its weakness. For modeling simple things, the semantics of the
model is clear, but whenever the model becomes more complex, the semantics
of the links between nodes in the network are unclear and need an explicit defi-
nition to be understood correctly [Woods, 1985]. Different representations are
therefore not necessary, comparable, due to this vague semantic of relations,
to the semantic network model.

The networks created by the semantic network model could also be created
by the frames model, but instead of having simple nodes, the frames model is
more object-centered and has nodes which are defined as a set of named slots.
In psychology, a frame, or a scheme, is a mental structure that represents
some aspect of the world, and is used to organize current knowledge and
provide a framework for future understanding. This description is in fact
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indistinguishable from one describing how knowledge in artificial intelligence
should be used and is thus also the inspiration for the frames model, which
was proposed by Minsky in 1975.

Frames are pieces of knowledge, non-atomic descriptions with some com-
plexity that are not necessarily complete with regard to details, but that are
adequate for a given purpose. If one remembers a dog from the past, the shape
of the nails on the left front paw may not be significant, but the color, nose,
eyes, and overall shape might be. Frames are the structures to be filled with
information about the piece of knowledge to be captured. Hence, a frame is a
representational object with a set of attribute-value pairs defining the object.
The specification of attributes typically includes [Levesque and Brachman,
1985]:

• Values defining an exact value for an attribute, or a default, to be derived
from the structure,

• Restrictions defining constraints for the attribute’s values, which could
be value restrictions or number restrictions,

• Attached procedures providing procedural advice on how the attribute
should be used and how to calculate the value (derive it from the struc-
ture), or they trigger what to do when the value is added,

where both the ability to define default values and to include procedural infor-
mation about reasoning differs significantly from the semantic network model.

Frames are divided into generic types defining stereotyped situations and
instances representing actual objects in the world. The generic types define the
foundations, i.e. which slots define a specific type and perhaps the restrictions
on the values of one or more slots, while instances fill out these slots with the
values defining the instance.

Assuming that a stereotypical dog is characterized by being a specialization
of the super-type animal, having a color, a size, and number-of-legs, as shown
in Figure 3.5, notated as a attribute-value matrix:




dog



supertype animal

color (type color)

size (type size) (one of small, medium, big)

number-of-legs 4







Figure 3.5: An example of the stereotype dog notated in a attribute-value matrix
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where the value of the attributes color and size are restricted to a specific
type, where the attribute size, furthermore, is restricted to a set of possible
values, and the attribute number-of-legs is fixed to the value four.

In Figure 3.6, an instance fido of the generic frame dog is shown. The
values of the attributes color and size are fixed, and thus all attributes of the
instance are fixed.




fido


super-type dog

color gray

size big







Figure 3.6: An example of a frame denoting the instance fido of the stereotype dog

The instance, fido, inherits all attributes from both of its parents, thus even
though the number-of-legs attribute is not shown in Figure 3.6, it is inherited
from the super-type dog.

Frames were a step ahead of semantic networks, but still the semantics of
relations were unclear, links could represent implementational pointers, logical
relations, semantic relations, and arbitrary conceptual and linguistic relations
[Brachman and Schmolze, 1985]. One attempt to bring more strict semantics
into frames and semantic networks was done in the representation language
KL-ONE [Brachman and Schmolze, 1985], where there were a clear distinc-
tion made between different kinds of links, which has been the main criticism
against semantic networks [McDermott, 1976; Woods, 1985]. In Figure 3.7,
the example with the type dog and the instance fido is shown in KL-ONE.
The ovals define concepts and the arrows different kinds of relations. The
double-line arrows represent the subtype-super-type relations, and the arrows
with the encircled square represent roles. The v/r at the target end of the
role arrows indicates value restrictions or type constraints.

In KL-ONE and other frame-based knowledge representation languages,
knowledge is split into two different parts; the terminological part denoted
the TBox, and the assertional part, denoted the ABox. The TBox concerns
taxonomies of structured terms and the ABox descriptive theories of domains
of interest [Brachman et al., 1985].

Even though the semantics of relations is strict in KL-ONE, it can become
difficult to give a precise characterization of what kind of relationship can be
computed when more complex relationships are established among concepts.
This problem and the recognition that the core features of frames could be
expressed in first order logic [Hayes, 1985], were among the main motivations
for the development of description logic [Nardi and Brachman, 2003]. It was
shown that only a fragment of first order logic was needed, and that different
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fido

animal

dogsize

color

integer
number-of-legs

4

restricts

value

v/r

has-color

v/r

gray

restricts

value

has-size

big

restricts

value

v/r

Figure 3.7: The example with the type dog and the instance fido in KL-ONE

features of the representation language lead to different fragments of first order
logic. This was also true for the reasoning part, which meant that it did not
necessarily require proof of full first-order logic theorems, and that the rea-
soning in different fragments of first-order logics would lead to computational
problems of differing complexity.

Description
Language Reasoning

TBox

ABox

Application
Programs

Rules

KB

Figure 3.8: Architecture of the knowledge representation system in description logic
([Baader and Nutt, 2003])

Description logics inherit the division of knowledge representation into a
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terminological and an assertional part, as shown in Figure 3.8. As mentioned
above, description logics are a set of languages that are all a subset of first-
order logic. All the languages have in common elementary descriptions that
are atomic concepts and atomic roles. Complex descriptions can be built from
the atomic ones inductively with concept constructors, and each language
is therefore distinguished by the constructors they provide. As a minimal
language of practical interest, the attributive language AL was introduced
in [Schmidt-Schaubss and Smolka, 1991]. In Figure 3.9, the syntax rule for
the AL language, defined in an abstract notation where the letters A and B
denote atomic concepts, R atomic roles, and C and D concept descriptions.

C, D → A| (atomic concept)
⊤| (universal concept)
⊥| (bottom concept)
¬A| (atomic negation)
⊓D| (intersection)
∀R.C| (value restriction)
∃R.⊤ (limited existential quantification)

Figure 3.9: The basic description language AL

Whenever the AL language is extended, the extension is denoted by adding
letters to the language name, for instance the number restriction is denoted
by the letter N , hence the ALN language is the AL language with number
restrictions. In order to express the example in Figure 3.5 and 3.7 in descrip-
tion logics, the ALN language is needed. The result is shown in Figure 3.10,
where the double vertical line divides the example in an upper TBox and a
lower ABox.

Although, the different knowledge representation models described up to
this point are closely related, they relate to at least two different kinds of
spirits, or ontological commitments, the cognitive and the logical. A third
spirit, the mathematical or algebraic spirit, will now be introduced. [Brink et
al., 1994] shows that the Peirce Algebra and the description language U− are
isomorphic, where the U language is one of the most powerful languages having
ALC language3 as a sub-language, and the U− language is the U language
without the numerical restrictions; atleast and atmost.

The model-theoretic semantics of a description language can be given by an
interpretation I, which defines a pair (DI , .I), where DI denotes a set called
the domain or universe, and .I is a map, called the interpretation function,
which assigns to every concept description C a subset CI of DI and to every

3The ALC language or the ALUE language is AL language plus either full negation or
union and full existential quantification, which, of course, defines the same language. ALC

is normally used to denote it.
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Dog ≡ Animal ⊓
6 numberOfLegs(4) ⊓
> numberOfLegs(4) ⊓
∀hasColor(Color) ⊓
∀hasSize(Size)

Dog(fido)
hasSize(fido, big)
hasColor(fido, gray)
Color(gray)
Size(small)
Size(medium)
Size(big)

Figure 3.10: Example of dog with the instance fido in description logic

role R, a binary relation RI over DI . Figure 3.11 shows the conditions for a
subset of the U-language and the mapping to the matching algebraic terms:

Terminological Expression Interpretation Algebraic Term

⊤ DI 1
⊥ ∅ 0
C ⊓ D CI ∩ DI a · b
C ⊔ D CI ∪ DI a + b
¬C DI − CI a′
∃R.C {x|(∃y)[(x, y) ∈ RI ∧ y ∈ CI ]} r : a
∀R.C {x|(∀y)[(x, y) ∈ RI ⇒ y ∈ CI ]} (r : a′)′

Figure 3.11: A logical connection between Peircian algebra and the description lan-
guage RU

where r : a denotes Peirce’s product [Brink, 1981], where r is an element in a
relation algebra and a, b are elements in a Boolean algebra.

The example in Figure 3.10 could obviously be represented in Peircian
algebra, except for the number restriction, so unless cardinality is essential for
a given representation task, Peircian algebra would be a possible representation
model with a mathematical or algebraic spirit.

The goal here has not been to give an overview of representation models,
but to show the logical similarities and differences of the spirit and intentions
of the models presented. Nevertheless, these models give a representative
glimpse of the evolution towards a well-defined semantics of relations between

45



elements of knowledge.
Selecting which language is the most appropriate for representing a given

ontology, first of all, depends on the type and richness of the ontology, as well
as on the type of reasoning needed. A “lowest common denominator” view of
the notion of an ontology is indicated in [Uschold and Jasper, 1999]:

An ontology may take a variety of forms, but necessarily it will in-
clude a vocabulary of terms, and some specification of their mean-
ing. This includes definitions and an indication of how concepts
are inter-related which collectively impose a structure on the do-
main and constrain the possible interpretations of terms.

Thus, the representation could be rather simple – a mapping from the vocab-
ulary to the concepts of the ontology (with specification of meaning), and a
specification of one or more relations of the concepts. As a result, a repre-
sentation could be fairly straightforward and simple. However, when the need
for richness increases, moving from left to right in Figure 3.4, the choice of
representation languages and formalisms become less straightforward.

For simple representations of ontologies without the need for reasoning, any
language with the ability to describe links between entities would be appro-
priate, i.e. Unified Modeling Language (UML) [Object Management Group,
], Entity-Relationship Model (ER) [Chen, 1976], or other software engineering
languages. Whenever reasoning becomes decisive, the differences and simi-
larities among formalisms described in the last section should be taken into
account when choosing a representation language. Gómez-Pérez et al. [2004]

conclude that both the formalism used to model the ontology and the lan-
guage that implements these techniques limit the kind of knowledge that can
be modeled and implemented.

Other aspects which should be taken into consideration concern the type of
information to be modeled and the applicability. Examples of different types
of knowledge are top-level knowledge, common knowledge, domain-specific
knowledge, while examples of applicability are data integration and ontology
modeling tools.

3.4.1 Traditional Ontology Languages

In the beginning of 1990s, a set of Artificial Intelligence representation lan-
guages for ontologies was created. Some were based on first order logic, pri-
marily based on the Knowledge Interchange Format (KIF) [Genesereth, 1991],
while others were based on frames combined with first order logic, for instance,
the language Ontolingua [Gruber, 1992]. Ontolingua, which is one of the most
expressive of all the languages that have been used for representing ontologies,
allows the representation of concepts, taxonomies of concepts, n-ary relations,
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functions, axioms, instances, and procedures. Because its high expressiveness
led to difficulties in building reasoning mechanisms for it, no reasoning support
is provided with the language [Corcho et al., 2003].

Later (1995), the language FLogic [Kifer et al., 1995], which also combines
frames and first order logic, was created. FLogic allows the representing of
concepts, concept taxonomies, binary relations, functions, instances, axioms,
and deductive rules. The FLogic language has reasoning mechanisms for con-
straint checking and the deduction of new information.

The language LOOM [MacGregor, 1991], which was developed simulta-
neously with the Ontolingua, is a general knowledge representation language
based on description logic and production rules and provides the automatic
classification of concepts. In addition, ontologies can be represented with con-
cepts, concept taxonomies, n-ary relations, functions, axioms and production
rules.

3.4.2 Ontology Markup Languages

The Internet boom has lead to a number of web-based representation lan-
guages. Introduced in 1996, the first one, SHOE [Heflin et al., 1999], was an
extension of HTML and introduced tags, which allow the insertion of ontolo-
gies in HTML documents. Later, when XML [Paoli et al., 2004] was created
and widely adapted, SHOE was modified to use XML. SHOE combines frames
and rules, and allows representation for concepts, their taxonomies, n-ary re-
lations, instances and deduction rules that can be used by its inference engine
to obtain new knowledge.

Figure 3.12: Ontology markup languages

The release and use of XML gave rise to a large number of different ontology
markup languages, as shown in Figure 3.12, where the languages based on the
Resource Description Framework (RDF) [Lassila and Swick, 1999] are based
on description logic. The RDF language is in itself very limited and primarily
designed for describing web resources, but the extension RDF Schema (RDFS)
[Brickley and Guha, 2004] added frame-based primitives. These did not make
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RDFS very expressive, since they only allow the representation of concepts,
concept taxonomies and binary relations. Inference engines have been cre-
ated for this language, mainly for constraint checking. Ontology Inference
Layer or Ontology Interchange Language (OIL) [Fensel et al., 2000] was devel-
oped in the framework of the European IST project, On-To-Knowledge, which
adds frame-based knowledge representation primitives to RDF(S). Its formal
semantics are based on description logic, and it supports the automatic classifi-
cations of concepts. DAML+OIL (DARPA agent markup language) [Connolly
et al., 2001], which is a union of DAML with OIL, also adds description logic
primitives to RDF(S), and allows representing concepts, taxonomies, binary
relations, functions and instances. The OWL Web Ontology Language [Bech-
hofer et al., 2004], which is the latest branch of ontology markup languages,
covers most of the features in DAML+OIL. The differences between OWL
and DAML + OIL are mainly a change of name of the original DAML+OIL
primitives, since they were not always easy to understand for non-experts.

The traditional representation languages presented are primarily based on
first order logic and frames (except for LOOM), while the ontology markup
languages primarily are based on descriptions logic. The ability of reasoning is
a very important issue for these paradigms, and the development of fast model
checkers for descriptions logic (see e.g. [Horrocks, 1998]) is a huge improve-
ment on the applicability of descriptions logic in real-life applications. Still,
reasoning in large ontologies is computationally complex and its usefulness,
for instance, in large-scale information retrieval systems is limited.

The aim of this thesis is to introduce ontologies for large-scale information
retrieval, thus reasoning is aimed at being avoided, and instead, the idea is to
use measures of similarity between concepts derived from the structure of the
ontology, and by doing so, replace reasoning over the ontology with numerical
similarity computation. This is aimed at being achieved by transforming on-
tology representation into directed graphs in which well-known algorithms can
be used to compute, for instance, the shortest path between nodes. The in-
trinsic graphical nature of the lattice-algebraic representation seems therefore
to be an obvious choice.

3.4.3 Ontolog

The ontology sources to be used in this thesis are linguistic ontologies and the
ontological framework characterized as a generative ontology [Andreasen and
Nilsson, 2004] in the generative grammar tradition of Chomsky and with ties
to the generative lexicon semantics found in [Pustejovsky, 1991]. A genera-
tive ontology is an ontology defined by a set of atomic concepts and a set of
relations. From these two sets, assumed given by the ontological sources, any
concept combining atomic or already combined concepts by relations is also a
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part of the generative ontology.
This generative ontological framework is modeled by the lattice-algebraic

description language called Ontolog [Nilsson, 2001]. The primary role of
the ontology is to provide a specification of a shared conceptualization in an
(ontological) information retrieval environment targeting only partial repre-
sentation of meaning. The aim is to capture and represent various aspects of
meanings from both queries and documents and use the ontological framework
to measure similarity.

Semantic Relations

temporal aspect tmp

location, position loc

purpose, function prp

with respect to wrt

characteristic chr

with, accompanying cum

by means of, instrument, via bmo

caused by cby

causes cau

comprising, has part cmp

part of pof

agent of act or process act

patient of act or process pnt

source of act or process src

result of act or process rst

destination of moving process dst

Table 3.2: The subset of semantic relations R and their abbreviations as presented
in [Nilsson, 2001]

Semantic relations are used for combining concepts, expressing feature at-
tachment, and thereby forming compound concepts. The number and types of
relations in the ontology source and in the query language should be harmo-
nized and reflect the granularity of relations in use. There have been numerous
studies regarding representative collections of semantic relations. The set of
relations presented in Table 3.2 constitutes a limited selection that can repre-
sent “meaning” on a very coarse level for a subset of the occurring concepts.

Terms in the Ontolog representation are well-formed concepts situated
in an ontology, with concept inclusion as the key ordering relation.

The basic elements in Ontolog are concepts and binary relations be-
tween concepts. The algebra introduces two closed operations on the concept
expressions ϕ and ψ [Nilsson, 2001]:
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• conceptual sum (ϕ + ψ), interpreted as the concept being ϕ or ψ

• conceptual product (ϕ × ψ), interpreted as the concept being ϕ and ψ

Relationships r are introduced algebraically by means of a binary operator
(:), known as the Peirce product (r : ϕ), which combines a relation r with an
expression ϕ, resulting in an expression, thus relating nodes in the ontology.

The Peirce product is used as a factor in conceptual products, as in c ×
(r : c1), which can be rewritten to form the feature structure c[r : c1], where
[r : c1] is an attribution of the concept c.

Thus, the attribution of concepts to form compound concepts corresponds
to feature attachment. Attribution of a concept a with relation r and concept
b has the intuitive lattice-algebraic understanding a × r(b), conventionally
written as the feature structure a[r:b].

Algebraically, the concept a[r:b] is therefore to be understood as the great-
est lower bound (meet, infimum) for all as and all concepts being r-attributed
with the value b.

Given atomic concepts A and relations R, the set of well-formed terms L

of the Ontolog language is defined as follows:

• if x ∈ A then x ∈ L,

• if x ∈ L, ri ∈ R and yi ∈ L, i = 1, . . . , n
then x[r1 : y1, . . . , rn : yn] ∈ L.

Compound concepts can thus have multiple and nested attributions. Ex-
amples of such compound concepts are the concepts dog[chr:gray[chr:dark]],
and dog[chr:black,chr:fast], respectively. The attributes of a compound
concept X = x[r1 : y1, . . . , rn : yn] are considered as a set, and thus X can
be rewritten with any permutation of {r1 : y1, . . . , rn : yn} [Andreasen et al.,
2003c].

3.5 Resources

In this section, a number of resources will be presented that can act as a
basis for the ontological framework just presented. Normally, not just a single
source is used as the foundation, but a number of different sources are merged
to form the basis for a generative ontology framework.

The resources presented here are just a small fragment of the possible
ontological resources available. The large lexical database for English, Word-
Net [Miller et al., 1990; Miller, 1995], was chosen because it is an extensive
framework used in many projects related to ontologies.
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In the OntoQuery project, a small Danish ontology SIMPLE [Pedersen
and Keson, 1999; Pedersen and Nimb, 2000] is used in connection with Danish
language texts. Although not a perfect resource due to certain defects (see
e.g. [Bulskov and Thomsen, 2005]), it is the only ontology of a reasonable size
available in Danish. Fortunately, a newly started project, DanNet, has the
goal of creating a Danish version of WordNet. This, of course, substantiates
the use of WordNet, since the Danish version later can be merged into the
framework discussed here.

Before WordNet is presented in Section 3.5.3, two examples of using Word-
Net in combination with a top-ontology are presented as well as a top-ontology
mergeable with WordNet and a complete ontology created by merging different
sources (including WordNet).

3.5.1 Suggested Upper Merged Ontology

The Standard Upper Ontology (SUO) provides definitions for general-purpose
terms and acts as a foundation for more specific ontologies [Pease et al., 2001].
The Suggested Upper Merged Ontology (SUMO) was created with input from
SUO and by merging publically available ontological content into a single,
comprehensive and cohesive structure. SUMO is being created as part of the
Institute for Electrical and Electronics Engineers’ (IEEE) Standard Upper
Ontology Working Group [SUMO, 2006], whose goal is to develop a standard
upper ontology that will promote data interoperability, information search
and retrieval, automated inference, and natural language processing. The
goal of SUMO, which is represented in KIF [Genesereth, 1991], is to create
an upper ontology by merging well-known upper ontologies and knowledge
resources, for instance, the Ontolingua server [Gruber, 1992], Sowa’s upper
level ontology (see Section 3.2), Allen’s temporal axioms [Allen, 1984], plan
and process theories [Pease and Carrico, 1997], and various mereotopological
theories [Borgo et al., 1996a; Borgo et al., 1996b].

The introduction of an upper ontology has several advantages. For exam-
ple, it can serve as a basis for knowledge integration and translation between
ontologies, as well as tie together domain specific ontologies.

The noun portion of WordNet, version 2.1, is currently mapped to SUMO
[Niles and Pease, 2003]. This mapping of SUMO and WordNet can serve as a
foundation for combining WordNet with other resources, with SUMO acting
as a bridge between the lower level ontologies. Furthermore, the mappings
between WordNet and SUMO can be regarded as a natural language index to
SUMO.

Sometimes the “conceptual distance” between the top-level ontology and
the domain specific ontologies is too wide, and so-called mid-level ontologies
can be used to close the gap. The mid-level ontology, MILO [Niles and Terry,
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2004], is intended to act as such a bridge between the high-level abstractions
of SUMO and the low-level detail of domain ontologies, for instance, between
SUMO and WordNet.

3.5.2 SENSUS

SENSUS [Knight and Luk, 1994] is a natural language-based ontology devel-
oped by the Natural Language Group [NLG, 2006] at Information Sciences
Institute (ISI) to provide a broad conceptual structure for working in machine
translation.

PENMAN
Upper Model

Ontology
Base (OB)

WordNet
under OB

manual
merge

automatic
merge

manual
merge

Matched
Sense Pairs

Ontology &
English
Lexicon

LDOCE

Ontos

WordNet

manual
verification

Figure 3.13: Merging information in four linguistic resources into the ontology SEN-
SUS

SENSUS contains more that 50,000 nodes representing commonly encoun-
tered objects, entities, qualities, and relations, and was built using of a number
of different linguistic resources, including: the PENMAN upper model [Bate-
man et al., 1989; Bateman, 1990]; ONTOS top-level ontology [Carlson and
Nirenburg, 1990]; Longman’s Dictionary of Contemporary English (LDOCE);
and WordNet [Miller et al., 1990]4.

Figure 3.13 shows the process of merging the information in the four re-
sources into the SENSUS ontology. The PENMAN Upper Model and ONTOS
were merged manually into the Ontology Base (OB). WordNet was then sub-
ordinated (merged) into the OB, resulting in a large knowledge base. The
next phase was to merge LDOCE and WordNet. The motivation for this was
that LDOCE has lexical information not present in WordNet5.

Originally, SENSUS was solely intended as a resource for machine trans-
lation, but with more than 50,000 nodes, it also appeared to be useful as an
ontology for other knowledge-based systems, such as the one in focus here.

4SENSUS also uses Collins Bilingual Dictionary (Spanish-English) for machine transla-
tion, but this is not the issue here.

5Another reason was that LDOCE sense identifiers are legal tokens in the bilingual merge.
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3.5.3 WordNet

WordNet is a large lexical database for English created at Princeton University
[Miller et al., 1990; Miller, 1995]. The unit of WordNet is words, as the
name indicates, even though it contains compounds, phrasal verbs, collections,
and idiomatic phrases. The main purpose of WordNet was to establish a
lexical resource for psycholinguistics and computational linguistics of such a
magnitude that huge amounts of lexical knowledge would be available as well
as a structure that could support linguistic research better than traditional
dictionaries.

The fundamental idea behind WordNet was to organize lexical information
in terms of meanings, rather than word form, thus moving from a traditional
dictionary towards a thesaurus by including semantic relations between words.
Normally, the word “word” is used to refer to both the utterance and to its
associated concept. Therefore, a distinction is made by using word form when
referring to the physical utterance and word meaning when referring to the
lexicalized concept that the form can be used to express, or by using simply
word and meaning or sense.

In WordNet, word forms and word meanings are mapped similar to a
dictionary. If one word form maps to more than one meaning, the form is
polysemous, and if more than one form maps to the same meaning, these
forms are synonymous. This is shown in the lexical matrix in Table 3.3, where
the forms F1 and F2 are synonymous with respect to meaning M1, while form
F2 is polysemous and hence maps to meanings M1 and M2.

Word Word Forms
Meanings F1 F2 F3 . . . Fn

M1 E1,1 E1,2

M2 E2,2

M3 E3,3
...

. . .

Mm Em,n

Table 3.3: Lexical matrix

Traditional dictionaries are solely ordered alphabetically by word form.
WordNet is also ordered in a taxonomical hierarchy of meanings, thus provid-
ing a significant contribution to an ontology. The concepts are specified by
lexicalization, where synonymous word forms are grouped into sets defining
the meaning they share. These synonym sets are called synsets and constitute
the unit of meaning in WordNet. The understanding of synonymy in Word-
Net is that two word forms are synonymous in a linguistic context C if the

53



substitution of one form for the other in C does not alter the truth value6.
This restricts the word forms in a synset to one syntactic category, since forms
from different categories will not be interchangeable based on the above defi-
nition of the synonym relation. For this reason, WordNet is divided into four
separate semantic nets, one for each of the open part of speech classes: nouns,
adjectives, adverbs and verbs.

There is a large variety of semantic relations that can be defined between
word forms and between word meanings, but only a small subset of them is
used in WordNet, because they apply broadly throughout the English lan-
guage and because they are familiar to ordinary users who do not need special
training in linguistics to understand them [Miller, 1995]. WordNet includes
the following semantic relations:

• Synonymy is the basic relation in WordNet, because it is used to form
sets of synonyms to represent word meanings. Synonymy is a symmet-
rical relation between word forms.

• Antonymy is also a symmetrical relation between word forms, especially
important in organizing the meanings of adjectives and adverbs.

• Hyponymy and its inverse, Hypernymy, are the subordinate or specifica-
tion relation and superordinate or generalization relation, respectively,
as well as the transitive and asymmetric relations between word mean-
ings, i.e. synsets, forming a hierarchy among nouns.

• Meronymy and its inverse, Holonymy, are the part-whole relations.

• Troponymy (manner-name) is for verbs what hyponymy is for nouns,
although the resulting hierarchy is much shallower.

• Entailment is between verbs, e.g. snoring entails sleeping.

The database statistics for the current version, 2.1, of WordNet is shown
in Table 3.4 [WordNet, 2005].

Nouns

Nouns form an integral part of WordNet. As shown in Table 3.4, more than
75% (117,097 out of 155,327) of the words are nouns. The semantic relation
that organizes nouns into a lexical hierarchy is the hyponym relation (and its
inverse relation hypernym), which relates the lexicalized concepts defined by
synsets and forms the hierarchy. This relation can be read as the IS-A or

6This definition of synonymy restricts a relation to being valid in only “some” contexts,
in contrast to the more strict definition, where the relation should be valid in any context,
which would only give rise to very few synonyms in natural language.
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POS Unique Strings Synsets Total Word-Sense Pairs

Noun 117097 81426 145104
Verb 11488 13650 24890
Adjective 22141 18877 31302
Adverb 4601 3644 5720

Total 155327 117597 207016

Table 3.4: Number of words, synsets, and senses in WordNet 2.1

IS-A-KIND-OF relation, and can also be denoted as a subordinate relation,
concept inclusion, or subsumption relation. The nouns in WordNet form a
lexical inheritance system where properties are inherited downwards in the
hierarchy through the hyponym relation. For instance, if the synset {dog,
domestic dog, Canis familiaris} is a hyponym of the synset {canine, canid},
which has the properties “mammals with non-retractile claws and typically
long muzzles”, then it will be inherited by the synset {dog, domestic dog,
Canis familiaris}.

Often the structure of the hierarchy of nouns is modeled as a single hier-
archy with only one unique beginner, thus all concepts are assumed intercon-
nected, in particular when use of a top-level ontology is assumed. Originally,
this was not the case in WordNet, which had 25 unique beginners, as shown
in Table 3.5, thus forming 25 individual hierarchies. These hierarchies vary in
size and are not mutually exclusive, but on the whole they cover distinct con-
ceptual and lexical domains [Miller, 1998]. In the current version of WordNet
(version 2.1) the 25 individual hierarchies is merged into a single hierarchy
with one unique identifier, the {entity} synset. SUMO and SENSUS are ex-
amples of how one can merge, for example these 25 hierarchies, into a single
interconnected ontology, while this is not how the merging is done in WordNet.

{act, activity} {food} {possesssion}
{animal, fauna} {group, grouping} {process}
{artifact} {location} {quantity, amount}
{attribute} {motivation, motive} {relation}
{body} {natural object} {shape}
{cognition, knowledge} {natural phenomenon} {state}
{communication} {person, human being} {substance}
{event, happening} {plant, flora} {time}
{feeling, emotion}

Table 3.5: List of the 25 unique beginners in WordNet
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Adjectives and Adverbs

Adjectives in WordNet are divided into two categories: descriptive and rela-
tional adjectives. The descriptive adjectives are the kind of adjectives that
usually comes to mind when adjectives are mentioned, e.g. “small”, “beauti-
ful”, “possible”, etc. Relational adjectives are called relational simply because
they are related by their derivation to nouns. Neither of these categories forms
a hierarchy like the hyponymy hierarchy for nouns, due to the fact that the
hyponymy relation does not hold for adjectives; it is not clear what it means
to say that one adjective “is a kind of” of another adjective [Fellbaum, 1998].
The basic semantic relation for adjectives in WordNet is the antonymy rela-
tion. The reason for this results from word association tests, which show that
when the probe is a familiar adjective, the response commonly given by adult
speakers is the antonym [Fellbaum, 1998].

Descriptive adjectives ascribe to a noun a value of an attribute. To say “the
car is fast” presupposes that the noun “car” has an attribute “speed” which
can take the value “fast”. Antonymous adjectives express opposite values of
an attribute, and in WordNet, these opposite pairs (antonyms) of adjectives
are used to form a cluster. Not all the descriptive adjectives have antonyms,
and will therefore not be able to form a cluster. Instead, a similarity relation
is introduced to indicate that the adjectives lacking antonyms are similar in
meaning to adjectives that do have antonyms. The similarity relation between
adjectives is a sort of specialization. It states that if adjective x is similar to
adjective y, then the class of nouns that can be modified by x is a subset of the
class of nouns that can be modified of y. This structure forms clusters with
the antonym pair as heads and all the similar adjectives as satellites to one
of the heads, as shown in Figure 3.14. Taking Figure 3.14 as an example, the
adjective “humid” is a satellite (similar) to the adjective “wet”, which would
then mean that the class of nouns that can be modified by “humid” is less or
equal to the class of nouns that can be modified by “wet”. All the descriptive
adjectives have an antonym, either directly or indirectly through their similar
relation to other adjectives.

The other class of adjectives, the relative adjectives, consists of all the
adjectives related, semantically or morphologically, to nouns. They do not
form an independent structure like the clusters of descriptive adjectives, but
are connected to the nouns from which they are derived. One of the main
differences between relative and descriptive adjectives is that relative adjec-
tives do not refer to a property of the noun they modify, hence they do not
relate to an attribute. A small set of adjectives are derived from verbs, e.g.
elapsed, married, boiling, etc., and have a relation to the verbs from which
they are derived. Some of the relative adjectives have a direct antonym, e.g.
married/unmarried, physical/mental, etc., and thus fit into the structure of
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Similarity

Antonymy

Figure 3.14: Adjective antonym cluster with “wet” and “dry” as heads

clusters and will therefore be organized into clusters as well.
In summary, the structure of adjectives in WordNet is divided up as follows:

All descriptive adjectives with antonyms are organized in bipolar clusters;
descriptive adjectives without antonyms are related to similar adjectives which
have antonyms; and all relative adjectives have some kind of “derived from”
relation to their source.

The semantic organization of adverbs in WordNet is simple and straightfor-
ward. There is no hierarchical structure for adverbs like there is for nouns and
verbs, and no cluster structure like there is for adjectives. Because most ad-
verbs are derived from adjectives by suffixation, they only have a derived from
relation to the adjective origin. For some adverbs, synonymy and antonymy
are recognized.

Statistical Information

The following two statistical measures in WordNet are of great importance to
the tasks in this thesis: the frequency of senses and the familiarity of words.
In WordNet, senses have statistical information attached about occurrences
determined by frequency of use in semantically tagged corpora [Landes et al.,
1998]. This kind of information is very important in the process of disam-
biguating word senses, but can not solely determine the correct sense of the
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word in all cases, a subject further discussed in Section 4.2.2. In [Miller et
al., 1994], a comparative evaluation of word sense disambiguation by guessing,
using frequencies and co-occurrence, is performed. The results are shown in
Table 3.6 and indicate a significant difference when using sense frequencies
compared to guessing.

Heuristic
Monosemous

and Polysemous
Polysemous

only
Guessing 45.0 26.8
Most Frequent 69.0 58.2
Co-occurrence 68.6 57.7

Table 3.6: Percentage of correct sense identification for open-class words with and
without information on sense frequencies

Words are not used with the same frequency in texts; some words appear
in almost all texts, e.g. “the”, “is”, “at”, “of”, and some words appear only
rarely in specific domains. The frequency of use reflects the familiarity of
words and hence how commonly well-known they are. Familiarity is known
to influence a wide range of performance variables: speed of reading, speed of
comprehension, ease of recall, probability of use. Frequency of use is usually
assumed to be the best indicator of familiarity. However, the frequencies
that are readily available in semantically tagged corpora are inadequate for a
database as extensive as WordNet.

Fortunately, an alternative indicator of familiarity has been developed as
it is known that frequency of occurrence and polysemy are correlated[0] [Jas-
trezembski, 1981]. The idea is that, on average, the more frequently a word
is used, the more different meanings it will have in a dictionary, which means
that a dictionary can be used to determine the familiarity of words instead
of, e.g. corpora. Words in WordNet have attached a measure of familiarity
similar to the number of different meanings in the dictionary, where 0 means
not in the dictionary.

One use of familiarity is for visualizing. Visualization can be modified by
hiding senses with low familiarity, thereby reducing long paths to produce a
clearer picture when senses do not contribute significant information to com-
prehension.

Consider the example in Table 3.7, where the hyponyms of the sense
“bronco” are shown. One could chose to hide all the senses with, for instance,
a familiarity ≤ 1 (except for “bronco” of course), since these would probably
not be significant to normal users, thereby making this path easier to visualize
and comprehend. (see Section 6.5 for more on the visualization of ontologies).
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Word Polysemy

bronco 1
@ → mustang 1
@ → pony 5
@ → horse 14
@ → equine 0
@ → odd-toed ungulate 0
@ → placental mammal 0
@ → mammal 1
@ → vertebrate 1
@ → chordate 1
@ → animal 4
@ → organism 2
@ → entity 3

Table 3.7: Hypernyms, denoted @ →, of “bronco” and their familiarity values

3.5.4 Modeling Ontology Resources

The use of lexical resources, like WordNet, as linguistic ontologies seems to be
continually growing. Because of the linguistic and relatively informal nature
of linguistic ontologies such as WordNet, various problems are encountered
when switching to the formal framework [Bulskov and Thomsen, 2005; Haav
and Lubi, 2001; Goerz et al., 2003].

One group of problems concern inconsistencies in the coding of relations
to other concepts, e.g. circularity in the taxonomy or the inheritance of in-
consistent features. Other problems are due to incomplete data, e.g. a lack of
differentiating features on concepts. A third group of problems concerns the
violation of ontological principles.

The first group of problems are trivial, but can be rather time consuming
to solve in extensive resources.

The second group is bound to the limited set of semantic relations normally
found in lexical resources - they mainly contribute taxonomic knowledge. Dif-
ferentiating features on concepts are essential in the area of terminology and
require a rather complex set of relations (see e.g. [Madsen et al., 2001]), and
will therefore seldom be present in large-scale linguistic ontologies. In Bulskov
and Thomsen [2005] methods on this subject are discussed.

“laundry” is an example taken from WordNet that is coded with “work-
place” as parent. “workplace” is furthermore parent for a rather large variety
of concepts, e.g. “farm”, “bakery”, and “shipyard”, etc., classified only by
the relation to a common parent, and the description in the WordNet gloss.
These concepts will be treated as atomic concepts when WordNet is used, even
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though they are compound, e.g. “laundry” can be described more correctly (or
synonymously) as workplace[wrt:laundering]. This type of knowledge can
be used in the detection of paraphrases, for instance, in a phrase like “a work-
place for laundering” which could be described as workplace[wrt:laundering]
and then be mapped to the “laundry” concept (or the extended {laundry,
workplace[wrt:laundering]} synset).

Similarly, a rather large amount of words in WordNet are multi-word terms,
e.g. “private school”, “general election”, “rocket launching”. As demonstrated
later (see 5), we aim for a similarity measure that takes into account not only
the concept inclusion relation, but all kinds of semantic relations. In WordNet
the only relation from, for instance, “general election” is to its parent “elec-
tion”. The form election[chr:general] would in addition refer to “general”.
Concepts (synsets in WordNet) would then also be related by other relations,
as shown in Figure 3.15, where a “general election” and a “general manager”
are related as “general things”.

election

general election

ISA

primary election

ISA

manager

general_manager

ISA

general

CHR CHR

primary

CHR

Figure 3.15: A small fragment of an ontology showing the interpretations of the mul-
tiwords election[chr:general], election[chr:primary], and manager[chr:general]

The third group concerns the violation of ontological principles. Gangemi
et al. [2003] list a number of main problems found in WordNet. There is
confusion between concepts and individuals caused by the lack of an “instance
of” relation, since both are related by the hyponym relation. They state that
in the presence of an “instance of” relation, they would be able to distin-
guish between concept-concept relations and individual-concept relations (see
Gangemi et al. [2003] for a description of the other problems found). Ac-
cording to Gangemi et al., the solution is a “sweetening” of WordNet accom-
plished by the use of OntoClean [Guarino and Welty, 2004], a methodology
for validating the ontological adequacy of taxonomic relationships. They con-
clude that it is possible to do some “cleaning” of the errors found in WordNet.
However they cannot say whether a “clean” reconstruction will have a positive
impact on the performance for the applications using it.
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3.6 Summary and Discussion

This chapter began with a discussion of the notion of ontologies, narrowing
the definition to a philosophical sense and a knowledge engineering sense. The
brief introduction to the philosophical notion of ontology stated the foundation
while the computer science notion was defined as a pragmatic view with an
emphasis on usability rather than philosophy.

A variety of formalisms for the representation of ontologies have been pre-
sented and discussed. The differences between these approaches are not huge,
but rather dependent upon the “spirit” of the formalism. One could argue
that most of the formalisms could be stretched to subsume one another, but
it has also been argued that it would be better to choose the formalism with
the correct “spirit” right from the beginning, rather than having to do all of
the bending and stretching subsequently.

For the purpose of this thesis, we have chosen the lattice-algebraic de-
scription language as it fits perfectly into the notion of generative ontologies.
The “spirit” of the description language Ontolog supports the generative
aspect of the ontologies used here and can be mapped directly into the on-
tology. The simple notation, which is similar to feature structures, is easy
to understand even when it is completely detached from its framework, and
is therefore also useful for presentation. Furthermore, the lattice-algebraic
notation supports meet and join intrinsically (the greatest lower bound and
least upper bound, respectively), where especially the former has a central role
in measuring similarity derived from the knowledge about relations between
concepts in ontologies.

There is a close connection between the logico-algebraic framework and
descriptions logic, where the latter has become the standard in the Semantic
Web area, with the OWL Web Ontology Language [Bechhofer et al., 2004] as
its newest branch. If solely description logic reasoning capabilities are used in
the retrieval process, we restrict ourselves to an approach in which querying
is restricted to model checking, thus removing the possibility of partial fulfill-
ment of the query and thereby also the means for graded ranking. This, of
course, would also be the case if we wanted to do reasoning using the lattice-
algebraic representation. Instead, the aim is to transform the representation
into directed graphs in which well-known algorithms can be used to compute,
for instance, the shortest path between nodes. Naturally, any of the represen-
tations presented can be transformed into directed graphs, but the graphical
nature of the lattice-algebraic representation makes this very easy compared
to, for example, description logic.

One of the major improvements of description logic is the emphasis on
decidability and the possibility for implementing fast model checkers (see e.g.
[Horrocks, 1998]). With regard to ontology, modeling such tools is preferable
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for checking consistency. Obviously, consistency checks could naturally also
be done in the logico-algebraic framework, but without a set of freely available
tools. One overall solution could then be to use the logico-algebraic framework
for representing the ontologies, the description logic framework for modeling
the ontologies, and directed graphs for measuring similarity.

62



63



Chapter 4

Descriptions

The indexing process was only briefly touched upon in Chapter 2 and will
be treated in more detail here. An information retrieval system presupposes
indexing and the system’s performance depends on the quality of this indexing.
The two main challenges in indexing are 1) to create representative internal
descriptions of documents in the provided description notation/language and
2) to organize these descriptions for fast retrieval.

In this chapter we will mainly focus on the first challenge and discuss
different types of notations and generation techniques. The aim is to define
a notation useful for representing the descriptions needed in ontology-based
information retrieval and to make an outline of the generation techniques.

A description of a document is comprised of information found by analyz-
ing (indexing) the document. The constituents in a description, the descrip-
tors, are collected in a structure in accordance with the description notation.
A simple example of the latter is a “bag of words” in which a description of a
document is a collection of words (descriptors) appearing in the document.

Descriptions of documents in information retrieval are supposed to reflect
the documents’ content and establish the foundation for the retrieval of infor-
mation when requested by users. Completeness with respect to the description
of content is obviously very difficult to achieve, since only the authors know the
true content of their writings. Descriptions are therefore always a type of sur-
rogates in relation to the original documents. We define fidelity of descriptions
(surrogates) as the description’s ability to represent the content of the docu-
ment it refers to. Perfect fidelity would then be the case where the description
represents the content of a document exactly, which is generally impossible,
both in practice and in principle, since the only completely accurate represen-
tation of a document’s content is the content itself. All other representations
are inaccurate; they inevitably contain simplifying assumptions [Davis et al.,
1993]. .

A common way of defining the properties of a description notation is by
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using the comparative terms exhaustivity and specificity, where exhaustivity
is a property of index descriptions, and specificity is a property of descriptors
[Jones, 1972].

Exhaustivity refers to the degree to which we recognize the different con-
cepts in documents [Cleverdon and Mills, 1997]. Thus, the degree of exhaustiv-
ity for a document description increases if, for instance, more descriptors are
assigned to the description, provided that these descriptors add new concepts
to the description. The maximum degree of exhaustivity would then be the
case where all concepts are recognized and assigned to the description; hence
increasing the degree of exhaustivity would also increase the fidelity of the de-
scription. Normally, an optimum degree of exhaustivity for a given document
collection is defined as the average number of descriptors per document where
the likelihood of requests matching relevant documents is maximized and too
many false matches are avoided. This is a conceptual definition of exhaustivity,
which is obviously very interesting in the context of an ontological retrieval
framework. However, most retrieval frameworks are word-based (lexical) and
cannot refer to this conceptual definition; hence, a statistical counterpart is
used and the exhaustivity of a document’s description is the number of terms
it contains [Jones, 1972]. In this redefinition of exhaustivity the maximum
degree of exhaustivity would not be necessary, as it is with the conceptual
definition, to bring the description closer to perfect fidelity, since lexical terms
contain the possibility of ambiguity with respect to meaning.

Specificity of a descriptor is defined as the degree to which it reflects the
precise generic level of the concept it stands for [Cleverdon and Mills, 1997].
For instance, the descriptor “private school” would be considered more specific
than the broader descriptor “school” and would therefore refer to a smaller
collection of documents, since the descriptor “school” includes (subsume) the
descriptor “private school”. Specificity thus refers to the ability of descrip-
tors to discriminate one document from another (defined as resolving power
in Section 2.1.1). Increasing the degree of specificity of descriptors in a de-
scription would also increase the fidelity of the description. Again, this is a
conceptual definition, and like exhaustivity it has a statistical counterpart in
the term specificity, which is the number of documents to which it pertains
[Jones, 1972].

Finally, a measure is needed which refers to the content of the description
itself. The use of either the conceptual or the statistical definition of exhaus-
tivity and specificity would make a significant difference in the representation,
since it would be either a semantic or a lexical description. The descriptors
of a description can refer to single words, multi-words, or both, which again
would define descriptions with different contents. Obviously, the different def-
initions of the content of descriptions are countless. Inspired by the notion of
high and low levels of programming languages, the lowest level can be defined
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as the string that contains the document. Any alteration of the lowest level
would therefore lead to a higher level. Note that a transformation from one
level to a higher level does not necessary lead to a higher degree of fidelity and
vice versa.

4.1 Indexing

The process of assigning descriptions to documents in an information retrieval
system is called indexing.

In Figure 2.2 the indexing process is divided into two parts, the conceptual
analysis and a transformation process, where the former extracts information
from documents and the latter creates descriptions in accordance with the
description notation.

Indexing can be performed either manually or automatically and in either
a so-called controlled or an uncontrolled manner. In manual indexing, experts
assign the descriptions, while automatic indexing is performed by computers.
Uncontrolled indexing refers to an indexing process with no limitations on the
form and the content of the descriptors, while controlled indexing restricts the
description of documents to some predefined amount of information, e.g. a set
of keywords, a thesaurus, etc.

In addition to the controlled indexing by a predefined set of descriptors,
manual indexing often uses a set of rules to guarantee homogeneous indexing.
An example of such a rule is that whenever two similar descriptors apply, the
most specific one must be used. Rules like this are especially bound to tradi-
tional library systems where descriptions, on average, have few descriptors.

The automated indexing process is normally not controlled, at least not in
the same sense as in manual indexing, nor is it rarely completely uncontrolled.
Different kinds of methodologies are often used to reject information without
significance for the content of a given document.

A mix of the two is sometimes called semi-automated indexing, which is
often done by automated indexing that is subsequently analyzed manually.
The purpose of this type of indexing is to reduce the human effort when in-
dexing larger amounts of data, while still maintaining expert validation. Using
(semi-)automated indexing is further justified when one of the main problems
with manual indexing is taken into consideration: the lack of scalability to
huge collections of information, for instance, to the Internet due to the enor-
mous amount of human resources that would be needed. Another problem
with manual indexing is the presuppositions of the experts and their personal
biases, which tend to emphasize some subjects and suppress others [Edmund-
son and Wyllys, 1961]. The major advantage of manual indexing is its high
quality and homogeneity. Moreover, manual indexing is a realistic approach
for smaller document collections, especially when performed by experts that
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not only have insight into the domain but also have skills in providing repre-
sentative descriptions. In this context, the experts are typically librarians.

The main problem with automated indexing is obtaining high quality de-
scriptions that are representative and have a minimum of errors, especially
indications that contradict with the actual content of the documents. The
major advantage of automated indexing is the low cost of human resources.
Furthermore, experiments have shown that on large full-text document re-
sources, automated indexing is superior to the manual indexing, even with
respect to retrieval evaluation [Salton and Buckley, 1997]. Because only au-
tomated indexing is taken into consideration in this thesis, the term indexing
refers to the above whenever it is used.

The foundation of many conventional retrieval systems is some alteration
of a very simple representation of documents in which descriptions are a collec-
tion of the words appearing in the documents. A number of devices intended
to improve recall or precision can be added to this basic structure. Cleverdon
and Mills [1997] present a list of thirteen devices which, when introduced to
an uncontrolled vocabulary of simple terms, tend to broaden the class defi-
nition (numbers 1-10) and thus increase recall, or narrow the class definition
(numbers 11-13) and thus increase precision:

1. Confounding of true synonyms.

2. Confounding of near synonyms; usually terms in the same hierarchy.

3. Confounding of different word forms; usually terms from different cate-
gories.

4. Fixed vocabulary; usually takes the form of generic terms, but may use
“metonymy”, for example, representing a number of attributes by the
thing possessing them.

5. Generic terms.

6. Drawing terms from categories and, within these, facets; this controls
the generic level of terms, and to a certain degree controls synonyms.

7. Representing terms by analytical definitions (semantic factors) in which
inter-relations are conveyed by relational affixes or modulants; the ge-
neric level will usually be more specific than when control is done by
categories.

8. Hierarchical linkage of generic and specific terms and, possibly, of co-
ordinate terms.

9. Multiple hierarchical linkage, i.e. linking each term to a number of dif-
ferent generic heads.
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10. Bibliographical coupling and citation indexes; these are also ancillary
devices which indicate the existence of wider classes, the latter reflecting
the usage of documents and a probability of relevance arising from this.

11. Correlation of terms: although implicit in some form in all practical
indexing, this is not inevitable, i.e. the use of a single term to define
a class may retrieve quickly and economically if the term is sufficiently
rare in the context of the system.

12. Weighting, i.e. attempts to express the particular relevance of each con-
cept used in indexing a document in relation to the whole document (see
2.1.1).

13. Indicating connections between terms (interlocking).

Some of the devices in the above list are well-known and used frequently
in many retrieval systems. The aim of this thesis is to introduce external
knowledge, especially ontologies, in information retrieval which makes some of
the devices listed particularly interesting.

Devices 8 and 9 refer to the use of taxonomies as a way to broaden the
descriptions. Device 13 refers to connections between terms and is defined as
a narrowing device that increases specificity as it introduces more compound
terms, as in the example with “school” and “private school” from the definition
of specificity, where the connection between “private” and “school” are inter-
preted as the semantic relation “characterized by”, i.e. school[chr:private].

4.2 Ontology-based Indexing

One way of introducing external knowledge into information retrieval is by us-
ing fixed vocabularies in controlled indexing (device 4), for instance, by means
of a list of keywords that reflect knowledge about the domain. A further step
in this direction is to apply taxonomies, i.e. hierarchically structured, rather
than simple collections of keywords (devices 8 and 9). Ontologies can be con-
sidered as a kind of extended taxonomies that also are comprised of complex
concepts, which typically correspond to compound or modified key words, e.g.
school[chr:private] (device 13). Thus, an ontological base means that it is
possible to obtain an even richer approach to knowledge-based indexing. How-
ever, ontology-based indexing also involves new challenges in connection with
indexing, for example, the inclusion of some kind of semantic analysis, which
is necessary if compound concepts are to be identified.

The description notation also needs to be modified to accommodate for
conceptual expressions. The alteration of the descriptions is first and fore-
most from a lexical to a semantic representation and thus in a certain sense
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introduces high-level descriptions. This also means an increased degree of fi-
delity, since the degree of specificity is increased due to the disambiguation of
meanings and the union of concepts into compound concepts.

The two main challenges in utilizing ontologies in information retrieval are
1) to map the information in documents and queries into the ontologies and 2)
to improve retrieval by using knowledge about relations between concepts in
the ontologies. The remainder of this chapter will focus on solving the former,
while the latter is the topic of the next chapter.

The semantic analysis needed should somehow recognize concepts in the
documents and then map them into the ontologies, and by so doing reveal
the precise meaning, which is called word sense disambiguation. Both of these
tasks are well-known parts of natural language processing.

Natural language processing, which is a subfield of artificial intelligence
and linguistics, studies the problems inherent in the processing of natural
language devoted to making computers “understand” statements written in
human languages. The tasks in natural language processing can be grouped
in many ways, for example, using Jurafsky and Martin’s [2000] grouping, which
consists of four parts: words, syntax, semantics, and pragmatics. Words are the
building blocks of natural language; syntax is the study of formal relationship
between words; semantics is the study of the meaning of linguistic utterances;
and pragmatics is the study of the relation between language and context-of-
use.

In natural language processing, there are generally two main approaches,
deep approaches and shallow approaches. Deep approaches presume access
to a comprehensive body of world knowledge. These approaches are not very
successful in practice, mainly because access to such a body of knowledge does
not exist, except in very limited domains. Shallow approaches, which do not
try to understand the text, only consider the surroundings in the text being
analyzed. One guiding principle in this regard is to use “simple” rules to
resolve knowledge. These rules can either be automatically derived by using
sense-tagged training corpuses or be manually defined by experts. This ap-
proach, while theoretically not as powerful as deep approaches, gives superior
results in practice due to the limited requirements of world knowledge.

The aim is to reveal partial semantic information in the documents and
then map it into the ontologies. The hypothesis is that even minor steps to-
wards revealing the semantics can be useful in information retrieval. Achieve-
ments are measured by the retrieval improvements gained – not by how close
we can get to a complete semantic analysis. In information retrieval the main
goal is to retrieve information that satisfies the users information need, thus
any system enhancements that improve the retrieval for some subset of the
queries posed to the system can be considered as a refinement of the system in
general, provided that such improvements do not have any negative influence
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on results on another subset of queries.
A simple semantic analysis would be to recognize specific word classes, e.g.

nouns, verbs, adjectives, etc. and then map them into the ontology. However,
disambiguation of word classes does not necessarily imply disambiguation of
sense. Hence, some methods used to resolve unambiguous sense are also re-
quired in order to map to a unique position in the ontology. An example of a
more complex analysis would be the recognition of connected knowledge, e.g.
noun phrases, verb phrases, adjective phrases, whole sentences, etc. To obtain
this analysis, methods are needed that are designed to reveal the syntax of
interrelations between concepts in connection with sense disambiguation.

The natural language processing tasks in use in the indexing described here
are morphological analysis, part-of-speech (word class) tagging, syntactical
parsing with context-free grammars and word sense disambiguation. While
tasks are only touched upon lightly in this thesis, different specific approaches
are suggested for solving the tasks used without an in-depth analysis of the
underlying techniques, much less the theory behind. For a good introduction
to the details of natural language processing see, e.g. Jurafsky and Martin
[2000].

4.2.1 The OntoQuery Approach

In the OntoQuery project [Andreasen et al., 2000; Andreasen et al., 2002;
OntoQuery, 2005], queries take the form of natural language expressions and
the system is intended to retrieve text segments whose semantic content matches
the content of the noun phrases in the query. In OntoQuery sentences are
the basis of the indexing of documents. Queries, likewise, are assumed to be
sentences where the query evaluation compares sentences on the basis of their
noun phrases.

The aim of the linguistic and conceptual analysis of a text is to identify
simple as well as complex concepts corresponding to the noun phrases oc-
curring in the text and to ensure that noun phrases with (nearly) identical
conceptual content with respect to the ontology are described by the same
description. This goal, which clearly goes beyond synonym recognition and
identification of morphological variants, calls for a more comprehensive lin-
guistic and ontological analysis of the text material [Andreasen et al., 2004].
The emphasis on noun phrases is motivated by the fact that these have clear
conceptual content that can be captured in an ontology-based framework.

The ideas that led to the first OntoQuery prototype were for a text
fragment (e.g. a sentence) that a simple form description could express the
content by means of a nested set of words from the sentence:

D = {D1, . . . , Dn} = {{D11, . . . , D1m}, . . . , {Dn1, Dn2, . . . , Dnm}}

where each descriptor Di is a set of concepts Di1, . . . , Dim.
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To generate descriptions, text fragments are prepared by a parser that
employs a knowledge base. This parser can in principle be on a scale from a
simple word recognizer to a complex natural language parser that maps the
full meaning content of the sentence into an internal representation. Since the
issue in the OntoQuery project prototype is information retrieval, the idea
is, of course, to grab fragments of content rather than represent full meaning,
and that the building stones are concepts. The level of descriptions should be
understood considering this aim.

Parsing involves a part-of-speech tagger, a noun-phrase recognizer and a
subcomponent that builds descriptions in the description language, as illus-
trated in Figure 4.1. Tagging is performed by an implementation of Eric Brill’s
tagger [Brill, 1995]; the noun phrase recognition is performed by the chunk
parser “Cass” [Abney, 1996]; while the noun phrase grammar has been devel-
oped manually on the basis of the occurrence of various noun phrase types
in the PAROLE corpus [Ruimy et al., 1998] and covers noun-phrase chunks
extending from the beginning of the constituent to its head and includes post
modifying prepositional phrases.

Figure 4.1: The process of generating descriptions in the OntoQuery prototype

Descriptions are generated from the result of the noun-phrase recognizer
through morphological processing, part-of-speech filtering and grouping into
descriptions. The grouping simply corresponds to the noun phrases recognized;
thus only words belonging to noun phrases are included in the descriptions.

The following phrase is an example:

Physical well-being caused by a balanced diet

A description consisting of nouns and adjectives in a simple form without
taking into account that the framing of noun phrases in the sentence could be:

{“physical”, “well-being”, “balanced”, “diet”}

With the framing of noun phrases the descriptors can be gathered to lead to
the nested set description:

{{“physical”, “well-being”}, {“balanced”, “diet”}}

.
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The set of words representing a single noun phrase can be seen as an
approximation where the relations between concepts are defined mainly by
what prepositions are left unspecified. A set of words is thus considered as
an abstraction of a concept due to the way it is applied in the prototype.
This implies that in addition to concept inclusion via the isa relation of the
ontology, a concept inclusion also exists as derived from set inclusion.

In the next and current version of the OntoQuery prototype, the level
of the descriptions in use was changed into a collection of Ontolog expres-
sions. In order to reveal noun phrases as compound Ontolog expressions
the parsing should in principle introduce recognition of interrelations between
concepts. Since the methodologies for this purpose were not available for
the project, a simple shortcut was chosen. The simplified principle consisted
of two-phase processing, with the first phase basically consisting of a noun
phrase bracketing, and the second, of an individual extract of concepts from
the noun phrases. A naive but useful second phase was to extract nouns and
adjectives only and combine them into noun chr adjective pattern concepts
(chr representing a “characterized by” relation). Thus, the above nested set
representation would be transformed into:

{well-being[chr:physical], diet[chr:balanced]}

Obviously, the method is an oversimplification and generates erroneous com-
pound concepts, e.g. “criminal lawyer” would be transformed into:

lawyer[chr:criminal]

which is rarely the right interpretation. However, this was not crucial for the
testing of query evaluation with respect to this new kind of descriptions.

One issue which is not handled properly in the OntoQuery prototype is
word sense disambiguation. In order to map the revealed knowledge into the
ontology, a mapping between the concepts in the ontology and a dictionary,
which serves as the vocabulary of the prototype, is used. This mapping, how-
ever, disambiguates by only picking the first sense (the one with the lowest
identifier) if more than one is present for a particular word. The reason why
this method is useful at all is that the nutrition domain in focus in Onto-

Query does not have many ambiguities; hence the ambiguity problem does
not dominate and significant testing examples can easily be found.

4.2.2 Word Sense Disambiguation

Word sense disambiguation involves the association of a given word in a text
with a definition or sense. The problem of word sense disambiguation has
been described as AI-complete, that is, a problem which can be solved only
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by first resolving all the difficult problems in artificial intelligence, such as
the representation of common sense and encyclopedic knowledge [Nancy and
Véronis, 1998]. Obviously, this is not the target here. Rather, the aim of this
section is to give some examples of methodologies for mapping concepts into
the ontology.

We have already described two simple methodologies for disambiguating
word senses. In the previous section the simple approach used in the current
OntoQuery prototype where senses are chosen at random was looked at.
Earlier, in Section 3.5.3 we described how the use of sense frequencies increased
the quality of disambiguation from 45% to 69% correct senses compared to
purely guessing.

A completely different approach to word sense disambiguation is to apply
the meaning structure of language, for example, the predicate-argument struc-
ture, which is useful in disambiguation. Take, for instance, the verb “eat”. The
use of this verb in texts can be seen as a predicate describing Eating with one
or more arguments. The arity of a predicate can vary dependent upon the use,
for instance, “I ate” or “I ate a sandwich”, where the number of arguments
are one and two respectively. Events can be represented in predicate calculus
and the Eating with two arguments might look as follows:

∃e, x, y(Eating(e) ∧ Agent(e, x) ∧ Theme(e, y))

where e is an event – in this case the Eating event, and x and y are the two ar-
guments. In this example, the arguments are expressed by the thematic roles;
Agent and Theme, defined as the volitional causer of an event and the par-
ticipant most directly affected by an event, respectively. These semantic roles
can be restricted by semantic constraints, denoted selectional restrictions. An
obvious restriction on the theme role for the Eating event would be restricting
edible things:

∃e, x, y(Eating(e) ∧ Agent(e, x) ∧ Theme(e, y)) → y isa EdibleThing

Consider the example of the WordNet synset {“food”, “nutrient”} with the
following gloss “any substance that can be metabolized by an organism to
give energy and build tissue”. This synset could serve as the top-most con-
cept acceptable as second arguments for the Eating event. The selectional
restriction will in this case reject senses not subsumed by the {“food”, “nu-
trient”} synset, hence ruling out non-edible senses for the second argument to
the Eating event.

Selectional restrictions can be defined at any level, spanning from very
general to very specific restrictions in either general or specific domains, as
well as be associated to hierarchies, such as taxonomies and ontologies. The
advantage of combining selectional restrictions with hierarchies is that the re-
strictions are applied not only to the given concept, but also to all subsumed
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concepts, as indicated in the above example. Furthermore, one benefit of ap-
plying selectional restrictions is that they can be used for rejecting erroneous
senses and thereby for reducing ambiguity, which is otherwise difficult to rec-
ognize. The major drawback of selectional restrictions is that natural language
is difficult to restrict, e.g. “...you can’t eat gold for lunch...”, which is a per-
fectly well-formed phrase, but “eat gold” would clearly violate the selectional
restriction on “eat”as defined above. Another problem is that selectional re-
strictions have many requirements in order to be useful in large-scale practical
applications. Even with the use of WordNet, the requirements are unlikely to
be met for complete selectional restriction information for all predicate roles
and for complete type information for the senses of all possible fillers.

In large-scale applications, selectional restrictions are therefore primarily
useful in combination with other approaches. One such approach is machine
learning as it is a commonly used method in word sense disambiguation [Nancy
and Véronis, 1998]. With machine learning, problems can be solved using ei-
ther supervised or unsupervised learning, where supervised learning refers to
learning from predefined training data, while unsupervised learning does not
presuppose external knowledge. Only the basic idea of word sense disambigua-
tion based on supervised learning is outlined here. In most machine learning
approaches, the initial input consists of the word to be disambiguated, the tar-
get word, along with a portion of the text in which it is embedded, the context.
The input is normally part-of-speech tagged and lemmatized, and a specific
amount of the text surrounding the target word (the context) is selected, a
so-called window, (often) with the target word in the center.
The following text fragment can be given as an example:

An electric guitar and bass player stand off to one side, ...

where the input to the leaning process for the target word “bass”, consisting
of the two words to the right and left, would be

(guitar/NN, and/CC, player/NN, stand/VB)

where NN, CC, and VB are part-of-speech tags for nouns, coordinating con-
junctions, and verbs, respectively1.

This can easily be transformed into a simple feature vector consisting of
either numerical or nominal values, which would be appropriate for use in
most learning algorithms. The näıve Bayes’ classifier is one such commonly
used learning approach for word sense disambiguation. The premise is that
choosing the best sense for an input vector amounts to choosing the most
probable sense given that vector, formally:

ŝ = argmaxs∈SP (s|V ) (4.1)

1Refers to the part-of-speech tags in the Penn Treebank Tag Set.
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where S is the set of appropriate senses for the target word, V is the input
feature vector, and ŝ is the best (most probable) sense. By using the Bayesian
rule and ignoring factors that are constant for all senses we then get the
following for a feature vector of n elements:

ŝ = argmaxs∈SP (s)

n∏

j=1

P (vj |s) (4.2)

where P (s) is the priori probability of sense s and vj is an element in the
feature vector. P (s) can be obtained from the proportion of each sense in the
sense-tagged training corpus.

In the “bass player” example, the individual statistics needed might include
the probability of the word “player” occurring immediately to the right of a
use of one of the “bass” senses, or the probability of the word “guitar” one
place to the left of the use of one of the senses for “bass”. This is, of course,
only one example of word sense disambiguating using supervised learning. For
a survey of the variety of approaches, see e.g. Nancy and Véronis [1998].

Finally, a range of disambiguation methods that draw on lexical resources
has been developed. In Voorhees [1998], the notion of hood introduced by
George Miller is used to determine the most likely sense of a given word. A
hood is an area in WordNet in which a word is unambiguous. More precisely,
to define the hood of a given synset s, consider the set of synsets and the
hyponymy relation in WordNet as vertices and directed edges in a graph.
The hood of s is then the largest connected sub-graph that 1) contains s, 2)
contains only descendants of an ancestor of s, and 3) contains no synset that
has a descendant that includes another instance of a member of s as a member
[Voorhees, 1998].

For example, consider the piece of WordNet shown in Figure 4.2 where
the gray boxes denote the synsets with the word “board” as a member. The
hood of the synset for the “committee” sense of “board” is rooted at the synset
{group}, and thus the hood for that sense is the entire hierarchy (all ancestors)
in which it occurs. The hood of the “computer circuit” sense of “board” is
rooted in the ancestor {circuit, electrical circuit, electric circuit}, and the root
of the “control panel” sense of “board” is rooted at the synset itself, etc. Some
synsets may have more that one hood if they have more than one parent, while
they have no hood if the same word is a member of both the synset and one
of its descendants. A simple way of disambiguating words is to find the hood
where most of the surrounding context also appears (see Voorhees [1998] for
more details).

Another approach, similar to the use of hoods, is to apply a measure of
distance between concepts in an ontology (the topic of the next chapter).
Given such a measure of similarity between concepts, the sense closest to the
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{group}

{social group}

{organization}

{unit}

{administrative unit}

{committee, commission}

{board}

{object, physical object}

{whole, unit}

{artifact}

{building material} {instrumentality, instrumentation} {surface}

{lumber, timber}

{board, plank}

{device}

{electrical device}

{control panel, instrument panel, control board, board, panel} {circuit, electrical circuit, electric circuit}

{computer circuit}

{printed circuit}

{circuit board, circuit card, board, card, plug-in, add-in}

{board, gameboard}

Figure 4.2: The WordNet hierarchy for five different senses of “board”

context of a target word can be selected:

ŝ = argmins∈S

(
n∑

i=1

dist(s, ci)

)
(4.3)

where dist(x, y) is some kind of concept-concept similarity measure, S is the
set of appropriate senses for the target word, ci a concept in the window, n
the number of concepts in the window, and ŝ the sense closest to the context
of the window (see e.g. [Agirre and Rigau, 1996; Miller et al., 1994; Resnik,
1995]).

In cases where the disambiguating methods cannot determine one sense,
the method must either abandon the attempt or introduce rules for selection
between the different similar possibilities. One solution could be boosting, the
idea of combining several (moderately accurate) methods into a single highly
accurate approach. A combination of, for instance, sense frequencies, selec-
tional restrictions, machine learning approaches, and ontological approaches
could lead to a more accurate methodology, especially in the case where
one particular sense could not be pointed out (see e.g. [Miller et al., 1994;
Escudero et al., 2000; Nancy and Véronis, 1998]).

In this thesis the word sense disambiguation determines the correct map-
ping of words in texts to senses in the ontology. One major problem in do-
ing this concerns the granularity (level of detail) of senses in the ontology.
WordNet is very fine-grained and some of the senses are too similar, almost
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Word Synset Gloss Hypernym Hypernym Gloss

bass
{

bass,
basso

} an adult male
singer with the
lowest voice






singer,
vocalist,
vocalizer,
vocaliser






a person who
sings

bass

{
bass,
bass voice,
basso

}
the lowest adult male
singing voice

{singing voice}

the musical quality
of the voice while
singing

Table 4.1: Two of the senses associated with the word “bass” in WordNet and their
hypernyms

indistinguishable. For example, this is the case with two of the senses of the
noun “bass” in WordNet as shown in Table 4.1, where the disambiguation has
to distinguish between the voice of a singer and the voice itself.

In practice, it is not always possible for automatic disambiguation to dis-
tinguish between such fine-grained senses, and even humans have problems
making the right choice in some cases. This is a problem we encountered sev-
eral times when trying to judge whether the automated disambiguation had
made the right choice. One solution to this granularity problem would be to
automatically cluster WordNet senses according to their similarity (see e.g.
[Mihalcea and Moldovan, 2001; Tomuro, 2001; Agirre and de Lacalle, 2003]).
For this purpose, a measure of similarity between concepts in the ontology is
needed, a topic that will be looked at in the next chapter.

4.2.3 Identifying Relational Connections

The introduction of compound concepts requires, in addition to syntactical
knowledge, a means for identifying the semantic relations that tie the concepts
together in order to transform word patterns into Ontolog expressions. The
phrase “Physical well-being caused by a balanced diet”, for example, can be
transformed into a single Ontolog expression:

well-being[chr:physical][cby:diet[chr:balanced]]

if we are able to identify the semantic relations between noun phrases and
between constituents inside the noun phrase.

The fragment from an ontology in Figure 4.3 shows a visualization of the
above compound concept. This figure also shows how compound concepts are
decomposed and thus how they can be merged into the ontology. This topic
is looked at in the next section.

There is a significant difference between recognizing relations connecting
noun phrases and relations connecting constituents inside noun phrases. The
former is a very complex challenge as the relations between noun phrases
should reflect all possible relations bound to the verbs of natural language.
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well-being

well-being[CHR:physical]

ISA

well-being[CHR:physical][CBY:diet[CHR:balanced]]

ISA

diet

diet[CHR:balanced]

ISA

CBY

physical

CHR

balanced

CHR

Figure 4.3: An ontology fragment showing the concept well-being[chr:physical]
[cby:diet[chr:balanced]]

Besides a description of a promising machine learning approach in Section 8.5,
this problem will not be discussed further in this thesis.

The internal relations in noun phrases can be subdivided into pre-modifi-
cation and post-modification, which roughly reflects adjective phrases before
the head and prepositional phrases after, respectively.

WordNet divides adjectives into two main groups, descriptive and rela-
tional. The descriptive adjectives are the common adjectives, e.g. “small”,
“beautiful”, “possible”, etc., and they characterize the noun they modify, e.g.
“small picture”, “beautiful flower”, etc. The obvious semantic relation would
therefore be chr (“characterized by”). Alonge et al. [2000] define the re-
lation for relational adjectives as a PERTAINS TO relation, e.g. “musical
instrument” and “dental hygiene”, which can be interpreted as a wrt (“with
respect to”) relation. This would, for instance, change the erroneous inter-
pretation “lawyer[chr:criminal]” of “criminal lawyer” into the more correct
interpretation “lawyer[wrt:criminal]”.

Quantifiers, e.g. “all”, “some”, “few”, etc, are one minor group of de-
scriptive adjectives that can definitely cause problems in this rough division.
The relation between quantifiers and the noun they modify cannot be inter-
preted as a characterization of the chr relation, e.g. “professor[chr:few]”
is an erroneous interpretation of the phrase “few professors agreed”. The so-
lution to this problem would be to exclude the set of quantifiers from the rule
that interprets descriptive adjective as the chr relation, which is easily done
in WordNet since quantifiers are marked. Another argument supporting this
is that the set of quantifiers are classified by some linguists as determiners
rather than as adjectives because, for instance, they appear syntactically in
pre-adjectival positions similar to that of determiners.

Identifying the semantic relations expressed by prepositions is much more
complicated than for adjectives. Simple one-word prepositions in English con-
stitute a relatively small class of words and it should therefore be possible to
define rules concerning the use of the most frequently used simple prepositions.
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According to [Quirk et al., 1985a], the prepositional meanings can roughly be
divided into the following main semantic categories:

• Dimension

• Time

• Cause/Purpose

• Means/Agentive

The first two items, dimension and time, are the most interesting in relation
to simple prepositions in noun phrases. The main problem is that the same
prepositions are used in different categories, e.g. “the car on the road” and “the
meeting on Monday”, where “on” falls into the dimension and time categories
respectively. One way to differentiate between the two is by using an ontology.
A simple ontology-based disambiguation rule could then be: If the relation
involves temporal concepts, like “Monday”, the relation for the preposition
“on” is tmp (“temporal”) relation, e.g. “meeting[tmp:Monday]”, otherwise
the relation is loc (“location”), e.g. “car[loc:road]”.

book

book[LOC:table]

ISA

book[CHR:cheap]

ISA

book[CHR:short]

ISA

book[LOC:table[LOC:school]]

ISA

book[CHR:cheap,CHR:short]

ISA ISA

cheap

CHR

short

CHR

school

LOC

table

LOC

Figure 4.4: An ontology fragment visualizing the interpretation of nested,
book[loc:table[loc:school]], and listed, book[chr:cheap,chr:short], concepts

Prepositional relations are generated as nested Ontolog expressions when-
ever the same kind of relation is used twice, e.g.“the book on the table in the
school” is interpreted as the expression “book [loc:table[loc:school ]]”, while
simple pre-modifications are interpreted as lists, and “the short and cheap
book” is interpreted as the expression “book[chr:cheap,chr:short]”. The dif-
ferent interpretations of nested and listed Ontolog expressions are shown in
Figure 4.4.

The simple method used in the OntoQuery prototype where the chr is
used for all pre-modifications and the loc for all post-modifications can be
improved significantly by the observations described in this section.
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4.3 Instantiated Ontologies

The main objective in the modeling of domain knowledge is for the domain
expert or knowledge engineer to identify significant concepts in the domain.

Ontology modeling in the present context - the work presented here as well
as the OntoQuery project - is not a key issue. However, in relation to this issue
we present the notion of Instantiated Ontology as a (naive) substitution for, or
a supplement to, expert modeling2. The modeling consists of two parts. First,
an inclusion of knowledge from available knowledge sources into a general
ontology and second, a restriction to a domain-specific part of the general
ontology. The first part involves the modeling of concepts in a generative
ontology using different knowledge sources. In the second part, a domain-
specific ontology is retrieved as a sub-ontology of the general ontology. The
restrictions on this sub-ontology are built based on the set of concepts that
appear (are instantiated) in the document collection and the result is called
an instantiated ontology.

4.3.1 The General Ontology

Sources for knowledge base ontologies may have various forms. Typically, a
taxonomy can be supplemented with, for instance, word and term lists as well
as with dictionaries for the definition of vocabularies and for handling the
morphology.

Without going into detail on the modeling here, we assume the presence
of a taxonomy in the form of a simple taxonomic concept inclusion relation
isakb over the set of atomic concepts A. isakb and A express the domain and
world knowledge provided. isakb is assumed to be explicitly specified, e.g. by
domain experts, and would most typically not be closed transitively.

Based on îsakb, the transitive closure of isakb, a relation can be generalized
concerning all well-formed terms of the language L by the following:

• if x îsakb y then x ≤ y

• if x[. . .] ≤ y[. . .] then also

x[. . . , r : z] ≤ y[. . .], and

x[. . . , r : z] ≤ y[. . . , r : z],

• if x ≤ y then also

2The presentation of Instantiated Ontologies in Section 4.3 is a slightly modified rendering
of the original presentation in [Andreasen et al., 2005a]. The notion of Instantiated Ontolo-
gies is partly based on and stimulated from the notion of Similarity Graphs introduced in
[Andreasen et al., 2003c].
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z[. . . , r : x] ≤ z[. . . , r : y]

where repeated . . . in each case denotes zero or more attributes of the form
ri : wi.

The general ontology O = (L,≤,R) thus encompasses a set of well-formed
expressions L derived from the concept language with a set of atomic concepts
A, an inclusion relation generalized from an expert provided relation isakb and
a supplementary set of semantic relations R, where for r ∈ R it is obvious
that x[r : y] ≤ x and x[r : y] are in relation r to y. Observe that L is infinite
and that O is thus generative.

4.3.2 The Domain-specific Ontology

Apart from the general ontology O, the target document collection contributes
to the construction of the domain ontology. We assume a processing of the
target document collection, where an indexing of text in documents, formed
by sets of concepts from L, is attached. In broad terms, the domain ontology
is a restriction of the general ontology to the concepts appearing in the target
document collection. More specifically, the generative ontology is, by means
of concept occurrence analysis over the document collection, transformed into
a domain specific ontology restricted to include only the concepts instantiated
in the documents covering that particular domain.

This reduction has the obvious advantage of reducing the number of con-
cepts we have to consider when deriving similarity for use in topic-based sur-
veying and content-based querying of the document collection. The intuition
is that concepts in the knowledge-based ontology that are not present in the
domain do not contribute to similarity between concepts present in the object
document collection. Since these concepts are not used for the description
of the semantics of the objects, queries using these concepts have potentially
empty answers. Thus the domain specific ontology is introduced as an “instan-
tiated ontology” of the general ontology with respect to the target document
collection.

The instantiated ontology O
Î

appears from the set of all instantiated

concepts I, first by expanding I to Î - the transitive closure of the set of
terms and sub-terms of term in I - and second by producing a sub-ontology
consisting of Î connected by relations from O between elements of Î.

The sub-terms of a term c are obtained by the decomposition τ(c). τ(c) is
defined as the set of all sub-terms of c, which thus includes c and all attributes
of subsuming concepts for c.

τ(c) = {c} ∪ {x|c ≤ x[. . . , r : y] ∨ c ≤ y[. . . , r : x], x ∈ L, y ∈ L, r ∈ R}
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Figure 4.5: a) An example of knowledge base ontology isakb b) A simple instan-
tiated ontology based on figure a and the set of instantiated concepts cat[chr:black],

dog[chr:black], dog[chr:brown], noise[cby:dog[chr:black]].

For a set of terms we define τ(C) =
⋃

cǫC τ(c). For example:

τ(c1[r1 : c2[r2 : c3]]) = {c1[r1 : c2[r2 : c3]], c1[r1 : c2], c1, c2[r2 : c3], c2, c3}.

Let ω(C) for a set of terms C be the transitive closure of C with respect to
≤. Then the expansion of the set of instantiated concepts I becomes:

Î = ω(τ(I))

Now, the C-restiction sub-ontology OC = (C,≤,R) with respect to a given
set of concepts C, is the sub-ontology of O over concepts in C connected by
≤ and R. Thus the instantiated ontology O

Î
= (Î ,≤,R) = (ω(τ(I)),≤,R) is

the Î-restiction sub-ontology of O.
Finally, isa is defined as the transitive reduction of ≤ and consider (Î ,isa,R)

for a visualization and as the basis for similarity computation.
Consider the knowledge base ontology isakb shown in Figure 4.5a. In this

case:

A = {cat, dog, bird, black, brown, red, animal, color, noise, anything}

and L includes A and any combination of compound terms combining elements
of A with attributes from A by relations from R, due to the generative quality
of the ontology.
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Now assume a miniature target document collection with the following
instantiated concepts:

I = cat[chr:black], dog[chr:black], dog[chr:brown],

noise[cby:dog[chr:black]]

The decomposition τ(I) includes any sub-term of elements from I, while
Î = ω(τ(I)) adds the subsuming {animal, color, anything}:

Î = {cat, dog, black, brown, animal, color, noise, anything,

cat[chr:black], dog[chr:black], dog[chr:brown],

noise[cby:dog], noise[cby:dog[chr:black]]}

where the concepts red and bird from A are omitted because they are not
instantiated.

The resulting instantiated ontology (Î ,≤,R) is transitively reduced into
the domain-specific ontology (Î ,isa,R), as shown in Figure 4.5b.

An instantiated ontology can describe the domain of any given subset of
concepts with respect to some resource ontologies, spanning from a complete
document base to a single concept.

4.4 Summary and Discussion

The issues for discussion in this chapter are all related to what is denoted as
ontological indexing. This chapter began by using the idea of representation
established in Chapter 3 as its basis.

In order to discuss different kinds of description notations/languages two
important properties of descriptions, exhaustivity and specificity, were de-
scribed, where exhaustivity is a property of index descriptions and specificity
is a property of descriptors. Furthermore, two different views on the catego-
rization of descriptions have been defined, fidelity and the notion of high and
low level descriptions, where fidelity refers to the closeness of the descriptions
to the content of what they describe, and high and low level refer to the in-
ternal content of descriptions. These properties and measures have been used
throughout the chapter to describe the different kinds of descriptions that have
been used in order to reach the preferred description, a collection of Ontolog

expressions.
In the discussion of the two properties, exhaustivity and specificity, we saw

that they could be defined either conceptually or statistically. The conceptual
definition harmonizes perfectly with the idea of ontology-based retrieval. The
statistical definition is naturally precisely as relevant for ontology-based re-
trieval as it is for lexical-based retrieval. In the conceptual definition of speci-
ficity, “private school” is considered more specific than “school” since the for-
mer is subsumed by the latter. The statistical notion of specificity can be seen
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in relation to the inverse document frequency in term weighting (see Section
2.1.1), where a term attached to most documents is considered less specific
than one attached to few documents. This statistical notion would therefore
still be interesting combined with the conceptual notions as they would refer to
specificity in two dimensions, since a conceptually specific term, e.g. “private
school”, could be attached to many documents in a narrow domain.

In order to establish ontology based indexing, we have to reveal the se-
mantics of a text, i.e. documents and queries. As a result, natural language
processing has to be enclosed in the indexing.

Word
Segmentation

Part of Speech
Tagging

Word Sense
Tagging

Full Parsing

Coreference

Merging Partial
Results

Tokenization

Morphological and
Lexical Processing

Syntactic Analysis

Domain Analysis

Figure 4.6: The modules of partial semantic parsing in information extraction, from
Appelt and Israel [1999].

The modules in the natural language processing described in this chapter
are the ones commonly used for partial parsing. Figure 4.6 illustrates partial
parsing as conceived in information extraction3; a description of the left-hand
side modules is given in terms of what they involve on the right-hand side.

The semantic analysis described in this chapter looks at approaches for the
disambiguation of word classes and senses. An alternative model, where the
ambiguities are weighted proportionally to the probability of occurrence, could
be an alternative solution. This would naturally require methodologies that
support ambiguities, where the selection of a particular word class and sense
can be postponed until descriptions are generated or can even be avoided,
thus leaving ambiguities open for the query evaluation. Obviously, one of the
advantages of disambiguation is a reduction in the computational complexity,
since parse trees are reduced through the different modules in the natural

3Information extraction is a field between computational linguistics and information re-
trieval, defined as the process of taking unseen texts as input and producing fixed-format,
unambiguous data as output.
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language processing. On the other hand, any wrong choice in the process
would set off a cascade of errors into the succeeding modules and probably
prevent them from making the right choice.

An interesting discussion about the recognition of the relational connec-
tion between concepts is the upper boundary for compound concepts. Using
indexing on the sentence level, imagine the possibility of parsing and gener-
ating only one compound concept per sentence, namely the expression which
describes the full meaning of the sentence. From a linguistic point of view this
would probably be a preferable goal, but for the information retrieval process
it would introduce some problems. In order to support quick retrieval, one im-
portant goal would be the ability to compare descriptions without reasoning.
The only scalable solution to this is a comparison of items which can be opti-
mized with database indexes for very quick retrieval. It is therefore necessary
to somehow transform the information of the compound concepts into a set of
strings. One such method is by expansion of the compound concept through
the ontology into a set of similar concepts. Using simple string comparison,
it would then be possible to search for all documents with one or more of the
“strings” in the attached expansion. The similarity between concepts could
then be measured by the distance in the ontology, which is looked at in the
following chapter. Another method would mean splitting the compound con-
cepts by using the decomposition function τ . Take, for instance, the concept
of dog[chr:large]:

τ(dog[chr:large]) = {dog[chr:large], dog, large}

Note that the consequence of this is similar to adding the compound concept
into the nested set representation used in the first version of the OntoQuery

prototype, and so introduces descriptions which are nested sets of Ontolog

expressions. The cardinality of the intersection between decompositions could
then express the similarity between concepts, and the comparison would then
be string-based. Since the compound concept itself is a member of the de-
composition of only that particular concept or a more specialized concept
subsumed by it, it could possibly have the same members.

The maximum level of descriptions in a given retrieval system has to be
determined empirically, since it has to be balanced between the “cost” with
respect to the extra time used during the query evaluation and the refinement
of the result of the querying.

This scalable level of descriptions with respect to the “compoundness” of
the descriptions can be seen as a scaling of the semantic analysis. This could
be useful, for instance, as a parameter in the querying process in order to
broaden or narrow the result, since the level of compoundness is related to the
specificity of the descriptions. Another possible use of this kind of scalability
is in connection with smaller document bases or the retrieval of information
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inside a single document, where time may have a minor influence due to the
smaller size, or the fact that the task is more well-understood, which means a
higher level of specificity may be preferred.

Finally, instantiated ontologies are presented. They serve as a way to
restrict a given general ontology to a set of instantiated concepts. An instan-
tiated ontology of this type could, for example, be an ontology of the concepts
in a given query that could in turn serve as a solution to disambiguation if the
user were able to choose between different senses in an instantiated ontology
of their queries. Another possible use is as a visualization of the similarity be-
tween documents by showing how the instantiated ontologies of the concepts
they are described by overlap (see Section 6.5).
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Chapter 5

Ontological Similarity

In this chapter we focus on the introduction of ontology-based similarity in
information retrieval. The obvious use of ontological similarity in information
retrieval is as a replacement of the conventional lexical equivalence. Instead
of retrieving documents solely on the basis of the occurrence of query terms,
the documents containing terms that are semantically related to the query
terms could be taken into consideration [Cohen and Kjeldsen, 1987; Rada and
Bicknell, 1989].

The indexing process maps information found in documents into the on-
tology, identifying concepts and their positions in the ontology. Information
in queries can similarly be mapped into the ontology, and thus in addition
to retrieving the exact match (the documents which have ALL concepts from
the query assigned), the structure of the ontology can be used to retrieve se-
mantically related documents. Naturally, whenever queries contain more than
one piece of information (one concept) some kind of aggregation is needed to
compute the retrieval, which is the topic of the next chapter. In this chapter,
the focus is on ontological concept similarity, the similarity between concepts
in ontologies.

The problem of formalizing and quantifying the intuitive notion of seman-
tic similarity between lexical units has a long history in philosophy, psychol-
ogy, and artificial intelligence, going back at least to Aristotle [Budanitsky,
1999]. Among the heralds of the contemporary wave of research are Osgood
[1952], Quillian [1968], and Collins and Loftus [1988]. Osgood’s “semantic
differential” was an attempt to measure similarity as the Euclidian distance
in an n-dimensional space. Qullian, Collins and Lofus focused on “spreading
activation”, which measures similarity using distances in semantic networks.
The former was rejected by Osgood himself as he found his system relied on
“connotative emotions” rather than “denotative meaning”, while the idea of
spreading activation, on the other hand, still motivates researchers in lexical
semantics.
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Similarity, relatedness and distance are three different terms used in the
literature, sometimes interchangeably, when referring to the topic of this chap-
ter. Some attempts have been made to differentiate between these terms, for
instance, by Resnik [1995], who defines similarity as a special case of relat-
edness. This thesis does not differentiate between similarity and relatedness
and uses the two terms interchangeably, or in such a way that the context
communicates the exact meaning. With distance, on the other hand, there is
clearly a duality, where high similarity implies low distance and vice versa.

The foundation for measuring similarity in this thesis is ontologies formed
by a set of concepts interrelated by a set of semantic relations. The concept
inclusion relation, isa, is defined as the ordering relation. The isa relation
is normally defined as a transitive relation in ontologies, hence, if A isa B
and B isa C, then A isa C, e.g. from WordNet1 “plankton” isa “organism”
and “organism” isa “living thing”, then also “plankton” isa “living thing”.
In order to use the structure of ontologies for measuring similarity as the
distance between concepts, a non-transitive isa relation is required, otherwise
the shortest distance between, for instance, “plankton” and “living thing”,
and “organism” and “living thing” from the above example, for that matter,
is the same as it would be for any super-ordinate concept. All the relations
referred to in this chapter are therefore considered as non-transitive relations
in transitively reduced ontologies, unless explicitly defined otherwise.

In this chapter we present and discuss different similarity measures based
on ontologies. Initially, a set of basic intuitive properties are defined to which
the adherence of similarity measures in information is preferable. Some addi-
tional properties are revealed as we introduce the measures and finally, there is
a set of properties categorized as basic properties, retrieval-specific properties,
and structure-specific properties. For each of the measures presented, a dis-
cussion is presented of how they comply, partially or fully, with these intuitive
expectations. In the last part of this chapter, an experiment is performed in
which similarity measures are compared with human similarity judgments.

5.1 Path Length Approaches

In this section, two simple approaches are presented that are based on tax-
onomies that measure similarity through the concept inclusion relation.

Before presenting these measures, we introduce some very basic properties
originally defined by Lin [1997; 1998] in his attempt to create a measure of
similarity that was both universally applicable to arbitrary objects and the-
oretically justified, and hence not tied to particular applications, domains,
resources or a specific knowledge representation.

1WordNet version 2.1.
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Property 1: Commonality Property

The similarity between A and B is related to their commonality. The
more commonality they share, the more similar they are.

Property 2: Difference Property

The similarity between A and B is related to the differences between
them. The more differences they have, the less similar they are.

Property 3: Identity Property

The maximum similarity between A and B is reached when A and B
are identical, no matter how much commonality they share.

Any similarity measure must necessarily comply with these properties as they
express the abstract notion of similarity.

Furthermore, we initially define an important retrieval-specific property.
Common similarity measures are also symmetric: sim(A,B) = sim(B,A).
If we just consider similarity between concepts, then the order of these is
normally not taken into account, e.g. the similarity between “a cat” and “a
dog” would be considered equal to the similarity between “a dog” and “a cat”.
However, in a context where the order between concepts can be determined
by a taxonomy or an ontology, the symmetry property becomes deceptive, e.g.
the ontology in Figure 5.1 implies that sim(D,B) < sim(B,D).

A

B

C E

D

Figure 5.1: The property of generalization implies that sim(D,B) < sim(B,D)

That symmetry should not apply for a measure of similarity is also supported
by Tversky [1977], who argues that similarity judgments can be regarded as
extensions of similarity statements, i.e. statements of the form “a is like b”,
which are obviously directional. He gives a number of examples: “the portrait
resembles the person”, and not “the person resembles the portrait”, “the son
resembles the father”, and not “the father resembles the son”.

Consider an ontology where “plankton” is a specialization of “organism”,
then the intuition is that “plankton” satisfies the intension of a query on
“organism”, whereas “organism” (which could be of any kind) does not neces-
sarily satisfy the intention of a query on “plankton” [Andreasen et al., 2003b;
Andreasen et al., 2003a].
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This indicates that in the ontology-based information retrieval context,
the similarity measure cannot be symmetrical, and should somehow capture
that the “cost” of similarity in the direction of the inclusion (generalization)
should be significantly higher than the similarity in the opposite direction of
the inclusion (specialization).

Property 4: Generalization Property

Concept inclusion implies reduced similarity in the direction of the
inclusion.

5.1.1 Shortest Path Length

One obvious way to measure similarity in a taxonomy, given its graphical
representation, is to evaluate the distance between the nodes corresponding to
the items being compared, where a shorter distance implies higher similarity.

In Rada et al. [1989] a simple approach based on the shortest path length
is presented. The principal assumption is that the number of edges between
terms in a taxonomy is a measure of conceptual distance between concepts:

distRada(ci, cj) = minimal number of edges in a path from ci to cj (5.1)

Surprisingly good results can be obtained using this approach, despite its
simplicity. One of the reasons for this is that when the paths are restricted to
isa relations, the shortest path length corresponds to the conceptual distance
[Budanitsky, 2001]. Another reason for good reported results is probably the
specificity of the domain used in Rada’s experiments (the Medical Subject
Headings (MeSH)), which ensures the relative homogeneity of the hierarchy.

Among the set of intuitive properties defined so far, only the basic proper-
ties, commonality, difference and identity are true for this measure. Observe
that the measure of the shortest path length is a distance function and thereby
a metric. Thus the measure is obviously in accordance with the commonality
and difference properties, and the identity property corresponds to the zero
property of a metric.

The shortest path length measure does not comply with the generalization
property because the measure is symmetric.

5.1.2 Weighted Shortest Path

In Bulskov et al. [2002], another simple edge-counting approach is presented2.
It is argued that concept inclusion (isa) intuitively implies strong similarity in
the opposite direction of inclusion (specialization). In addition, the direction
of the inclusion (generalization) must contribute some degree of similarity, as,

2The presentation of Weighted Shortest Path measure in Section 5.1.2 is a rendering of
the original presentation in [Bulskov et al., 2002].
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for example, in the small excerpt of an ontology in Figure 5.2. With reference
to this ontology, the atomic concept dog has high similarity to the concepts
poodle and alsatian.

animal

cat dog

poodle alsation

Figure 5.2: An example ontology covering pets

The measure respects the ontology in the sense that every concept sub-
sumed by the concept dog by definition bears the relation isa to dog. The
intuition is that the answer to a query on dog including the instance poodle
is satisfactory (a specific answer to a general query). Because the isa relation
obviously is transitive, the same argument can be used to include further spe-
cializations, e.g. including poodle in the extension of animal. However, simi-
larity exploiting the taxonomy should also reflect the distance in the relation.
Intuitively, greater distance (longer path in the relation graph) corresponds to
smaller similarity.

Furthermore, generalization should contribute to similarity. Though, of
course, this is not strictly correct, because all dogs are animals and animals
are to some degree similar to dogs. Thus, the property of generalization sim-
ilarity should be exploited. However, for the same reasons as in the case of
specializations, transitive generalizations should contribute with a decreased
degree of similarity.

A concept inclusion relation can be mapped into a similarity function in
accordance with the two properties described above as follows. Assume an
ontology given as a domain knowledge relation. Figure 5.3 can be viewed as
such an example. To make distance influence similarity, we assume the isa

relation to be transitively reduced.
Similarity reflecting “distance” can then be measured from the path length

in the graph corresponding to the isa relation. By parameterizing with two
factors, σ ∈ [0, 1] and γ ∈ [0, 1], which express similarity of immediate spe-
cialization and generalization respectively, a simple similarity function can be
defined as follows. A path between nodes (concepts) x and y using the isa

relation:
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cat
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poodle
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Figure 5.3: An example ontology with relation isa covering pets

P = (p1, · · · , pn)

where

pi isa pi+1 or pi+1isa pi

for each i with x = p1 and y = pn.
Given a path P = (p1, · · · , pn), set s(P ) to the number of specializations

and g(P ) to the number of generalizations along the path P , as follows:

s(P ) = |{i|pi isa pi+1}| (5.2)

and

g(P ) = |{i|pi+1 isa pi}| (5.3)

If P 1, · · · , Pm are all paths connecting x and y, then the degree to which y is
similar to x can be defined as follows:

simWSP (x, y) = max
j=1,...,m

{
σs(P j)γg(P j)

}
(5.4)

We denote that this measure, sim(x, y)WSP (Weighted Shortest Path), as
the similarity between two concepts x and y, is calculated as the maximal
product of weights along the paths between x and y.

This similarity can be considered as derived from the ontology by trans-
forming the ontology into a directional weighted graph with σ as downward
weights and γ as upward weights, and with similarity derived as the product
of the weights on the paths. Figure 5.4 shows the graph corresponding to the
ontology in Figure 5.3.

The weighted shortest path measure is a generalization of the shortest path
length measure and would therefore hold for the two basic properties common-
ality and difference, too. Since σ ∈ [0, 1] and γ ∈ [0, 1] maximum of σs(P j) and
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animal

cat

0.9

dog

0.90.4 0.4

poodle

0.9

alsatian

0.90.4 0.4

Figure 5.4: The ontology transformed into a directed weighted graph with the im-
mediate specialization and generalization similarity values σ = 0.9 and γ = 0.4 as
weights. Similarity is derived as the maximum (multiplicative) weighted path length,

and thus sim(poodle, alsatian) = 0.4 ∗ 0.9 = 0.36.

γg(P j) is obtained when s(P j) = 0 and g(P j) = 0. Thus the identity property
is obeyed by the weighted shortest path measure. Furthermore, the measure is
in accordance with the generalization property, due to the weighted edges.

5.2 Depth-Relative Approaches

Despite the apparent simplicity, the edge counting approaches have a widely
acknowledged problem of typically relying on edges in the taxonomy to repre-
sent uniform distances. Consider the two pairs of concepts taken from Word-
Net 1) “pot plant” and “garden plant” and 2) “physical entity” and “abstract
entity”. Using our intuition, we would judge the similarity for the first pair to
be higher than the similarity for the second, since the first pair of concepts is
much more specific [Sussna, 1993]. This means that the distance represented
by an edge should be reduced with an increasing depth (number of edges from
the top) of the location of the edge, which leads to the first structure-specific
property:

Property 5: Depth Property

The distance represented by an edge is influenced by the depth of the
location of the edge in the ontology.

In the weighted shortest path, edges contribute non-uniform distances; a
step along a generalization edge is longer than a step along a specialization
edge. However, this non-uniformity does not resemble the depth property,
since these weights are assigned independently of the depth of the taxonomy
or ontology, because the weights are defined for generalizations and special-
izations in general.

The approaches presented in this section, depth-relative scaling, concep-
tual similarity, and normalized path length, are basically shortest path length
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approaches which take into account the depth of the edges connecting two
concepts in the overall structure of the ontology. All these approaches comply
therefore with the same properties as the shortest path length and the newly
defined depth property. Obviously, these measures do not comply with the
generalization property as they are symmetric.

5.2.1 Depth-Relative Scaling

In his depth-relative scaling approach [1993], Sussna defines two edges repre-
senting inverse relations for each edge in a taxonomy. The weight attached to
each relation r is a value in the range [minr;maxr]. The point in the range for
a relation r from concept c1 to c2 depends on the number nr of edges of the
same type, leaving c1, which is denoted as the type specific fanout factor:

w(c1 →r c2) = max
r

−
maxr −minr

nr(c1)

which, according to Sussna, reflects the dilution of the strength of the conno-
tation between the source and the target concept. The two inverse weights
are averaged and scaled by depth d of the edge in the overall taxonomy, which
is motivated by the observation that sibling-concepts deeper in the taxonomy
appear to be more closely related than those higher in the taxonomy. The
distance between adjacent nodes c1 and c2 are computed as:

distsussna(c1, c2) =
w(c1 →r c2) + w(c2 →r′ c1)

2d
(5.5)

where r is the relation that holds between c1 and c2, and r′ is its inverse.
The semantic distance between two arbitrary concepts c1 and c2 is com-

puted as the sum of distances between the pairs of adjacent concepts along
the shortest path connecting c1 and c2.

5.2.2 Conceptual Similarity

Wu and Palmer propose a measure of semantic similarity in their paper [1994]

on the semantic representation of verbs in computer systems and its impact
on lexical selection problems in machine translation. Wu and Palmer define
conceptual similarity between a pair of concepts c1 and c2 as:

simWu&Palmer(c1, c2) =
2 × N3

N1 + N2 + 2 × N3
(5.6)

where N1 is the number of nodes on a path from c1 to a concept c3, denoting
the least upper bound of both c1 and c2. N2 is the number of nodes on a path
from c2 to c3. N3 is the number of nodes from c3 to the most general concept
(the topmost node in the tree).
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5.2.3 Normalized Path Length

Leacock and Chodorow [1998] proposed an approach for measuring semantic
similarity as the shortest path using isa hierarchies for nouns in WordNet. The
different noun hierarchies are combined into a single hierarchy by introducing
a topmost node, subsuming all the topmost nodes in all the noun hierarchies3.
This ensures the existence of a path between all synsets in the taxonomy.

The proposed measure determines the semantic similarity between two
synsets (concepts) by finding the shortest path and by scaling using the depth
of the taxonomy:

simLeacock&Chodorow(c1, c2) = − log

(
Np(c1, c2)

2D

)

where c1 and c2 represents the two concepts, Np(c1, c2) denotes the shortest
path between the synsets (measured in nodes), and D is the maximum depth
of the taxonomy.

5.3 Corpus-Based Approaches

The similarity measures presented so far use knowledge solely captured by the
ontology (or taxonomy) to compute a measure of similarity. In this section,
we present three approaches that incorporate corpus analysis as an additional,
and qualitatively different knowledge source. The knowledge revealed by the
corpus analysis is used to augment the information already present in the
ontologies or taxonomies.

5.3.1 Information Content

Resnik [1999] argued that a widely acknowledged problem with edge-counting
approaches was that they typically rely on the notion that edges represent uni-
form distances. One criterion of similarity between two concepts is the extent
to which they share information, which for a taxonomy can be determined by
the relative position of their least upper bound. This criterion seems to be
captured by edge-counting approaches, for instance, the shortest path length
approach [Rada et al., 1989] presented above. However, the edge-counting
approaches in general do not comply with the depth property, since edges typ-
ically represent uniform distances and the position in the hierarchy of the least
upper bound is not taken into account. In the last section, several examples
of edge-counting measures are presented that compensate for this problem by
using the depth in the hierarchy in measuring the similarity of the concepts

3Remember that WordNet does not have one unique topmost node, but 25 unique begin-
ners instead. (see Section 3.5.3)
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being compared. Resnik’s measure, information content, uses knowledge from
a corpus about the use of senses to express non-uniform distances.

Let C denote the set of concepts in a taxonomy that permits multiple
inheritance and associates with each concept c ∈ C, the probability p(c) of
encountering an instance of concept c. Following the standard definition from
Shannon and Weaver’s information theory [1949], the information content of
c is then − log p(c). For a pair of concepts c1 and c2, their similarity can be
defined as:

simResnik(c1, c2) = max
c∈S(c1,c2)

[− log(p(c))] (5.7)

where S(c1, c2) is the set of least upper bounds in the taxonomy of c1 and c2.
p(c) is monotonically non-decreasing as one moves up in the taxonomy, and if
c1 isa c2 then p(c1) ≤ p(c2).

Given the formula in (5.7), the similarity between two words w1 and w2

can be computed as:

wsimresnik(w1, w2) = max
c1∈s(w1),c2∈s(w2)

[sim(c1, c2)] (5.8)

where s(wi) defines the set of possible senses for the word wi.
Resnik describes an implementation based on information content using

WordNet’s [Miller, 1990] taxonomy of noun concepts [1999]. The information
content of each concept is calculated using noun frequencies from the Brown
Corpus of Standard American English [Francis and Kucera, 1964].

Each noun occurring in the corpus was counted as an occurrence of each
taxonomic class that contained it. For example, in Figure 5.5, an occurrence
of the noun dime would increment the frequency of dime, coin, cash, and so
forth:

freq(c) =
∑

n∈words(c)

count(n),

where words(c) is the set of words whose senses are subsumed by concept c,
and adopt the maximum likelihood estimate:

p̂(c) =
freq(c)

N

where N is the total number of nouns.
The information content approach depends completely on the least upper

bound and is therefore basically a shortest path approach and would therefore
also comply with the set of basic properties, and disobey the generalization
property as it is symmetric. Due to additional knowledge from the corpus
analysis, the information content approach obeys the depth property.
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medium of exchange

credit money

credit card

coin

nickel dime

cash

Figure 5.5: Fragment of the WordNet taxonomy. Solid edges represent isa; dotted
links indicate that concepts were removed to save space.

5.3.2 Jiang and Conrath’s Approach

The idea of the approach suggested by Jiang and Conrath [1997] was to syn-
thesize edge-counting methods and information content into a combined model
by adding the latter as a corrective factor.

The general formula for the edge weight between a child concept cc and a
parent concept cp by considering factors such as local density in the taxonomy,
node depth, and link type is:

wt(cc, cp) =

(
β + (1 − β)

Ē

E(cp)

)(
d(cp) + 1

d(cp)

)α

LS(cc, cp)T (cc, cp),

where d(cp) is the depth of the concept cp in the taxonomy, E(cp) is the
number of children of cp (the local density), (Ē) is the average density in
the entire taxonomy, LS(cc, cp) is the strength of the edge between cc and cp,
and T (cc, cp) is the edge relation/type factor. The parameters α, α ≥ 0 and
β, 0 ≤ β ≤ 1 control the influence of concept depth and density, respectively.

In the framework of a taxonomy, Jiang and Conrath argued that the
strength of a link LS(cc, cp) between parent and child concepts is propor-
tional to the conditional probability p(cc|cp) of encountering an instance of
the child concept, cc, given an instance of the parent concept, cp:

LS(cc, cp) = − log p(cc|cp)
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by definition:

p(cc|cp) =
p(cc ∩ cp)

p(cp)

It follows from Resnik’s way of assigning probabilities to concepts that p(cc ∩
cp) = p(cc), because any instance of a child concept cc is also an instance of
the parent concept cp. Then:

p(cc|cp) =
p(cc)

p(cp)

and
LS(cc, cp) = IC(cc) − IC(cp),

if IC(c) denotes the information content of concept c.
Jiang and Conrath then defined the semantic distance between two nodes

as the summation of edge weights along the shortest path between them
[J. Jiang, 1997]:

distJiang&Conrath(c1, c2) =
∑

c∈{path(c1,c2)−LSuper(c1,c2)}

wt(c, parent(c)),

where path(c1, c2) is the set of all nodes along the shortest path between
concepts c1 and c2, parent(c) is the parent node of c and LSuper(c1, c2) is the
lowest superordinate (least upper bound) on the path between c1 and c2. The
reason for its removal from the set is that it has no parent within the set.

Jiang and Conrath’s approach complies as information content to the basic
properties and the depth property, but not to the generalization property.

5.3.3 Lin’s Universal Similarity Measure

Lin [1997; 1998] defines a measure of similarity claimed to be both universally
applicable to arbitrary objects and theoretically justified. Upon recognizing
that known measures generally are tied to a particular application, domain,
or resource, he encourages the need for a measure that does not presume a
specific kind of knowledge representation and that is derived from a set of
assumptions, rather than directly from a formula.

The formal definition for Lin’s information-theoretic definition of similarity
builds on three basic properties, commonality, difference and identity. In addi-
tion to these, Lin introduces a few other assumptions and definitions, notably
that the commonality between A and B is measured by the amount of infor-
mation contained in the proposition that states the commonalities between
them, formally:

I(common(A,B)) = − log p(common(A,B)),
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where the information I(s) contained in a proposition s is measured as the neg-
ative logarithm of the probability of the proposition, as described by Shannon
[1949].

The difference between A and B is measured by:

I(description(A,B)) − I(common(A,B)),

where description(A, B) is a proposition about what A and B are.
Given the above setting and the apparatus described in Information Theory

[Shannon and Weaver, 1949], Lin was able to prove that the similarity between
A and B is measured by the ratio between the amount of information needed
to state the commonality of A and B and the information needed to describe
fully what they are:

simLin(A, B) =
log p(common(A,B))

log p(description(A, B))
.

His measure of similarity between two concepts in a taxonomy ensures that:

simLin(c1, c2) =
2 × log p(LUB(c1, c2))

log p(c1) + log p(c2)
,

where LUB(c1, c2) is the least upper bound of c1 and c2, and where p(x) can be
estimated based on statistics from a sense tagged corpus (for example Resnik’s
information content, see Section 5.3.1).

The universal similarity measure does not comply differently with the set
of properties than the information content and the combined approach, and
would therefore comply with the set of basic properties and the depth property,
but would fail to comply with the generalization property as it is symmetric.

5.4 Multiple-Paths Approaches

In the measures presented up to this point, only one path between concepts,
the shortest, contributes to their similarity. Since all these measures are based
on taxonomies, the relation in consideration is the concept inclusion relation.
In this section, measures are presented that take into account all semantic
relations in ontologies. An approach taken by some of these measures is to
take into consideration more than one path between concepts. To distinguish
these, a final structure property is introduced to express this approach.

Intuitively, attributes should influence the measure of similarity, thus al-
lowing two concepts sharing the same attribute to be considered as more sim-
ilar, compared to concepts not having this particular attribute. For instance,
the definition “blue vehicles” would cluster vehicles by an attribute and allow
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all vehicles not sharing this attribute to be considered less similar when com-
pared to a vehicle from this cluster, i.e. sim(car[chr:blue], truck[chr:blue])
> sim(car[chr:blue], truck[chr:big]).

Another problem is that a similarity measure that finally selects, indepen-
dently of whether or not all semantic relations are considered, one path as a
measure for the similarity, fails to truly express similarity whenever the on-
tologies allow multiple inheritance. Naturally, in some cases, only one of the
inherited senses actually influences the similarity measure. Limiting a similar-
ity measure to only one path is in contrast to the idea of multiple inheritance,
since such concepts cannot be described solely by their inheritance from only
one of their superordinate concepts.

Property 6: Multiple-Paths Property

The similarity between concepts is related to the number of paths
connecting the concepts and the length of these paths.

The multiple-paths property concerns the inclusion of more than “the best
path” in the measure. Apart from accounting for multiple paths combin-
ing taxonomic and semantic relations, compliance to this property may also
influence purely taxonomic-based similarity based on multiple inheritance on-
tologies.

5.4.1 Medium-Strong Relations

Hirst and St-Onge [Hirst and St-Onge, 1998; St-Onge, 1995] distinguished
three major kinds of relations between nouns in WordNet: extra-strong, strong
and medium-strong relations. The extra-strong relation is only between a word
and its literal repetition. A strong relation between two words exists if:

1. They have a synset in common;

2. There is a horizontal link (antonymy, similarity) between a synset of
each word; or

3. There is any kind of link at all between a synset of each word or if one
word is a compound or phrase that includes the other word.

Medium-strong, the final type of relation, exists between words when a
member of a set of allowable paths connects the two words. A path is allowable
if it contains no more than five edges and conforms to one of the eight patterns
described in Hirst and St-Onge [1998]. The weight of a path is expressed by
the following formulae:

simHirst&St-Onge(c1, c2) = C−path length−k∗number of changes in direction,
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where C and k are constants. Thus, the longer the path and the more changes
in direction, the lower the weight.

The medium-strong relation is basically a shortest path length measure and
thus does not comply with the multiple-path property; hence even through
it introduces both taxonomic and semantic relations, it is still restricted to
only one path. It does not comply with either the generalization or depth
properties, but obviously obeys the basic properties as it is a shortest path
length measure.

5.4.2 Generalized Weighted Shortest Path

The weighted shortest path presented earlier (see 5.1.2) can easily be refined
to include the shortest path between concepts using all semantic relations4.
While the similarity between c[r1 : c1] and c can be claimed to be justified by
the ontology formalism (subsumption), it is not strictly correct in an ontolo-
gical sense to claim c[r1 : c1]’s similarity to c1.

For instance, noise[cby: : dog] is conceptually not a type of dog. On the
other hand, it would be reasonable to claim that noise[cby: : dog], in a broad
sense, has something to do with a dog, and thus has similarities to dog. Con-
sidering a wider number of semantic relations allows the option of calculating
a more finely-grained similarity between concepts.

Consider Figure 5.6. The solid edges are isa references and the broken
ones are references by other semantic relations. In the figure, cby and chr

are used, denoting “caused by” and “characterized by”, respectively. Each
compound concept has broken edges to its attribution concept.

The principle of weighted path similarity can be generalized by introducing
similarity factors for the semantic relations. However, there does not seem to
be an obvious way to differentiate based on direction. Thus, we can generalize
simply by introducing a single similarity factor and simplify to bidirectional
edges.

Assume that we have k different semantic relations r1, . . . , rk and let
ρ1, · · · , ρk be the attached similarity factors. Given a path P = (p1, · · · , pn),
set rj(P ) to the number of rj edges along the path P thus:

rj(P ) =
∣∣{ i| pi rj pi+1 for 1 ≤ i ≤ n

}∣∣ , (5.9)

where n is the number of concepts in the path P .
If P 1, · · · , Pm are all paths connecting c1 and c2 and where s(P j) and

g(P j) are defined as in equations (5.2) and (5.3), respectively, then the degree
to which y is similar to x can be defined as follows:

simGWSP (x, y) = max
j=1,...,m

{
σs(P j)γg(P j)ρ1

r1(P j) · · · ρk
rk(P j)

}
(5.10)

4The presentation of Generalized Weighted Shortest Path measure in Section 5.4.2 is a
rendering of the original presentation in [Bulskov et al., 2002].
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CBY
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Figure 5.6: An ontology where attribution with semantic relations is shown as dotted
edges

The result of transforming the ontology in Figure 5.6 is shown in Figure 5.7.
Here, two semantic relations chr and cby are used. The corresponding edge-
count functions are rwrt and rcby and the attached similarity factors are de-
noted ρwrt and ρcby. The figure shows the graph with the attached similarity
factors as weights. Again, the degree to which concept c1 is similar to concept
c2 is based on the shortest path.

For instance, we can derive from Figure 5.7 that sim(cat, dog) = 0.9∗0.4 =
0.36 and sim(cat[chr: : black], color) = 0.2 ∗ 0.4 = 0.08.

In contrast to normal weighting practice, which requires careful considera-
tion by domain experts, the weights in the example were assigned in a rather
ad hoc manner. The major difference between the generalized weighted short-
est path approach and the medium-strong relations approach with respect to
which properties they comply with is that the former obeys the generalization
property.

5.4.3 Shared Nodes

All the approaches that have been presented until now only take into account
one path in measuring similarity. Consequently, when two concepts are con-
nected by multiple paths only one path, typically the shortest, contributes to
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Figure 5.7: The ontology of Figure 5.6 transformed into a directional weighted graph
with the similarity factors: for specialization, σ = 0.9; for generalization, γ = 0.4;

for cby:ρcby = 0.3; and for chr:ρwrt = 0.2

the similarity measure.
In order to make the sharing of attributes and multiple inheritance con-

tribute to similarity, as argued for in the definition of the multiple-path prop-
erty, then just a single path must be considered as the basis for measuring
similarity.

One obvious approach for measuring similarity is to consider all possible
connections between the concepts x and y5. Concepts, for instance, may be
connected directly through inclusion and also through an attribute dimension,
as cat[CHR : black] and poodle[CHR : black], or we might have multiple
paths due to multiple inheritance. If the multiple connections phenomenon
can be achieved without traversing all possible paths, we may have a more
realistic means of similarity derivation.

The definitions of term decomposition used are:

τ(c) = {c} ∪ {x|c ≤ x[. . . , r : y] ∨ c ≤ y[. . . , r : x], x ∈ L, y ∈ L, r ∈ R}

and transitive closure of a set of concepts with respect to ≤

ω(C) = {x|x ∈ C ∨ y ∈ C, y isa x}

from the definition of instantiated ontologies in Section 4.3. With α(x) =
ω(τ(x)) as the set of nodes (upwards) reachable from x in an instantiated

5The presentation of the Shared Nodes measure in Section is a slightly modified rendering
of the original presentation in [Knappe et al., 2005].
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ontology, α(x)
⋂

α(y) are the reachable nodes shared by x and y, which thus
obviously is an indication of what x and y have in common. Immediate trans-
formations of this into a normalized similarity measure are the fractions of the
cardinality of the intersection and the cardinality of, respectively, the union
α(x)∪α(y) and the individual α(x) and α(y), giving the following normalized
measures:

(a)

sim(x, y) =
|α(x) ∩ α(y)|

|α(x) ∪ α(y)|

(b)

sim(x, y) =
|α(x) ∩ α(y)|

|α(x)|

(c)

sim(x, y) =
|α(x) ∩ α(y)|

|α(y)|

It is clear that instantiated ontologies and functions such as the above offer
only a very coarsely-grained approximation of whatever the genuine similar-
ity may be. In the discussion of shared node similarity functions below, the
intuitive properties defined earlier are used to guide the choice of function.

First, it is important to note that the principle of using instantiated on-
tologies for deriving similarity unifies the concept inclusion relation with the
semantic relations used in attribution. Not only cat but also black are under-
stood to be related to cat[chr:black], and cat[chr:black] is understood to be
related to accident[cby:cat[chr:black]].

The intuition of the generalization property is that, for instance, a cat
satisfies the intention of an animal, whereas an animal (which could be of
any kind) does not necessarily satisfy the intention of cat. From this property
alone, the first alternative similarity function (a) above can be eliminated.
A consequence of insisting on this property is that the similarity function
cannot be symmetrical. In Figure 5.8, according to the generalization property,
sim(D, B) < sim(B,D).

Now consider alternative (c). Figure 5.8 shows that sim(D, E) = 2
3 and

sim(E, D) = 2
4 , which also violates the generalization property. Thus the

only alternative that obeys this property is (b). In the example in Figure 5.8,
sim(D, E) = 2

4 and sim(E, D) = 2
3 are obtained.

The depth property states, for instance, that siblings on low levels in the
ontology, such as pot plant and garden plant should be higher than the similar-
ity between siblings close to the top, such as physical entity and abstract entity.
In our approach, when considering Figure 5.9, sim(C,D) > sim(A,B), the
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Figure 5.8: The property of generalization implies that sim(D,B) < sim(B,D)

 

A   B

   

C     D

Figure 5.9: The depth property implies that sim(C,D) > sim(A,B)

similarity function (b) above satisfies the depth property, where sim(A,B) =
2
3 , while sim(C, D) = 4

5 ((a) and (c) also satisfy this property).
Let the difference property be defined by distance in the ontology, then

the similarity function (b) obviously does not satisfy this property because
sim(E, C) = sim(E, D). Hence, for K at any level of specialization below D,
the result is still sim(E, D) = sim(E, K).

To capture that further specialization implies reduced similarity, alter-
native similarity functions must be considered that are influenced by both
specialization and generalization (like the function (a) above), but that still
do not violate the generalization property. One modification that satisfies this
is simply to take a weighted average of (b) and (c) above, as follows:

(d)

simsharednodes(x, y) = ρ
|α(x) ∩ α(y)|

|α(x)|
+ (1 − ρ)

|α(x) ∩ α(y)|

|α(y)|
,

where ρ ∈ [0, 1] determines the degree of influence of the generalizations.
Although simplicity favors similarity (b), this measure, based on the as-

pects discussed, cannot be claimed to violate the semantics of the ontology,
which means that similarity (d) still appears to be a better choice. Similarity
(b) is simply a special case of simsn with ρ = 1.
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The shared nodes approach with similarity function (d) complies with all
the defined properties.

5.4.4 Weighted Shared Nodes Similarity

Intuition tells us that when deriving similarity using the notion of shared
nodes, not all nodes are equally important. If we want two concepts to be more
similar when they have an immediate subsuming concept (e.g. cat[chr:black]
and cat[chr:brown] because of the subsuming cat) than when they only share
an attribute (e.g. black shared by cat[chr:black] and dog[chr:black]), we must
differentiate and cannot simply define α(c) as a crisp set. The following is a
generalization to fuzzy set based similarity [Andreasen et al., 2005b], denoted
as weighted shared nodes6.

First, notice that α(c) can be derived as follows. Let the triple (x, y, r) be
the edge of type r from concept x to concept y; let E be the set of all edges
in the ontology; and let T be the top concept, which means:

α(T ) = {T}

α(c) = {c} ∪ (∪(c,ci,r)∈Eα(ci)).

A simple modification that generalizes α(c) to a fuzzy set is obtained through
a function weight(r) that attaches a weight to each relation type r. With this
function we can generalize to:

α(T ) = {1/T}
α(c) = {c} ∪ (∪(c,ci,r)∈EΣµ(cij)/cij∈α(ci)weight(r) ∗ µ(cij)/cij).

α(c) is thus the fuzzy set of nodes reachable from concept c and modified
by weights of relations weight(r). As such, Andreasen et al. [2005b] define
a measure of semantic similarity between two concepts as proportional to
the number of nodes shared by the concepts, but where nodes are weighted
according to the semantic relation by which they are reached.

For instance, from the ontology in Figure 5.2, assuming relation weights
weight(isa) = 1, weight(chr) = 0.5 and weight(cby) = 0.5, then:

α(dog[chr:black]) = 1/dog[chr:black]+1/dog+1/animal+0.5/black+
0.5/color + 1/anything.

For concept similarity, the parameterized expression above can still be used
applying the minimum for fuzzy intersection and the sum for fuzzy cardinality.

6The presentation of Weighted Shared Nodes Similarity measure in Section 5.4.4 is a
rendering of the original presentation in [Andreasen et al., 2005b].
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α(cat[chr:black]) ∩ α(dog[chr:black]) = 0.5/black + 0.5/color +
1/animal + 1/anything

|α(cat[chr:black]) ∩ α(dog[chr:black])| = 3.0

The weighting of edges is very important, as it generalizes the measure so
that it can be tailored for different domains with different semantic relations. It
also allows differentiating between the key ordering relation, isa and the other
semantic relations when calculating similarity. The weighted shared nodes
measure complies with all the defined properties.

5.5 Similarity Evaluation

In the previous section, a number of different similarity measures were pre-
sented and the characteristics of measures based on a set of intuitive properties
were discussed. This, of course, is only one out of a variety of approaches by
which similarity measures can be evaluated. Besides a theoretical study, two
other evaluation methods are also prevalent in the literature: comparison to
human judgments of similarity and the measures’ applicability in specific nat-
ural language applications. In this section, the focus is on the comparison of
the measures to human similarity judgments, while the question of applica-
bility in relation to information retrieval is covered in the next chapter (see
Section 7)7.

Studies of human synonym judgments were performed by Rubinstein and
Goodenough [1965] and repeated almost three decades later by Miller and
Charles [1991]. One aspect of these experiments included asking humans to
judge the similarity of pairs of words, and these judgments have in turn been
the basis of the comparison of the kind of similarity measures discussed in the
above section. One interesting aspect of these two experiments is that the
correlation between them is 0.97, despite the more than 25-year gap between
them, which somehow strengthens their validity as reference material [Miller
and Charles, 1991].

In their experiment, Rubinstein and Goodenough asked two groups total-
ing 51 subjects to perform synonymy judgments on 65 pairs of nouns. Later,
when Miller and Charles [1991] repeated Rubinstein and Goodenough’s orig-
inal experiment, they used a subset of 30 noun pairs from the original list of
65 pairs, where ten pairs were from the high level of synonymy, ten from the
middle level and ten from the low level.

The correlation was measured using the Pearson Product Moment Corre-
lation coefficient r between series of n measurements of two random variables
X and Y , written as xi and yi where i = 1, 2, . . . , n:

7The presented experiment in this section is a joint work with Rasmus Knappe, and was
first presented in [Knappe, 2006].
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Approach Correlation

Resnik 0.744
Jiang and Conrath 0.850
Lin 0.829
Hirst and St-Onge 0.744
Leacock and Chodorow 0.816

Table 5.1: Correlation between different similarity measures and human similarity
judgments from the Miller and Charles experiment

The goal of our experiment is threefold. First, we evaluate the weighted
shared nodes measure against these two experiments, similar to what has
been done for most of the other measures. Second, we investigate whether
human beings actually assign an increased similarity value between concept
pairs sharing attributes, e.g. the pair “forest” and “graveyard” compared to
the pair “forest[chr:scary]” and “graveyard[chr:scary]”, thereby attempt-
ing to underpin the underlying assumptions for the weighted shared nodes
measure. Finally, we study the correlations between the Miller and Charles
experiment and a subset of the presented measures in the last section. Using
Miller and Charles as a reference, the emphasis is on comparing the weighted
shared nodes measure with a selection of the other measures presented.

The correlations for the measures done by Resnik, Jiang and Conrath;
Lin, Hirst and St-Onge; and Leacock and Chodorow are shown in Table 5.1
[Budanitsky, 2001].

For this purpose, a replica was made of the Miller and Charles experiment
that included 30 concept pairs and an additional ten new compound concepts
pairs. For the experiment, the staff in the computer science department at
Roskilde University were asked to rate the similarity of meaning between all
40 pairs.

The results of the human synonymy judgments performed by the test per-
sons on the parts replicated from the Miller and Charles experiments, as well
as the mean ratings of the Rubinstein and Goodenough and the Miller and
Charles experiments, are shown in Table 5.2. The mean ratings for the replica
and the previous experiments are reported in the rightmost three columns.

Table 5.3 shows the correlations between the replica and the two previous
experiments. The correlations between the replica experiment and the pre-
vious experiments are fairly good, also considering that it was performed by
non-native speakers, which supports the validity of the experiment.
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Replica R & G M & C

car automobile 3.82 3.92 3.92
gem jewel 3.86 3.84 3.94
journey voyage 3.58 3.84 3.58
boy lad 3.10 3.76 3.82
coast shore 3.38 3.70 3.60
asylum madhouse 2.14 3.61 3.04
magician wizard 3.68 3.50 3.21
midday noon 3.45 3.42 3.94
furnace stove 2.60 3.11 3.11
food fruit 2.87 3.08 2.69
bird cock 2.62 3.05 2.63
bird crane 2.08 2.97 2.63
tool implement 1.70 2.95 3.66
brother monk 2.38 2.82 2.74
lad brother 1.39 1.66 2.41
crane implement 1.26 1.68 2.37
journey car 1.05 1.16 1.55
monk oracle 0.90 1.10 0.91
cemetery woodland 0.32 0.95 1.18
food rooster 1.18 0.89 1.09
coast hill 1.24 0.87 1.26
forest graveyard 0.41 0.84 1.00
shore woodland 0.81 0.63 0.90
monk slave 0.36 0.55 0.57
coast forest 0.70 0.42 0.85
lad wizard 0.61 0.42 0.99
chord smile 0.15 0.13 0.02
glass magician 0.52 0.11 0.44
rooster voyage 0.02 0.08 0.04
noon string 0.02 0.08 0.04

Table 5.2: Replica of the Rubinstein and Goodenough and the Miller and Charles
experiments

The similarity ratings for the ten compound concepts are shown in Table
5.4. These ratings underline our assumption that humans incorporate more
than one path when rating similarity. A significant increase in the similarity
ratings can be seen if the similarity ratings for the atomic concept pairs are
compared with the compound concept pairs that share additional aspects. For
instance, the mean similarity rating increases from 0.41 for the pair (forest,
graveyard) to 1.58 for the pair (scary forest, scary graveyard). Likewise, this
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Correlation

Rubinstein and Goodenough Miller and Charles 0.97
Rubinstein and Goodenough Replica 0.93
Miller and Charles Replica 0.95

Table 5.3: Correlation between the three human similarity judgment experiments

is also true if the mean similarity ratings increase for other pairs, for example:
(coast, hill) and (beautiful coast, beautiful hill), (lad, wizard) and (strange lad,
strange wizard), (fast car, fancy automobile) and (very fast car, very fancy
automobile).

Mean Rating

car automobile 3.82
gem jewel 3.86
coast hill 1.24
forest graveyard 0.41
lad wizard 0.61
glittering gem glittering jewel 3.86
scary forest scary graveyard 1.58
beautiful coast beautiful hill 1.36
strange lad strange wizard 1.32
very fast car very fancy automobile 2.08
fast car fancy automobile 2.05
blue-and-white gem white jewel 2.64
blue-and-white gem blue-and-white jewel 3.59
incomplete combustion brain damage caused by 1.18
caused by lack of oxygen lack of oxygen

Table 5.4: Mean ratings for a subset of the experiments

The last step in our experiment was to compare the human similarity
judgments from the replica study with the corresponding similarity ratings
produced by means of the weighted shared nodes measure. The weighted
shared nodes measures were applied using a prototype system (see Section
7.5). In order to calculate the similarity ratings, the compound concepts
to the corresponding WordNet synsets were mapped manually, similar to the
manner in which disambiguation was performed in the experiments by Resnik,
Jiang and Conrath; Lin, Hirst and St-Onge; and Leacock and Chodorow.

The comparison is divided into two experiments, where both the ratings
from the original 30 concept pairs and the ratings from the ten compound con-
cept pairs are compared with the ratings produced by applying the weighted
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shared nodes approach. In order to be comparable with the symmetrical
measures proposed by Resnik, Jiang and Conrath; Lin, Hirst and St-Onge;
and Leacock and Chodorow, the weighted shared nodes measure is used with
ρ = 0.5, which makes it symmetrical.

The correlation between the mean human similarity judgments from the
replica study and the ratings obtained by the weighted shared nodes measure
was 0.805, while the correlations between weighted shared nodes and Rubin-
stein and Goodenough’s experiment and Miller and Charles’ experiment were
0.812, and 0.807, respectively.

In the second comparison, we arbitrarily chose initial edge weights of 1.0,
0.5, 0.5 and 0.5 for isa, chr, cby and wrt, respectively. The mapping of the
compound concepts to the WordNet prototype ontology was done by decom-
posing each compound concept and thereafter manually merging the resulting
subontology with WordNet.

The final choice of weights for the different semantic relations was de-
termined empirically. We chose to group concept pairs that use the same
semantic relation and then varied the edge weight for the relation type until
we obtained the maximum correlation between the ratings produced by the
similarity measure and those given by human relatedness judgments for con-
cepts including that particular relation. This was done by writing a small
program that varied the edge weights of the semantic relation on a scale from
0.0 to 1.0 until maximum correlation was achieved.

In this experiment, the topmost nine concept pairs only use the chr rela-
tion, whereas the last concept pair uses three relations.

Semantic Relation

gem[chr:glittering] jewel[chr:glittering] chr

forest[chr:scary] graveyard[chr:scary] chr

coast[chr:beautiful] hill[chr:beautiful] chr

lad[chr:strange] wizard[chr:strange] chr

car[chr:fast[chr:very]] automobile[chr:fancy[chr:very]] chr

car[chr:fast] automobile[chr:fancy] chr

gem[chr:blue,chr:white] jewel[chr:white] chr

gem[chr:blue,chr:white] jewel[chr:blue,chr:white] chr

combustion[chr:incomplete] brain death chr
combustion[chr:incomplete]
[cby:lack[wrt:oxygen]]

brain death[cby:lack[wrt:oxygen]] chr,cby,wrt

Table 5.5: Relations used in the different compound concept pairs

For this experiment, the maximum correlation with the human judgments
for concept pairs containing the chr relation was achieved with an edge weight
for chr of 0.57. For the last concept pair, we varied the weights for the
two other semantic relations assuming independence and obtained maximum
correspondence with weights of 0.30 and 0.36 for cby and wrt, respectively.
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Similarity
Rating

Human
Similarity
Judgment

glittering gem glittering jewel 1.00 0.97

scary forest scary graveyard 0.53 0.40

beautiful coast beautiful hill 0.60 0.34

strange lad strange wizard 0.70 0.33

very fast car very fancy automobile 0.65 0.52

fast car fancy automobile 0.74 0.51

blue-and-white gem white jewel 0.82 0.66

blue-and-white gem blue-and-white jewel 0.80 0.90

incomplete combustion brain death 0.15 0.02

incomplete combustion brain death caused by 0.25 0.31
caused by lack of oxygen lack of oxygen

Table 5.6: Similarity value for the ten compound concept pairs calculated using the
weighted shared nodes measure

Table 5.6 shows two sets of ratings for the ten compound concept pairs.
The first column is the ratings from applying the concept pairs to the weighted
shared nodes measure, and the second column is the ratings of human similar-
ity judgments from the replica normalized to the unit interval. The correlation
between the weighted shared nodes and the human similarity judgment is 0.87,
which is a fairly high correspondence. The empirical tailoring of edge weights
performed here was, of course, done on a very small set of concept pairs, and
we must therefore be careful in drawing conclusions. Nevertheless, the validity
is supported by the replica’s correlation to the experiments performed earlier
by Rubinstein and Goodenough and Miller and Charles. Furthermore, the
correlation between the weighted shared nodes measure and the human simi-
larity judgments of the compound concepts, does support our hypothesis that
similarity measures can benefit from including a variety of semantic relations
in the similarity measure.

5.6 Summary and Discussion

The presentation of similarity measures began with a definition of a set of in-
tuitive, qualitative properties. Throughout the presentation, these were sup-
plemented and the full set of properties can be summarized as follows:

• Basic properties

– Commonality

– Difference
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– Identity

• Retrieval-specific properties

– Generalization

• Structure-specific properties

– Depth

– Multiple-Paths

During the presentation, we have discussed how the different measures comply
with these properties. No measures fully obey the basic properties, since most
of them define either commonality or difference but not both; for instance, the
shortest path length measure defines difference as the distance in the ontology,
but does not explicitly define commonality.

Most of the measures presented here are based on the idea of the shortest
path length and will therefore inherit both the advantages and disadvantages
of this measure. This group of measures can be characterized as edge-counting
approaches. A common feature for these measures is that that they are simple
and therefore easy to implement into retrieval systems. Another group, also
based on the idea of the shortest path length, includes the measures that
use information content as their foundation. This group of approaches differs
from the edge-counting approaches because, rather than counting edges in
the shortest path, they select the maximum information content of the least
upper bound between two concepts. The major drawback of the shortest path
length and information content approaches is that they fail to comply with the
generalization property, due to symmetry. Even though similarity measures
often are expected intuitively, and in some cases were also formally required
to be symmetric, it has beeen shown that this is definitely not a preferred
property in an information retrieval context. The weighted shortest path and
the generalized weighted shortest path measures are examples of shortest path
measures which solve the symmetry problem by introducing weighted edges.

Another group of measures includes the node-counting approaches, shared
nodes and weighted shared nodes, which comply with all the defined properties.
Like the edge-counting approaches, they are simple and can likewise be used
in visualizations in a simple and straight-forward manner. The downside is
that the node-counting approaches are computationally more complex than
the edge-counting approaches because they include all possible paths between
concepts.

The medium-strong relation and the generalized weighted shortest path
approaches are examples of measures based on the shortest path length idea
that takes all semantic relations into consideration. However, they still do
not include more than one path, the best path, in their similarity measure,
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and will therefore not comply with the multiple-path property. The only
measures that fully comply with the multiple-path property are the node-
counting approaches.

Finally, some of the approaches share the feature of being corpus-based.
They incorporate corpus analyses as an additional, and qualitatively differ-
ent knowledge source for measuring the similarity between concepts in the
ontology. They can be described as integrated due to the way that they
merge knowledge about concepts (the ontology) and corpus statistics. Among
the measures presented, two different approaches are used for incorporat-
ing the corpus; the measures based on Resnik’s information content [1995;
1999] and the measures which use instantiated ontologies [Andreasen et al.,
2005a]. Information content has its basis in traditional corpus analysis in
which semantically tagged corpora are used to measure the probability of en-
countering instances of concepts in the corpus. Instantiated ontologies, on the
other hand, are built by restricting a general ontology to the (instantiated)
concepts found in a given collection, which constitute two different methods for
merging ontologies and corpora. The information content approach is based
on the instantiated concepts as well as their corpus statistics, while instanti-
ated ontologies only use the former. Thus both approaches identify concepts
used, while “instance counting” is only performed by the information content
approach.

Nonetheless, one of the major interesting contributions of instantiated on-
tologies is the expansion of the ontology with compound concepts extracted
from a document collection. In order to benefit from this kind of information
the similarity measure has to comply fully with the multiple-path property,
which is only the case for the node-counting approaches.

Contrary to these integrated approaches, measures are purely based on
the knowledge captured in the ontology, e.g. the shortest path length, and
measures purely based on corpus analysis. In the above, we did not present
any purely corpus-based approaches. One approach in this regard could be
a “semantic network” based on the co-occurrence of senses in a sense-tagged
corpus. The idea is that if two senses are co-occurring they are related. The
frequency of documents in which they occur together can then be used to
measure the similarity between the senses, thus only the use of the senses in
a corpus contribute to the similarity.

Corpus-based measures (integrated or not) reflect a specific domain and
the use of the language in this domain. As a result, information on concepts
found in corpora modifies the similarity measures. In the case of informa-
tion content one key question is whether or not it is appropriate to generalize
from one corpus to another and whether domains can be shifted. This would
naturally primarily depend on the generality of the corpus source. The infor-
mation content approach by Resnik [1995; 1999], in which WordNet and the
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Brown Corpus are used as the foundation for the similarity measure, consti-
tutes a generalized similarity model (see Section 5.3.1). The results from the
comparison between the information content similarity measures and human
similarity judgments underpin this conclusion (see Section 5.5), thus indicating
that it is appropriate to generalize similarity measures from relatively small
resources due to the fact that the information content similarity does not
perform significantly differently from the other measures in the text.

The main goal in the development of the node-counting similarity methods
is to include as many aspects as possible when estimating similarity, and hence
consider more than one “path” between the concepts being compared. The
shared nodes approach and the weighted shared nodes approach both consider
what could be defined as multiple paths, since similarity is dependent on the
number of shared nodes on all upward paths from the concepts to the top. The
number of shared nodes between two concepts expresses their commonality,
and the more nodes that are shared, the higher the similarity. However, as
described earlier, not all nodes on paths connecting concepts contribute equally
to the definition of concepts.
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cat

ISA
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ISA

color

ISA

black

ISA

dog[CHR:black]
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cat[CHR:black]

CHR ISAISA
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Figure 5.10: Two example ontologies illustrating that not all shared nodes are equally
important

Consider the example in Figure 5.10, where the similarity between the con-
cepts dog[chr:black] and cat[chr:black] would be greater than the similarity
between dog[chr:black] and dog[chr:large] according to the shared nodes ap-
proach. Thus the first two concepts share four nodes, whereas the last two
concepts share only three nodes. This is counter intuitive since the concept
inclusion relation (isa) should have higher importance than the “characterized-
by” relation (chr). This problem is the motivation for the weighted shared
nodes approach, where the attachment of weights to relations is the remedy.
One benefit of this transformation is that the weighted shared nodes measure
can be tailored to include a wide number of aspects when calculating simi-
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larity through the weights, including important properties like commonality,
difference, generalization, specialization and multiple paths.

The main purpose of the experiments performed in this chapter was to
evaluate the assumption behind the shared nodes measures, namely that a
similarity measure benefits from considering more than just the concept in-
clusion relation when measuring similarity between compound concepts. The
evaluation was done by comparing the similarity ratings from the weighted
shared nodes measure with the average similarity ratings produced by humans
for a set of concept pairs. The human similarity judgment experiment was
conducted as a replica of previous experiments performed by Rubistein and
Goodenough and Miller and Charles and we obtained correlations of 0.93 and
0.95 between our human replica study and the two previous studies. The
majority of similarity measures presented in this chapter cannot include other
aspects then those denoted by the concept inclusion relation, therefore the first
experiment considered only the concept inclusion relation. We obtained cor-
relations of 0.805, 0.812 and 0.807 for our replica, the Rubinstein and Goode-
nough experiment, and the Millar and Charles experiment, respectively. These
are higher than the correlations obtained by Resnik and Hirst and St-Onge,
but slightly lower than the correlations obtained by Lin, Jiang and Conrath
and Leacock and Chodorow.

Because these original experiments only measured similarity between a-
tomic concepts, we expanded the set of concept pairs to include ten additional
compound concept pairs. The high correlation between the mean similarity
ratings assigned for the original 30 concept pairs in our replica study are seen
as an indication of the validity of the values assigned by the same test persons
for the compound concept pairs.

Our experiment with compound concepts showed that humans assign in-
creased similarity for concepts sharing aspects and attributes, and that the
weighted shared nodes measure assigns values that correlate highly with this.
A very high correlation of 0.87 was obtained between our replica experiment
for the ten compound concept pairs and the similarity values assigned by the
weighted shared nodes. We consider this to indicate that the inclusion of ad-
ditional aspects in the form of other semantic relations corresponds to a large
extent to how humans rate similarity, which in turn validates not only the as-
sumption behind, but also the actual properties of the weighted shared nodes
measure.

The aim of studying ontological similarity measures in this thesis is to
improve the retrieval of information. Whether or not the weighted shared
nodes measure would contribute to this purpose is not a conclusion that can be
drawn directly from this chapter. We can only conclude that if we were able to
incorporate the similarity ratings calculated using the proposed measure into
our evaluation methodology, then we could obtain the means for performing

117



ontology-based query expansion, which to some extent follows the way humans
compare and relate concepts as well as the structure and relations of the
ontology.

Finally, as a more general observation, we would like to emphasize that the
modeling of similarity or relatedness functions is far from objective. It is not
possible to define optimal functions either in general or in a domain specific
case. We can only attempt to make flexible and parameterized functions on
the basis of obvious “intrinsic” properties with intuitive interpretations and
then adjust and evaluate these functions on an empirical basis. The tailoring
of the proposed similarity function can be done according to specific needs
regarding the structure and relations of the ontology covering the domain.

118



119



Chapter 6

Query Evaluation

The purpose of this chapter is to fuse together the ideas of ontological indexing
and ontological similarity into a realistic information retrieval scenario, and in
so doing, promote semantics in the document retrieval process.

The descriptions revealed by ontological indexing can vary in their degree
of abstraction from simple atomic concepts to complex Ontolog expressions.
The query evaluation should naturally adapt to the type of description in
order to obtain the full power of the ontological indexing. To achieve this,
a generalized fuzzy retrieval model scalable to different kinds of description
representations is used.

In the utilization of ontological similarity in the query evaluation process,
similarity measures compare concepts, while the query evaluation compares
descriptions, i.e. descriptions of queries are compared to descriptions of docu-
ments. The most obvious solution for introducing ontological similarity in the
query evaluation is to modify the descriptions to include revealed knowledge,
more specifically, to expand the descriptions with similar concepts found using
ontological similarity. An approach we have named “semantic expansion”.

Moreover, the introduction of ontological knowledge in the retrieval process
appears to have two different obvious prospects. One concerns the ontology
as a target for querying and hence the retrieval of knowledge instead of doc-
uments, while the other one involves the use of the structure of the ontology
for surveying, navigating, and visualizing the domain covered by the system’s
document base.

In conventional information retrieval, the evaluation is measured by recall
and precision, the ratio of the relevant documents found and all possible rele-
vant documents, as well as the ratio of relevant and non-relevant documents in
a given retrieval (see Section 2.2). Obviously this evaluation criterion should
apply for ontology-based retrieval systems, too. The testing process of query
evaluation should also include user tests, since a measure of the retrieval eval-
uation would be only one view of the retrieval process in general. Here we
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make suggestions to indicate improvements and justify the intentions of this
approach using superficial experiments, allowing room for further work using
in-depth and real life experiments.

6.1 Semantic Expansion

The purpose of the expansion of descriptions is to reduce the gap between user
intention and system interpretations of queries and documents. An expansion
that adds relevant aspects to a description will lead to increased recall and
the assumption is that this, in turn, will lead to better answers because the
resulting reduced precision can be dealt with through inherent modification
mechanisms of the evaluation principle, for instance, the ranking of results.
The semantic expansion introduced here can be seen as a method for softening
the interpretation of a concept, which is given by the position of the concept in
the ontology. To achieve semantic expansion, a set of similar concepts defined
by some kind of ontology-based similarity measure is used.

In an ontology-based system, the idea is to map information found in
documents or queries into an ontology, and in so doing, draw closer to the
meaning of the information. Normally, some kind of sense disambiguation is
used to determine the exact position in the ontology, which is a process of
selecting the right interpretation among the possible ones (see Section 4.2.2).
This selection would of course exclude some interpretations, which due to the
uncertainty, could actually be the right ones. One solution to this problem
is not to choose, but instead weigh different interpretations proportionally in
relation to how likely they are in the given context. Irrespectively of whether
interpretations are disambiguated or weighted, a semantic expansion can be
used to reveal similar information in the query evaluation process.

The aspects considered in determining the strategy for a semantic expan-
sion are the “cost” in terms of time and space, and the degree of flexibility;
that is, the possibility of managing the constraints that control the expansion
process. Examples of such constraints are thresholds determining the size of
the expansion and the degree of similarity of the expanded concepts. How-
ever, the choice of similarity function and thresholds concerning this function
are also considered as constraints of the expansion. Parts of the expansion
process may be computationally complex and may therefore be essential to
handle prior to the query evaluation in order to reduce the response time of
the retrieval. Consequently, this can lead to a reduction in flexibility, as some
constraints may have to be fixed do to this preprocessing.

The expansion of documents, denoted object expansion, is a process where
concepts found in the descriptions of documents are expanded. Object expan-
sion is normally done as a part of the indexing process, and not during the
query evaluation. The advantage of this type of expansion is that the process
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can be moved from the query evaluation to a preprocessing (normally, the
indexing process). This can reduce the amount of time consumed at query
time, given that the time spent on searching and fetching data in the consid-
erably larger (expanded) index does not counterbalance the time gained by
the preprocessing. The disadvantages of object expansion are that it can be
very space consuming and can reduce flexibility, since a possible consequence
of preprocessing the expansion is that some of the constraints become fixed.

Another kind of expansion is query expansion, where the description of the
given query is expanded. The “cost” of query expansion is normally trifling,
due to the small size of queries, in contrast to object expansion, and therefore
the processing of queries can easily be done at query time. One major benefit
of query expansion is the flexibility, since all the constraints are unbound. The
drawback is that queries often are very limited (short), and therefore difficult
to interpret, which can influence the quality of the expansion.

In this thesis, query expansion is the chosen expansion strategy because
full access to all constraints is necessary in order to experiment with different
models and parameters.

6.1.1 Concept Expansion

The goal of a concept expansion is to expand the interpretation of a given con-
cept with closely related concepts in order to achieve a match on “conceptual
content” rather than on specific words or concepts, as well as to compensate
for the uncertainty due to ambiguous senses in natural language. Concepts
are closely related when they have a high degree of similarity, which for the
similarity measures in use here means concepts that are positioned closely
together in the ontology with respect to distance. The quality of a concept
expansion could be thought of as the ability of the expansion to substantiate
the user’s interpretation of a given concept. In the information retrieval sys-
tem, this would equal the ability of the system to reveal documents judged
relevant by the users. To establish whether a given expansion is supportive or
deceptive is difficult since similarity is rather subjective and most likely needs
to be determined empirically for a given system or left open to the users by
giving options to justify the parameters of the expansion.

Let us assume that the foundation of the expansion is an instantiated
ontology describing the domain of the given retrieval system; hence, we have
a finite ontology. In Figure 6.1, a simple instantiated ontology of the concepts
cat [chr: black ] and poodle[chr: black ] is shown. This ontology is used as the
foundation for the examples given in this section.

The similarity functions discussed in Chapter 5 compare pairs of concepts
and calculates their degree of similarity. The semantic expansion requires a
function, which for a given concept returns a fuzzy set of similar concepts
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Figure 6.1: An instantiated ontology over the concepts cat[chr: black] and
poodle[chr: black]

where the membership function defines the similarity measure. A simple ex-
ample is a function that expands to all related concepts

similar(c) =
∑

ci∈C

sim(c, ci)/c (6.1)

assuming an instantiated ontology where C = {c1, c2, . . . , cn} is the set of all
concepts, and where the similarity function sim, for instance, could be defined
as the shared note similarity:

sim(x, y) = ρ
|α(x) ∩ α(y)|

|α(x)|
+ (1 − ρ)

|α(x) ∩ α(y)|

|α(y)|
(6.2)

Query expansion can be either static or dynamic. Static means the com-
putation of the similarity is done in advance, and dynamic means that the
computation is done at the time of the query evaluation.

A simple static approach is to represent the degree of similarity for any
pair of concepts in the ontology in a similarity matrix. The advantage of this
approach is that the expansion easily can be derived from the similarity matrix
without the need of traversing the ontology. The disadvantages of a similarity
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matrix are the lack of flexibility, as the similarity measure is fixed, the potential
computational complexity and the rather space consuming attributes of large
ontologies.

The space consumption can be reduced by using a threshold for the smallest
degree of similarity to be included in the similarity matrix, thereby changing
the similarity matrix into a sparse matrix. This will, however, not reduce the
cost of computing similarities between concepts, and a similarity matrix would
also need recalculation whenever the ontology changes.

The flexibility can be partially regained using partial preprocessing, an ap-
proach where partial results used for the computation of the similarity measure
are stored. Using the similarity function (6.2) as an example, the computa-
tional complexity is bound to the upwards expansion α(x) of the concepts and
the intersection between these upwards expansion for pairs of concepts. One
example of partial preprocessing which maintains some of the flexibility is a
matrix with information about the cardinality of shared nodes for any pair of
concepts in the ontology. Table 6.1 shows the matrix for the cardinality of the
shared nodes as the value of the (i, j)’th entry of the ontology in Figure 6.1.
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anything 1 1 1 1 1 1 1 1 1
animal 1 2 1 2 2 1 2 2 2
color 1 1 2 1 1 2 1 2 2
dog 1 2 1 3 2 1 3 2 3
cat 1 2 1 2 3 1 2 3 2
black 1 1 2 1 1 3 1 3 3
poodle 1 2 1 3 2 1 4 2 4
cat [chr:black ] 1 2 2 2 3 3 2 6 4
poodle[chr:black ] 1 2 2 3 2 3 4 4 7

Table 6.1: The cardinality of the shared nodes of concepts in the ontology from Figure
6.1

A dynamic expansion approach, on the other hand, necessitates time opti-
mizations as the expansion is computed at query time. The similarity measure
is influenced by distance in the ontology and most closely related concepts are
therefore the concepts in the “ontological surroundings” of the concept that
we want to expand. One obvious solution is to reduce the traversing of the
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ontology to only the set of closely positioned concepts we want to include in
the expansion. The idea is that an expansion function starts traversing the
ontology at the initial concept (the concept we want to expand) and follows
the paths through its relations. This idea is similar to a technique called
spreading-activation [Collins and Loftus, 1988] used in semantic networks to
find the least upper bound between two or more nodes in semantic networks.
In spreading-activation, nodes are activated when the activation traverses the
network, which means the traversing can be controlled in order not to visit
the same node twice. An expansion function inspired by this technique should
then start by activating the initial concept, followed by all concepts directly
related in the ontology, followed by their related concepts, and so forth, as acti-
vation spreads across relations in the ontology. Ordinary spreading-activation
can quickly reach every concept in the ontology, and since many of the con-
cepts found this way would not be pertinent, heuristics must be introduced
to constrain the search algorithm in order to favor the the concepts that are
most similar. The three most obvious parameters for such constraints are the
degree of similarity, the number of edges from the initial concept (distance),
and the number of concepts in the expansion (cardinality). Only the first
parameter guarantees that all the concepts found by the expansion are inside
a given limit with respect to the degree of similarity, since concepts within a
given number of edges from the initial concept or the cardinality of the ex-
pansion can not ensure this. Combinations of the constraints are naturally
possible, for instance, when a given degree of similarity in combination with
a given maximal cardinality of the set of expanded concepts, which can be
used to compensate for varying density in the ontology, thus restraining the
expansion whenever the density is very high in order not to generate large sets
of expansions.

Let C be the set of concepts and the similarity function sim (6.2) the
shared note similarity, then the expansion can be defined as:

expansionα(c) = {sim(c, c′)/c|sim(c, c′) ≥ α} (6.3)

where c, c′ ∈ C and α a threshold for the degree of similarity.
Take, for example, the ontology in Figure 6.1 and the expansion function (6.3)
with (6.2) as the sim function where ρ = 0.8, then the expansion of the concept
cat is:

expansionspreading(cat) =
0.73/animal + 0.90/cat[chr:black]+
0.47/anything + 0.67/dog + 0.33/black+
0.37/color + 0.63/poodle + 0.59/poodle[chr:black]

where each line in the fuzzy set refers to an activation step in the expansion.
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6.2 Query Evaluation Framework

In the indexing process, the documents are analyzed and the concepts are
extracted and mapped into the ontologies. The result of the indexing process
is reflected in an instantiated ontology describing the domain of the documents
stored in the retrieval system. The document indexing combined with the
instantiated ontology forms the basis for the query evaluation, and the input
to the query evaluation is queries which may or may not be semantically
expanded.

In principle, any retrieval model that supports weighted descriptions for
both queries and documents is usable for the query evaluation framework in-
troduced here. Thus, of the models introduced in Chapter 2, both the vector
and fuzzy model fulfill this requirement. However, the fuzzy retrieval model
has advantages over the vector model for the purpose in this context, espe-
cially with respect to the opportunity of modifying the logical interpretation
of queries and the grouping of information in the queries, which is important
in order to grasp the intrinsic structure of the natural language obtained by
natural language processing.

6.2.1 Simple Fuzzy Query Evaluation

The foundation of fuzzy information retrieval is introduced in Section 2.1.5.
Descriptions of both queries and documents are fuzzy sets where membership
functions describe the strength of the relation between descriptors and descrip-
tions. In the simplest case, a descriptor can either be part of a description or
not, while evaluation in the model would in this case resemble “best match”
in the Boolean model.

The general idea in simple fuzzy query evaluation is to compare the de-
scription of a query represented by a fuzzy set to the fuzzy sets that define
the descriptions of documents in order to find the documents that best match
the query. The result of a query evaluation is a fuzzy subset of the documents
which match the query, where the retrieval status value (RSV ) is defined by
the membership function µQ(d) as the degree of relevance of document d to
query Q.

One way to define this membership function is by use of the relative sigma
count:

RSVQ(d) = µQ(d) =

∑
c∈Q min(µd(c), µQ(c))

∑
c∈Q µQ(c)

where µd(c) is a membership function which defines the strength of the relation
between a given concept c and a document d and µQ(c), a membership function
that defines the strength of the relation between a given concept c and the
query Q.
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The indexing of documents is defined as a binary fuzzy index relation,
which defines the relation between documents and concepts (see 2.1.5 for the
definition). As an example of simple fuzzy query evaluation consider a re-
trieval system that consists of the following set of documents, D, with three
documents and the set of concepts, C, with three concepts:

D = {d1, d2, d3}
C = {c1, c2, c3}.

The indexing would then define the degree to which each concept ci is assigned
to each document dj :

I = {1/(d1, c1) + 1/(d1, c2) + 0/(d1, c3)+
1/(d2, c1) + 0/(d2, c2) + 1/(d2, c3)+
0/(d3, c1) + 1/(d3, c2) + 1/(d3, c3)},

and the descriptions of specific documents can be derived from the binary
fuzzy index relation I as:

Id1 = {1/c1 + 1/c2 + 0/c3}
Id2 = {1/c1 + 0/c2 + 1/c3}
Id2 = {0/c1 + 1/c2 + 1/c3}.

In a query evaluation with the query Q = {c1, c2}, a relative sigma count of
µQ(d), and the above example system, the evaluation would be computed as
follows:

µQ(d1) =
min(µd1

(c1),µQ(c1))+min(µd1
(c2),µQ(c2))

µQ(c1)+µQ(c1) = min(1,1)+min(1,1)
1+1 = 1

µQ(d2) =
min(µd2

(c1),µQ(c1))+min(µd2
(c2),µQ(c2))

µQ(c1)+µQ(c1) = min(1,1)+min(0,1)
1+1 = 0.5

µQ(d3) =
min(µd3

(c1),µQ(c1))+min(µd3
(c2),µQ(c2))

µQ(c1)+µQ(c1) = min(0,1)+min(0,1)
1+1 = 0.

The result of a given query Q can then be ordered by the value of µQ(d) (the
RSV ) with the best match first, as in the above example. All non-relevant
documents can be excluded from the resulting fuzzy set by use of a threshold
for the lowest acceptable value of RSV . For instance, RSV > 0, which would
exclude document d3 from the result in the above example. This example
also shows that in the general case where all concepts in C are assigned to
every document in D by the binary fuzzy index relation, every document has
to be evaluated. Obviously, some kind of optimization is preferable since the
subset of documents relevant for average queries is far from the complete set
of documents. One such optimization is to define a subset PQ of documents
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D with the set of documents that can possibly satisfy the query Q. A set of
document descriptions indexed by a concept x, a document list, can be defined
on the basis of the binary fuzzy indexing relation I, given x ∈ Q, as the fuzzy
subset Ix of document descriptions about x:

Ix = {µIx(d)/(d)|d ∈ D; µIx(d) = µI(d, x)}

The set PQ of document descriptions that possibly satisfy the query is then
given by:

PQ =
⋃

x∈Q

Ix

where PQ represents the union of document lists associated with each of the
descriptors in the query. Since the objective is to locate only the top set of
ranking document descriptions, we can define:

RSVQ(α) = {µQ(d)/d|µQ ≥ α; d ∈ PQ}

as the documents which best fulfill the query, which is restricted to the doc-
ument descriptions in PQ, instead of the full collection D and the subset of
documents with RSVQ(α) greater or equal to the threshold α.

6.2.2 Ordered Weighted Averaging Aggregation

In the above simple fuzzy query evaluation, queries are evaluated by the rela-
tion between the fuzzy set describing the query and the fuzzy set describing
documents (in the above example as the relative sigma count between these
to fuzzy sets). One way to generalize this retrieval model is to introduce order
weighted averaging (see Section 2.1.5)1. In order to support this aggregation,
the descriptors in queries have to be evaluated separately, that is, instead of a
membership function for the query µQ(d), we need to define membership func-
tions for each descriptor in the query, µqi

(d), such that the value µqi
(d) ∈ [0, 1]

is the degree to which the document description d satisfies the query descriptor
qi. The overall valuation of d is thus:

µQ(d) = OWAW (µq1(d), . . . , µqn(d)).

where W is the weighting vector used in the aggregation (see Section 2.1.5 for
a description of aggregation with weighting vectors).

The ordered weighted averaging operator aggregation principle is very flex-
ible and may further include importance weighting in the form of an n-vector
M = (m1, . . . , mn), mj ∈ [0, 1] giving attribute importance to q1, . . . , qn such

1The presentation of Ordered Weighted Averaging Aggregation in Section 6.2.2 is a ren-
dering of the original presentation given in [Andreasen et al., 2005b].
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that, for instance, M = (1, 0.8, 0.8, . . .) gives more importance to q1, while
importances are not discriminated with M = (1, 1, . . .). The introduction of
attribute importance corresponds to a modification of the valuation µQ(d) into
OWAW (µq1(d) ∗ m1, . . . , µqn(d) ∗ mn).

Recall that the aggregation may be modeled by a “linguistic quantifier”,
which basically is an increasing function K : [0, 1] → [0, 1] where K(0) = 0
and K(1) = 1, such that the order weights are prescribed as:

wj = K(
j

n
) − K(

j − 1

n
).

Linguistic quantifiers can lead to values of W and we can model, for in-
stance, a quantifier EXISTS by K(x) = 1 for x > 0, FOR-ALL by K(x) = 0
for x < 1, and SOME by K(x) = x, while one possibility (of many) to in-
troduce MOST is by a power of SOME, e.g. K(x) = x3. Thus, we have a
general query expression:

Q =< q1, . . . , qn : M : K >

where q1, . . . , qn are the query descriptors, M specifies the importance of
weighting for these, and K specifies a linguistic quantifier and thereby in-
dicates an order weighting. The corresponding generalized valuation function
is:

µQ(d) = OWAM,w(K)(µq1(d), . . . , µqn(d)) (6.4)

assuming a function w(K) → [0, 1]n that maps onto the set of order-weights
corresponding to quantifier K.

6.2.3 Hierarchical Aggregation

A hierarchical approach to aggregation generalizing the ordered weighted av-
eraging operator is introduced in [Yager, 2000]. Basically, hierarchical aggre-
gation extends ordered weighted averaging to capture nested expressions2.

Query attributes may be grouped for individual aggregation and the lan-
guage is orthogonal in the sense that aggregated values may appear as ar-
guments to aggregations. Thus, queries may be viewed as hierarchies. For
example, the following nested query expression can be posed:

1. < µq1(d),
2. < µq2(d), µq3(d),
3. < µq4(d), µq5(d), µq6(d) : M3 : K3 >
4. : M2 : K2 >,

2The presentation of Hierarchical Aggregation in Section 6.2.3 and 6.2.4 is a minor mod-
ified rendering of the original presentation given in [Andreasen et al., 2005b].

129



anything

animal

ISA

color

ISA

noise

ISA

cat

ISA

dog

ISA

black

ISA

brown

ISA

noise[CBY:dog]

ISA

cat[CHR:black]

ISA

dog[CHR:black]

ISA

dog[CHR:brown]

ISACBY

noise[CBY:dog[CHR:black]]

CBY

CHR CHR

CHR

CHR

ISA

Figure 6.2: A simple instantiated ontology based on the set of instantiated concepts
cat[chr:black], dog[chr:black], dog[chr:brown], noise[cby:dog[chr:black]]

5. : M1 : K1 >

Again, µqi
(d) measures the degree to which attribute qi conforms to document

description d, while Mj and Kj are the importance and quantifier applied in
the j’th aggregate. In the expression above, M1 : K1 parameterizes aggrega-
tion at the outermost level of the two components µq1(d) and the expression
in lines 2 to 4. M2 : K2 parameterizes the aggregation of the three compo-
nents µq2(d), µq3(d), and the innermost expression (line 3), while M3 : K3

parameterizes aggregation of the three components µq4(d), µq5(d), and µq6(d).

6.2.4 Hierarchical Query Evaluation Approaches

Two major cases of description structure are distinguished between – simple
unested sets and nested sets.

Aggregation on unnested descriptions

The simple set-of-descriptors structure for descriptions admits a straightfor-
ward valuation approach for a similarity query description:

Qsim =< q1, . . . , qn : (1, 1, . . .) : SOME > (6.5)
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The aggregation here is simple in that importance is not distinguished and
SOME, corresponding to the simple average, is used as a quantifier. A valua-
tion can be:

µQsim
(d) = F(1,1,...),w(SOME)(µq1(d), . . . , µqn(d))

with the individual query-descriptor valuation functions as:

µqi
(d) = maximumj{x|x/dj ∈ similar(qi)}

For instance, the query Q =< dog[chr:black], noise > and the instantiated
ontology in Figure 6.2 with a threshold on 0.4 means that:

similar(dog[chr:black]) =
1/dog[chr:black] + 0, 7/dog[chr:brown]+
0, 68/dog + 0, 6/cat[chr:black]+
0, 58/noise[cby:dog[chr:black]] + 0, 52/animal+
0, 45/cat + 0, 45/black + 0, 42/noise[cby:dog]

similar(noise) =
1, 00/noise + 0, 90/noise[cby:dog]+
0, 87/noise[cby:dog[chr:black]]+
0, 60/anything + 0, 50/animal + 0, 50/color+
0, 47/cat + 0, 47/black + 0, 47/dog + 0, 47/brown+
0, 44/cat[chr:black] + 0, 44/dog[chr:black]+
0, 44/dog[chr:brown]

and, for instance, the following:

µQsim
({noise[cby:dog]}) = 0.66

µQsim
({noise[cby:dog[chr:black]]}) = 0.73

µQsim
({dog, noise}) = 0.84

µQsim
({cat[chr:black], noise}) = 0.80

Finally, when considering the example of Q =< noise[cby:dog[chr:black]] >
and the instantiated ontology in Figure 6.2 with a threshold of 0.4, the result
is:

similar(noise[cby:dog[chr:black]]) =
1, 00/noise[cby:dog[chr:black]]+
0, 73/noise[cby:dog] + 0, 52/dog[chr:black]+
0, 47/noise + 0, 40/dog + 0, 40/black

and among valuations are the following:

µQsim
({noise[cby:dog[chr:black]]}) = 1.00

µQsim
({noise[cby:dog], black}) = 0.73

µQsim
({noise, dog[chr:black]}) = 0.52

µQsim
({noise, dog, black}) = 0.47
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Nested aggregation on unnested descriptions

An alternative is to expand the query description Q to a nested expression:

µQsim
(d) =

<< µq11(d), . . . , µq1k1
(d) : M1 : K1 >,

< µq21(d), . . . , µq2k2
(d) : M2 : K2 >,

. . .,
< µqn1(d), . . . , µqnkn

(d) : Mn : Kn >,
: M0 : K0 >

where for each qi, we set:

< µqi1/qi1, . . . , µqiki
/qiki

>= similar(qi)

and use as individual valuation:

µqij
(d) =

{
µqij

, when qij ∈ {d1, . . . , dm}
0, otherwise

In the case that we use equal importance and the following combination of
quantifiers:

µQsim
(d) =

<< µq11(d), . . . , µq1k1
(d) : (1, 1, . . .) : EXIST >,

< µq21(d), . . . , µq2k2
(d) : (1, 1, . . .) : EXIST >,

. . .,
< µqn1(d), . . . , µqnkn

(d) : (1, 1, . . .) : EXIST >,
: (1, 1, . . .) : SOME >

we get a valuation identical to that of the function in the previous subsection.
However, with the nested expression, the option also exists to use an un-
weighted similarity function and to introduce the differentiation of influence
from relations by importance weighting, as indicated below. For the query
description Q =< dog[chr:black], noise >:

µQsim
(d) =

<< µqdog[chr:black]
(d), µqdog

(d), µqblack
(d), . . .

: (1, 1, 0.5, . . .) : EXIST >,
< µqnoise

(d), . . . : (1, 1, . . .) : EXIST >
: (1, 1, . . .) : SOME >

where the importance of, for instance, the different elements of noun phrases
are stressed, e.g. that dog[chr:black] (the noun phrase) and dog (the head of
the noun phrase and the generalization) both have importance 1, while black
(the modifier) only has importance 0.5.
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Aggregation on nested descriptions

In some cases, when text is processed by partial analysis, as described in
Chapter 4, an intrinsic structure appears as the most obvious choice for the
description. A multi-level parsing, for instance, a two-phase parser that groups
words in the documents into groups corresponding to noun phrases in the first
phase, and derives compound descriptors from the words in each noun phrase
individually in the second, is an example of a parsing that creates an intrinsic
structure. Thus, we have as an intrinsic structure from the first phase – a set
of sets (or lists) of words. Now, if it was always possible to extract a unique
compound concept as a descriptor from an inner set, the resulting intrinsic
structure from the second phase would be the single set, as assumed above.
However, in many cases, it is not possible, and the information is thus lost
due to flattening to a single set. This indicates that a set-of-sets structure is
a better description structure and suggests that descriptions are sets of sets
of descriptors such that the query structure is:

Q =< Q1, . . . , Qn >=<< q11, . . . , q1k1 >, . . . , < qn1, . . . , qnkn
>>

where the Qi’s are sets of descriptors qij , j = 1, . . . , ki, and a text index is:

d = {d1, . . . , dm} = {{d11, . . . , d1l1}, . . . , {dm1, . . . , dmlm}}

where the di’s are sets of descriptors dij , j = 1, . . . , li.
This, however, demands a modified valuation and since, in this case, the

initial query expression is nested, a valuation over a nested aggregation also
becomes the obvious choice. First of all, note that the grouping of descriptors
in descriptions has the obvious interpretation of a closer binding of descriptors
within a group than across different groups (in contrast to the simple fuzzy
query evaluation, where queries are evaluated as single fuzzy sets). As a
result, qij(d) cannot be evaluated individually, but has to compare groups, for
instance, by a restrictive quantification over qi1(dj), . . . , qiki

(dj), as well as by
using an EXIST quantification over j to get the best matching dj for a given
Qi. A valuation can thus be:

µQsim
(d) =

<<< µq11(d1), . . . , µq1k1
(d1) : M11 : MOST >,

. . .,
< µqn1(d1), . . . , µqnkn

(d1) : Mn1 : MOST >
: M1 : EXIST >,

. . .,
<< µq11(dm), . . . , µq1k1

(dm) : M11 : MOST >,

. . .,
< µqn1(dm), . . . , µqnkn

(dm) : Mn1 : MOST >
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: Mm : EXIST >,
: M0 : SOME >

The individual query-descriptor valuation functions can be set to:

µqij
(dk) = maximuml{x|x/dkl ∈ similar(qij)}

As opposed to the single set description example above, the qijs here are
the original descriptors from the query. While choices of inner quantifiers are
significant for correct interpretation, the choice of SOME at the outer level
for the component description is just one of many possible choices to reflect
user preference of overall aggregation.

6.3 Knowledge Retrieval

The goal of posing queries to an information retrieval system is information,
which would normally be documents covered by the system. In that case,
the objective of the querying is document retrieval. Another objective could
be knowledge retrieval, where the goal of querying is the knowledge covered
by the indexing of the information in a retrieval system. A simple example
is information about occurrences of particular words, combinations of words,
etc. in statistical approaches. The introduction of ontologies makes this kind
of querying even more interesting as it gives the opportunity for questioning
knowledge “hidden” in the mapping between the information in the documents
and the information in the ontologies3.

An obvious extension to a framework where the evaluation of queries to
documents involves the interpretation of the queries based on an ontology
is a means for providing conceptual answers formed by ontology concepts.
Evaluation of an ontology query can thus be considered as an intermediate
step in the evaluation of queries for documents. In this case, the “ontology”
can be one of the following:

• The initial ontology, a set of external resources, e.g. WordNet plus a
top-ontology,

• The generative ontology, defined as an infinite ontology that can be
created by the initial ontology and a set of relations, or

• The instantiated ontology, a finite ontology formed by a generative
ontology restricted to the concepts found in the set of documents,

3The presentation of Knowledge Retrieval in Section 6.3 is a modified rendering of the
presentation of “Quering by descriptions expressions” given in [Bulskov et al., 2004].
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where the latter appears to be the most interesting as it covers, on the one
hand, the domain of the given retrieval system, and on the other, reflects
the content of the document base. The first two may however be useful for
ontology engineers, domain experts, etc. in connection with domain modeling.

Aggregation for multiple concept queries can be done in several ways with
one simple option being fuzzy union. This topic is further discussed in [An-
dreasen et al., 2002; Andreasen, 2001; Yager, 2000].

The retrieval framework presented here can be extended to allow queries
posed directly as expressions in the concept language, thereby using the con-
cept language as the query language. Thus in place of the phrase “Some
black cat” or a list of words query “black, cat” to support a description query
“cat [chr:black ]”.

Let us consider ontology queries and assume an instantiated ontology in-
terpretation. The answer to a single concept query is then a set of concepts
appearing in the (descriptions of) documents that are most similar to the query
concept, which is identical to an interpretation where the concept query is the
expansion function (6.3), CQ(c) = expansion(c). Consider, for example, the
query CQ = “cat [chr:black ]” evaluated using expansionα(CQ), where α is
a threshold limiting the set of similar concepts to those with a membership
grade (i.e. similarity) ≥ α. The query is evaluated in the ontology shown in
Figure 6.1, resulting in the following similar concepts:

similar0.6(cat[char:black]) = .90/cat[chr:black]+
.73/animal+
.67/dog+
.63/poodle

This type of querying may be applicable in cases where the user has knowl-
edge about the ontology and the database content and has a rather specific
intention. Without knowledge about the ontology, however, it may be diffi-
cult in any case to pose such concept queries. Moreover, only brief knowledge
about the database content would probably often give unsatisfactory or empty
answers to posed queries.

Another argument that motivates concept queries is that posing a natural
language query means letting go of control and the responsibility for a satis-
factory conceptual representation to the system. With a concept query, the
user gains control over the interpretation of the intention of the query, but
may face problems with expressing queries for knowledge in the concept lan-
guage. For instance, if the user is interested in knowledge about “colored dogs
in general or any specific type of colored dogs”, then the query is problematic
because it cannot be expressed using pure concept language.

With special attention to experienced users and domain experts, it appears
that there is a need for a query language with more expressiveness concerning
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“navigating” the ontology. For instance, a document about “a very large black
dog” will only belong, to some (if any) extent, to the answer on the query “large
pet” due to the similarity based evaluation of queries.

6.4 Query Language

A concept as a query maps to a set of similar concepts, while similarity is
influenced by distance in the ontology. The extension to the concept lan-
guage introduced here is specialization/generalization operators to cope with
a quite useful notation for disjunctions along specialization and/or generaliza-
tion in the ontology, thus avoiding reduced similarity over paths of specializa-
tion and/or generalization4.

Given the concept language L based on the set of atomic concepts A and
the set of semantic relations R, as described in Chapter 4, we define an exten-
sion of L to a query language QL as follows:

• L ⊆ QL

• ∗ ∈ QL

• if c ∈ L then c> ∈ QL and c< ∈ QL

• if c ∈ QL, ri ∈ R and ci ∈ QL, i = 1, . . . , n
then c[r1 : c1, . . . , rn : cn] ∈ QL

The interpretation of this extended language is the following. ∗ denotes
any well-formed concept in L. c> denotes any specialization of c, while c<

denotes any generalization of c. A query involving the operators <,> and ∗
can be considered a disjunctive query over the set of denoted concepts.

With the ontology in Figure 6.1, dog< denotes all of {dog, animal, any-
thing}, while dog> denotes all of {dog, poodle, poodle[chr:black ]}. The set of
denoted concepts for a query is obviously the crisp answer to the query when
evaluated in the ontology. Thus, a query like “Do we have dogs”, with the in-
terpretation “Give me a dog or some specialization of that” can be expressed
in the query dog> and the answer provides a conceptual description of the
kinds of dogs that are currently contained in the database without specifica-
tion of actual dogs and that are without cardinalities. The answer will read
something to the effect of “We have poodles in black color”.

Also with the ontology in Figure 6.1, cat[chr:black<] denotes all of:

{cat[chr:black], cat[chr:color], cat[chr:anything]}

4The presentation of Query Language in Section 6.4 is a minor modified rendering of the
original presentation given in [Bulskov et al., 2004].
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Concepts that are not part of the ontology such as animal[chr:black] can, of
course, also be used in queries with animal[chr:black<] which denotes:

{animal[chr:black], animal[chr:color], animal[chr:anything]}

One reasonable question related to the introduction of specialization/ge-
neralization-queries is the extent to which such aspects are already covered
by the pure concept language. How is an expression such as animal[chr:∗]
necessary for representing “Animal characterized by just anything”5, when
animal[chr:⊤], which basically denotes the same thing, can already be ex-
pressed. The most important argument for the extension is that we have
to cope with the side-effects from introducing similarity, and also especially
consider graduated decreases in similarity over longer paths of specialization.

All concept queries expressed with the query language QL can naturally
be used in document retrieval as well, since it would just denote multi-concept
queries. It would therefore also make sense to expand concept queries and
then include similar concepts in the surroundings of the specialization/gene-
ralization paths defined by the concept queries. For instance, the expansion of
the queries “animal” and “animal>” with respect to the instantiated ontology
in Figure 6.1 is:

similar0.5(animal) = 1, 00/animal+ similar0.5(animal>) 1.00/animal+
0.93/dog+ 1.00/dog+
0.93/cat+ 1.00/cat+
0.90/poodle+ 1.00/poodle+
0.87/cat[chr:black:]+ 1.00/cat[chr:black:]+
0.86/poodle[chr:black:]+ 1.00/poodle[chr:black:]+
0.60/anything+ 0.60/anything+
0.50/color 0.60/black+

0.50/color

where it is shown that all the concepts on the specialization path form a set
of disjunctive concepts, thus giving 1.00 as the degree of similarity.

6.5 Surveying, Navigating, and Visualizing Domain
Knowledge and Information Content

Instantiated ontologies can describe the domain of any given subset of con-
cepts, i.e. restrict a general ontology to a set of instantiated concepts appear-
ing, for instance, in a given set, in a document, or in a set of documents6.

5Note that animal[chr:∗] and animal[chr:⊤>] are equivalent.
6The presentation given in Section 6.5 is a minor adjusted rendering of the original pre-

sentation given in [Andreasen et al., 2005a].
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As such, the instantiated ontology can be applied within navigation, sur-
veying, and the visualization of the topics covered by the domain in question.
Obviously, ontology engineers can benefit from the possibility of visualizing the
knowledge held by the ontology in use when maintaining the system. How-
ever, since the restriction can be from any set of concepts, the instantiated
ontologies can visualize the semantics of queries, found documents, the relation
between a query and a given document, etc., and thus, also be an improvement
for normal users.

Consider the following example of a document collection with the following
four instantiated concepts:

I = {stockade[chr:old], rampart[chr:old], church[chr:old], palisade}

and a combination of WordNet, SUMO, and MILO as the global ontology.

past

old

isa

church[chr: old]

chr

rampart[chr: old]

chr

stockade[chr: old]

chr

Artifact

Building

isa

structure

isa

Abstract
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time
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Object
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Physical

isa

TimeMeasure
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building

place_of_worship
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defensive_structure

fortification

isa

palisade
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rampart
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stockade

isaisa
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isa

isaisa

Entity

isa isa

Figure 6.3: A simple instantiated ontology, based on WordNet, SUMO, MILO, and
the four concepts stockade[chr:old], rampart[chr:old], church[chr:old], palisade

The instantiated ontology reveals two different aspects covered by the doc-
ument collection:
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1. Different kinds of fortifications and

2. A place of worship.

On a more general level, the instantiated ontology describes buildings and
the abstract notion of something dating back in time.

As one can see, there are concepts present in the instantiated ontology that
are either very abstract or not part of an everyday vocabulary. When the user
tries to form a general view of the document collection, such concepts could
possibly lead to confusion and could/should therefore be removed from the
visualization by utilizing the notion of familiarity as described in [Beckwith
et al., 1993]. Familiarity is defined using the correlation that exists between
frequency of occurrence and polysemy. Using the Collins Dictionary of the
English Language, an integer exists that is associated with every word form
in the lexicon and that represents a count of the number of senses the word
form has when it is used as a noun, verb, adjective, or adverb [Beckwith et
al., 1993].

This information can then be used to eliminate all concepts from the vi-
sualization of the instantiated ontology that have a familiarity lower than a
certain threshold.

Another use of instantiated ontologies is for visualizing user queries. When
users pose queries to the system using polysemous concepts, the instanti-
ated ontology constructed from the query can be used to visualize the dif-
ferent senses known to the system. If, for example, a user poses a query
Q = {bank, huge}, then the system cannot use the concept huge to resolve
the context/disambuiguate bank, since huge can be used in connection with
different senses of bank.

One possible way to incorporate the knowledge visualized is to let the user
identify the intended sense from the visualization, and then use the disam-
biguated concepts in the query evaluation.

6.6 Summary and Discussion

In this chapter, we have introduced a number of different ideas related to the
evaluation of queries in an ontological retrieval framework.

The first part of this chapter concerns semantic expansion, a way to intro-
duce the similarity functions introduced in chapter 5 in the query evaluation.
Two different expansion methods, object and query expansion, are discussed,
while the latter was chosen as it offers maximal flexibility. The semantic ex-
pansion can be seen as a softening of the interpretation of concepts by adding
relevant aspects to the query description. This will lead to increased recall and
the assumption is that this in turn will lead to better answers. Obviously, one
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consequence is reduced precision, but this problem can be eliminated by using
inherent modification mechanisms of the evaluation principle, for instance, the
ranking of results.

The computing of the query expansion can be either static or dynamic.
Static means that the computation of the similarity between concepts used in
the system is done in advance, while dynamic means that the computation is
done at query time. A simple static approach where the similarity between
concepts is captured in a similarity matrix is recommended. Naturally, a
static approach reduces flexibility as some of the constraints are bound, but by
using so-called partial pre-processing, some of the flexibility can be regained.
Dynamic expansion, on the other hand, offers maximal flexibility, but is more
time consuming. A dynamic expansion similar to the spreading-activation
algorithm used in semantic networks to determine least upper bounds between
two or more concepts is introduced. The idea of this function is to confine
the traversing of the ontology to the concepts we actually want to include
in the expansion. Hence, only a small fragment of the concepts would serve
as a softening of the interpretation of a given concept, while the rest would
only contribute with noise in the query evaluation. Noticeably, finding the
line of demarcation between the amplificational and the confusing concepts is
a key issue. However, to establish whether a given expansion is supportive or
deceptive for a given user is difficult, since similarity is rather subjective and
most likely needs to be determined empirically for a given system or left open
to the users by providing options to justify parameters of the expansion.

The second part of this chapter deals with the query evaluation framework
in response to a user request. The major issue in information retrieval is to
provide references to a set of documents that is likely to contain the informa-
tion desired by the user. This process implies several sources of imprecision.
First, the users may be looking for information they do not actually know they
are looking for, and it is questionable whether the information needed can be
reflected exactly in the query. Hence, the submitted query will be an imper-
fect expression of the information need. Second, descriptions of the content
are extracted from documents in the indexing process to produce the systems
representation of documents. Despite sophisticated indexing techniques, this
representation will only comprise a partial and imprecise characterization. Fi-
nally, the retrieval process should establish a relationship between imprecise
information needs and imprecise document descriptions to determine whether
a document is relevant or not. A number of different approaches have been
used to cope with the inexact representation of documents and queries (see
Chapter 2 for an outline of some of these approaches).

The motivation for selecting the fuzzy set retrieval model is the intrinsic
support of relevance as a multi-valued variable. This model grades documents
to be more or less relevant and the uncertainty is thus an inherent part of the
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decision-making issue. Furthermore, it takes into account, in a natural way,
the different contributions of domain concepts for the document and query
characterizations, which is reflected in a grading of the relevance of documents
to a given query.

A simple fuzzy query evaluation is introduced first, where a fuzzy set de-
scribing the query and fuzzy sets describing documents are used to determine
the relevance of documents to a query. A best match Boolean query evaluation
is a special case of the simple fuzzy query evaluation where the assignment of
concepts to documents is binary, i.e. the description model is binary. However,
even through the simple fuzzy query evaluation generalizes the Boolean model;
it is not expressive enough to capture the intrinsic structure of the conceptual
descriptions (Ontolog expressions). In order to include this intrinsic struc-
ture in the evaluation, we need to evaluate each element of queries separately
and let the relevance be an aggregate over these results. For this purpose,
order weighted averaging and hierarchical aggregation are introduced, where
the latter uses the former to group queries into hierarchies, hence introducing
nested query evaluation.

The final part of this chapter concerns different obvious prospects for in-
troducing ontological knowledge in the retrieval process. First, the idea of
knowledge retrieval is presented. The objective of information retrieval is re-
trieving documents, but the introduction of additional knowledge, external
to the documents, gives good reason for querying the knowledge covered by
the indexing of information in a retrieval system, e.g. the instantiated ontol-
ogy. The introduction of ontologies makes this kind of querying even more
interesting as it gives opportunities for questioning knowledge “hidden” in
the mapping between the information in the documents and the information
in the ontologies. Second, a query language, an extension to the concept
language, is introduced to support specialization/generalization operators to
cope with a quite useful notation for disjunctions along specialization and/or
generalization in the ontology. Finally, surveying, navigating, and visualizing
within the instantiated ontologies is briefly described. Instantiated ontologies
describe the domain of a set of instantiated concepts, and thus can be applied
within the navigation, surveying, and visualization of the topics covered by
the domain.
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Chapter 7

A Prototype

The purpose of this chapter is to sketch the structure and implementation of
an experimental prototype system that incorporates ideas presented and dis-
cussed in previous chapters. The prototype, which is English language based,
is inspired by a series of Danish language prototypes developed in the Onto-
Query project and considered the first step in a more advanced implementation
approach towards a final prototype for real life experiments. The prototype is
intended to be the foundation for the evaluation and testing of the three main
ideas introduced in this thesis, ontological indexing, ontological similarity, and
fuzzy information retrieval.

The ontological basis of the prototype is a manipulated version of WordNet
2.1 (described in Section 3.5.3), where only nouns, adjectives and adverbs are
considered. In addition, we use only a fragment of the relations present in
WordNet in order to establish the simplest useful prototype ontology.

The document base used in the first version of the prototype encompasses
sentences from the SemCor corpus [Miller et al., 1994]. This corpus has the
advantage that all words are tagged by part of speech, and many of the content
words are lemmatized and sense-tagged according to WordNet. A document
base therefore exists that can serve as test data with respect to part of speech
tagging and word sense disambiguation, and which can be selected for use
in place of the tagging and disambiguation modules in the prototype. The
manually established SemCor knowledge has a high validity and is therefore
well suited for isolated testing of the generation of descriptions.

In the prototype, we distinguish between a database and a knowledge
base. The former includes documents and descriptions of these, while the
latter contains knowledge, mainly in the form of an ontology and dictionaries.

The prototype includes two main components - description generation and
query evaluation. The descriptions are generated when loading documents to
the prototype database and when interpreting queries posed to the system.
The generation of descriptions consists of a shallow natural language process-
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ing, an extraction of descriptions, and a mapping of extracted concepts into
the prototype ontology. The query evaluation uses query expansion to in-
corporate ontological similarity and a hierarchical generalized fuzzy retrieval
model to evaluate the comparison of query and document descriptions, i.e.
reasoning within the description language Ontolog, in order to retrieve the
documents matched by queries.

In the following, the overall design considerations for the prototype are
touched upon first, followed by a discussion of the establishment of the pro-
totype ontology and a short description of the document base. Subsequently,
the generation of descriptions is examined, and finally, considerations about
the evaluation process are discussed.

7.1 Design Considerations

In view of the fact that most of the ideas introduced have to be adjusted em-
pirically, the prototype has to be flexible with regard to modifications. The
method used in this prototype to include a high level of changeability means di-
viding the overall functionality into smaller pieces with well-defined interfaces
and activities, which we call modules. For that purpose, the object-oriented
design paradigm is used, since one important facet of effective object-oriented
design is encapsulation. Encapsulation hides the inner details of the modules
from the outside, and common interfaces define how to use the modules and
access their information. For example, consider semantic expansion, a func-
tionality that returns a number of similar concepts to a given concept. The
interface to this functionality is very simple, while the underlying computation
is rather complex. Any change in the underlying computation of this func-
tion should still accept the same type of input and produce the same type of
output, even through the computation could be completely different. Hence,
the change of the substance of a module does not influence the prototype in
general.

A module can depend of other modules, thus forming a design structure
of nested modules. Modules in the prototype communicate by use of their
common interfaces and information is exchanged between modules by a set of
streams. The streams are data structures that hold the information necessary
for modules to communicate, and are designed by use of the object-oriented
design paradigm. In contrast to the modules, changing the substance of the
streams is normally not cost free, since the modules are designed to comply
with the information held by the streams and their interfaces.

Figure 7.1 shows the overall architecture of the prototype system with its
two main modules, indexing and evaluation, and their connections to the data
and knowledge bases.

The indexing module handles the input to the prototype system, which is
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Figure 7.1: A picture of the overall architecture of the prototype system

either documents or queries. This module performs the analysis and anno-
tation of the input, and is the union of an analysis module, which analyses
the content of the input, and a annotation module, which extracts information
from the analyzed input and creates the descriptions of the inputted objects.
The reason for subdividing into two minor modules is due to considerations
regarding the flexibility described above, as each of these modules can be
changed without having to change the other one. The point of joining the
modules of the description generation into a single module, the indexing mod-
ule, with a common interface and well-defined behavior is to encapsulate all
the inner details of the process.

Further treatment of the input in the system depends on whether it is
documents or queries. Documents are stored in the system by the description
produced by the indexing module, while descriptions of queries are used in the
query evaluation by the evaluation module.

The evaluation module is a module that joins the expansion module , which
expands queries by use of ontological similarity and the matching module ,
which performs the matching of queries and documents into a single module.
The primary functionality of the evaluation module is to produce a list of the
stored documents matching the description of a given a query.

7.2 The Prototype Ontology

In order to create the basis ontology for the prototype, we first have to choose
which of the relations in WordNet to include as part of the general ontology
of the prototype. Descriptions in the prototype are composed of simple noun
phrases formed into Ontolog expressions, while the word classes used from
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WordNet are thus nouns, adjectives, and adverbs. Hence, the relations from
WordNet that are necessary to include in the prototype system are the ones
concerning these three classes only.

The obvious relation for nouns is the concept inclusion relation (the hy-
ponym relation and its opposite - hypernym), since this is the main relation
in the ontology. However, WordNet has a related relation called instance hy-
ponym (and its opposite instance hypernym), which is (primarily) used for the
relation between proper nouns and their hypernym, e.g. “Johns Hopkins” is
an instance hyponym of the synset {university}. The instance hyponym re-
lation is also included in the prototype ontology, and both the hyponym and
instance hyponym are treated as hyponym relations in the prototype ontology,
even through the hyponym and the instance relations, in a strict ontological
sense, should be separated1. In an information retrieval context, the connec-
tion between proper nouns and nouns, and thereby the possibility of computing
similarity, is more important than the strict interpretation of the difference
between these relations.

Another important relation concerning nouns in WordNet is the part-whole
relation, called meronomy, e.g. “cell” is part of “organism” and “Japan” is
part of “Asia”, and its opposite holonymy, e.g. “organism” has “cell” and
“Asia” has “Japan” as a part. The part-whole relation forms a hierarchy,
likewise the concept inclusion relation, and would therefore be useful as part
of the similarity measure. However, the inclusion of the part-whole relation
is postponed to a later version of the prototype, as the close relatedness to
the concept inclusion relation (it is also a ordering relation) could introduce
side effects, especially concerning the deduction of weights for the semantic
relations. Furthermore, an overlap exists in WordNet between the part-whole
relation and the concept inclusion relation, e.g. “head” and “arm” are both
part of the concept “body” (part-whole) and subsumed by the concept “body
part” (concept inclusion).

The modifiers, adjectives and adverbs are not part of the concept inclusion
hierarchy of nouns. The semantic organization of adverbs in WordNet is simple
and straightforward since they only have a derived from relation to the words
they are derived from (in most cases adjectives). Hence, they do not form
any structure of their own, but participate in the structure solely through the
derived from relation.

Adjectives, on the other hand, are divided into two groups, descriptive and
relational. The latter is derived from words in other word classes (primarily
nouns). The relational adjectives are, like adverbs, not part of an independent
structure, but participate in the structure through the derived from relation,
while the ones derived from nouns are therefore connected to the concept

1See e.g. [Gangemi et al., 2003] for a discussion of the problems related to the non-strict
use of hyponym and instance relations in ontologies in general.
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inclusion hierarchy.

Similarity

Antonymy

Figure 7.2: Adjective antonym cluster with “wet” and “dry” as heads

Descriptive adjectives are organized in so-called antonym clusters, as shown
in Figure 3.14 in Section 3.5.3 and repeated here in Figure 7.2. The heads in
an antonym cluster are the two synsets related by the antonymy relation in
the figure on synsets, “wet” and “dry”. These heads can have a number of
similar satellite synsets connected through a similar to relation. In most cases
satellite synsets are specializations of the head in the sense that the satellite
synsets can only modify a subset of the nouns that can be modified by the
heads.

These antonym clusters form small hierarchies of related adjectives that
can be used when measuring similarity, e.g. a pair of compound concepts
modified by adjectives from the same half-cluster2 should be considered more
closely related than if the same pair of concepts were modified by adjectives
from different clusters.

Adjectives are used in the prototype via the inclusion of the antonym
clusters (or more precisely the antonym half-clusters) and the derived from
relation to nouns.

Consider the small instantiated ontology in Figure 7.3, composed from a
general ontology based on the considerations described above, and restricted

2Only the similar to relation in the antonym cluster should contribute to similarity, not
the antonymy relation, thus the notion of a half-cluster.
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Figure 7.3: The instantiated ontology restricted by the concepts
“progress[chr:rapid]” and “weight gaining[chr:fast]” with common nodes
shaded gray. The dotted isa arrows from “development” to “action” and from
“exercise” and “activity” indicate that some concepts have been omitted in the

visualization of the ontology

by the concepts progress[chr:rapid] and weight gaining[chr:fast]. Without
the introduction of the similar to (sim), these two compound concepts would
only be compared by the concept inclusion hierarchy, as the concepts “rapid”
and “fast” would not be connected. Due to the sim relation, they are now
connected; “rapid” is satellite to “fast”, and due to the dir relation they are
also connected to the concept inclusion hierarchy and can thus contribute to
the similarity measure as intended.
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7.3 The Document Base

The document base in the prototype is the semantically tagged corpus SemCor
[Miller et al., 1994], created by Princeton University. The corpus is a subset of
the Brown Corpus of Standard American English [Francis and Kucera, 1964],
which contains almost 700,000 running words (20,000 sentences), and is com-
posed of 352 texts. In 186 of the texts, all the open class words (nouns, verbs,
adjectives, and adverbs) are annotated with part of speech, lemma, and sense,
while in the remaining 166 texts only verbs are annotated with lemma and
sense.

Figure 7.4 shows an example of the SGML format used to define sentences
in SemCor. The <s> tag denotes a sentence and <wf> tags the word forms
for the words in the sentence. The attributes wnsn and lexsn are the mapping
of the words into WordNet, while the attribute pos is the part of speech and
lemma is the lemmatization of the word.

<s snum=57>

<wf cmd=done pos=NN lemma=branch wnsn=1 lexsn=1:14:00::>Branch</wf>

<wf cmd=done pos=NN lemma=office wnsn=2 lexsn=1:14:01::>Offices</wf>

<wf cmd=done pos=VB lemma=be wnsn=3 lexsn=2:42:05::>are</wf>

<wf cmd=done pos=JJ lemma=located wnsn=1 lexsn=5:00:00:settled:01>located</wf>

<wf cmd=ignore pos=IN>in</wf>

<wf cmd=done pos=JJ lemma=other wnsn=1 lexsn=3:00:00::>other</wf>

<wf cmd=done pos=JJ lemma=large wnsn=1 lexsn=3:00:00::>large</wf>

<wf cmd=done pos=NN lemma=city wnsn=1 lexsn=1:15:00::>cities</wf>

<punc>.</punc>

</s>

Figure 7.4: A sentence in the SemCor SGML format

7.4 The Indexing Module

The main goal of the indexing module is to create descriptions of the doc-
uments and queries. The indexing module is the first part of the overall
processing of documents and queries in the prototype. The description gener-
ation is handled by the indexing module and consists of a sequence of smaller
processes. These processes are enclosed by the two internal modules, analysis
and annotation. The aim of the analysis is to recognize noun phrases and
to have the annotation perform the extraction of the descriptions. The pro-
cesses required in order to create the descriptions are divided between these
two modules in the following way:

• Analysis module
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– Tokenization

– Part of speech tagging

– Noun phrase recognition

• Annotation module

– Concept extraction

– Word sense disambiguation

and each of these processes is encapsulated in independent modules that can
be changed without requiring rewriting the indexing module.

Tokenization is the simplest part of the indexing process and serves solely
as a preprocessing to the part of speech tagging in order to prepare the input
for the tagging. Naturally, any conversion specific to a particular part of speech
tagger should be performed by that process itself, but since the input can be
both documents and queries, some minor transformations may be required.
Any conversion required of the input to simple text can also be performed
by the tokenization process, e.g. conversion of HTML formatted input, but
most likely such kinds of conversions would normally require handling before
the input is given to the indexing module in order not to limit the indexing
module to a specific kind of document.

Part-of-speech tagging is the process of assigning part of speech tags to
words. Part-of-speech tagging is harder than just having a list of words and
their parts of speech, because some words can represent more than one part
of speech at different times, e.g. the word “file” can act as a substantive or a
verb. Part-of-speech tagging was earlier considered an inseparable part of nat-
ural language processing, because there are certain cases where the correct part
of speech cannot be decided without understanding the semantics or even the
pragmatics of the context. However, in the mid 1980s when researchers started
using statistical techniques for natural language parsing hidden Markov mod-
els were used successfully to disambiguate parts of speech. Hidden Markov
models involve counting cases and making a table of the probabilities of cer-
tain sequences. For example, when an article appears, the next word is a
noun 60% of the time, an adjective 30%, and a number 10%. With this type
of knowledge, a program can decide, for instance, that “can” in “the can”
is far more likely to be a noun than a verb or a modal. It is worth remem-
bering that merely assigning the most common tag to each known word and
the tag “proper noun” to all unknowns means approaching 90% accuracy be-
cause many words are unambiguous [Charniak et al., 1996]. Nowadays, there
is a wide range of different statistical techniques for part-of-speech tagging,
where some of the current major algorithms include the Viterbi algorithm,
transformation-based tagging (Brill), the Baum-Welch algorithm (also known
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as the forward-backward algorithm), and hidden Markov models [Manning
and Schütze, 1999].

The method used in the prototype is the transformation-based part-of-
speech tagger by Brill [1997]. However, since the quality of the different
statistical techniques for part-of-speech tagging is very similar, any of the
above-mentioned techniques could have been used. Obviously, an alternative
solution is to use boosting, the idea of combining several (moderately accurate)
methods into a single, highly accurate approach, hence combining several of
the above techniques.

In the prototype noun phrase recognition is a process where noun phrases
are extracted from part-of-speech tagged text. Noun phrases fluctuate from
single words to complete sentences and the computational complexity of rec-
ognizing noun phrases thus varies depending on the kind of noun phrases that
need to be recognized.

Noun phrase recognition is controlled by a grammar that defines the struc-
ture of the recognizable phrases. Figure 7.5 shows the noun phrase grammar
used in the prototype. This grammar limits the phrases to the nominal plus
pre-modifiers, i.e. noun-phrase chunks extending from the beginning of the
constituent to its head, plus simple prepositional phrases, where noun phrases
are combined with prepositions.

nounPhrase ::= preDeterminer?

determiner?

cardinalNumber?

adjectivePhrase?

nominal+

prepositionalPhrase;

prepositionalPhrase ::= preposition nounPhrase;

preposition ::= IN;

preDeterminer ::= PDT;

deteminer ::= deteminerTag;

deteminerTag ::= DT;

cardinalNumber ::= CD;

adjectivePhrase ::= adverb+ adjective* |
adjective* |
(adjective ",")* adjective ","? CC adjective;

adverb ::= RB | RBR | RBS;

ajective ::= JJ | JJR | JJS;

nominal ::= NN | NNP | NNS | NNPS;

Figure 7.5: The Noun Phrase Grammar in EBNF

For example, the following text fragment, The black book on the small
table. would be assigned the following tags by the Brill tagger:

The/DT black/JJ book/NN on/IN the/DT small/JJ table/NN
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and consist of the two simple noun phrases “black book” and “small table”
combined by the preposition “on”. Thus, the output from the noun phrase
recognition given the grammar in Figure 7.5 is:

〈PP [NP The/DT black/JJ book/NN] on/IN [NP the/DT small/JJ table/NN]〉

where prepositional phrases are marked by angle brackets and noun phrases
by square brackets.

The final part of the indexing module concerns the generation of descrip-
tions and word sense disambiguation, where the former extracts concepts
(noun phrases) and the latter maps them into the ontology.

The recognition of the relations that should be assigned to different prepo-
sitions is very complicated due to a high degree of ambiguity3. The generation
of compound concepts from prepositional phrases in the prototype is restricted
to the preposition “on”, as this is one of the least complicated prepositions.
The “on” preposition is by default assigned the location relation (loc), e.g.
in the above example, the concept generated is:

book[chr:black, loc:table[chr:small]]

where the default assignment is the right interpretation. However, the prepo-
sition “on” is also used in natural language to denote position in time, e.g.
the meeting on Monday, while the semantic relation to be used in these types
of cases is the temporal relation (tmp). The solution to this problem is to
assign the temporal relation whenever the constituents can be determined as
temporal concepts by use of the ontology.

Word sense disambiguation is done by use of the information in WordNet
about sense frequencies, i.e. the most frequent sense used for a given word.
Naturally, for the sentences in SemCor, the mapping from the corpus can also
be used.

After the descriptions are generated, they are used for querying (queries),
or they are added to the index in the database and to the instantiated ontology
in the knowledge base (documents).

7.5 The Evaluation Module

The two main modules in the evaluation module are expansion and matching,
where the former uses the weighted shared modes similarity measure to expand
queries, and the latter performs the actual comparison between descriptions
of queries and descriptions of documents.

3See e.g. [Quirk et al., 1985b] for a description of interpretations of prepositions in the
English language.
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The technique used in the expansion process is similar to the semantic
network algorithm spreading-activation described in Section 6.1.1. In the pro-
totype, two thresholds are used to control spreading-activation, the degree of
similarity and the cardinality of the set of expanded concepts, hence either
the spreading stops, as no more concepts can fulfill the degree of similarity,
or the number of expanded concept reaches the cardinality threshold. This
expansion algorithm is efficient and adds no significant time overhead to the
query evaluation, even through it is executed at query time on an instantiated
ontology with 100,000 concepts. Obviously, the two thresholds could be ad-
justed in such a manner that the expansion would be very inefficient, e.g. the
worst-case scenario is an activation of the complete ontology for each concept
in the query.

In contrast to the above thresholds, are the thresholds used in the similarity
function, which are not as straightforward. Each of the relations used in the
ontology has a weight assigned denoting the cost of using that relation as
part of the path measuring the distance between concepts in the ontology.
Furthermore, the similarity function:

sim(x, y) = ρ
|α(x) ∩ α(y)|

|α(x)|
+ (1 − ρ)

|α(x) ∩ α(y)|

|α(y)|
(7.1)

defined in Section 5, has the parameter ρ, which determines the degree of
influence from generalizations and specializations. The similarity for special-
izations → 1 when ρ → 1, and the similarity for generalizations → 1 when
ρ → 0. The similarity function is symmetric when ρ = 0.5, which is undesir-
able due to the arguments given in Chapter 5.

entity artifact vehicle car jeep
ρ = 1.0 vehicle 0,33 0,67 1,00 1,00 1,00

entity artifact vehicle car jeep
ρ = 0.0 vehicle 1,00 1,00 1,00 0,75 0,60

entity artifact vehicle car jeep
ρ = 0.8 vehicle 0,47 0,73 1,00 0,95 0,92

Figure 7.6: Examples of how different values for ρ influence the similarity measure
for the concept “vehicle” in a path from the concept “jeep” upwards to the top-most

concept “entity”

Figure 7.6 shows how ρ influences the similarity measure for the concept “ve-
hicle” in a path from the concept “jeep” upwards to the top-most concept
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“entity”. The two first examples show the extremes when ρ = 1 and ρ = 0.
The last example shows the chosen default value for ρ, which substantiates
the intuition that a specific answer to a general query is better than a general
answer to a specific query. Furthermore, distance matters both for generaliza-
tions and specialization, e.g. sim(“vehicle”, “car”) > sim(“vehicle”, “jeep”)
and sim(“vehicle”, “artifact”) > sim(“vehicle”, “entity”).

The weights for relations and ρ must be resolved empirically, for instance,
by use of human similarity judgments as described in Section 5.5, where the
weights for the relations “characterized by” (chr), “caused by” (cby), and
“with respect to” (wrt) are determined to be 0.57, 0.30, and 0.36, respec-
tively4. In this context, retrieval evaluation is another obvious manner to
resolve the values for the weights and ρ, thus adjusting the values towards the
best recall and precision. The major challenge in using the latter technique is
that it is very difficult to isolate the consequences of changing the weight of
a single relation, since the retrieval most likely is based on a set of different
relations. One solution to this challenge is to use the technique of training us-
ing the backpropagation of errors, similar to how neural networks are trained
[Masters, 1993], and to learn the weights and ρ through the retrieval evaluation
by using a set of training data.

The indexing process contributes with more detailed descriptions of doc-
uments and queries; the benefit achieved from this is a more refined view of
the information, and thereby the possibility of matching concepts, i.e. noun
phrases, instead of words. The ontological knowledge is utilized in the proto-
type through the semantic expansion of queries.

Consider the query “a possible alternative”, i.e. a search for information
about possible alternatives in some context. This query is transformed into
the concept alternative[chr:possible] by the indexing process. With ρ =
0.8, weight(isa) = 1, weight(cby) = 0.57, and 0.95 as the weight for the
adjective relations sim and dir. The semantic expansion of this concept is:

expansion(alternative[chr:possible]) =

1.00/alternative[chr:possible]+
0.86/alternative[chr:workable]+
0.83/alternative[chr:real]+
0.78/alternative+
...

where both alternative[chr:workable] and alternative[chr:real] are consid-
ered more similar than the generalization alternative. This is a consequence of
the fact that attribution contributes to the similarity measure, and that the

4In the human similarity judgments comparison performed in Section 5.5, ρ is fixed to
the value 0.5 in order to make the similarity measure symmetric, and thus comparable to
the other similarity measures.
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attributes, workable, real, and possible are similar. Figure 7.7 shows the in-
stantiated ontology restricted by the concepts alternative[chr:possible] and
alternative[chr:workable], with their shared nodes shaded gray This illus-
tration also adequately underpins the benefit of including the two adjective
relations, sim and dir, in the ontology, as the connection between workable
and possible is due to the sim relation and the connection of possible to the
concept inclusion hierarchy is due to the dir relation.

The last part of the evaluation process is the matching of document de-
scriptions to the (expanded) description of queries. In the prototype, the
fuzzy information retrieval model with hierarchical order weighted averaging
aggregation is used. As mentioned in Section 6.2.1, one challenge raised by
the introduction of fuzzy information retrieval is that, in general, when all
concepts are assigned to every document, all documents have to be evaluated.
This problem has to be handled in order to scale the retrieval model to fit
huge document collections.

The simple optimization is to restrict the aggregation to the set of docu-
ments which possibly can satisfy a query, i.e. all the documents that match
a least one of the concepts in the query. Strictly speaking, this problem is
not solely bound to fuzzy information retrieval, because any model that sup-
ports “best match” evaluation has to deal with this problem. Normally, fur-
ther optimizations can be handled by traditional optimization algorithms, e.g.
database indexing, cost-based looping due to cardinalities, etc. However, the
order weighted averaging aggregation requires an ordering of the matching
weights for each document, which is not immediately consistent with these
traditional algorithms.

Given a query q = {A, B,C} with three concepts, the matching process
uses the simple optimization first and narrows the set of documents to the
subset PQ with the documents that match at least one of the concepts in
the query. A tuple {wA, wB, wC} is created for each document with a weight
for each concept in the query denoting the compliance of the concepts with
the document. The tuple is then ordered and the weighted averaging, and
(possibly) importance weighting, are performed. The upper and lower bounds
of the ordered weighted averaging max and min5, and the simple mean comply
partly with the traditional algorithms, due to the fact that max and min
correspond to or and and, and as the simple mean does not require ordering.

Two specialized optimizations are introduced in the prototype to provide
scalability to huge document collections, frequency-based matching and upper-
bound evaluation. The frequency-based matching optimization divides con-
cepts into two groups, normal and high frequency concepts, where the fre-
quency refers to the number of documents to which the concept is assigned.

5Assuming that the T norms and T co-norms used for min and max correspond to the
standard versions (see Section 2.1.5).
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shaded gray.

155



This partition is controlled by a threshold defining the line of demarcation
between normal and high frequency concepts. Queries can then be put into
the three following categories:

1. Queries composed of normal concepts,

2. Queries composed of high frequency concepts, and

3. Queries composed of both normal and high frequency concepts.

The first category is evaluated normally, while the second and third cate-
gories are handled differently. The second category consist solely of high fre-
quency concepts and the possibility of finding documents that match all the
concepts in the query therefore increases, hence the need of a “best match”
evaluation is less important. Instead of starting with a “best match” eval-
uation, a strict and match is performed, hopefully resulting in a reasonable
set of documents. Otherwise, either the “best match” evaluation is performed
automatically, or the user is advised and can make the decision whether to
continue with the “best match” evaluation or rewrite the query. In the third
category, normal and high frequency concepts are mixed. The evaluation is
separated such that high frequency concepts are evaluated by a strict evalua-
tion and the result of this evaluation is used to envelop the evaluation of the
set of normal concepts.

The upperbound evaluation optimization is used for queries with more
than two concepts and searches for the r top-ranking documents, where r
is defined by the user. Each concept ci in query q has an associated list
of documents; the set of documents to which the concept ci is assigned. The
cardinality of the lists of documents is used as the first part of the optimization,
since the lists are accessed sequentially from the smallest to the largest. The
evaluation computes the retrieval status value for j + 1 document lists, where
j is the number of the previously processed document lists out of i. This
differs from the normal evaluation, which uses a tuple with the weights from
all the concepts in the query for the computation of the retrieval status value.
The r top-ranking documents are now identified considering only the j + 1
concept in the query. Without accessing the rest of the document lists, it is
possible to exclude all the documents in this partial result that, given the best
case scenario for all the succeeding lists, cannot be in the r top-ranking. If
the excluded documents are found when computing the succeeding list, they
can be skipped. Furthermore, the algorithm can be terminated if it is not the
case that any document in the succeeding lists are among the r top-ranking
documents, otherwise j is incremented and the algorithm continues.

Consider a query with three concepts and an ordered weighted averaging
with the weighting vector w = {0.2, 0.3, 0.5} (an evaluation between mean and
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and) in a retrieval model where concepts with binary values are assigned to
documents. The retrieval status value of documents can then have only four
different values:

1 × 0.2 + 1 × 0.3 + 1 × 0.5 = 1.0

1 × 0.2 + 1 × 0.3 + 0 × 0.5 = 0.5

1 × 0.2 + 0 × 0.3 + 0 × 0.5 = 0.2

0 × 0.2 + 0 × 0.3 + 0 × 0.5 = 0.0

denoting that the document matches three, two, one, or none of the concepts
in the query. The last one is excluded by simple optimization, so only the first
three are possible values. Given that the retrieval status value of dr, the r’th
ranked document, after accessing the first two document lists is 0.5; hence,
the r top-ranked documents have a retrieval status value of ≥ 0.5. We then
know that all the documents that received the value 0.2 cannot obtain a total
value that is greater that the value of dr after accessing the last document
list, and thus cannot change the r top-most ranking. Furthermore, only the
documents with the value 0.5 as a result of processing the two first lists are
candidates for a r top-most ranking, since any documents not seen already,
i.e. new documents in the last list, can only obtain a value of 0.2. Thus, only
the documents with the value 0.5 from the processing of the two first lists that
also appear in the last list must be gone through.

The hierarchical aggregation is put into action whenever the query is ex-
panded, since we want to evaluate a query concept and its expansions sep-
arately. As a result, the aggregation over the expansion can differ from the
overall aggregation, i.e. different linguistic quantifiers can be assigned to the
different levels in the evaluation. Obviously, the optimizations described above
can likewise be performed independently on each level of the evaluation.
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Chapter 8

Conclusion

The aim of this thesis, as indicated in the beginning, was to investigate and
discuss introduction of ontologies to information retrieval, and thereby the
promotion of semantics in the document retrieval process. The main research
question was how to recognize concepts in information objects and queries,
represent these in the information retrieval system, and use the knowledge
about relations between concepts captured by ontologies in the querying pro-
cess. In the thesis we have focused on the following three main aspects related
to the research question

1. recognition and representation of information in documents and queries
and the mapping of this knowledge into the ontologies,

2. improvement of the retrieval process by use of similarity measures de-
rived from knowledge about relations between concepts in ontologies,
and

3. how to weld the ideas of such ontological indexing and ontological simi-
larity into a realistic scalable information retrieval scenario,

and the conclusion first discusses and concludes on these three elements sepa-
rately, after which an overall conclusion is given and perspectives that can be
used as the subject of further work is indicated.

8.1 Ontological Indexing

The chosen representation of descriptions is a collection of expressions
formed by the lattice-algebraic language Ontolog. Compound concepts
are defined as the attribution of concepts by feature attachment, both as
multiple and nested attributions. Examples of such compound concepts are
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book[chr:cheap,chr:short], and book[loc:table[loc:school]], respectively. On-

tolog expressions can be mapped directly into the ontologies and serve as
the foundation of the ontological indexing. In order to establish ontology-
based indexing, the semantics from the text, documents and queries must be
revealed, thus extraction applying natural language processing techniques has
to be an inherent part of the indexing.

Two different views on semantic analysis are discussed. First, conven-
tional approaches to the disambiguation of word classes and senses, and sec-
ond, a model where the ambiguities are weighted proportionally to the proba-
bility of occurrence, hence ambiguity, are are part of the analysis. An obvious
advantage of disambiguation is a reduction in the computational complexity.
However, wrong choices in the disambiguation process may imply a serious
negative impact on the result, since errors would cascade and, especially when
expansion is involved, be self-perpetuating during the processing of the query.

In connection with the extraction of compound concepts, a decision has to
be made as to which level it would be preferable to extract compound concepts,
also considering which side effects the compoundness introduces in the query
evaluation. Assume, for example, that indexing on the sentence level can parse
and generate one unique compound concept per sentence, namely an expres-
sion that describes the full meaning of the sentence. From a linguistic point
of view, this would probably be an optimal solution, but for the information
retrieval process, it introduces some problems. A high level of compoundness
implies the need for a more complex reasoning to resolve similarity and con-
flicts, when comparing descriptions, with the key issue in retrieval. For this
purpose, descriptions in the form of a collection of aspects of content opens
far more possibilities for matching than single compound expressions intended
to capture full meaning.

Ontological indexing can be considered as a mapping from documents
to concepts in the ontology. The set of all concepts found in a document collec-
tion can serve as a way to restrict a given general ontology to an instantiated

ontology describing the domain defined by the set of the “instantiated” (rec-
ognized) concepts. Other applications for instantiations of general ontologies
are also obvious. For instance, restrictions on the concepts in a given query
where the user is asked to choose between different senses in an instantiated
ontology can serve as a solution to disambiguation. Furthermore, instantiated
ontologies can be used in the visualization of the similarity between documents.
Restrictions on the concepts the documents are described by, visualizes their
conceptual overlap.
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8.2 Ontological Similarity

Similarity measures derived from knowledge about relations between con-
cepts in ontologies are discussed based on a set of intuitive properties of simi-
larity in relation to information retrieval, accompanied by a discussion of the
methodologies used. Three different kinds of similarity properties are used in
the discussion, basic, retrieval-specific, and structure-specific properties. The
basic properties define a very abstract notion of similarity and are obeyed by
all the measures. The most interesting property, besides basic properties, is the
retrieval-specific property called generalization, which relates to the intention
of queries – a specific answer to a general query is better than a general an-
swer to a specific query. This indicates that in the ontology-based information
retrieval context, the similarity measure cannot be symmetrical, and should
somehow capture that the “cost” of similarity in the direction of the inclusion
(generalization) should be significantly higher than similarity in the opposite
direction of the inclusion (specialization). Most of the measures presented fail
to comply with this property, as they are symmetric. A consequence of the
use of symmetric measures in information retrieval is that the evaluation of
queries based on these measures would accept documents equally concerning
specializations and generalizations to the posed concepts.

The proposed shared nodes measure has the ability to include not only
paths between concepts through the ordering relation, but all possible relations
connecting a pair of concepts. This is, in our opinion, a significant step in the
right direction and the need for this generalization of similarity measures can
be confirmed by human similarity judgments. When asked about the similarity
between, for instance, a “forest” and a “graveyard” compared to the similarity
of the same pair of concepts modified by the attribute “scary”, the similarity is
judged to be significantly higher when they share an attribute commonly used
in connection with both concepts. The major problem with the shared node
measure, in relation to this, is that not all relations equally define concepts,
hence the fact that though two concepts share an attribute, does not add to
their definitions in the same manner as concept inclusion does. To remedy this,
a generalized shared node measure, the weighted shared nodes similarity
measure, is introduced.

As a general observation, we would furthermore like to emphasize that
the modeling of similarity functions is far from objective. It is not possible
to define optimal functions in either a general or a domain specific case. We
can only endeavor to have flexible and parameterized functions based on obvi-
ous “intrinsic” properties with intuitive interpretations, and then adjust and
evaluate these functions on an empirical basis. The tailoring of the proposed
similarity function can be done according to specific needs regarding the struc-
ture and relations of the ontology covering the domain, or it can be done to
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accommodate specialized user needs.
The major challenge in utilizing a concept similarity measure in a query

evaluation is to reflect the concept-to-concept similarity in a query-to-docu-
ment similarity. Basically, this issue involves comparing descriptions in a way
that respects the concept similarity, while the approach is to introduce an
expansion applied to queries, as well as an aggregation principle to combine
with description similarity.

8.3 Query evaluation

The semantic expansion of concepts into a set of similar concepts based
on a measure that only reflects the similarity between pairs of concepts is
computationally demanding, as it has to compare, in principle, the concept
being expanded to all concepts in the ontology in order to select the set of most
similar concepts. To remedy this, an expansion function based on the notion
of spreading activation is introduced. The similarity measure is influenced
by distance in the ontology and the closest related concepts are therefore the
concepts in the “ontological surroundings” of the concept we want to expand.
A spreading activation expansion does this by only traversing the “closest”
concepts to obtain the set of concepts we want to include in the expansion.

A generalized fuzzy set retrieval model is used as the foundation of
the query evaluation; while not commonly used in present information retrieval
systems, it fits perfectly into the proposed ontology-based retrieval model. The
primary motivation for selecting this model is the intrinsic support of relevance
as a multi-valued variable. Hence, this model takes into account, in a natural
way, the different contributions of domain concepts in the document and query
characterizations, and reflects this in a grading of the relevance of documents
to a given query.

The ordered weighted averaging aggregation principle used in the pro-
posed retrieval model is very flexible, and especially the ability of modeling
the aggregation by “linguistic quantifiers” is convenient when the model is
extended into a hierarchical model.

Basically, hierarchical aggregation extends ordered weighted averaging
to capture nested expressions. Thus, queries may be viewed as hierarchies,
and the hierarchical aggregation is perfectly suited for this purpose. Other
models could equally be set op in a hierarchical framework like this, e.g. the
vector model, but the modeling of the aggregation by linguistic quantifiers
makes the evaluation process much easier to understand than, e.g. different
kinds of ranking functions based on correlation in a vector space.

While the objective of document retrieval systems is obviously documents,
the introduction of additional knowledge, external to the documents, gives rise
to a need for additional knowledge retrieval. The introduction of ontologies
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makes this kind of querying even more interesting as it gives opportunities for
exploiting knowledge “hidden” in the mapping between the information in the
documents and the information in the ontologies, i.e. querying instantiated
ontologies. The querying of the knowledge base in the ontology-based
retrieval system substantiates an alternative query language. For this pur-
pose, a query language is introduced to support specialization/generalization
operators to cope with quite a useful notation for disjunctions along the spe-
cialization and/or generalization in the ontology. Since knowledge retrieval can
be seen as the first step in document retrieval, the extended query language
can be used for document retrieval as well.

8.4 Summery

A number of the presented techniques are joined into a prototype system

intended to be the foundation for the evaluation and testing of the three
main ideas introduced in this thesis, ontological indexing, ontological similar-
ity, and fuzzy information retrieval. The creation of this prototype underpins
that the methodologies presented can be used to form an ontology-based in-
formation retrieval system, while empirical studies are needed in order to state
whether these methodologies, also in the “real world”, can contribute with the
improvements indicated throughout the thesis. Nevertheless, the theoretical
foundation has been presented and we have shown that these theories can be
transformed into practice.

8.5 Further Work

Since this thesis covers most of the internal elements of a complete ontology-
based information retrieval system, it has various issues that are candidates
for further work. The most obvious aspect is naturally empirical studies.

One interesting and challenging step in this direction would be to establish
large-scale experiments to evaluate the overall idea of content-based search.
The goal is therefore to promote, for example, the Text Retrieval Conference
(TREC), which has become a common and much referred platform for the
testing of large-scale information retrieval approaches. However, a number
of minor experiments are needed before this can happen in order to validate
and fine-tune the prototype. As described in this thesis, only some of the
methodologies looked at are included in the prototype presented. The first
step towards achieving the above goal would therefore be to establish a num-
ber of minor experiments in order to find ways to include and evaluate the
remaining methodologies and select those best suited for achieving the overall
refinements.
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The method presented to achieve the ontological indexing is rather ad hoc
and is primarily constructed on well-known techniques. The syntactic anal-
ysis, i.e. the extraction of simple noun phrases, is reasonably solid and is
used in a number of different approaches, e.g. information extraction. Word
sense disambiguation is also a well-established research area, but concerns an
incredibly more complex problem, and thus the available techniques are less
reliable. We have briefly mentioned a word sense disambiguation technique
that uses semantic similarity to determine the senses. This technique could
serve for testing similarity measures, for instance, by using the semantically
tagged SemCor corpus as the document base in the prototype, since part of
this corpus is mapped into WordNet. Another more untested element of onto-
logical indexing is the identification of semantic relations. Some preliminary
experiments have been done on the use of ontological information in connec-
tion with supervised machine learning approaches in order to identify semantic
relations between noun phrases in sentences. This work has shown promising
results and may turn out to be very important in the generation of descriptions
in ontology-based information retrieval.

The proposed similarity measure called weighted shared nodes was briefly
tested in this thesis by comparing it to human similarity judgments. The
test indicated that human similarity testing can be fruitful, especially with
respect to determining the weights related to the semantic relations in use.
Further work should therefore include a more trustworthy experiment that
can be used to determine the (initial) weights associated with the semantic
relations. Another way to achieve these values is obviously to use retrieval
evaluation, since obtaining the best possible quality in the retrieval process is
the primary goal. This would of course require some kind of training data,
i.e. a document base and a set of queries complete with the preferred results.
TREC provides such data, which furthermore supports promoting the TREC
conference. Given some test data, resolving the weights for the relations as
well as the parameters that control similarity functions is very complicated.
Inspired by the training of neural networks, one solution could be to use the
backpropagation of errors to adjust to the best possible set of values for a
particular set of training data, but obviously, most of the training algorithms
used in machine learning could just as well be the foundation for such an
approach.

One of the characteristics of the presented similarity measures relates to
the use of corpus statistics. The information content approach by Resnik
[1995] is one such measure that uses sense frequencies to attach weights to
the senses in ontologies. A natural further development of the weighted shared
nodes measure would be to attach similar knowledge to the shared nodes.
That is, combine the structure of the ontology and the corpus statistics as a
basis for deriving what concepts have in common.

163



Finally, an interesting perspective related to the generalized fuzzy retrieval
model concerns modeling by “linguistic quantifiers”. Words used in queries
that indicate quantifiers could contribute to linguistic quantifiers in aggrega-
tion expressions rather than to the compound concept expressions. Hence,
users would then be able to modify the evaluation of queries, not by some
fancy interface, but by the use of natural language.
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