
Ontology-based Integration for Relational Databases

Dejing Dou
Computer and Information Science

University of Oregon
Eugene, Oregon 97403, USA

dou@cs.uoregon.edu

Paea LePendu
Computer and Information Science

University of Oregon
Eugene, Oregon 97403, USA

paea@cs.uoregon.edu

ABSTRACT
In this paper, we show that representation and reasoning techniques
used in traditional knowledge engineering and the emerging Se-
mantic Web can play an important role for heterogeneous database
integration. Our OntoGrate architecture combines ontology-based
schema representation, first order logic inference, and some SQL
wrappers to integrate two sample relational databases. We define
inferential data integration as the theoretical framework for our ap-
proach. The performance evaluation for query answering shows
that OntoGrate reformulates conjunctive queries and retrieves over
100,000 answers from a target database in under 30 seconds. In ad-
dition to query answering, the system translates 40,000 database
facts from source to target in under 30 seconds.

Categories and Subject Descriptors
H.2.5 [Database Management]: Heterogeneous Databases; H.3.5
[Information Storage and Retrieval]: Online Information Ser-
vices—data sharing; I.2.3 [Artificial Intelligence]: Deduction and
Theorem Proving—inference engines; I.2.4 [Artificial Intelligence]:
Knowledge Representation Formalisms and Methods—representa-
tion languages, predicate logic

General Terms
Data Integration, Ontology

Keywords
semantic integration, first order logic, inference

1. INTRODUCTION
Autonomous database systems usually have incompatible schemas

making interoperability among them difficult. This has long been
recognized as a schema mapping and data integration problem [7,
14]. In simplest terms, database integration requires (i) mapping
systems that define the relationships (mappings) among database
schemas and (ii) integration systems that use those mappings to
answer queries or translate data across database sources. To make

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SAC’06 April 23-27, 2006, Dijon, France
Copyright 2006 ACM 1-59593-108-2/06/0004 ...$5.00.

things more interesting, in the foreseeable future, databases, knowl-
edge bases, the World Wide Web and the Semantic Web [1] will
coexist and agents may want to integrate these.

Mapping systems help to construct a global view of data by es-
tablishing inter-schema correspondences and mappings [20]. Popu-
lar methods represent mappings as SQL views [2, 11, 6], which can
be directly invoked by database management systems. Although
this gives us the satisfaction of good performance, especially with
query rewriting algorithms such as [19], these techniques are lim-
ited to only database information systems.

Others approach data integration using ontologies or logic-based
frameworks such as description logic or Datalog [3, 15]. In addi-
tion to the more expressive representations offered by ontologies,
formal logics provide inference mechanisms for reasoning on and
preservation of the semantics being expressed. This allows integra-
tion to cover a larger variety of structured data in theory, although it
raises the question of adequate performance in real systems. With
the possible exception of CARNOT [5], there are no notable imple-
mentations to our knowledge which use this approach for database
systems.

We adopt an approach similar to one used in ontology translation
for the Semantic Web [9]. To model database schemas, concepts,
and the relationships (mappings) among them, we use the Web-
PDDL ontology language. This is a first order logic language we
use for the OntoEngine inference engine. As far as we know, ours
is the only approach that successfully uses first order logic and in-
ference for database integration, and we call it inferential data in-
tegration.

To make our approach practical, we developed some rudimen-
tary SQL wrappers that allow our system to access real database
systems. Our preliminary experiments of the OntoGrate prototype
demonstrates that such an integration approach is actually tractable
for real systems.

2. ONTOLOGIES
An ontology is the formal specification of the vocabularies of

concepts and the relationships among them. Ontologies have played
a key role for describing semantics of data in both traditional knowl-
edge engineering and the emerging Semantic Web. In this section,
we describe the ontology language Web-PDDL and show how this
language can represent not only database schemas but also seman-
tic mappings between them.

To illustrate our approach, we use examples of two heteroge-
neous relational database schemas: Stores71 from Informix and
Nwind2 (Northwind) from Microsoft. Both of these are from the
sales application domain, such as an online shopping cart system
1
http://www.cs.uoregon.edu/∼paea/research/stores7.png

2
http://www.cs.uoregon.edu/∼paea/research/nwind.png

461



dealing with customers, orders and products. Figure 1 shows an
intuitive diagram of how these schemas and their relationships can
be represented as ontologies and mapping rules.

customer

address

state

zip

city

phone

street

fullname

birthdate

resides at

customer

item

individual

address

manufacturer

name

first

last

street

postal code

is a

resides at

named

orders

made by

is a

same as

same as

concatenate

same as

Nwind Ontology

Stores7 Ontology

state code

Figure 1: The customer portions of two sales ontologies and the
mappings between them. Each cloud represents an ontology. Dot-
ted or dashed lines represent relationships between concepts. There
are relationships within each ontology, as well as ones between
the two ontologies. The inter-ontology relationships are referred
to more specifically as mapping rules.

2.1 Web-PDDL
Originally, Web-PDDL [18] was designed as a language for rep-

resenting Semantic Web ontologies, their mappings, data instances
and queries. It is a strongly typed first order logic language with
Lisp-like syntax. It extends the Planning Domain Definition Lan-
guage of [17] with XML namespaces, multi-type inheritance and
more flexible notations for axioms. Though designed with Seman-
tic Web documents in mind, Web-PDDL also can be used to repre-
sent a database schema, such as Stores7, as an ontology shown in
Figure 23. For example, the axiom listed describes the foreign key
constraint between the State and Customer relations in Stores7.

(define (domain stores7-ont)

   (:extends

      (uri "http://www.cs.uoregon.edu/~paea/research/sql.pddl#" 

         :prefix sql) ...)

   (:types

      Customer State - @sql:Relation

      String - @sql:Varchar ...)

   (:predicates

      (customerfname x - Customer y - @sql:varchar)

      (customerlname x - Customer y - @sql:varchar)

      (customerstatecode x - Customer y - @sql:varchar) ...)

   (:axioms

      (forall (c - Customer code - @sql:varchar)

         (if (customerstatecode c code) 

            (exists (s - State) (statecode s code)))) ...)

   (:facts

      (@sql:primarykey Customer "customernumber") ...))

Figure 2: The Stores7 schema as an ontology.

A merged ontology [9] is the ontology equivalent of a global
view over local schemas. It consists of common elements from a
source ontology and a target ontology but also defines the seman-
tic mappings between them as bridging axioms (sometimes called
“articulation axioms”). A merged ontology allows all the relevant
symbols in a domain to interact so that facts can be translated from
one ontology to another using inference over the bridging axioms4.
3Discussed in more detail in Section 2.2.1.
4See Section 3 for more details on inference.

Suppose we have the mappings between Nwind and Stores7
given in Figure 3.

customerregioncustomercontactname

Art Farley
Al Malony

Oregon
Washington

Customer

Nwind

State

Customer
customerfname customerlname customerstatecodecustomernumber

   101
   102

   Michal
   Al

   Young
   Malony

   OR
   WA

Stores7
statecode statename

OR
WA

Oregon
Washington

Figure 3: Mappings between Stores7 and Nwind. Although
not technically an ontology mapping representation, this diagram
roughly illustrates the relationships between inter-schema names
and address with actual data. We refer to this example throughout
the paper.

We can write bridging axioms in Web-PDDL to express these
relationships. For example, to represent the 3-way mapping from
Nwind’s customerregion to Stores7’s statename, statecode and
customerstatecode, we can use the Web-PDDL expression in Fig-
ure 4, where @nwind and @stores7 are namespace prefixes for
each ontology5. We can put all bridging axioms into the new,
merged ontology called Stores7-Nwind.

(forall (x - @nwind:Customer y - @sql:varchar)

   (if (@nwind:customerregion x y)

      (exists (z - @stores7:State t - @sql:varchar)

         (and (@stores7:customerstatecode x t)

            (@stores7:statename z y)

            (@stores7:statecode z t)))))

Figure 4: Example of a bridging axiom.

This mapping is quite complex in that it uses the semantics of
the Stores7 ontology to lookup, join and resolve the statecode and
statename bindings based on a customerregion from the Nwind on-
tology. In other words, even though there is no such concept of state
code abbreviations in Nwind, we can still resolve this information.

2.2 Schemas, Ontologies and Mappings
So far we have described the Web-PDDL language for defining

ontologies and bridging axioms. In this section, we relate these
ideas more closely to how to represent database schemas as ontolo-
gies and how to define schema mappings as bridging axioms.

2.2.1 Schemas as Ontologies
A database schema can be represented as an ontology using some

very simple transformation rules shown in Figure 5. The Stores7
(as mentioned in Figure 2) and Nwind schemas were transformed
to ontologies6 entirely by using just these rules. Although these
simple rules appear to work well for our sample databases, we still
believe that human assistance may be required for some complex
semantic interpretations.

5We assume that a type equivalence axiom (not shown) also exists
between the two Customer relations.
6
http://www.cs.uoregon.edu/∼paea/research/stores7.pddl

http://www.cs.uoregon.edu/∼paea/research/nwind.pddl

462



Relation ↔ Type (1)

Attribute ↔ Predicate (2)

Integrity Constraint ↔ Axiom (3)

Primary Key ↔ Fact (4)

Figure 5: Schema to Ontology translation rules.

Inheritance was briefly mentioned in Section 2.1. Database on-
tologies like the ones we defined can inherit concepts from a more
general SQL7 ontology which defines basic notions such as rela-
tions, data types (integer, varchar, decimal, etc.), keys and aggre-
gate functions.

2.2.2 Mappings as Bridging Axioms
Unlike the process of transforming schemas to ontologies, defin-

ing semantic relationships between concepts is much too subtle for
full automation. Some tools do exist (see Section 6) to facilitate
the process, but human interaction is invariably required. For this
study, discovering mapping rules is not our focus, so we have man-
ually defined the bridging axioms based on our understanding of
the schemas.

Figure 6 shows some example bridging axioms between Stores7
and Nwind written in Web-PDDL. The first “T->” axiom means
that Stores7 and Nwind have equivalent types. The other axioms
essentially describe all mappings depicted in Figure 3. Notice that
while we claim the Customer types are equivalent, the bridging
axioms also tell us how their attributes differ. The customercity
axiom is a 1-1 mapping, whereas the customercontactname one is
a 2-1 mapping which concatenates first and last names. The last
axiom is one we have previously discussed in Section 2.1.

(T-> @stores7:Customer @Nwind:Customer)

(forall (c - @stores7:Customer city - @sql:varchar)

   (iff (@stores7:customercity c city)

      (@nwind:customercity c city)))

(forall (c - @stores7:Customer f l - @sql:varchar)

   (if (and 

         (@stores7:customerfname c f)

         (@stores7:customerlname c l))

      (@nwind:customercontactname c (@sql:concat f l))))

(forall (c - @nwind:Customer region - @sql:varchar)

   (if (@nwind:customerregion c region)

      (exists (s - @stores7:State code - @sql:varchar)

      (and 

         (@stores7:customerstatecode c code)

         (@stores7:statename s region)

         (@stores7:statecode s code)))))

Figure 6: Bridging axioms for Figure 3.

Although we often refer to using a global view in this paper,
bridging axioms are flexible enough to use in peer-to-peer data
management scenarios [12] by mapping ontologies directly to each
other without having to define a global view over them.

3. INFERENTIAL DATA INTEGRATION
Given the merged ontology between two schemas expressed in

the first order ontology language, Web-PDDL, we can now per-
form integration using first order theory. In this section we specify
7
http://www.cs.uoregon.edu/∼paea/research/sql.pddl

the problem of integration and show how inference can solve it,
forming the basis of our inferential data integration framework.

3.1 Information Integration
Information integration is regarded as combining data residing

at different sources and providing a unified access to these data
through a reconciled global view [13, 14]. For relational databases,
this can be decomposed into two sub-problems:

Query Translation: The process of extracting data expressed using
one schema to answer the query in another schema.

Data Translation: Translating data from a source schema to a tar-
get schema for the purpose of information exchange.

The problem of query translation has been the focus of most re-
cent work, but data translation is also important [7]. We stipulate
that both of these problems can be addressed using inference.

3.2 Inference
Suppose we have used bridging axioms to describe the mappings

between two schemas, Schema S from DBs and Schema T from
DBt (such as those in Figure 6 for Stores7 and Nwind). Let the
set of bridging axioms be denoted Ms t. Let the symbol �D in-
dicate data translation between two schemas (such as S and T) so
that: αs �D βt means βt is the translation of αs, where αs and βt

are assertions (facts) corresponding to the data instances in DBs

and DBt. For example, the following is an assertion from Stores7
and its equivalent expressed in Web-PDDL:

The statecode of a Customer identified as 101 is OR.

customerstatecode(Customer#101, “OR”)

For a set of assertions (or “dataset”), we stipulate that the transla-
tion of αs is simply the largest set of assertions, βt, entailed by αs

through the mapping rules Ms t. A consequence of this stipulation
is that

(Ms t; αs) �D βt only if (Ms t; αs) � 8βt

To guarantee this requires sound inference. In other words, “�D”
entails soundness, so we can use �9 to represent data translation
with our algorithm:

(Ms t; αs) �D βt ⇔ (Ms t; αs) � βt ⇒ (Ms t; αs) � βt

This definition means that βt can be derived from the mappings
Ms t and assertions αs by inference.

Our proposal may seem counterintuitive, in that one might as-
sume translating a dataset means finding an equivalent dataset in
a different vocabulary. As justification, we point out that our stan-
dard has been taken for granted in the case of another main problem
in data integration: query translation, the process of extracting data
expressed using one schema to answer the query in another schema.
We will use the symbol �Q to indicate the query translation. If αs

is a query in Schema S, its translation is a query βt in Schema
T such that any answer (set of bindings) to βt is also an answer to
αs. In other words:

(Ms t; αs) �Q βt only if (Ms t; θ(βt)) � θ(αs)

for any substitution θ, where θ(βt) is from the target database DBt.
It also means, for any substitution θ,

(Ms t; αs) �Q βt ⇔ (Ms t; θ(βt)) � θ(αs)

⇒ (Ms t; θ(βt)) � θ(αs)

We claim that βt is the translation of αs if and only if, for every
substitution θ, θ(βt) is the weakest statement in Schema T such
that θ(βt) is from DBt, (Ms t; θ(βt)) � θ(αs) and Ms t � θ(αs).
8The logic symbol � can be read as “entails.”
9The logic symbol � can be read as “infers.”

463



The weakest statement means that βt need not be (and seldom is)
equivalent to αs, in the sense that any answer to one is an answer
to the other. All we need is that any answer to βt be an answer to
αs. In the literature this is also known as query containment [14].

Since both data translation and query translation can be defined
as an inference, we can call our data integration approach inferen-
tial data integration.

4. THE ONTOGRATE ARCHITECTURE
Shown in Figure 7, the OntoGrate architecture for database inte-

gration10 includes the OntoEngine reasoner, and some SQL wrap-
pers that work with our merged Stores7-Nwind ontology. Al-
though not the focus of this paper, an interface allows the user to
submit queries or data translation requests.

Stores7
(schema)

Data

Stores7-Nwind
Merged Ontology

Stores7
(ontology)

Nwind
(ontology)

OntoEngine

User Interface

Nwind
(schema)

Data

FOL-SQL
Translator
(wrapper)

FOL-SQL
Translator
(wrapper)

Figure 7: The OntoGrate Architecture for Database Integration

4.1 SQL Wrapper
The SQL wrapper translates between first order logic (FOL) and

SQL syntax in two directions. First, it translates FOL queries to
SQL queries which it then executes on the appropriate SQL database
using JDBC. Second, it translates the resulting SQL record sets to
FOL facts (also known as assertions). The process is purely syntac-
tic and straightforward based on the transformation rules outlined
in Figure 5.

4.1.1 Web-PDDL Query to SQL Query
Translating a Web-PDDL (FOL) query to SQL is a direct appli-

cation of the transformation rules. The only unusual aspect of our
translation is the automatic addition of primary keys as shown in
Figure 8.

Once translated from Web-PDDL, the resulting SQL query can
then be executed on the appropriate database11 using standard JDBC
APIs to obtain a result set as depicted in Figure 9. In order to be
processed by OntoEngine, these tuples must be translated to Web-
PDDL facts.

4.1.2 SQL Record Set to Web-PDDL Facts
Translating SQL records back into Web-PDDL facts is also a

straightforward task using the transformation rules in Figure 5. The
resulting facts for the customercity query are shown in Figure 9.

10Our recent work is extending OntoGrate to integrate both
databases and Semantic Web resources.

11We assume that the appropriate database connections are identi-
fied using URIs supplied in the user environment.

  What Stores7 customers are from the city called "Eugene"?

 (@stores7:customercity ?customer "Eugene") 

 SELECT customernumber, customercity

 FROM   Stores7.Customer

 WHERE  customercity="Eugene"

Figure 8: Three versions of the same query. Primary key informa-
tion can be easily looked up and added to simplify object identifi-
cation and join operations.

customernumber customercity

101
205
503
976

Eugene
Eugene
Eugene
Eugene

 (@stores7:customercity @stores7:customernumber#101 "Eugene") 
 (@stores7:customercity @stores7:customernumber#205 "Eugene") 
 (@stores7:customercity @stores7:customernumber#503 "Eugene") 
 (@stores7:customercity @stores7:customernumber#976 "Eugene") 

Figure 9: A SQL result set for the customercity query can easily
be translated into Web-PDDL facts.

SQL wrappers therefore give OntoGrate direct access to databases
to run queries and get facts as necessary, but to address the problem
of integration, we need the OntoEngine inference engine.

4.2 OntoEngine
OntoEngine is a sound, first order theorem prover designed

originally for ontology translation on the Semantic Web [9]. It im-
plements both forward chaining and backward chaining reasoners
using generalized modus ponens [21]. The reasoners help On-
toGrate process skolem functions, answer queries and translate
facts.

Consider the scenario where a user wants to translate customer
data from Stores7 into Nwind, a typical situation when companies
migrate from legacy information systems. Given a set of Stores7
facts (which might be obtained from a query), OntoGrate uses the
forward chaining reasoner and bridging axioms to translate that set
of source facts into the target Nwind schema. The main idea is
illustrated in Figure 10.

bridging axioms

  (and
  (@stores7:customerfname ?c ?fname)
  (@stores7:customerlname ?c ?lname)
  (@stores7:customerstatecode ?c ?sc))

Stores7
Database

 (@nwind:customercontactname 
     @stores7:customer#101 "Michal Young")
 (@nwind:customerregion @stores7:customer#101 "Oregon")

 (@stores7:customerfname @stores7:customer#101 "Michal")
 (@stores7:customerlname @stores7:customer#101 "Young")
 (@stores7:customerstatecode @stores7:customer#101 "OR")

Nwind Facts

Stores7 Facts

Stores7 Query

Figure 10: Facts from Stores7 are translated into Nwind’s rep-
resentation by using the forward chaining reasoner with bridging
axioms.

On the other hand, suppose a user wants to answer a source

464



Nwind query using the target Store7 database, as in a peer-to-peer
data management environment. In this context, OntoGrate invokes
the backward chaining reasoner to reformulate the source query to
the target one, then retrieves target data using the SQL wrappers to
finally answer the source query. The process is shown in Figure 11.

   (and
   (@stores7:customernumber ?customer ?id)
   (@stores7:customerfname ?customer ?fname)
   (@stores7:customerlname ?customer ?lname)
   (@stores7:customeraddress1 ?customer ?address1)
   (@stores7:customeraddress2 ?customer ?address2)
   (@stores7:statename ?state "Oregon")
   (@stores7:statecode ?state ?code)
   (@stores7:customerstatecode ?customer ?code)
   (@stores7:ordercustomernumber ?order ?id)
   (@stores7:orderdate ?order "2005-06-01"))

 {?customer/@stores7:customer#101, 
   ?fname/"Michal", ?lname/"Young", ?address/"1202 University...}
 {?customer/@stores7:customer#103, 
   ?fname/"Steve", ?lname/"Fickas", ?address/"1202 University...}...

 (and
 (@nwind:customerid ?customer ?id)
 (@nwind:customercontactname ?customer ?name)
 (@nwind:customeraddress ?customer ?address)
 (@nwind:customerregion ?customer "Oregon")
 (@nwind:ordercustomerid ?order ?id)
 (@nwind:orderdate ?order "2005-06-01"))

Stores7 Substitutions (answers)

Nwind Query Stores7 Query

query translation

Stores7
Database

Figure 11: A query asked in Nwind’s representation is reformu-
lated for Stores7, then translated into SQL for data retrieval.

5. EMPIRICAL EVALUATION
As we have shown, given a merged ontology, OntoGrate can

perform database integration using custom SQL wrappers and an
inference engine. We have performed some preliminary tests to
verify that our approach is tractable for reasonably sized input.12

Figure 12: This is the average performance for data translation and query
answering for a simple query with only 4 subgoals. Data partitioning is
discussed in Section 5.3.

5.1 Methods
The Stores7-Nwind merged ontology13 contains approximately:

13 types, 22 predicates, 25 primary key facts, and 61 bridging ax-
ioms which describe type equivalence, type subsumption, predicate
equivalence and other arbitrary relationships.

We measure the performance of two types of tests: data transla-
tion and query answering. Forward chaining (data translation) is a
more expensive operation so we expect slower performance.

For data translation, we use a simple query with no join predi-
cates to retrieve facts from Stores7. Join predicates do not affect

12All experiments were performed on a 1.8Ghz Centrino processor
with 1Gb of RAM and a MySQL database engine.

13
http://www.cs.uoregon.edu/∼paea/research/stores7 nwind merging.pddl

Figure 13: This figure compares query answering performance for
chain and star queries using a more complex query with several
joins and subgoals.

data translation performance. On the other hand, joins do signifi-
cantly affect the performance of query answering, so we test two
varieties of complex queries, star and chain queries. A star query
contains a distinct subgoal (relation) that joins with every other
subgoal in a logical star-like formation. Whereas a chain query
contains subgoals that join to ones before or after it in a logical
chain-like formation.

5.2 Metrics and Results
We measure performance for data translation based on the num-

ber of facts in the source being translated. Intuitively speaking, a
fact corresponds roughly to a single cell in a table.

For query answering, we measure performance based on the num-
ber of substitutions retrieved to answer a query. A substitution cor-
responds roughly to a row in a table. Therefore, a query with 4 sub-
goals and 100,000 substitutions retrieved corresponds to roughly
400,000 facts (4 columns by 100,000 rows = 400,000 cells).

5.3 Discussion
Query answering (Figures 12 and 13) is remarkably fast com-

pared to data translation. Recall that 100,000 substitutions for 12
subgoals, such as the Stores7 query in Figure 11, corresponds to
over 1.2 million facts.

However, during initial tests, data translation performance was
slower than observed in ontology translation for the Semantic Web.
Further investigation revealed that the internal data structures used
in the forward chaining algorithm were optimized for data in the
Semantic Web which tends to be partitioned more randomly over
the domain space. For databases, data described as, “All customers
from Eugene,” represents a set of similar (unpartitioned) data; in
particular, all the facts are bound to the object “Eugene.” A more
partitioned set would be like, “All customers with zip code start-
ing with 972,”. In essence, the forward chaining algorithm uses
data structures that are dependent on the object bindings being well
distributed (something we can address in immediate future work).

We tested our hypothesis with a set of facts that are partitioned
evenly in groups of 100. For example, only select 100 customers
from each city. The results were considerably faster as shown by
the darker solid line in Figure 12. On the other hand, the overlap-
ping dotted lines in the figure prove that backward chaining (query
answering) is unaffected by this data distribution problem.

465



6. RELATED WORK
Related approaches to inferential data integration can be found

in several disciplines, listed below.
Schema mapping. Although the focus of our paper is not in

finding mappings, automatic or semi-automatic schema (ontology)
matching tools [20, 16, 8, 6] can be helpful in providing sugges-
tions to a domain expert. Clio [11] is a semi-automatic tool that
uses an abstract query graph representation for mappings. The
COMA [10] framework combines schemas with a reference on-
tology and uses composition to build mappings. Our approach is to
define schema mappings as first order logic axioms.

Database reverse engineering. There are very few approaches
investigating the transformation of relational schemas to ontolo-
gies. One similar approach to ours is when a relational model is
mapped to frame logic which can then be represented in RDF [23].
Our approaches share the same process of semantic annotation.
However, our focus is not just on semantic representation for schemas
or data instances, but more importantly on the integration of differ-
ent relational databases.

Data integration and logic inference. General integration models
such as federated databases [22], data warehouses [2] and peer-to-
peer data management [12] exist. The integration process is almost
always implemented with a data mediator and an integrated schema
represented as view definitions. Approaches based on a declara-
tive model (as opposed to a procedural one) often use a logical
framework from the area of knowledge representation. The Carnot,
SIMS and Information Manifold systems are brilliantly summa-
rized and compared in [4]. While very similiar to ours, these ap-
proaches tend to be more constricted, depending on fixed global
ontologies such as CYC or LOOMS or a less expressive logic such
as Description Logic or Datalog.

7. CONCLUSIONS AND FUTURE WORK
We have developed an ontology-based, first order logic approach

to integrate heterogeneous relational databases, which we call in-
ferential data integration. We implemented the OntoGrate sys-
tem to evaluate our approach by accessing real databases with large
amounts of data.

Our results demonstrate that OntoGrate is promising for inte-
grating real databases, with adequate performance for query an-
swering. However, more work needs to be done for improving data
translation performance. In particular, optimized data structures
need to be developed in the forward chaining algorithm.

An interesting future direction might be to test OntoGrate against
biomedical databases, where domain experts (e.g., biologists) need
a straightforward way to ask more interesting questions that require
several data sources to answer. On the other hand, to span the scope
of information integration, we are extending OntoGrate to inte-
grate databases, XML files and Semantic Web resources.

8. REFERENCES
[1] T. Berners-Lee, J. Hendler, and O. Lassila. The Semantic

Web. Scientific American, 284(5):34–43, 2001.
[2] P. A. Bernstein and E. Rahm. Data warehouse scenarios for

model management. In ER 2000, pages 1–15, 2000.
[3] D. Calvanese and G. De Giacomo. Data integration: A

logic-based perspective. AI Magazine, 26(1):59–70, 2005.
[4] D. Calvanese, G. De Giacomo, M. Lenzerini, D. Nardi, and

R. Rosati. Knowledge representation approach to
information integration. In Proc. of AAAI Workshop on AI
and Information Integration, pages 58–65. AAAI Press/The
MIT Press, 1998.

[5] C. Collet, M. N. Huhns, and W.-M. Shen. Resource
integration using a large knowledge base in carnot. IEEE
Computer, 24(12):55–62, 1991.

[6] R. Dhamankar, Y. Lee, A. Doan, A. Y. Halevy, and
P. Domingos. imap: Discovering complex mappings between
database schemas. In Proceedings of SIGMOD Conference
2004, pages 383–394, 2004.

[7] A. Doan and A. Y. Halevy. Semantic-integration research in
the database community: a brief survey. AI Magazine,
26(1):83–94, 2005.

[8] A. Doan, J. Madhavan, P. Domingos, and A. Halevy.
Learning to map between ontologies on the semantic web. In
Proceedings of the World-Wide Web Conference, 2002.

[9] D. Dou, D. V. McDermott, and P. Qi. Ontology Translation
on the Semantic Web. Journal of Data Semantics, 2:35–57,
2005.

[10] E. Dragut and R. Lawrence. Composing mappings between
schemas using a reference ontology. In Proceedings of
International Conference on Ontologies, Databases and
Application of SEmantics (ODBASE), 2004.

[11] L. M. Haas, M. A. Hernandez, H. Ho, L. Popa, and M. Roth.
Clio Grows Up: From Research Prototype to Industrial Tool.
In Proceedings of the 2005 ACM SIGMOD International
Conference on Management of Data, pages 805–810, 2005.

[12] A. Halevy, Z. Ives, D. Suciu, and I. Tatarinov. Schema
mediation in peer data management systems. In Proc. of
ICDE, 2003.

[13] A. Y. Halevy, N. Ashish, D. Bitton, M. J. Carey, D. Draper,
J. Pollock, A. Rosenthal, and V. Sikka. Enterprise
Information Integration: Successes, Challenges and
Controversies. In Proceedings of SIGMOD, pages 778–787,
2005.

[14] M. Lenzerini. Data integration: A theoretical perspective. In
PODS 2002, pages 233–246, 2002.

[15] J. Madhavan, P. A. Bernstein, P. Domingos, and A. Halevy.
Representing and Reasoning about Mappings between
Domain Models. In Proc. AAAI 2002, 2002.

[16] A. Maedche, B. Motik, N. Silva, and R. Volz. MAFRA - A
Mapping Framework for Distributed Ontologies. In
Proceedings of EKAW 2002, 2002.

[17] D. McDermott. The Planning Domain Definition Language
Manual. Technical Report 1165, Yale Computer Science,
1998. (CVC Report 98-003).

[18] D. McDermott and D. Dou. Representing Disjunction and
Quantifiers in RDF. In Proceedings of International
Semantic Web Conference 2002, 2002.

[19] R. Pottinger and A. Levy. A scalable algorithm for answering
queries using views. In Proceedings of the 26th VLDB
Conference, pages 484–495, 2000.

[20] E. Rahm and P. A. Bernstein. A survey of approaches to
automatic schema matching. VLDB J., 10(4):334–350, 2001.

[21] S. Russell and P. Norvig. Artificial Intelligence: A Modern
Approach. Prentice-Hall, Inc, 1995.

[22] A. P. Sheth and J. A. Larson. Federated database systems for
managing distributed, heterogeneous, and autonomous
databases. ACM Computing Surveys, 22(3):183–236, 1990.

[23] L. Stojanovic, N. Stojanovic, and R. Volz. Migrating
data-intensive web sites into the semantic web. In
Proceedings of the 2002 ACM Symposium on Applied
Computing, pages 1100–1107, 2002.

466


