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Abstract. Current information retrieval (IR) approaches do not formally capture

the explicit meaning of a keyword query but provide a comfortable way for the

user to specify information needs on the basis of keywords. Ontology-based ap-

proaches allow for sophisticated semantic search but impose a query syntax more

diÆcult to handle. In this paper, we present an approach for translating keyword

queries to DL conjunctive queries using background knowledge available in on-

tologies. We present an implementation which shows that this interpretation of

keywords can then be used for both exploration of asserted knowledge and for a

semantics-based declarative query answering process. We also present an evalua-

tion of our system and a discussion of the limitations of the approach with respect

to our underlying assumptions which directly points to issues for future work.

1 Introduction

Part of the Semantic Web vision is to provide web-scale access to semantically de-

scribed content. In particular, this implies understanding users’ information needs ac-

curately enough to allow for retrieving a precise answer using semantic technologies.

Currently, most web search engines are however based on purely statistical techniques.

While they are not able to figure out the meaning of a query, they can provide answers

by returning the statistically most appropriate answer to a user’s query—based on some

measures for computing similarity in vector space (cf. [1]). Information Retrieval (IR)

techniques applied to the Web have gained a reasonable degree of maturity which is

clearly corroborated by the success of search engines such as Google, Yahoo and the

like. These search engines are in fact providing a baseline quite diÆcult to outperform.

Due to the nature and the maturity of the underlying statistical techniques, they are more

robust and scale to the size of the Web, as opposed to semantic technologies.

For restricted domains which can be formalized using ontologies, there is neverthe-

less hope that semantic technologies can be put into work to allow for more semantics-

based search. One of the crucial steps within such an endeavor is to precisely capture

the user’s information need (see also [2]). But how does the user express his information

need? If we look at the wide-spread usage of web search engines, we can conclude that

users are definitely used to express their information need via simple queries based on

keywords. However, while there is substantial recent work on interpreting full natural

language questions semantically w.r.t. an ontology (cf. [3], [4]) or database schema [5],

not as much work has been carried out with respect to the formal interpretation of key-

word queries. A notable exception is the approach described in [6], which we discuss

further in the related work section.
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In this paper, we present an approach for interpreting keyword queries using back-

ground knowledge available in ontologies. Based on a few assumptions about how peo-

ple describe their information needs, we present an approach which translates a keyword

query into a DL conjunctive query which can be evaluated with respect to an underly-

ing knowledge base (KB). The evaluation of our approach has been carried out on the

KB of the semantic portal at ������������	
���	��������������and shows first

promising results which we discuss w.r.t to our underlying assumptions. In addition, we

present a system which shows how the interpretation of keywords can be used for a

combination of intuitive exploration and search in KBs.

The paper is structured as follows: we begin with a discussion of related work in

Section 2. Then, a generic approach for the interpretation of queries with background

knowledge is presented in Section 3, followed by a detailed description of the transla-

tion of keyword queries to DL conjunctive queries in Section 4. Then in Section 5, we

present the implementation of the approach as well as its evaluation. A discussion of

the results points us directly to open issues for future work. We conclude in Section 6.

2 Related Work

Recently, substantial work has been performed on the translation of natural language

questions to formal queries using an ontology or a database (cf. [5], [3], [4], [7]). While

these approaches have been shown to yield remarkable results, it is not clear if users

always want to specify a full natural language question. In fact, the success of commer-

cial search engines shows that users are quite comfortable with using keywords. Thus, it

seems important to also develop approaches which are able to interpret keywords such

that they can be answered through a query to a database or a KB.

In this regard, there exists work on the translation of keywords to XML-based

queries, e.g. to interpret keywords as X-Queries on XML data [8]. This is related to

our approach because also the structure of (XML) elements is considered to interpret

the relations among keywords. However the structure exploited there is less complex

than the many relations among entities given by ontology axioms that we explore for

our translation. Also, there has already been work on translating keywords to semantic

queries. For instance, Royo et al. propose to map keywords to corresponding WordNet

synsets [9]. While they claim to also be able to discover relations between keywords, it

is not clear how this is achieved, especially given the fact that WordNet does not include

any non-taxonomic relations besides part-of relations.

The approach closest to ours is the SemSearch approach presented by Lei et al. [6].

In fact, we agree with the analysis of Lei et al. that common approaches to semantic

search are not particularly intuitive or user friendly as they either require posing formal

(logical) queries or limit the expressive power of the user by using forms for example

(compare the analysis of the semantic search state-of-the-art in [6]). Our approach is sim-

ilar to SemSearch in the sense that we also aim at answering complex keyword queries

by translating them into a logical query. However, our approach mainly di�ers in the

way the query is computed. In SemSearch, the keywords are first interpreted as either

instances, concepts or properties, respectively, which yields nine possible templates to

be instantiated for the case of queries consisting of two keywords. Templates in fact fix

http://www.aifb.uni-karlsruhe.de/
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the structure of the resulting query a priori, i.e. it is assumed that entities denoted by key-

words can be connected through a direct relation in the ontology. As queries with more

than two keywords lead to a combinatorial explosion of the di�erent possible combina-

tions of entities, and thus would require a large number of templates, some heuristics are

suggested to handle these complex queries (see [6] for more details). In contrast to Sem-

Search, we build on a more generic graph-based approach to explore the connections

between the entities in the query. Our approach does not fix the structure of the queries

in the form of templates a priori and does not assume the availability of direct connec-

tions between entities. In fact, the vicinity of the entities that is to be explored is based

on a variable d, which can be set by the user. Within this range, many possibly indirect

connections might be discovered and used for the generation of the formal query.

3 Answering User Queries in Ontology-Based Systems

In this section, we present an abstract framework describing the process of ontology-

based IR, where the user poses a question to the system and the system answers the

question using knowledge formalized in a logical language. In particular, we focus on

scenarios where the language of the user question does not match the query language

supported by the system. For this purpose, we define our ontology-based IR process

as consisting of four models and describe the assumptions underlying our approach. We

then present a generic approach for translating a user question into a formal system query.

3.1 Models in Ontology-Based Information Retrieval

In line with models in classical IR, namely the query and resource model [1], we discuss

four di�erent models involved in ontology-based IR.

The Mental Model�U : The mental model�U corresponds to the information need that

a user has in mind at the beginning of an IR task. Since the concrete mechanisms under-

lying human thought are far from completely understood, for the sake of the approach

presented in this paper we postulate only very abstract properties of this model: �U can

be conceived as a set of (thought) entities that are relevant for the current information

need and embedded in an association structure. These entities might be related to real

world objects or to more abstract concepts. The entities in this association structure can

be conceived as what the user knows. We assume that the user is looking for (some of

the) entities missing in this structure, which we refer to as gaps.

The User Question Model �U: The user question model �U consists of elements,

which in turn are constructed out of language primitives �U of a language �U (lan-

guage of the user). This model is the result of the user translating elements in �U to

elements in �U . Moreover (depending on the expressive means of �U), there might

be also elements in �U explicitly denoting gaps (like, e.g. question words in a natural

language). Naturally, �U must not be empty.

The System Resource Model �S : This model consists of elements constructed out

of language primitives �S of a formal KR language �S (language of the system).

Independent from a concrete formal language used, these elements can be conceived
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as a set of entities of a given ontology. As opposed to the abstract mental model�U , the

entities and structure of �S are explicitly given and directly accessible. These elements

constitute the knowledge (the KB) the system uses to answer the user question.

The System Query Model �S : This model represents the final question processed

by the formal query engine of the system. It consists of elements constructed out of

language primitives ��

�
of a query language ��

�
. When there is a formal semantics for

��

�
(query language of the system) it must be compatible with the semantics of �� for

the query �S to be processable by the system. In particular, some elements in �S must

correspond to elements in �S . In fact, formal queries in many systems are specified

using ontology elements of the underlying KR language. However, the query language

��

�
may have primitives additional to the ones available in ��. In particular, there must

be primitives to specify the gaps, e.g. variables.

Note the correspondence of these models and the consequences for ontology-based

IR: The more the entities and structure in �U match the entities and structure in �S , the

higher the chance that �S can be used by the system to fill the gaps, i.e. to answer the

query. Also, the more related the syntax and semantics of �U and�S , the more straight-

forward is the mapping from �U to �S , i.e., the interpretation of the user query. Yet, in

the following, we will restrict our attention to scenarios where the query language of

the user �U and the language of the system �S di�er considerably and propose to use

an ontology-based system to interpret and answer the user question.

3.2 A Generic Approach for Ontology-Based Query Interpretation

In this section, we are not concerned with the actual answering step where the query

engine processes the system query. Instead, we present a generic approach to deal with

the preceding step, namely translating the user question to the system query. Similar to

query processing, we propose an approach which relies on the knowledge in the KB for

question interpretation. We will start with the clarification of our assumptions before

the presentation of our approach.

Assumption (A1) — Ontology-Mental Correspondence: This assumption requires

both an entity-wise and a structural correspondence between the mental model �U and

the system resource model �S . That is, elements and the associative structure in �U

correspond to ontology entities and the structure in �S , respectively.

Assumption (A2) — Locality of Information Need: This assumption requires those

ontology entities ��
S � �S that correspond to entities in the mental information need

representation �U to be connected over a maximum distance d. That is, for any two

ontology entities a� b � ��
S there has to be a direct connection �a� b� or a sequence of

xi such that a � x0 and �x0� x1�, �x1� x2�, . . . , �xn�1� xn�, and �xn� xb� and n � d. There

might be several such sequences that connect gaps with the two entities the user knows

(a� b). In such cases, we assume not only that there is a maximum distance but moreover

that connections over smaller distances are more likely to contain the gaps that the user

looks for.

The above assumptions are certainly too strict in the sense that users can not be

assumed to fully think in term of ontological structures or in any KR language. How-

ever, we need to assume that they think in some structures which can be mapped to an
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ontology. Otherwise, a system would have no chance in interpreting and answering a

user’s query. In this sense, our assumptions seem justified from a practical point of

view. Thus, if there is no such correspondence, the system cannot fill the user gaps, i.e.

answer the query. In addition, A2 helps to restrict attention to only a particular part of

the ontology, as discussed in our approach presented in the following.

Interpreting the User Question: We present a generic approach to translate �U to �S

which consists of three high level steps. First, the elements in the user question �U are

mapped to ontology elements from �S (Step 1). Then, further ontology elements are

explored to better cover the initial information need in the mental model �U (Step 2).

Finally, from this more refined ontological representation of the need, the query �S will

be derived (Step 3).

In step one, we make use of the correspondence stated in A1 and map elements of

the user queries �U to ontology elements ��
S � �S . Note that the user question may

only partially capture the mental model. Also, not all elements of the user question

can be mapped to corresponding ontology elements. Therefore, the identified ontology

elements ��
S yet do not account for the entire mental model. Since we want in some

way to “reconstruct” the mental model and find out the gaps, further computation is

required in these cases to find missing elements.

In step two, the assumption on the locality of information need (A2) is used to ex-

plore connections among ��
S identified in step one using further elements in �S . Due

to A2, only elements in �S that are connected with the identified elements ��
S within

a specified range (maximum distance d) have to be considered in the exploration. From

this it also follows that after all the neighboring elements in this range have been ex-

plored for all ��
S , the discovered elements in �S combined with ��

S can be assumed

to approximate the user’s mental model.

After reconstructing this mental model, the identified and discovered ontology ele-

ments need to be assembled into a formal query in the language ��

S
. The discussion

on �S already pointed out that formal queries are specified using ontology elements

(the information part). Additionally, they contain variables (the question part). As op-

posed to �S , �S does not contain variables, and thus, the identified elements ��
S map

to the information part. Note that in the exploration step, the discovered elements may

correspond to thought entities the user knows but has not explicitly specified in the

question. Also, they might correspond to gaps, i.e. entities the user does not know and

out of which only some might be interesting to him�her. While all the others map to the

information part, the elements corresponding to the answer the user looks for map to

variables of the question part.

Illustrating Example: We illustrate our approach with a simple example as depicted in

Figure 1, where a user wants to retrieve all publications authored by Philipp Cimiano

which are associated to the project X-Media. Let’s assume that the user, on the basis of

his information need, issues the query �U �"Philipp Cimiano X-Media publications".

The elements in the query are then mapped to the ontology elements ��	�	��

�	�	��� �����	� and ����	��	� respectively. These elements, however, yet do

not fully correspond to the information need of the user. Also, they still cannot be

assembled into a system query that yields answers the user looks for due to missing
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Fig. 1. Workflow for the query "Philipp Cimiano X-Media publications"

elements. These missing elements correspond to the entities in the mental model the

user knows but does not specify such as the connection 	��� between �����	� and

������. In particular, the user does not make explicit the relation between ��	�	��

�	�	�� and ����	��	� connected in the ontology via the ������ relation. These

missing elements correspond to what we call gaps, i.e. elements in the mental model

that the user does not make explicit when specifying his�her information need. In our

case, the user does not make explicit the connection ��������� between �����	�

and ����	��	� while for sure s�he was thinking of it. Some of these gaps corre-

spond to the information the user is looking for, i.e. ����� in our example. All these

missing elements need to be made explicit in our translation into a formal query.

For this purpose, in step 2, our approach starts the KB exploration from the individual

��	�	�� �	�	�� and leads to the relations ������ and 	���. Assuming the explo-

ration width is 2, we also reach the elements ����� and ��������� from ��	�	��

�	�	��. From the other elements in the query, i.e. �����	� and ����	��	�, we

reach the relations ���������, 	��� as well as the elements ������, ����� and

���� from �����	�, and 	��� and ����� from ����	��	�. This shows how step-

by-step the exploration builds up a graph where all elements of the initial user query are

connected.

In step 3, the (possibly many) subgraphs which connect these elements are computed.

These subgraphs correspond to the di�erent questions the user possibly has. As high-

lighted in the circle in Figure 1, in our specific example there is only one such subgraph.

However, in other scenarios, and in particular if the exploration range d is set higher,

we are likely to obtain several such subgraphs. In such cases, A2 allows to rank queries,

since it postulates that connections over smaller distances are more likely to contain

the answer the looks for. Finally, the graph is translated into a corresponding query,

e.g. �S � �!���	�	�� �	�	������� 	 �!� "�������� 	 �"�#����������� 	

�#������	������ 	 �"�����	��	��. While the previous steps are rather generic,

the mapping from the graph elements to the information part and question part of the
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system queries depends on the query syntax of �S as well as the specific elements

identified and explored in �S .

This simple example demonstrates the high level steps as captured in the generic

approach. It shall facilitate comprehension of more technical details of a procedure

we propose for the specific translation of keyword queries to DL conjunctive queries

presented in the following section.

4 Interpretation of Keywords Using DL Knowledge Bases

In this section, we present an instantiation of the generic approach described above

to two specific languages �U and �S . �U is grounded to keyword queries, i.e. �U �

(k1� k2� ���� kn) where the ki’s stand for keyword and represent the primitives �U . The

language of the user �U then simply consists in concatenations of the elements in �U .

Thus, by keyword queries, we mean the standard type of queries supported by Google-

style interfaces like the ones discussed in [10]. Further, �S is grounded to DL conjunc-

tive queries. Such a query is defined as a conjunction of terms of the form x : C or

�x� y� : R, where C is a concept, R is a role, and x, y are variables or individuals taken

from
 a set of variable names, or � a set of individual names. If we conceive the vari-

ables as individuals, these terms are assertional statements of a DL language, where the

first kind is referred to as concept terms and the latter kind is called role terms.

For the translation of keyword queries to DL conjunctive queries, we make use of

�S , a KB containing knowledge formalized in the form of DL axioms. In particular,

the description logic in our approach is ����(D), the DL counterpart to OWL DL,

such that, in addition to individuals and variables in query terms, we also have j : D,

where j are data values taken from the set of values � and D � � is the set of data

ranges. Moreover, roles can be further divided into abstract roles (object properties)

R and concrete roles (datatype properties) U such that possible terms occurring in a

conjunctive query have the shape x : C, j : D, �x� y� : R and �x� j� : U.

Before the detailed presentation of the approach, we discuss the specialization of A1

to the particular setting described above, i.e. the correspondence of the mental model

and the DL knowledge base.

Assumption 1’ (A1’). We assume that users’ mental models are organized in a way

similar to DL knowledge bases. More precisely, this means that the thought entities

of the mental model �U correspond to ����(D) ontology entities in the disjoint

union of the sets � (individuals), � (data values), � (concepts), � (data ranges), �

(object properties), and � (data properties) and the associations in �U correspond to

associative interconnections of the types �i� C�, �i1� R� i2� and �i� U� j� where i� i1� i2 �

�, j � � , C � �, R � �, and U � �. As given by the ����(D) syntax, such

connections are specified using the DL-axioms i � C (concept membership), �i1� i2� � R

(object property membership) and �i� j� � U (data property membership).

Note that when compared to A1, A1’ imposes stricter structural properties on the

mental model. Namely, its structure is frame-based in the sense that elements of the

mental model correspond to the entities and relations of a DL A-Box. We think that as

the frame-based nature of DL seems to be an intuitive formalism to describe knowledge,
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it might be also an intuitive way for users to think about (and to describe) the knowledge

they are looking for. In what follows we describe the various steps of the concrete

instantiation of the generic approach in more details.

4.1 Step One — Mapping Terms to KB Entities

Due to A1’, we assume that keywords are mapped to ontology entities, namely indi-

viduals, data values, concepts, data ranges, as well as object and data properties. In

particular, the mapping can be defined as a function f which maps elements of the user

question model �U to entities of system resource model �S , i.e. f : �U � �S . For

practical purposes, it is crucial that this function is “robust" in the sense that it also

considers syntactic and spelling variants.

Using the query engine, entities in the KB can be retrieved via their URIs. In par-

ticular, f can be implemented as a retrieval operation performed by the engine, e.g.

simply by passing the URI as input to the repository API. In order to cope with syn-

tactic and spelling variants, Lucene1 is actually used as the index and search engine.

That is, URIs and labels of entities are indexed, and using the fuzzy search feature of

Lucene, a query is generated for each entered keyword. The engine returns ontology

entities ranked according to syntactic similarity to the respective keyword. As there is

only one minor syntactic di�erence in the example from the last section, the highest

ranked entities for �U �"Philipp Cimiano X-Media publications" are indeed ��	�	��

�	�	��� �����	� and ����	��	�. However, in other scenarios, this implemen-

tation of f based on syntactic similarity may not always find an appropriate mapping

for each keyword. These mapped entities ��
S :� � f (ki)�QU � �k0� ���� kn�� will then be

fed into the exploration step, which we will discuss in the following.

4.2 Step Two — Exploring Connections Among KB Entities

Due to A1’, we can restrict ourselves to the exploration of connections of the type

�i� C�, �i1� R� i2� and �i� U� j�. Using these concept and property member axioms, we

explore all ontology entities related to elements ��
S identified in step one according to

the algorithm shown in Fig. 2.

Basically, the exploration encompasses the traversal to neighbors from each of the el-

ements in ��
S . Then, depending on the type of the particular element e � ��

S , di�erent

traversals are performed to build a graph connecting e with all the neighbors within the

specified range d. For instance, given a concept, all individuals are retrieved via concept

member axioms. Given a property, property member axioms are used to navigate to in-

dividuals and data values, respectively. Figure 3, for example, shows the pseudocode

algorithm for the recursive traversal from a particular individual to its neighboring con-

cepts, individuals and data values. Neighboring individuals and data values are retrieved

using property member axioms. The value of d is reduced by one in each recursion step

to ensure that this traversal is limited to a certain range. Note that, due to marking el-

ements of ��

S
globally as visited, any element of ��

S
is traversed at most once. In the

end, we obtain a graph g containing all entities out of �S which have a graph-distance

1 see http:��lucene.apache.org�java�docs�
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not greater than d to at least one of the elements of ��
S . We call this structure the d-

neighborhood of��

�
. Possibly, if d is small, it might be the case that the computed graph

is not connected.

KB E(O′S , d)

1 INPUT a set of entities O′S matching the terms and the traversal width d

2 OUTPUT the graph containing all or some of O′S
3 Intitialize new empty graph g

4 for e ∈ O′S
5 do if e is a concept

6 then for all i being instances of e

7 do I-P-I T(e, d, g)

8 else if e is an object property

9 then for all i, j with 〈i, e, j〉 ∈ OS

10 do I-P-I T(i, d, g)

11 I-P-I T( j, d, g)

12 else if e is a data property

13 then for all i, j with 〈i, e, j〉 ∈ OS

14 do J-P-I T( j, d, g)

15 else if e is an individual

16 then I-P-I T(e, d, g)

17 else if e is a data value

18 then J-P-I T(e, d, g)

19 return g

Fig. 2. KB Exploration algorithm

Note that the exploration simply incorporates all elements within a certain range.

Thus, some discovered elements may not really be needed to connect elements in ��
S .

Therefore, from this graph, only those paths are selected where the first and the last

vertex correspond to an element in ��
S . In particular, a modified version of the depth

first search (DFS) procedure over graphs is used for computing all paths p � P for each

possible pair (a� b) � ��
S such that p � (v1� e1� ���� en� vn), where v1 is constructed using

a and vn is constructed using b and none of the vertices is visited more than once. These

paths are fed into the next step.

4.3 Step Three — Deriving DL Conjunctive Queries from Connections

This step comprises three substeps. First, all di�erent subsets of paths (called connec-

tions) are computed from P discovered previously. Then, for each subset, a query is

derived. Finally, the resulting queries are ranked. The three substeps are described in

the following:

Computing Possible Connections: A question can be derived when all elements ��
S

identified in step one are connected. When merging all the paths P computed in step

two, we however obtain a graph which may contain many di�erent subgraphs connect-

ing all the elements ��
S . Hence, it is a priori not clear which subgraph to choose as the

correct interpretation of the keyword-based query. Therefore, we first compute all these
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I-P-I T(i, d, g)

1 INPUT the individual i to be explored, the traversal range d, and the intermediate graph g

2 OUTPUT updated graph g containing entities connected to i within the range d

3 if i not marked as visited and d > 0

4 then

5 mark i as visited within OS

6 Ci := {c | i instance of c}

7 add edge (i, type, c) to g for all c ∈ Ci

8 P := {(i, p, j) | 〈i, p, j〉 ∈ OS }

9 for all (i, p, j) ∈ P

10 do if j not marked as visited in OS

11 then add a new edge (i, p, j) to g

12 if j is an individual

13 then I-P-I T( j, d − 1, g)

14 else J-P-I T( j, d − 1, g)

Fig. 3. Individual-to-Individual traversal algorithm

subgraphs and rank these at a second step. The subgraphs connecting the elements in

��
S are calculated by the recursive procedure shown in the pseudocode algorithm in

Figure 4. The input to the algorithm is the set of paths P as computed previously as

well as an initially empty set R � OS of vertices which have not yet been assembled

into a graph connecting all the vertices in OS as well as a subset C of already connected

vertices. The recursion starts by selecting some edge connecting two arbitrary vertices

and enters further recursions to add additional vertices. In this way, all the possible

tree-shaped subgraphs connecting elements in OS are determined.

Mapping Connections to Queries: Each of these connection graphs GC are then trans-

lated to a corresponding DL conjunctive query�S as follows: an edge in GC of the form

type(vi� vc) (representing the connection �i� C�) is mapped to concept terms of the form

�!���, where vi is a vertex constructed using an individual, vc is constructed using a

concept, and x is an individual or a variable. The concept of vc is used as concept of

the term. When the individual of vi matches some e � ��
S , then it is used as con-

stant, otherwise a variable is used for the term. As the same individual might be used in

many edges, the same variable must be used for the same individual. Besides concept

member axioms, also property member axioms are used to connect entities in the explo-

ration. Edges constructed with these axioms are of the form propertyn(vi� v j), where vi

(v j) is constructed either using an individual or a data value (the connections �i1� R� i2�

and �i� U� j�). These edges map to role terms of the form �!�"� : $, where a vertex

constructed using an individual is mapped to a variable or constant just as described

above. When vi (v j) is constructed using a data value, it is simply mapped to constants

of the role term. As the exploration incorporates only these two types of edges, this

mapping is thus complete for the translation from GC to �S . In our example, only one

connection graph with the edges name(uri1� Philipp Cimiano)� author(uri1� pub#1)�

hasPro ject(pub#1� uri2)� name(uri2� X � Media)� type(pub#1� publication) exists. Us-

ing the above specified mapping, this connection graph is translated to the final query:

�S � �!���	�	�� �	�	������� 	 �!� "�������� 	 �"�#����������� 	

�#������	������ 	 �"�����	��	��.
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CSG(P,C,R,G, g)

1 INPUT the paths P calculated by DFS for all matching vertices O′S
2 OUTPUT all different subgraphs connecting the vertices in O′S
3 if R = ∅

4 then G = G ∪ g

5 if g = ∅

6 then G = newGraph

7 for {i, j} ⊆ R

8 do for each path p between i and j (as calculated by DFS)

9 do add (i,p,j) to G

10 CSG(P\p,C ∪ {i, j},R\{i, j},G)

11 else for i ∈ R

12 do for j ∈ C

13 do for for each path p between i and j

14 do

15 add (i,p,j) to G

16 CSG(P\p,C ∪ {i},R\{i},G)

Fig. 4. Algorithm for Computing Connections

Rank Queries: Finally, the computed subgraphs have to be ranked. From A2, it follows

that the smaller the length of the paths connecting the elements��
S , the more likely they

match the initial question in the mental model of the user. Thus, queries are ranked by

the length of the longest path of the respective connection graph.

5 Ontology-Based Search and Exploration with Keywords

In this section, we discuss our implementation of the approach and show how it can be

incorporated into a system for exploring and searching KBs. The system is evaluated

and results are discussed in the last section in the light of the underlying assumptions.

5.1 Implementation

The presented approach for the interpretation of keywords with respect to a given on-

tology is integrated in our system called XXploreKnow!, which has been designed to

support a combination of search and exploration in knowledge bases. A detailed de-

scription of this system will be published elsewhere. We will now describe a possible

interaction of a user with XXploreKnow!.

At the beginning, the user enters keywords which are processed by the Lucene search

engine. Ontology entities returned by this engine enter the exploration process, in which

neighboring entities up to a width of d are considered2. As a result, the system visual-

izes a subgraph connecting the matched entities to the user and highlights the entities

matching the keywords. Depending on the action performed by the user, e.g. clicking

on the “search" or “xxplore" button, subsequent interactions consist of either further ex-

ploration of the graph or inspection of the search results. With “xxplore", the user can

2 Currently, the parameter d must be configured in the implementation. It has been set to 3 in

our experiments.
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expand nodes shown in the graph-based visualization to traverse to neighboring con-

cepts and individuals connected via properties—as captured by concept restrictions and

property member axioms. In addition, from an individual, the user can navigate to its

types, and then along the concept hierarchy as specified by subclass axioms. By default,

only assertional knowledge is retrieved (in order to keep the browsing performant) and

shown in the visualization. During this exploration, the user can drag and drop elements

from the visualization to the query view below the keywords to further refine the query.

With “search", the user’s query is sent to the inference engine. In this case, the di�erent

possible queries are ranked as described in previous sections and presented to the user,

who can choose among di�erent queries. The results, which may contain also inferred

facts, are then finally shown to the user in a separate view.

5.2 Evaluation

In order to carry out an evaluation of the system, we have asked colleagues at the insti-

tute AIFB to provide queries in the way they would interact with a system capable of

processing keyword based queries, along with the natural language description of the

query. The request was sent by e-mail and 12 people responded. Some queries which

were obviously out of the scope of the knowledge base were removed, resulting in a

total of 42 di�erent queries. These queries were incorporated only as an evaluation set

and not used for the development or tuning of the approach. Examples for queries with

di�erent number of keywords posed by our users are: "projects Blohm" (Retrieve all

projects that Sebastian Blohm is working on), "phone Rudi Studer" (Retrieve the phone

number of Rudi Studer) or "publications SmartWeb Pascal Hitzler 2002" (Retrieve all

publications published by Pascal Hitzler within SmartWeb in 2002). For the evalua-

tion, one of the authors manually assigned conjunctive queries according to the natural

language description. A query generated by our approach is regarded as correct if it

retrieved the same answers as the hand crafted query. In line with work on question an-

swering ([5],[4]), we evaluate the approach in terms of precision, recall and F-Measure.

Precision P is defined as the number of correctly translated keyword queries (based on

equivalence of results) divided by the number of cases for which the system was able

to construct a query. Recall R is defined as the number of correctly translated keyword

queries divided by all the keyword queries of the evaluation set, i.e. 42 in our case. The

F1 �
2�P�R
P�R

measure is then the harmonic mean between precision and recall.

In case the query is selected by hand from the di�erent queries generated, our system

obtains a precision P � 85%, a recall R � 52% and a F-Measure F1 � 64%. In case we

automatically choose the highest ranked question instead, the results are slightly lower

with a precision of P � 69%, a recall of R � 43% and an F-Measure of F1 � 53%.

5.3 Discussion

Our evaluation has been performed with the knowledge base from which our institute

portal is automatically generated3. The underlying ontology is the SWRC ontology [11],

which allows for the representation of researchers, their publications, active projects etc.

3 see ���������������
������	�
������

http://www.aifb.uni-karlsruhe.de/
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The evaluation has been carried out involving our colleagues, who visit and update the

portal pages frequently, but do not know the underlying ontology in detail. Thus, some

of the queries the users in our experiments asked the system contain keywords which do

not correspond to entities in the knowledge base. Obviously, this is a problem for our ap-

proach as it violates assumptions A1’ as well as the generic A1. According to our recall

measure (43-52%), at least about half of the keyword queries fulfill assumption A1’ and

can thus be mapped to appropriate ontology elements. The higher precision of 69-85%

on the other hand shows that, given that A1’ is fulfilled, the generated query is correct

in most cases. In fact, we found that most of the errors in our approach are produced

in step 1. This means that the Lucene engine does not return the appropriate ontology

elements in some cases. This problem could be for example addressed by integrating

additional lexical knowledge about words as found in resources such as WordNet [12].

A further issue is related to our assumption A2, i.e. the assumption that the ontology

entities the keywords map to are connected via paths of up to a given length d. We have

experimented with a length d of 3 in our approach. Possibly, a higher recall could be

achieved by using a higher value for d, but it is also probable that much more "back-

ground noise" would be introduced, thus making the selection of the relevant query more

diÆcult. Overall, our assumptions have proved to be very valuable. Our first assumption

(A1 � A1’) states that users conceptualize their information need in terms compatible

with the underlying ontology. While such an assumption is quite simplistic on the one

hand and rather strict on the other, it turned out to be necessary as questions which do

not fulfill this assumption are anyway out of the conceptual range of the system. From

a practical point of view, this assumption is thus necessary. Assumption A2, which as-

sumes that the ontology elements are connected with paths of a maximal length turned

out to be crucial in order to restrict the search space to a specific part of the KB.

6 Conclusions

We have presented a generic approach for mapping queries in a user language into an

expressive logical language. In particular, we have presented a particular instantiation

of our generic approach which translates keyword queries into DL conjunctive queries

using knowledge available in the KB. We have clarified in particular the assumptions

on which our approach is based on. We have presented the current implementation

of the system as well as first results of an evaluation of the translation process. The

evaluation shows promising results w.r.t. precision, but still a lower recall which can

be definitely increased by integrating lexical knowledge into the process of matching

keywords to ontology elements. In the light of these evaluation results, we have argued

that our assumptions are indeed reasonable and necessary for the interpretation and the

answering of queries using ontologies.

Besides the integration of lexical knowledge to improve recall, we intend also to im-

prove the runtime performance of our approach. will focus future work on boosting the

performance. So far, the process of interpretation so relies mainly on assertional knowl-

edge, resulting in a large number of A-Box queries that need to be processed during the

exploration. We plan to exploit the available T-Box knowledge for a “guided exploration"

of the connections between ontology entities to reduce the number of A-Box queries.
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One major problem our approach su�ers from is the fact that it does not consider

that keywords can be ambiguous with respect to labels in the ontology and simply con-

siders the first matching ontology element to start the exploration. Currently, in case of

ambiguities, the exploration would have to be performed for each of the possible inter-

pretations of a query term. However, the alternatives to explored might be exponential

in the number of possible interpretations of the keywords. Future work will thus aim at

a more appropriate treatment of ambiguities.

Finally, we will further develop the presented system to support an integrated ap-

proach for combined search and exploration in knowledge bases.
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